901
|
Han X, Ding C, Zhang G, Pan R, Liu Y, Huang N, Hou N, Han F, Xu W, Sun X. Liraglutide ameliorates obesity-related nonalcoholic fatty liver disease by regulating Sestrin2-mediated Nrf2/HO-1 pathway. Biochem Biophys Res Commun 2020; 525:895-901. [PMID: 32171530 DOI: 10.1016/j.bbrc.2020.03.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Liraglutide, a glucagon-like peptide 1 (GLP-1) analogue, could reverse NAFLD-induced liver damage by improving metabolic profiles, but the exact molecular mechanism has not been elucidated. Sestrin2 is a novel antioxidant protein, essential for regulating metabolic homeostasis. However, whether sestrin2-mediated redox balance participated in the protective effects of liraglutide against NAFLD is still elusive. The aim of the study was to determine whether liraglutide could ameliorate NAFLD by increasing Sestrin2-mediated signaling in obese mice. Following a normal diet or high fat diet (HFD) for 8 weeks, male C57BL/6 mice were treated with or without liraglutide for 4 weeks. Function and histopathology of liver were conducted to evaluate liver injury. Sestrin2-related AMPK and Nrf2/HO-1 pathway were examined. Antioxidative and inflammatory genes and were determined. HFD mice displayed significantly increased body weight, fat mass, lipids levels and impaired glucose homeostasis with reduced glucose tolerance and insulin sensitivity. Metabolic profiles, hepatic injury, and hepatic lipid accumulation from HFD mice were improved by liraglutide treatment. Liraglutide enhanced Sestrin2, phosphorylated AMPK, Nrf2, and HO-1 protein levels. Additionally, Liraglutide treatment increased mRNA levels of Sestrin2, Nrf2, HO-1 and down-stream genes catalase, GCLM and NQO1, but reduced malondialdehyde and TNF-α levels. Our findings indicated that liraglutide ameliorated obesity-related NAFLD through upregulating Sestrin2-mediated Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Xue Han
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chuanhua Ding
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Guangdong Zhang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - RuiYan Pan
- School of Pharmacy, Weifang Medical University, Weifang, 261031, China
| | - Yongping Liu
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Na Huang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Ningning Hou
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Wenjie Xu
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Xiaodong Sun
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
902
|
Ikeda Y, Murakami M, Nakagawa Y, Tsuji A, Kitagishi Y, Matsuda S. Diet induces hepatocyte protection in fatty liver disease via modulation of PTEN signaling. Biomed Rep 2020; 12:295-302. [PMID: 32382414 PMCID: PMC7201141 DOI: 10.3892/br.2020.1299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Fatty liver disease (FLD) is characterized by accumulation of excess fat in the liver. The underlying molecular mechanism associated with the progression of the disease has been in elusive. Hepatocellular demise due to increased oxidative stress resulting in an inflammatory response may be a key feature in FLD. Recent advances in molecular biology have led to an improved understanding of the molecular pathogenesis, suggesting a critical association between the PI3K/AKT/PTEN signaling pathway and FLD. In particular, PTEN has been associated with regulating the pathogenesis of hepatocyte degeneration. Given the function of mitochondria in reactive oxygen species (ROS) generation and the initiation of oxidative stress, the mitochondrial antioxidant network is of interest. It is vital to balance the activity of intracellular key molecules to maintain a healthy liver. Consequently, onset of FLD may be delayed using dietary protective agents that alter PTEN signaling and reduce ROS levels. The advancement of research on dietary regulation with a focus on modulatory roles in ROS generation and PTEN associated signaling is summarized in the current study, supporting further preventive and therapeutic exploration.
Collapse
Affiliation(s)
- Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Mutsumi Murakami
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yukie Nakagawa
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
903
|
Özkan A, Stolley D, Cressman ENK, McMillin M, DeMorrow S, Yankeelov TE, Rylander MN. The Influence of Chronic Liver Diseases on Hepatic Vasculature: A Liver-on-a-chip Review. MICROMACHINES 2020; 11:E487. [PMID: 32397454 PMCID: PMC7281532 DOI: 10.3390/mi11050487] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
In chronic liver diseases and hepatocellular carcinoma, the cells and extracellular matrix of the liver undergo significant alteration in response to chronic injury. Recent literature has highlighted the critical, but less studied, role of the liver vasculature in the progression of chronic liver diseases. Recent advancements in liver-on-a-chip systems has allowed in depth investigation of the role that the hepatic vasculature plays both in response to, and progression of, chronic liver disease. In this review, we first introduce the structure, gradients, mechanical properties, and cellular composition of the liver and describe how these factors influence the vasculature. We summarize state-of-the-art vascularized liver-on-a-chip platforms for investigating biological models of chronic liver disease and their influence on the liver sinusoidal endothelial cells of the hepatic vasculature. We conclude with a discussion of how future developments in the field may affect the study of chronic liver diseases, and drug development and testing.
Collapse
Affiliation(s)
- Alican Özkan
- Department of Mechanical Engineering, The University of Texas, Austin, TX 78712, USA
| | - Danielle Stolley
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
| | - Erik N K Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew McMillin
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX 78713, USA
- Central Texas Veterans Health Care System, Temple, TX 76504, USA
| | - Sharon DeMorrow
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX 78713, USA
- Central Texas Veterans Health Care System, Temple, TX 76504, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX 78712, USA
- Departments of Diagnostic Medicine, The University of Texas, Austin, TX 78712, USA
- Department of Oncology, The University of Texas, Austin, TX 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas, Austin, TX 78712, USA
| | - Marissa Nichole Rylander
- Department of Mechanical Engineering, The University of Texas, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX 78712, USA
| |
Collapse
|
904
|
Ma P, Tang WG, Hu JW, Hao Y, Xiong LK, Wang MM, Liu H, Bo WH, Yu KH. HSP4 triggers epithelial-mesenchymal transition and promotes motility capacities of hepatocellular carcinoma cells via activating AKT. Liver Int 2020; 40:1211-1223. [PMID: 32077551 DOI: 10.1111/liv.14410] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Heat shock factor (HSF4) plays a vital role in carcinogenesis and tumour progression. However, its clinical significance implications in hepatocellular carcinoma (HCC) remained elusive. METHODS RT-PCR and western blot were used to detect the HSF4 expression levels in HCC cells and tissues. Immunohistochemistry staining was performed on a tissue microarray containing 104 HCC patients received radical resection. In vitro effects of HSF4 on proliferation, migration and invasion were determined by colony formation and transwell assays in HCCLM3, Huh7, MHCC97L and SMMC7721 cells. Epithelial-mesenchymal transition (EMT) was identified by RT-PCR, WB and immunofluorescence in HCCLM3 and MHCC97L cells. AKT pathway activation was detected by WB and dual luciferase report system in HCCLM3 and MHCC97L cells. RESULTS HSF4 expression was higher in primary HCC tissues derived from recurrent patients, and positively correlated with invasiveness potentials of cell lines. Clinically, patients with high HSF4 expression had significant poorer prognosis. In vitro experiments showed HSF4 silencing inhibited HCC cell proliferation, migration and invasion, whereas HSF4 overexpression had inverse effects. Moreover, silence of HSF4 induced an epithelial-like phenotype, whereas the overexpression of HSF4 resulted in a mesenchymal-like phenotype in HCC by activating AKT pathway. Further experiments showed that HSF4 could activate AKT pathway in a hypoxia-inducible factor-1α (HIF-1α) dependent, but transforming growth factor-β (TGF-β) independent manner. CONCLUSIONS HSF4 is upregulated in HCC, resulting in greater proliferation, migration and invasion capacities. Moreover, high HSF4 expression is a promising predictive indicator of poor outcome after radical resection. HSF4 may promote aggressive tumour behaviour by enhancing EMT through activating AKT pathway in a HIF1α-dependent manner.
Collapse
Affiliation(s)
- Peng Ma
- Department of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Wuhan, P.R. China
| | - Wei-Guo Tang
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, P.R. China.,Institute of Fudan-Minhang Academic Health System, Shanghai, P.R. China
| | - Jin-Wu Hu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, P.R. China
| | - Ying Hao
- Department of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Wuhan, P.R. China
| | - Liang-Kun Xiong
- Department of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Wuhan, P.R. China
| | - Mao-Ming Wang
- Department of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Wuhan, P.R. China
| | - Hao Liu
- Department of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Wuhan, P.R. China
| | - Wen-Hui Bo
- Department of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Wuhan, P.R. China
| | - Kai-Huan Yu
- Department of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
905
|
Dash S, Aydin Y, Widmer KE, Nayak L. Hepatocellular Carcinoma Mechanisms Associated with Chronic HCV Infection and the Impact of Direct-Acting Antiviral Treatment. J Hepatocell Carcinoma 2020; 7:45-76. [PMID: 32346535 PMCID: PMC7167284 DOI: 10.2147/jhc.s221187] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is the major risk factor for liver cirrhosis and hepatocellular carcinoma (HCC). The mechanisms of HCC initiation, growth, and metastasis appear to be highly complex due to the decade-long interactions between the virus, immune system, and overlapping bystander effects of host metabolic liver disease. The lack of a readily accessible animal model system for HCV is a significant obstacle to understand the mechanisms of viral carcinogenesis. Traditionally, the primary prevention strategy of HCC has been to eliminate infection by antiviral therapy. The success of virus elimination by antiviral treatment is determined by the SVR when the HCV is no longer detectable in serum. Interferon-alpha (IFN-α) and its analogs, pegylated IFN-α (PEG-IFN-α) alone with ribavirin (RBV), have been the primary antiviral treatment of HCV for many years with a low cure rate. The cloning and sequencing of HCV have allowed the development of cell culture models, which accelerated antiviral drug discovery. It resulted in the selection of highly effective direct-acting antiviral (DAA)-based combination therapy that now offers incredible success in curing HCV infection in more than 95% of all patients, including those with cirrhosis. However, several emerging recent publications claim that patients who have liver cirrhosis at the time of DAAs treatment face the risk of HCC occurrence and recurrence after viral cure. This remains a substantial challenge while addressing the long-term benefit of antiviral medicine. The host-related mechanisms that drive the risk of HCC in the absence of the virus are unknown. This review describes the multifaceted mechanisms that create a tumorigenic environment during chronic HCV infection. In addition to the potential oncogenic programming that drives HCC after viral clearance by DAAs, the current status of a biomarker development for early prediction of cirrhosis regression and HCC detection post viral treatment is discussed. Since DAAs treatment does not provide full protection against reinfection or viral transmission to other individuals, the recent studies for a vaccine development are also reviewed.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
- Department of Medicine, Division of Gastroenterology, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - Yucel Aydin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - Kyle E Widmer
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
| | - Leela Nayak
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
| |
Collapse
|
906
|
Schirmer B, Giehl K, Kubatzky KF. Report of the 23rd Meeting on Signal Transduction 2019-Trends in Cancer and Infection. Int J Mol Sci 2020; 21:ijms21082728. [PMID: 32326408 PMCID: PMC7215334 DOI: 10.3390/ijms21082728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022] Open
Abstract
The annual meeting "Signal Transduction-Receptors, Mediators and Genes" of the Signal Transduction Society (STS) is an interdisciplinary conference open to all scientists sharing the common interest in elucidating the signalling pathways underlying the physiological or pathological processes in health and disease of humans, animals, plants, fungi, prokaryotes and protists. The 23rd meeting on signal transduction was held from 4-6 November 2019 in Weimar, Germany, and focused on "Trends in Cancer and Infection". As usual, keynote presentations by invited scientists introduced the respective workshops and were followed by speakers chosen from the submitted abstracts. Ample time had been reserved for discussion of the presented data during the workshops. In this report, we provide a concise summary of the various workshops and further aspects of the scientific program.
Collapse
Affiliation(s)
- Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-532-3875
| | - Klaudia Giehl
- Signal Transduction of Cellular Motility, Internal Medicine V, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Katharina F. Kubatzky
- Department of Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| |
Collapse
|
907
|
Alexandrov T. Spatial Metabolomics and Imaging Mass Spectrometry in the Age of Artificial Intelligence. Annu Rev Biomed Data Sci 2020; 3:61-87. [PMID: 34056560 DOI: 10.1146/annurev-biodatasci-011420-031537] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spatial metabolomics is an emerging field of omics research that has enabled localizing metabolites, lipids, and drugs in tissue sections, a feat considered impossible just two decades ago. Spatial metabolomics and its enabling technology-imaging mass spectrometry-generate big hyper-spectral imaging data that have motivated the development of tailored computational methods at the intersection of computational metabolomics and image analysis. Experimental and computational developments have recently opened doors to applications of spatial metabolomics in life sciences and biomedicine. At the same time, these advances have coincided with a rapid evolution in machine learning, deep learning, and artificial intelligence, which are transforming our everyday life and promise to revolutionize biology and healthcare. Here, we introduce spatial metabolomics through the eyes of a computational scientist, review the outstanding challenges, provide a look into the future, and discuss opportunities granted by the ongoing convergence of human and artificial intelligence.
Collapse
Affiliation(s)
- Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
908
|
Zheng R, Wang G, Pang Z, Ran N, Gu Y, Guan X, Yuan Y, Zuo X, Pan H, Zheng J, Wang F. Liver cirrhosis contributes to the disorder of gut microbiota in patients with hepatocellular carcinoma. Cancer Med 2020; 9:4232-4250. [PMID: 32281295 PMCID: PMC7300425 DOI: 10.1002/cam4.3045] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/20/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background Gut microbiota (GM) of patients with liver cancer is disordered, and syet no study reported the GM distribution of liver cirrhosis‐induced HCC (LC‐HCC) and nonliver cirrhosis‐induced HCC (NLC‐HCC). In this study, we aimed to characterize gut dysbiosis of LC‐HCC and NLC‐HCC to elucidate the role of GM in the pathogenesis of HCC. Methods A consecutive series of fecal samples of patients with hepatitis (24 patients), liver cirrhosis (24 patients), HCC (75 patients: 35 infected by HBV, 25 infected by HCV, and 15 with alcoholic liver disease), and healthy controls (20 patients) were obtained and sequenced on the Illumina Hiseq platform. The HCC group contains 52 LC‐HCC and 23 NLC‐HCC. Bioinformatic analysis of the intestinal microbiota was performed with QIIME and MicrobiomeAnalyst. Results Alpha‐diversity analysis showed that fecal microbial diversity was significantly decreased in the LC group, and there were significant differences in 3 phyla and 27 genera in the LC group vs the other groups (the healthy, hepatitis, and HCC groups). Beta‐diversity analysis showed that there were large differences between LC and the others. Gut microbial diversity was significantly increased from LC to HCC. Characterizing the fecal microbiota of LC‐HCC and NLC‐HCC, we found that microbial diversity was increased from LC to LC‐HCC rather than NLC‐HCC. Thirteen genera were discovered to be associated with the tumor size of HCC. Three biomarkers (Enterococcus, Limnobacter, and Phyllobacterium) could be used for precision diagnosis. We also found that HBV infection, HCV infection, or ALD (alcoholic liver disease) was not associated with intestinal microbial dysbiosis in HCC. Conclusion Our results suggest that GM disorders are more common in patients with LC‐HCC. The butyrate‐producing genera were decreased, while genera producing‐lipopolysaccharide (LPS) were increased in LC‐HCC patients. Further studies of GM disorders may achieve early diagnosis and new therapeutic approaches for HCC patients.
Collapse
Affiliation(s)
- Ruipeng Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China.,Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhiqiang Pang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Nan Ran
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yinuo Gu
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuewa Guan
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuze Yuan
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xu Zuo
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - He Pan
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jingtong Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
909
|
Inflammation in Primary and Metastatic Liver Tumorigenesis-Under the Influence of Alcohol and High-Fat Diets. Nutrients 2020; 12:nu12040933. [PMID: 32230953 PMCID: PMC7230665 DOI: 10.3390/nu12040933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
The liver plays an outsized role in oncology. Liver tumors are one of the most frequently found tumors in cancer patients and these arise from either primary or metastatic disease. Hepatocellular carcinoma (HCC), the most prevalent form of primary liver cancer and the 6th most common cancer type overall, is expected to become the 3rd leading cause of cancer mortality in the US by the year 2030. The liver is also the most common site of distant metastasis from solid tumors. For instance, colorectal cancer (CRC) metastasizes to the liver in two-thirds of cases, and CRC liver metastasis is the leading cause of mortality in these patients. The interplay between inflammation and cancer is unmistakably evident in the liver. In nearly every case, HCC is diagnosed in chronic liver disease (CLD) and cirrhosis background. The consumption of a Western-style high-fat diet is a major risk factor for the development of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), both of which are becoming more prevalent in parallel with the obesity epidemic. Excessive alcohol intake also contributes significantly to the CLD burden in the form of alcoholic liver disease (ALD). Inflammation is a key component in the development of all CLDs. Additionally, during the development of liver metastasis, pro-inflammatory signaling is crucial in eliminating invading cancer cells but ironically also helps foster a pro-metastatic environment that supports metastatic seeding and colonization. Here we review how Westernized high-fat diets and excessive alcohol intake can influence inflammation within the liver microenvironment, stimulating both primary and metastatic liver tumorigenesis.
Collapse
|
910
|
Zhang H, Shen Z, Lin Y, Zhang J, Zhang Y, Liu P, Zeng H, Yu M, Chen X, Ning L, Mao X, Cen L, Yu C, Xu C. Vitamin D receptor targets hepatocyte nuclear factor 4α and mediates protective effects of vitamin D in nonalcoholic fatty liver disease. J Biol Chem 2020; 295:3891-3905. [PMID: 32051143 PMCID: PMC7086018 DOI: 10.1074/jbc.ra119.011487] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Epidemiological studies have suggested a link between vitamin D deficiency and increased risk for nonalcoholic fatty liver disease (NAFLD); however, the underlying mechanisms have remained unclear. Here, using both clinical samples and experimental rodent models along with several biochemical approaches, we explored the specific effects and mechanisms of vitamin D deficiency in NAFLD pathology. Serum vitamin D levels were significantly lower in individuals with NAFLD and in high-fat diet (HFD)-fed mice than in healthy controls and chow-fed mice, respectively. Vitamin D supplementation ameliorated HFD-induced hepatic steatosis and insulin resistance in mice. Hepatic expression of vitamin D receptor (VDR) was up-regulated in three models of NAFLD, including HFD-fed mice, methionine/choline-deficient diet (MCD)-fed mice, and genetically obese (ob/ob) mice. Liver-specific VDR deletion significantly exacerbated HFD- or MCD-induced hepatic steatosis and insulin resistance and also diminished the protective effect of vitamin D supplementation on NAFLD. Mechanistic experiments revealed that VDR interacted with hepatocyte nuclear factor 4 α (HNF4α) and that overexpression of HNF4α improved HFD-induced NAFLD and metabolic abnormalities in liver-specific VDR-knockout mice. These results suggest that vitamin D ameliorates NAFLD and metabolic abnormalities by activating hepatic VDR, leading to its interaction with HNF4α. Our findings highlight a potential value of using vitamin D for preventing and managing NAFLD by targeting VDR.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yiming Lin
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jie Zhang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yuwei Zhang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Peihao Liu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hang Zeng
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Mengli Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xueyang Chen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Longgui Ning
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xinli Mao
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, Linhai 317000, China
| | - Li Cen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
911
|
Ocker M. Challenges and opportunities in drug development for nonalcoholic steatohepatitis. Eur J Pharmacol 2020; 870:172913. [PMID: 31926994 DOI: 10.1016/j.ejphar.2020.172913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/04/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are considered major global medical burdens with high prevalence and steeply rising incidence. Despite the characterization of numerous pathophysiologic pathways leading to metabolic disorder, lipid accumulation, inflammation, fibrosis, and ultimately end-stage liver disease or liver cancer formation, so far no causal pharmacological therapy is available. Drug development for NAFLD and NASH is limited by long disease duration and slow progression and the need for sequential biopsies to monitor the disease stage. Additional non-invasive biomarkers could therefore improve design and feasibility of such. Here, the current concepts on preclinical models, biomarkers and clinical endpoints and trial designs are briefly reviewed.
Collapse
|
912
|
Hepatocyte Injury and Hepatic Stem Cell Niche in the Progression of Non-Alcoholic Steatohepatitis. Cells 2020; 9:cells9030590. [PMID: 32131439 PMCID: PMC7140508 DOI: 10.3390/cells9030590] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by lipid accumulation in hepatocytes in the absence of excessive alcohol consumption. The global prevalence of NAFLD is constantly increasing. NAFLD is a disease spectrum comprising distinct stages with different prognoses. Non-alcoholic steatohepatitis (NASH) is a progressive condition, characterized by liver inflammation and hepatocyte ballooning, with or without fibrosis. The natural history of NAFLD is negatively influenced by NASH onset and by the progression towards advanced fibrosis. Pathogenetic mechanisms and cellular interactions leading to NASH and fibrosis involve hepatocytes, liver macrophages, myofibroblast cell subpopulations, and the resident progenitor cell niche. These cells are implied in the regenerative trajectories following liver injury, and impairment or perturbation of these mechanisms could lead to NASH and fibrosis. Recent evidence underlines the contribution of extra-hepatic organs/tissues (e.g., gut, adipose tissue) in influencing NASH development by interacting with hepatic cells through various molecular pathways. The present review aims to summarize the role of hepatic parenchymal and non-parenchymal cells, their mutual influence, and the possible interactions with extra-hepatic tissues and organs in the pathogenesis of NAFLD.
Collapse
|
913
|
Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol Gastrointest Liver Physiol 2020; 318:G554-G573. [PMID: 31984784 PMCID: PMC7099488 DOI: 10.1152/ajpgi.00223.2019] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bile acid synthesis is the most significant pathway for catabolism of cholesterol and for maintenance of whole body cholesterol homeostasis. Bile acids are physiological detergents that absorb, distribute, metabolize, and excrete nutrients, drugs, and xenobiotics. Bile acids also are signal molecules and metabolic integrators that activate nuclear farnesoid X receptor (FXR) and membrane Takeda G protein-coupled receptor 5 (TGR5; i.e., G protein-coupled bile acid receptor 1) to regulate glucose, lipid, and energy metabolism. The gut-to-liver axis plays a critical role in the transformation of primary bile acids to secondary bile acids, in the regulation of bile acid synthesis to maintain composition within the bile acid pool, and in the regulation of metabolic homeostasis to prevent hyperglycemia, dyslipidemia, obesity, and diabetes. High-fat and high-calorie diets, dysbiosis, alcohol, drugs, and disruption of sleep and circadian rhythms cause metabolic diseases, including alcoholic and nonalcoholic fatty liver diseases, obesity, diabetes, and cardiovascular disease. Bile acid-based drugs that target bile acid receptors are being developed for the treatment of metabolic diseases of the liver.
Collapse
Affiliation(s)
- John Y. L. Chiang
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Jessica M. Ferrell
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
914
|
Jiang DX, Zhang JB, Li MT, Lin SZ, Wang YQ, Chen YW, Fan JG. Prolyl endopeptidase gene disruption attenuates high fat diet-induced nonalcoholic fatty liver disease in mice by improving hepatic steatosis and inflammation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:218. [PMID: 32309365 PMCID: PMC7154388 DOI: 10.21037/atm.2020.01.14] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Prolyl endopeptidase (PREP) is a serine endopeptidase that regulates inflammatory responses. PREP inhibitors can reduce hepatocyte lipid accumulation and may participate in the progression of nonalcoholic fatty liver disease (NAFLD). We investigated whether disruption of PREP regulates hepatic steatosis and inflammation in mice with NAFLD. Methods Wild-type and PREP gene disrupted mice were randomly divided into low-fat diet wild-type (LFD-WT), high-fat diet wild-type (HFD-WT), low-fat diet PREP disruption (LFD-PREPgt), and high-fat diet PREP disruption (HFD-PREPgt) groups. Animals were euthanized at the endpoint of 32 weeks. The NAFLD activity score and number of inflammatory cells were determined by hematoxylin-eosin staining and immunohistochemical staining of liver tissue. The expression levels of inflammation- and lipid metabolism-associated genes in the liver and serum were detected by quantitative reverse transcription PCR, mass spectrometry, or enzyme-linked immunosorbent assay. Results The body weight and epididymal fat tissue index of the HFD-PREPgt mice were significantly decreased compared with that of the HFD-WT mice. Moreover, the NAFLD activity score and liver function were attenuated in the HFD-PREPgt mice. Fat accumulation and the level of expression of mRNAs associated with lipid metabolism and proinflammatory responses were improved in the HFD-PREPgt mice. The number of CD68-positive cells in liver tissue and the serum levels of inflammation-associated factors were significantly decreased in the HFD-PREPgt mice compared with those in the HFD-WT mice. Further mechanistic investigations indicated that the protective effect of PREP disruption on liver inflammation was associated with the suppressed production of matrix metalloproteinases (MMPs) and proline-glycine-proline (PGP) and the inhibition of neutrophil infiltration. Conclusions Loss of PREP lowers the severity of hepatic steatosis and inflammatory responses in a high-fat diet-induced nonalcoholic steatohepatitis model. PREP inhibition may protect against NAFLD.
Collapse
Affiliation(s)
- Dai-Xi Jiang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Bin Zhang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Meng-Ting Li
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Shuang-Zhe Lin
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yu-Qin Wang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yuan-Wen Chen
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
915
|
Wang X, Xie J, Pang J, Zhang H, Chen X, Lin J, Li Q, Chen Q, Ma J, Xu X, Yang Y, Ling W, Chen Y. Serum SHBG Is Associated With the Development and Regression of Nonalcoholic Fatty Liver Disease: A Prospective Study. J Clin Endocrinol Metab 2020; 105:5650984. [PMID: 31793624 DOI: 10.1210/clinem/dgz244] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/02/2019] [Indexed: 12/25/2022]
Abstract
CONTEXT SHBG, a homodimeric glycoprotein produced by hepatocytes has been shown to be associated with metabolic disorders. Whether circulating SHBG levels are predictive of later risk of nonalcoholic fatty liver disease (NAFLD) remains unknown. In this study, we prospectively investigated the association between SHBG and NAFLD progression through a community-based cohort comprising 3389 Chinese adults. METHODS NAFLD was diagnosed using abdominal ultrasonography. Serum SHBG levels were measured by chemiluminescent enzyme immunometric assay, and their relationship with NAFLD development and regression was investigated after a mean follow-up of 3.09 years using multivariable logistic regression. RESULTS Basal SHBG was negatively associated with NAFLD development, with a fully adjusted odds ratio (OR) and its 95% confidence interval (CI) of 0.22 (0.12-0.40) (P < .001). In contrast, basal SHBG was positively associated with NAFLD regression, with a fully adjusted OR of 4.83 (2.38-9.81) (P < .001). Multiple-stepwise logistic regression analysis showed that SHBG concentration was an independent predictor of NAFLD development (OR, 0.28 [0.18-0.45]; P < .001) and regression (OR, 3.89 [2.43-6.22]; P < .001). In addition, the area under the receiver operating characteristic curves were 0.764 (95% CI, 0.740-0.787) and 0.762 (95% CI, 0.738-0.785) for the prediction models of NAFLD development and regression, respectively. CONCLUSIONS Serum SHBG concentration is associated with the development and regression of NAFLD; moreover, it can be a potential biomarker for predicting NAFLD progression, and also a novel preventive and therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Xu Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, P. R. China
| | - Jiewen Xie
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, P. R. China
| | - Juan Pang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, P. R. China
| | - Hanyue Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, P. R. China
| | - Xu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, P. R. China
| | - Jiesheng Lin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, P. R. China
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, P. R. China
- Institute of Future Cities, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Qing Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, P. R. China
| | - Qian Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, P. R. China
| | - Jing Ma
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, P. R. China
| | - Xiping Xu
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province, P. R. China
| | - Yan Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province, P. R. China
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, P. R. China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province, P. R. China
| | - Yuming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, P. R. China
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province, P. R. China
| |
Collapse
|
916
|
Lequoy M, Gigante E, Couty JP, Desbois-Mouthon C. Hepatocellular carcinoma in the context of non-alcoholic steatohepatitis (NASH): recent advances in the pathogenic mechanisms. Horm Mol Biol Clin Investig 2020; 41:/j/hmbci.ahead-of-print/hmbci-2019-0044/hmbci-2019-0044.xml. [PMID: 32112699 DOI: 10.1515/hmbci-2019-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/16/2020] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer. HCC is particularly aggressive and is one of the leading causes of cancer mortality. In recent decades, the epidemiological landscape of HCC has undergone significant changes. While chronic viral hepatitis and excessive alcohol consumption have long been identified as the main risk factors for HCC, non-alcoholic steatohepatitis (NASH), paralleling the worldwide epidemic of obesity and type 2 diabetes, has become a growing cause of HCC in the US and Europe. Here, we review the recent advances in epidemiological, genetic, epigenetic and pathogenic mechanisms as well as experimental mouse models that have improved the understanding of NASH progression toward HCC. We also discuss the clinical management of patients with NASH-related HCC and possible therapeutic approaches.
Collapse
Affiliation(s)
- Marie Lequoy
- Service d'Hépato-Gastro-Entérologie, AP-HP, F-75012 Paris, France
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, F-75012 Paris, France
| | - Elia Gigante
- Service d'Hépato-Gastro-Entérologie, AP-HP, F-75012 Paris, France
| | - Jean-Pierre Couty
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France
| | - Christèle Desbois-Mouthon
- Centre de Recherche des Cordeliers, INSERM UMR_S1138, 15 rue de l'école de médecine, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France
| |
Collapse
|
917
|
Tripathi M, Yen PM, Singh BK. Estrogen-Related Receptor Alpha: An Under-Appreciated Potential Target for the Treatment of Metabolic Diseases. Int J Mol Sci 2020; 21:E1645. [PMID: 32121253 PMCID: PMC7084735 DOI: 10.3390/ijms21051645] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
The estrogen-related receptor alpha (ESRRA) is an orphan nuclear receptor (NR) that significantly influences cellular metabolism. ESRRA is predominantly expressed in metabolically-active tissues and regulates the transcription of metabolic genes, including those involved in mitochondrial turnover and autophagy. Although ESRRA activity is well-characterized in several types of cancer, recent reports suggest that it also has an important role in metabolic diseases. This minireview focuses on the regulation of cellular metabolism and function by ESRRA and its potential as a target for the treatment of metabolic disorders.
Collapse
Affiliation(s)
| | | | - Brijesh Kumar Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore; (M.T.); (P.M.Y.)
| |
Collapse
|
918
|
Kanda T, Goto T, Hirotsu Y, Masuzaki R, Moriyama M, Omata M. Molecular Mechanisms: Connections between Nonalcoholic Fatty Liver Disease, Steatohepatitis and Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:1525. [PMID: 32102237 PMCID: PMC7073210 DOI: 10.3390/ijms21041525] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), including nonalcoholic steatohepatitis (NASH), causes hepatic fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The patatin-like phospholipase-3 (PNPLA3) I148M sequence variant is one of the strongest genetic determinants of NAFLD/NASH. PNPLA3 is an independent risk factor for HCC among patients with NASH. The obesity epidemic is closely associated with the rising prevalence and severity of NAFLD/NASH. Furthermore, metabolic syndrome exacerbates the course of NAFLD/NASH. These factors are able to induce apoptosis and activate immune and inflammatory pathways, resulting in the development of hepatic fibrosis and NASH, leading to progression toward HCC. Small intestinal bacterial overgrowth (SIBO), destruction of the intestinal mucosa barrier function and a high-fat diet all seem to exacerbate the development of hepatic fibrosis and NASH, leading to HCC in patients with NAFLD/NASH. Thus, the intestinal microbiota may play a role in the development of NAFLD/NASH. In this review, we describe recent advances in our knowledge of the molecular mechanisms contributing to the development of hepatic fibrosis and HCC in patients with NAFLD/NASH.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (T.K.); (R.M.); (M.M.)
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-8506, Japan
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (Y.H.); (M.O.)
| | - Ryota Masuzaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (T.K.); (R.M.); (M.M.)
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (T.K.); (R.M.); (M.M.)
| | - Masao Omata
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (Y.H.); (M.O.)
- The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
919
|
NAFLD Preclinical Models: More than a Handful, Less of a Concern? Biomedicines 2020; 8:biomedicines8020028. [PMID: 32046285 PMCID: PMC7167756 DOI: 10.3390/biomedicines8020028] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver diseases ranging from simple steatosis to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and/or hepatocellular carcinoma. Due to its increasing prevalence, NAFLD is currently a major public health concern. Although a wide variety of preclinical models have contributed to better understanding the pathophysiology of NAFLD, it is not always obvious which model is best suitable for addressing a specific research question. This review provides insights into currently existing models, mainly focusing on murine models, which is of great importance to aid in the identification of novel therapeutic options for human NAFLD.
Collapse
|
920
|
Nault JC, Cheng AL, Sangro B, Llovet JM. Milestones in the pathogenesis and management of primary liver cancer. J Hepatol 2020; 72:209-214. [PMID: 31954486 DOI: 10.1016/j.jhep.2019.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Jean-Charles Nault
- Service d'Hépatologie, Hôpital Jean Verdier, Hôpitaux universitaires Paris-Seine-Saint-Denis, Assistance publique Hôpitaux de Paris, Bondy, France; Unité mixte de Recherche 1162, Génomique fonctionnelle des Tumeurs solides, Institut national de la Santé et de la Recherche médicale, Paris, France; Unité de Formation et de Recherche Santé Médecine et Biologie humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France.
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Cancer Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Bruno Sangro
- Liver Unit, Clinica Universidad de Navarra-IDISNA and CIBEREHD, Pamplona, Spain
| | - Josep M Llovet
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Translational Research in Hepatic Oncology Group, Liver Unit, IDIBAPS, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
921
|
Novel patient-derived preclinical models of liver cancer. J Hepatol 2020; 72:239-249. [PMID: 31954489 DOI: 10.1016/j.jhep.2019.09.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 12/25/2022]
Abstract
Preclinical models of cancer based on the use of human cancer cell lines and mouse models have enabled discoveries that have been successfully translated into patients. And yet the majority of clinical trials fail, emphasising the urgent need to improve preclinical research to better interrogate the potential efficacy of each therapy and the patient population most likely to benefit. This is particularly important for liver malignancies, which lack highly efficient treatments and account for hundreds of thousands of deaths around the globe. Given the intricate network of genetic and environmental factors that contribute to liver cancer development and progression, the identification of new druggable targets will mainly depend on establishing preclinical models that mirror the complexity of features observed in patients. The development of new 3D cell culture systems, originating from cells/tissues isolated from patients, might create new opportunities for the generation of more specific and personalised therapies. However, these systems are unable to recapitulate the tumour microenvironment and interactions with the immune system, both proven to be critical influences on therapeutic outcomes. Patient-derived xenografts, in particular with humanised mouse models, more faithfully mimic the physiology of human liver cancer but are costly and time-consuming, which can be prohibitive for personalising therapies in the setting of an aggressive malignancy. In this review, we discuss the latest advances in the development of more accurate preclinical models to better understand liver cancer biology and identify paradigm-changing therapies, stressing the importance of a bi-directional communicative flow between clinicians and researchers to establish reliable model systems and determine how best to apply them to expanding our current knowledge.
Collapse
|
922
|
Roderburg C, Wree A, Demir M, Schmelzle M, Tacke F. The role of the innate immune system in the development and treatment of hepatocellular carcinoma. Hepat Oncol 2020; 7:HEP17. [PMID: 32273975 PMCID: PMC7137177 DOI: 10.2217/hep-2019-0007] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Most patients present with advanced or metastatic HCC at diagnosis and face a dismal prognosis. Tyrosine kinases are the gold standard treatment for this disease but yield limited survival benefits. Immune checkpoint inhibitors that augment adaptive immunity have been tested in HCC. Complex interactions between tumor cells, lymphocytes and the tumor environment determine the efficacy of such immunotherapies. Innate immune mechanisms – known drivers of liver disease progression in pre-HCC conditions such as fibrosis or cirrhosis – may either support or counteract tumor-related immune activation. In this review, we will highlight current concepts of the role of the innate immune system in hepatocarcinogenesis and discuss their relevance for translation into clinics.
Collapse
Affiliation(s)
- Christoph Roderburg
- Department of Hepatology & Gastroenterology, Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Campus Charité Mitte, Campus Virchow-Klinikum, Berlin Institute of Health, Augustenburger, Platz 1 13353, Berlin
| | - Alexander Wree
- Department of Hepatology & Gastroenterology, Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Campus Charité Mitte, Campus Virchow-Klinikum, Berlin Institute of Health, Augustenburger, Platz 1 13353, Berlin
| | - Münevver Demir
- Department of Hepatology & Gastroenterology, Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Campus Charité Mitte, Campus Virchow-Klinikum, Berlin Institute of Health, Augustenburger, Platz 1 13353, Berlin
| | - Moritz Schmelzle
- Department of Surgery, Charité, Universitätsmedizin Berlin,Humboldt-Universität zu Berlin, Campus Charité Mitte, Campus Virchow-Klinikum, Berlin Institute of Health, Augustenburger, Platz 1 13353, Berlin
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Campus Charité Mitte, Campus Virchow-Klinikum, Berlin Institute of Health, Augustenburger, Platz 1 13353, Berlin
| |
Collapse
|
923
|
Selby LV, Ejaz A, Brethauer SA, Pawlik TM. Fatty liver disease and primary liver cancer: disease mechanisms, emerging therapies and the role of bariatric surgery. Expert Opin Investig Drugs 2020; 29:107-110. [PMID: 31986920 DOI: 10.1080/13543784.2020.1721457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Luke V Selby
- Department of Surgery, Divisions of Surgical Oncology and GI/General Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| | - Aslam Ejaz
- Department of Surgery, Divisions of Surgical Oncology and GI/General Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| | - Stacy A Brethauer
- Department of Surgery, Divisions of Surgical Oncology and GI/General Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, Divisions of Surgical Oncology and GI/General Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| |
Collapse
|
924
|
Maruyama H, Kobayashi K, Kiyono S, Chiba T, Kato N, Ohtsuka M, Ito K, Yamaguchi T, Shiina S. Free fatty acid-based low-impedance liver image: a characteristic appearance in nonalcoholic steatohepatitis (NASH). Eur Radiol Exp 2020; 4:3. [PMID: 31975290 PMCID: PMC6977798 DOI: 10.1186/s41747-019-0137-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background To examine in vitro acoustic property of nonalcoholic fatty disease in mouse and human liver to identify nonalcoholic steatohepatitis (NASH). Methods The acoustic impedance (× 106 kg/m2/s) was measured in 35 free fatty acids (FFAs, 500 mmol/L) and histologically-diagnosed liver samples of twelve mice (four control, four simple steatosis [SS], and four NASH) and eight humans (two control, three SS, and three NASH), using 80-MHz acoustic microscopy. The sum of percentage (SP) composition of FFAs (SP-FFAs) was also assessed. Results Median impedance of all FFAs was 0.7 (5 FFAs with impedance 0.7); 17 FFAs with impedance < 0.7 were classified as low-impedance group; and, 13 FFAs with impedance > 0.7 were classified as high-impedance group. The median impedance of the mouse liver decreased from control (1.715), to SS (1.68), to NASH (1.635) (control versus NASH, p = 0.039 without significant differences for the other comparisons, p ≥ 0.1). Similarly, the median impedance of human liver showed decreased from control (1.825), to SS (1.788), to NASH (1.76) (control versus SS, p = 0.023; control versus NASH, p = 0.003; SS versus NASH, p = 0.050). The ratio of SP-FFAs between the low-impedance and high-impedance groups showed an increase in both mice and humans, with significant differences in mice (control versus SS, p < 0.001; control versus NASH, p < 0.001; SS versus NASH, p = 0.003), without significant differences in humans (p ≥ 0.671). Conclusion Lower acoustic impedance based on the intrahepatic composition of FFAs may be characteristic of NASH.
Collapse
Affiliation(s)
- Hitoshi Maruyama
- Department of Gastroenterology, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Kazufumi Kobayashi
- Department of Gastroenterology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Soichiro Kiyono
- Department of Gastroenterology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Naoya Kato
- Department of Gastroenterology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Kazuyo Ito
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage, Chiba, 263-8522, Japan
| | - Tadashi Yamaguchi
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage, Chiba, 263-8522, Japan
| | - Shuichiro Shiina
- Department of Gastroenterology, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
925
|
Tan M, Mosaoa R, Graham GT, Kasprzyk-Pawelec A, Gadre S, Parasido E, Catalina-Rodriguez O, Foley P, Giaccone G, Cheema A, Kallakury B, Albanese C, Yi C, Avantaggiati ML. Inhibition of the mitochondrial citrate carrier, Slc25a1, reverts steatosis, glucose intolerance, and inflammation in preclinical models of NAFLD/NASH. Cell Death Differ 2020; 27:2143-2157. [PMID: 31959914 PMCID: PMC7308387 DOI: 10.1038/s41418-020-0491-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and its evolution to inflammatory steatohepatitis (NASH) are the most common causes of chronic liver damage and transplantation that are reaching epidemic proportions due to the upraising incidence of metabolic syndrome, obesity, and diabetes. Currently, there is no approved treatment for NASH. The mitochondrial citrate carrier, Slc25a1, has been proposed to play an important role in lipid metabolism, suggesting a potential role for this protein in the pathogenesis of this disease. Here, we show that Slc25a1 inhibition with a specific inhibitor compound, CTPI-2, halts salient alterations of NASH reverting steatosis, preventing the evolution to steatohepatitis, reducing inflammatory macrophage infiltration in the liver and adipose tissue, while starkly mitigating obesity induced by a high-fat diet. These effects are differentially recapitulated by a global ablation of one copy of the Slc25a1 gene or by a liver-targeted Slc25a1 knockout, which unravel dose-dependent and tissue-specific functions of this protein. Mechanistically, through citrate-dependent activities, Slc25a1 inhibition rewires the lipogenic program, blunts signaling from peroxisome proliferator-activated receptor gamma, a key regulator of glucose and lipid metabolism, and inhibits the expression of gluconeogenic genes. The combination of these activities leads not only to inhibition of lipid anabolic processes, but also to a normalization of hyperglycemia and glucose intolerance as well. In summary, our data show for the first time that Slc25a1 serves as an important player in the pathogenesis of fatty liver disease and thus, provides a potentially exploitable and novel therapeutic target.
Collapse
Affiliation(s)
- Mingjun Tan
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Rami Mosaoa
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Garrett T Graham
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Anna Kasprzyk-Pawelec
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Shreyas Gadre
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Erika Parasido
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Olga Catalina-Rodriguez
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Patricia Foley
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Giuseppe Giaccone
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Amrita Cheema
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Bhaskar Kallakury
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Chris Albanese
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Chunling Yi
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Maria Laura Avantaggiati
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA.
| |
Collapse
|
926
|
Lin Y, Li H, Jin C, Wang H, Jiang B. The diagnostic accuracy of liver fibrosis in non-viral liver diseases using acoustic radiation force impulse elastography: A systematic review and meta-analysis. PLoS One 2020; 15:e0227358. [PMID: 31940395 PMCID: PMC6961899 DOI: 10.1371/journal.pone.0227358] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/17/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Acoustic radiation force impulse (ARFI) imaging is an ultrasound-based elastography method that has been studied in the staging of hepatic fibrosis, especially in chronic hepatitis. However, the diagnostic accuracy of ARFI in non-viral hepatopathies, such as autoimmune hepatitis and non-alcoholic fatty liver disease, has not been systematically determined. AIM To systematically assess the diagnostic accuracy of ARFI in non-viral hepatopathies. METHODS The databases of PubMed, Embase, Cochrane Library and clinicaltrials.gov were systematically searched for candidate studies reporting the diagnostic accuracy of ARFI for hepatic fibrosis. The pooled estimates of the sensitivity, specificity, diagnostic odds ratio, and positive and negative likelihood ratios were calculated with the summary receiver operating curve (sROC) performed using STATA software. RESULTS In detail, a total of 29 diagnostic studies were included for further analysis. The quality of the included studies was relatively high using QUADAS method. The pooled sensitivity and specificity were 0.79 (0.73, 0.83) and 0.81 (0.75, 0.86), with AUROC 0.87 (0.83, 0.89) for the staging of significant fibrosis (F≥2). Meanwhile, for the staging of severe fibrosis (F≥3), the pooled sensitivity and specificity were 0.92 (0.87, 0.95) and 0.85 (0.80, 0.89), with AUROC 0.94 (0.92, 0.96). Furthermore, the pooled sensitivity and specificity were 0.89 (0.79, 0.95) and 0.89 (0.85, 0.92), with AUROC 0.94 (0.92, 0.96) for ARFI in staging cirrhosis (F = 4), which were similar to the data for severe fibrosis. No significant publication bias was present in this study. CONCLUSION This meta-analysis demonstrated that ARFI exerted satisfactory diagnostic performance in staging non-viral hepatic fibrosis, especially severe fibrosis (F≥3) and cirrhosis (F = 4).
Collapse
Affiliation(s)
- Yuanqiang Lin
- Department of Ultrasound, China-Japan Union Hospital, Jilin University, China
| | - Hequn Li
- Department of Ultrasound, China-Japan Union Hospital, Jilin University, China
| | - Chunxiang Jin
- Department of Ultrasound, China-Japan Union Hospital, Jilin University, China
| | - Hui Wang
- Department of Ultrasound, China-Japan Union Hospital, Jilin University, China
| | - Bo Jiang
- Department of General Surgery, Nanhu Hospital, China-Japan Union Hospital, Jilin University, China
- * E-mail:
| |
Collapse
|
927
|
Liao Y. Obstacles and opportunities in the prevention and treatment of HBV-related hepatocellular carcinoma. Genes Dis 2020; 7:291-298. [PMID: 32884983 PMCID: PMC7452511 DOI: 10.1016/j.gendis.2019.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/31/2019] [Indexed: 12/25/2022] Open
Abstract
Despite the tremendous progresses toward our understanding of the mechanisms of how liver cancer was developed, the therapeutic outcomes of liver cancer in the clinic have very limited improvement within the past three decades or so. In addition, both the incidence and mortality of liver cancer worldwide are not dropping, but increasing steadily, in the last decade. Thus, it is time for us to rethink what has been wrong and how could we do better in the upcoming years, in order to achieve our goal of improving the therapeutic outcomes of patients with liver cancer in the clinic, and at the meantime, effectively reducing the incidence of liver cancer by blocking malignant transformation of hepatocytes from chronic viral infection. This is also one of the main reasons why we try to organize this special issue on primary liver cancer in the journal of Genes & Diseases. In this perspective, I will summarize the major obstacles confronted with in the prevention and management of patients with chronic hepatitis B infection and subsequent development of liver cirrhosis and liver cancer. Next, I will delineate the pitfalls and underlying mechanisms of why the current anti-viral strategies and therapeutic agents are not as effective as one expected in terms of successful reduction or prevention chronic hepatitis B infection associated liver cirrhosis and liver cancer. I will then provide my personal perspectives on potential approaches and strategies for effective prevention and management of hepatitis B-related liver cancer.
Collapse
Affiliation(s)
- Yong Liao
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing, PR China.,Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, PR China.,Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
928
|
Yu X, Yang F, Jiang H, Fan L. RGFP966 Suppresses Tumor Growth and Migration Through Inhibition of EGFR Expression in Hepatocellular Carcinoma Cells in vitro. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:121-128. [PMID: 32021097 PMCID: PMC6959505 DOI: 10.2147/dddt.s234871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/21/2019] [Indexed: 12/14/2022]
Abstract
Purpose Histone deacetylase 3 (HDAC3) has been suggested to play a role in hepatocellular carcinoma (HCC). In the present report, we aimed to identify the effects of RGFP966, a specific HDAC3 inhibitor, on the cell proliferation and migration of HCC cell lines. Methods Human HCC cell lines, which were identified using short tandem repeat (STR) DNA profiling analysis, were used in this report. Cell proliferation assay was used to identify the growth viability of cells. Wound healing and transwell assay were used to identify the migration ability of cells. Further, a human phospho-receptor tyrosine kinases array kit was used to screen out RGFP966 effects on key receptor tyrosine kinases. Then, the mRNA expression was quantified by real-time PCR, and protein expression was identified by Western blot immunoassay. Results We found that RGFP966 inhibited both proliferation and migration of HCC cells. Further, RGFP966 represses the expression and phosphorylation levels of epidermal growth factor receptor (EGFR) in HCC cells. Moreover, HDAC3 is involved in the inhibition of EGFR by RGFP966. Overall, we elucidated an inhibitive function of RGFP966 in HCC progression. Conclusion RGFP966 inhibits EGFR signaling pathway and suppresses proliferation and migration of HCC cells.
Collapse
Affiliation(s)
- Xinying Yu
- Second Pediatric Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| | - Fan Yang
- Third Neonatal Ward, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| | - Hong Jiang
- Second Neonatal Ward, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| | - Ling Fan
- Second Pediatric Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| |
Collapse
|
929
|
Melo RCN, Raas MWD, Palazzi C, Neves VH, Malta KK, Silva TP. Whole Slide Imaging and Its Applications to Histopathological Studies of Liver Disorders. Front Med (Lausanne) 2020; 6:310. [PMID: 31970160 PMCID: PMC6960181 DOI: 10.3389/fmed.2019.00310] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Histological analysis of hepatic tissue specimens is essential for evaluating the pathology of several liver disorders such as chronic liver diseases, hepatocellular carcinomas, liver steatosis, and infectious liver diseases. Manual examination of histological slides on the microscope is a classically used method to study these disorders. However, it is considered time-consuming, limited, and associated with intra- and inter-observer variability. Emerging technologies such as whole slide imaging (WSI), also termed virtual microscopy, have increasingly been used to improve the assessment of histological features with applications in both clinical and research laboratories. WSI enables the acquisition of the tissue morphology/pathology from glass slides and translates it into a digital form comparable to a conventional microscope, but with several advantages such as easy image accessibility and storage, portability, sharing, annotation, qualitative and quantitative image analysis, and use for educational purposes. WSI-generated images simultaneously provide high resolution and a wide field of observation that can cover the entire section, extending any single field of view. In this review, we summarize current knowledge on the application of WSI to histopathological analyses of liver disorders as well as to understand liver biology. We address how WSI may improve the assessment and quantification of multiple histological parameters in the liver, and help diagnose several hepatic conditions with important clinical implications. The WSI technical limitations are also discussed.
Collapse
Affiliation(s)
- Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Maximilian W D Raas
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil.,Faculty of Medical Sciences, Radboud University, Nijmegen, Netherlands
| | - Cinthia Palazzi
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Vitor H Neves
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Kássia K Malta
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
930
|
Henriksson E, Andersen B. FGF19 and FGF21 for the Treatment of NASH-Two Sides of the Same Coin? Differential and Overlapping Effects of FGF19 and FGF21 From Mice to Human. Front Endocrinol (Lausanne) 2020; 11:601349. [PMID: 33414764 PMCID: PMC7783467 DOI: 10.3389/fendo.2020.601349] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
FGF19 and FGF21 analogues are currently in clinical development for the potential treatment of NASH. In Phase 2 clinical trials analogues of FGF19 and FGF21 decrease hepatic steatosis with up to 70% (MRI-PDFF) after 12 weeks and as early as 12-16 weeks of treatment an improvement in NASH resolution and fibrosis has been observed. Therefore, this class of compounds is currently of great interest in the field of NASH. FGF19 and FGF21 belong to the endocrine FGF19 subfamily and both require the co-receptor beta-klotho for binding and signalling through the FGF receptors. FGF19 is expressed in the ileal enterocytes and is released into the enterohepatic circulation in response to bile acids stimuli and in the liver FGF19 inhibits hepatic bile acids synthesis by transcriptional regulation of Cyp7A1, which is the rate limiting enzyme. FGF21 is, on the other hand, highly expressed in the liver and is released in response to high glucose, high free-fatty acids and low amino-acid supply and regulates energy, glucose and lipid homeostasis by actions in the CNS and in the adipose tissue. FGF19 and FGF21 are differentially expressed, have distinct target tissues and separate physiological functions. It is therefore of peculiar interest to understand why treatment with both FGF19 and FGF21 analogues have strong beneficial effects on NASH parameters in mice and human and whether the mode of action is overlapping This review will highlight the physiological and pharmacological effects of FGF19 and FGF21. The potential mode of action behind the anti-steatotic, anti-inflammatory and anti-fibrotic effects of FGF19 and FGF21 will be discussed. Finally, development of drugs is always a risk benefit analysis and the human relevance of adverse effects observed in pre-clinical species as well as findings in humans will be discussed. The aim is to provide a comprehensive overview of the current understanding of this drug class for the potential treatment of NASH.
Collapse
|
931
|
Ma N, Ma R, Tang K, Li X, He B. Roux-en-Y Gastric Bypass in Obese Diabetic Rats Promotes Autophagy to Improve Lipid Metabolism through mTOR/p70S6K Signaling Pathway. J Diabetes Res 2020; 2020:4326549. [PMID: 32309446 PMCID: PMC7136782 DOI: 10.1155/2020/4326549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/28/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To investigate the effects of Roux-en-Y gastric bypass (RYGB) surgery on markers of liver mitochondrial dynamics and find new therapeutic basis on obese type 2 diabetes mellitus (T2DM) patients. Materials and Methods. Thirty-two rats were divided into nondiabetic group, diabetic group, sham group, and RYGB group. The Dual-energy X-ray absorptiometry (DEXA) was used to detect short-term curriculum vitae for rat body component and fat and lean mass. Hepatic lipid content and triglyceride levels were detected by Oil Red O staining. Western blotting was used to examine autophagy and mammalian target of rapamycin/P70S6 kinase (mTOR/p70S6K) pathway-related proteins. The carbon dioxide production from the oxidation of [14C] oleate was measured. Plasma glucose was measured by glucose oxidase assay. The insulin and C-peptide were detected. Triacylglyceride (TG) and free fat acid (FFA) in plasma were determined by enzymatic colorimetric assays. RESULTS RYGB improved metabolic parameters and enhanced plasma GLP-1 level, ameliorated the lipopexia, and increased insulin sensitivity in the liver; RYGB promoted the hepatic autophagy and inhibited the mTOR/p70S6K signaling pathway. GLP-1 reduced fat load and increased fatty acid β-oxidation by activated autophagy to regulate the hepatic lipid pathway through mTOR/p70S6K signaling pathway. CONCLUSIONS RYGB may reduce liver lipid toxicity and improve insulin sensitivity through activating the hepatic fat hydrolysis pathway and inhibiting the liver fat synthesis pathway. However, the transport pathway of liver fat does not play a key role.
Collapse
Affiliation(s)
- Nanxi Ma
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Rui Ma
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Kaixin Tang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Xuesong Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Bing He
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| |
Collapse
|
932
|
Khomich O, Ivanov AV, Bartosch B. Metabolic Hallmarks of Hepatic Stellate Cells in Liver Fibrosis. Cells 2019; 9:24. [PMID: 31861818 PMCID: PMC7016711 DOI: 10.3390/cells9010024] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis is a regenerative process that occurs after injury. It is characterized by the deposition of connective tissue by specialized fibroblasts and concomitant proliferative responses. Chronic damage that stimulates fibrogenic processes in the long-term may result in the deposition of excess matrix tissue and impairment of liver functions. End-stage fibrosis is referred to as cirrhosis and predisposes strongly to the loss of liver functions (decompensation) and hepatocellular carcinoma. Liver fibrosis is a pathology common to a number of different chronic liver diseases, including alcoholic liver disease, non-alcoholic fatty liver disease, and viral hepatitis. The predominant cell type responsible for fibrogenesis is hepatic stellate cells (HSCs). In response to inflammatory stimuli or hepatocyte death, HSCs undergo trans-differentiation to myofibroblast-like cells. Recent evidence shows that metabolic alterations in HSCs are important for the trans-differentiation process and thus offer new possibilities for therapeutic interventions. The aim of this review is to summarize current knowledge of the metabolic changes that occur during HSC activation with a particular focus on the retinol and lipid metabolism, the central carbon metabolism, and associated redox or stress-related signaling pathways.
Collapse
Affiliation(s)
- Olga Khomich
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Birke Bartosch
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
| |
Collapse
|
933
|
Sattari M, Bril F, Egerman R, Kalavalapalli S, Cusi K. Relationship between non-alcoholic fatty liver disease during pregnancy and abnormal glucose metabolism during and after pregnancy. J Investig Med 2019; 68:743-747. [PMID: 31852748 DOI: 10.1136/jim-2019-001186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
While non-alcoholic fatty liver disease (NAFLD) is associated with increased risk of impaired glucose tolerance and type 2 diabetes mellitus (DM) in non-pregnant patients, the clinical significance of NAFLD during pregnancy is still unclear. We hypothesized that sonographic findings of NAFLD during pregnancy would be associated with gestational diabetes mellitus (GDM) and predict abnormal postpartum glucose metabolism. NAFLD was assessed by ultrasound during and after pregnancy. Standard 2-hour 75 g oral glucose tolerance test (OGTT) was used during pregnancy and post partum to establish GDM and the diagnosis of normal, impaired fasting glucose, or DM. We also measured plasma insulin, C peptide, and free fatty acids (FFA) concentration during an OGTT to evaluate glucose tolerance, insulin secretion and insulin resistance. Of the 84 subjects, 12 had sonographic evidence of NAFLD (5 of whom had OGTT post partum). There was a non-significant trend toward higher mean weight and body mass index during and after gestation in the NAFLD group, but no statistically significant differences in mean age, ethnicity, prepregnancy and postpregnancy hemoglobin A1C values, and postpartum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), glucose, insulin, or FFA. We did not find an association between sonographic evidence of NAFLD during the third trimester of pregnancy and abnormal glucose metabolism during or after pregnancy. This study also suggests that while AST and ALT are not reliable diagnostic tools for NAFLD during the postpartum period, ultrasound is a reasonably safe, practical, and cost-effective modality to assess maternal hepatic fat during pregnancy.
Collapse
Affiliation(s)
- Maryam Sattari
- Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Fernando Bril
- Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Robert Egerman
- Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Obstetrics and Gynecology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Srilaxmi Kalavalapalli
- Endocrinology, Diabetes, and Metabolism, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Kenneth Cusi
- Endocrinology, Diabetes, and Metabolism, University of Florida College of Medicine, Gainesville, Florida, USA.,Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States.,Audie L. Murphy VAMC, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| |
Collapse
|
934
|
Atanasov G, Dino K, Schierle K, Dietel C, Aust G, Pratschke J, Seehofer D, Schmelzle M, Hau HM. Angiogenic inflammation and formation of necrosis in the tumor microenvironment influence patient survival after radical surgery for de novo hepatocellular carcinoma in non-cirrhosis. World J Surg Oncol 2019; 17:217. [PMID: 31830991 PMCID: PMC6909650 DOI: 10.1186/s12957-019-1756-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background Tumor escape mechanisms mediated in the tumor microenvironment can significantly reduce the capacity of the anti-tumor function of the immune system. TIE2-expressing monocytes (TEMs), related angiopoietins, and tumor necrosis are considered to have a key role in this process. We aimed to investigate the abundance and clinical significance of these biomarkers in hepatocellular carcinoma (HCC). Methods In this retrospective study, 58 HCC patients received surgery with a curative intent. The abundance of TEMs, angiopoietin-1 and -2 were detected in tumor specimens of the HCC patients (n = 58), and together with the occurrence of histologic tumor necrosis, were associated with established clinicopathological characteristics and survival. Results Patients with HCC characterized by necrosis and TEMs revealed reduced both overall survival and recurrence-free survival (all p < 0.05). Angiopoietins and TEMs were associated with metastatic and recurrent HCC. Furthermore, the formation of histologic tumor necrosis was associated with advanced tumor stage and density of TEMs (all p < 0.05). Conclusions Histologic tumor necrosis, TEMs, and related angiopoietins were associated with multiple HCC parameters and patient survival. The tumor necrosis–TEM–angiopoietin axis may offer a novel diagnostic modality to predict patient outcome after surgery for HCC.
Collapse
Affiliation(s)
- Georgi Atanasov
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany. .,Department of Surgery, Campus Charité Mitte und Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Berlin Institute of Health, Berlin, Germany.
| | - Karoline Dino
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Katrin Schierle
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Corinna Dietel
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Gabriela Aust
- Department of Surgery, Research Laboratories, University of Leipzig, Leipzig, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte und Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Daniel Seehofer
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Moritz Schmelzle
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany.,Department of Surgery, Campus Charité Mitte und Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Hans-Michael Hau
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
935
|
Raza S, Rajak S, Anjum B, Sinha RA. Molecular links between non-alcoholic fatty liver disease and hepatocellular carcinoma. HEPATOMA RESEARCH 2019; 5:42. [PMID: 31867441 PMCID: PMC6924993 DOI: 10.20517/2394-5079.2019.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its advanced complication, non-alcoholic steatohepatitis (NASH), have become leading causes of hepatocellular carcinoma (HCC) worldwide. In this review, we discuss the role of metabolic, gut microbial, immune and endocrine mediators which promote the progression of NAFLD to HCC. In particular, this progression involves multiple hits resulting from lipotoxicity, oxidative stress, inhibition of hepatic autophagy and inflammation. Furthermore, dysbiosis in the gut associated with obesity also promotes HCC via induction of proinflammatory cytokines and Toll like receptor signalling as well as altered bile metabolism. Additionally, compromised T-cell function and impaired hepatic hormonal action promote the development of NASH-associated HCC. Lastly, we discuss the current challenges involved in the diagnosis and treatment of NAFLD/NASH-associated HCC.
Collapse
Affiliation(s)
- Sana Raza
- Department of Bioscience, Integral University, Lucknow 226026, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Baby Anjum
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
936
|
Underhill GH, Khetani SR. Emerging trends in modeling human liver disease in vitro. APL Bioeng 2019; 3:040902. [PMID: 31893256 PMCID: PMC6930139 DOI: 10.1063/1.5119090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
The liver executes 500+ functions, such as protein synthesis, xenobiotic metabolism, bile production, and metabolism of carbohydrates/fats/proteins. Such functions can be severely degraded by drug-induced liver injury, nonalcoholic fatty liver disease, hepatitis B and viral infections, and hepatocellular carcinoma. These liver diseases, which represent a significant global health burden, are the subject of novel drug discovery by the pharmaceutical industry via the use of in vitro models of the human liver, given significant species-specific differences in disease profiles and drug outcomes. Isolated primary human hepatocytes (PHHs) are a physiologically relevant cell source to construct such models; however, these cells display a rapid decline in the phenotypic function within conventional 2-dimensional monocultures. To address such a limitation, several engineered platforms have been developed such as high-throughput cellular microarrays, micropatterned cocultures, self-assembled spheroids, bioprinted tissues, and perfusion devices; many of these platforms are being used to coculture PHHs with liver nonparenchymal cells to model complex cell cross talk in liver pathophysiology. In this perspective, we focus on the utility of representative platforms for mimicking key features of liver dysfunction in the context of chronic liver diseases and liver cancer. We further discuss pending issues that will need to be addressed in this field moving forward. Collectively, these in vitro liver disease models are being increasingly applied toward the development of new therapeutics that display an optimal balance of safety and efficacy, with a focus on expediting development, reducing high costs, and preventing harm to patients.
Collapse
Affiliation(s)
- Gregory H. Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Salman R. Khetani
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
937
|
Abenavoli L, Luzza F, Mendez-Sanchez N. Probiotics supplementation in the management of hepatocellular carcinoma. Hepatobiliary Surg Nutr 2019; 8:632-634. [PMID: 31929992 DOI: 10.21037/hbsn.2019.10.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Francesco Luzza
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Nahum Mendez-Sanchez
- Liver Research Unit Medica Sur Clinic & Foundation and Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
938
|
Chen Z, Yu Y, Cai J, Li H. Emerging Molecular Targets for Treatment of Nonalcoholic Fatty Liver Disease. Trends Endocrinol Metab 2019; 30:903-914. [PMID: 31597607 DOI: 10.1016/j.tem.2019.08.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
In parallel with the obesity epidemic, nonalcoholic fatty liver disease (NAFLD) has emerged as the most common chronic liver disease worldwide. Disequilibrium of lipid metabolism and the subsequent metabolic-stress-induced inflammation are believed to be central in the pathogenesis of NAFLD. Of note, metabolic inflammation is primarily mediated by innate immune signaling, which is increasingly recognized as a driving force in NAFLD progression. Currently, a series of agents targeting one or more of these pathomechanisms have shown encouraging results in preclinical models and clinical trials. This review summarizes the emerging molecular targets involved in signaling in the lipid metabolism and innate immunity aspects of NAFLD, focusing on their mechanistic roles and translational potentials.
Collapse
Affiliation(s)
- Ze Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430072, China
| | - Yao Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430072, China
| | - Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430072, China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430072, China; Basic Medical School, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
939
|
Wang Z, Cao D, Li C, Min L, Wang G. Mediator MED23 regulates inflammatory responses and liver fibrosis. PLoS Biol 2019; 17:e3000563. [PMID: 31805036 PMCID: PMC6917294 DOI: 10.1371/journal.pbio.3000563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/17/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Liver fibrosis, often associated with cirrhosis and hepatocellular carcinomas, is characterized by hepatic damage, an inflammatory response, and hepatic stellate cell (HSC) activation, although the underlying mechanisms are largely unknown. Here, we show that the transcriptional Mediator complex subunit 23 (MED23) participates in the development of experimental liver fibrosis. Compared with their control littermates, mice with hepatic Med23 deletion exhibited aggravated carbon tetrachloride (CCl4)-induced liver fibrosis, with enhanced chemokine production and inflammatory infiltration as well as increased hepatocyte regeneration. Mechanistically, the orphan nuclear receptor RAR-related orphan receptor alpha (RORα) activates the expression of the liver fibrosis-related chemokines C-C motif chemokine ligand 5 (CCL5) and C-X-C motif chemokine ligand 10 (CXCL10), which is suppressed by the Mediator subunit MED23. We further found that the inhibition of Ccl5 and Cxcl10 expression by MED23 likely occurs because of G9a (also known as euchromatic histone-lysine N-methyltransferase 2 [EHMT2])-mediated H3K9 dimethylation of the target promoters. Collectively, these findings reveal hepatic MED23 as a key modulator of chemokine production and inflammatory responses and define the MED23-CCL5/CXCL10 axis as a potential target for clinical intervention in liver fibrosis.
Collapse
Affiliation(s)
- Zhichao Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan Cao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chonghui Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lihua Min
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Gang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
940
|
Anty R, Gual P. [Pathogenesis of non-alcoholic fatty liver disease]. Presse Med 2019; 48:1468-1483. [PMID: 31767252 DOI: 10.1016/j.lpm.2019.09.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a complex chronic disease resulting from an interaction between genetic and environmental factors. The phenotype and pathophysiology of NAFLD is heterogeneous. NAFLD is a continuum of histological lesions of the liver from steatosis, Non-Alcoholic SteatoHepatitis (NASH), NASH with fibrosis, cirrhosis to hepatocellular carcinoma. The pathophysiology encompasses a dysfunction in fatty tissue (sub-cutaneous and visceral) associated with insulin-resistance and metabolic inflammation. NAFLD is a "multi-systemic" disease. Reciprocal and aggravating interactions exist between NAFLD, cardiovascular anomalies and diabetes. The understanding of the mechanisms responsible for NAFLD allows the identification of potential novel therapeutic targets.
Collapse
Affiliation(s)
- Rodolphe Anty
- Université Côte d'Azur, CHU, Inserm, U1065, C3M, 06000 Nice, France.
| | - Philippe Gual
- Université Côte d'Azur, Inserm, U1065, C3M, 06000 Nice, France
| |
Collapse
|
941
|
When the beverage is sweet, how does the liver feel? ACTA ACUST UNITED AC 2019; 5:458-465. [PMID: 33312845 DOI: 10.1007/s40746-019-00177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose of review The purpose of this paper is to both review the available data and also highlight the gaps in knowledge, regarding the link between pediatric NASH and different type of sweeteners including caloric sweeteners (CS) and non-caloric sweeteners (NCS). Recent findings Studies have demonstrated that patients with NASH generally have had an unhealthy diet, characterized by on overconsumption of carbohydrates especially fructose. Mechanistically, a high-fructose diet reduces hepatic lipid oxidation, increases proinflammatory response, increases intestinal permeability and decreases microbiome diversity. Consumption and availability of NCS has therefore been increasing dramatically. Most NCS are not considered to be metabolized in the body and therefore thought to be safe for consumption. It was reported that pharmacological properties of rebaudioside, a type of NCS, as a potential hepatoprotector are through anti-inflammatory and antifibrotic mechanisms, associated with enhancing glucose-induced insulin secretion and inducing the difference of microbiome diversity. Summary Diet is an important factor in the pathogenesis of NAFLD and popular dietary patterns are contributing to the increased replacement of natural sweeteners with NCS. Screening for NAFLD by pediatricians and counseling on the avoidance of sugar-sweetened beverages are recommended. We feel that the various NCS available to the consumer today merit further investigation, and may potentially have hitherto unknown effects on hepatic metabolic function.
Collapse
|
942
|
Mazzoccoli G, Miele L, Marrone G, Mazza T, Vinciguerra M, Grieco A. A Role for the Biological Clock in Liver Cancer. Cancers (Basel) 2019; 11:1778. [PMID: 31718031 PMCID: PMC6895918 DOI: 10.3390/cancers11111778] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022] Open
Abstract
The biological clock controls at the molecular level several aspects of mammalian physiology, by regulating daily oscillations of crucial biological processes such as nutrient metabolism in the liver. Disruption of the circadian clock circuitry has recently been identified as an independent risk factor for cancer and classified as a potential group 2A carcinogen to humans. Hepatocellular carcinoma (HCC) is the prevailing histological type of primary liver cancer, one of the most important causes of cancer-related death worldwide. HCC onset and progression is related to B and C viral hepatitis, alcoholic and especially non-alcoholic fatty liver disease (NAFLD)-related milieu of fibrosis, cirrhosis, and chronic inflammation. In this review, we recapitulate the state-of-the-art knowledge on the interplay between the biological clock and the oncogenic pathways and mechanisms involved in hepatocarcinogenesis. Finally, we propose how a deeper understanding of circadian clock circuitry-cancer pathways' crosstalk is promising for developing new strategies for HCC prevention and management.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy
| | - Luca Miele
- Fondazione Policlinico Universitario A Gemelli–IRCCS– Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Giuseppe Marrone
- Fondazione Policlinico Universitario A Gemelli–IRCCS– Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy;
| | - Manlio Vinciguerra
- International Clinical Research Center (FNUSA-ICRC), St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Antonio Grieco
- Fondazione Policlinico Universitario A Gemelli–IRCCS– Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| |
Collapse
|
943
|
Golabi P, Rhea L, Henry L, Younossi ZM. Hepatocellular carcinoma and non-alcoholic fatty liver disease. Hepatol Int 2019; 13:688-694. [PMID: 31701393 DOI: 10.1007/s12072-019-09995-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered the most common liver disorder worldwide, affecting 25.2% of the general population. In fact, NAFLD is among the most common etiologies for hepatocellular carcinoma (HCC). The burden of NAFLD is primarily driven by the epidemic of obesity and type 2 diabetes which are expected to worsen throughout the world. In this context, the burden of NAFLD and associated HCC and cirrhosis are also expected to increase. Despite its growing disease burden, diagnostic tools and treatment modalities remain very limited. This conundrum of increasing prevalence and limited treatment options will be reflected as increasing number of NAFLD-related cirrhosis and HCC cases. This article reviews the most updated information about NAFLD-related HCC and provides some insight into strategies that must be considered to reduce its potential disease burden.
Collapse
Affiliation(s)
- Pegah Golabi
- Center For Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, VA, USA
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Claude Moore Health Education and Research Building, 3300 Gallows Road, Falls Church, VA, 22042, USA
| | - Logan Rhea
- Center For Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, VA, USA
| | - Linda Henry
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Claude Moore Health Education and Research Building, 3300 Gallows Road, Falls Church, VA, 22042, USA
| | - Zobair M Younossi
- Center For Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, VA, USA.
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Claude Moore Health Education and Research Building, 3300 Gallows Road, Falls Church, VA, 22042, USA.
| |
Collapse
|
944
|
Genomic Perspective on Mouse Liver Cancer Models. Cancers (Basel) 2019; 11:cancers11111648. [PMID: 31731480 PMCID: PMC6895968 DOI: 10.3390/cancers11111648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Selecting the most appropriate mouse model that best recapitulates human hepatocellular carcinoma (HCC) allows translation of preclinical mouse studies into clinical studies. In the era of cancer genomics, comprehensive and integrative analysis of the human HCC genome has allowed categorization of HCC according to molecular subtypes. Despite the variety of mouse models that are available for preclinical research, there is a lack of evidence for mouse models that closely resemble human HCC. Therefore, it is necessary to identify the accurate mouse models that represent human HCC based on molecular subtype as well as histologic aggressiveness. In this review, we summarize the mouse models integrated with human HCC genomic data to provide information regarding the models that recapitulates the distinct aspect of HCC biology and prognosis based on molecular subtypes.
Collapse
|
945
|
Zhou L, Li Q, Chen A, Liu N, Chen N, Chen X, Zhu L, Xia B, Gong Y, Chen X. KLF15-activating Twist2 ameliorated hepatic steatosis by inhibiting inflammation and improving mitochondrial dysfunction via NF-κB-FGF21 or SREBP1c-FGF21 pathway. FASEB J 2019; 33:14254-14269. [PMID: 31648561 DOI: 10.1096/fj.201901347rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Twist-related protein 2 (TWIST2) is identified as a basic helix-loop-helix (b-HLH) transcription repressor by dimerizing with other b-HLH proteins. The significance of TWIST2 has been emphasized in various tumors; however, few studies report its functions in metabolism and metabolic diseases. Here we aimed to explore the novel role and regulation mechanism of TWIST2 in hepatic steatosis. Our results showed that Twist2 knockdown caused mice obesity, insulin resistance, and hepatic steatosis, which were accompanied with inflammation, endoplasmic reticulum stress, and mitochondrial dysfunction. In vitro, TWIST2 overexpression ameliorated hepatocellular steatosis, inhibited inflammation, and improved mitochondrial content and function with a fibroblast growth factor 21 (FGF21)-dependent pattern. NF-κB negatively regulated FGF21 transcription by directly binding to FGF21 promoter DNA, which was eliminated by TWIST2 overexpression by inhibiting NF-κB expression and translocation to nucleus. TWIST2 overexpression decreased intracellular reactive oxygen species level, increased mitochondrial DNA and biogenesis, and enhanced ATP production and antioxidation ability. Additionally, TWIST2 expression was repressed by insulin-targeting sterol regulatory element-binding protein 1c (SREBP1c) and forkhead box protein O1 and was enhanced by dexamethasone targeting Krüppel-like factor 15, which directly interacted with Twist2 promoter DNA. Together, our studies identify an important role and regulation mechanism of TWIST2 in maintaining hepatic homeostasis by ameliorating steatosis, inflammation, and oxidative stress via the NF-κB-FGF21 or SREBP1c-FGF21 pathway, which may provide a new therapeutic scheme for nonalcoholic fatty liver disease.-Zhou, L., Li, Q., Chen, A., Liu, N., Chen, N., Chen, X., Zhu, L., Xia, B., Gong, Y., Chen, X. KLF15-activating Twist2 ameliorated hepatic steatosis by inhibiting inflammation and improving mitochondrial dysfunction via NF-κB-FGF21 or SREBP1c-FGF21 pathway.
Collapse
Affiliation(s)
- Lulu Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qinjin Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ao Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Na Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ning Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojun Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lin Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Benzeng Xia
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuqing Gong
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
946
|
Klieser E, Mayr C, Kiesslich T, Wissniowski T, Fazio PD, Neureiter D, Ocker M. The Crosstalk of miRNA and Oxidative Stress in the Liver: From Physiology to Pathology and Clinical Implications. Int J Mol Sci 2019; 20:5266. [PMID: 31652839 PMCID: PMC6862076 DOI: 10.3390/ijms20215266] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
The liver is the central metabolic organ of mammals. In humans, most diseases of the liver are primarily caused by an unhealthy lifestyle-high fat diet, drug and alcohol consumption- or due to infections and exposure to toxic substances like aflatoxin or other environmental factors. All these noxae cause changes in the metabolism of functional cells in the liver. In this literature review we focus on the changes at the miRNA level, the formation and impact of reactive oxygen species and the crosstalk between those factors. Both, miRNAs and oxidative stress are involved in the multifactorial development and progression of acute and chronic liver diseases, as well as in viral hepatitis and carcinogenesis, by influencing numerous signaling and metabolic pathways. Furthermore, expression patterns of miRNAs and antioxidants can be used for biomonitoring the course of disease and show potential to serve as possible therapeutic targets.
Collapse
Affiliation(s)
- Eckhard Klieser
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Christian Mayr
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Institute of Physiology and Pathophysiology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Institute of Physiology and Pathophysiology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Till Wissniowski
- Department of Gastroenterology and Endocrinology, Philipps University Marburg, 35043 Marburg, Germany.
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, 35043 Marburg, Germany.
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Matthias Ocker
- Translational Medicine Oncology, Bayer AG, 13353 Berlin, Germany.
- Department of Gastroenterology CBF, Charité University Medicine Berlin, 12200 Berlin, Germany.
| |
Collapse
|
947
|
Federico A, Dallio M, Masarone M, Gravina AG, Di Sarno R, Tuccillo C, Cossiga V, Lama S, Stiuso P, Morisco F, Persico M, Loguercio C. Evaluation of the Effect Derived from Silybin with Vitamin D and Vitamin E Administration on Clinical, Metabolic, Endothelial Dysfunction, Oxidative Stress Parameters, and Serological Worsening Markers in Nonalcoholic Fatty Liver Disease Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8742075. [PMID: 31737175 PMCID: PMC6815609 DOI: 10.1155/2019/8742075] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023]
Abstract
Nowadays, the nonalcoholic fatty liver disease represents the main chronic liver disease in the Western countries, and the correct medical therapy remains a big question for the scientific community. The aim of our study was to evaluate the effect derived from the administration for six months of silybin with vitamin D and vitamin E (RealSIL 100D®) on metabolic markers, oxidative stress, endothelial dysfunction, and worsening of disease markers in nonalcoholic fatty liver disease patients. We enrolled 90 consecutive patients with histological diagnosis of nonalcoholic fatty liver disease and 60 patients with diagnosis of reflux disease (not in therapy) as healthy controls. The nonalcoholic fatty liver disease patients were randomized into two groups: treated (60 patients) and not treated (30 patients). We performed a nutritional assessment and evaluated clinical parameters, routine home tests, the homeostatic model assessment of insulin resistance, NAFLD fibrosis score and fibrosis-4, transient elastography and controlled attenuation parameter, thiobarbituric acid reactive substances, tumor necrosis factor α, transforming growth factor β, interleukin-18 and interleukin-22, matrix metalloproteinase 2, epidermal growth factor receptor, insulin growth factor-II, cluster of differentiation-44, high mobility group box-1, and Endocan. Compared to the healthy controls, the nonalcoholic fatty liver disease patients had statistically significant differences for almost all parameters evaluated at baseline (p < 0.05). Six months after the baseline, the proportion of nonalcoholic fatty liver disease patients treated that underwent a statistically significant improvement in metabolic markers, oxidative stress, endothelial dysfunction, and worsening of disease was greater than not treated nonalcoholic fatty liver disease patients (p < 0.05). Even more relevant results were obtained for the same parameters by analyzing patients with a concomitant diagnosis of metabolic syndrome (p < 0.001). The benefit that derives from the use of RealSIL 100D could derive from the action on more systems able to advance the pathology above all in that subset of patients suffering from concomitant metabolic syndrome.
Collapse
Affiliation(s)
- Alessandro Federico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Marcello Dallio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Mario Masarone
- Department of Medicine and Surgery, University of Salerno, “Scuola Medica Salernitana” Internal Medicine and Hepatology Unit, Via Allende, 84081 Baronissi, Salerno, Italy
| | - Antonietta Gerarda Gravina
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Rosa Di Sarno
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Concetta Tuccillo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Valentina Cossiga
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Stefania Lama
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Filomena Morisco
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Marcello Persico
- Department of Medicine and Surgery, University of Salerno, “Scuola Medica Salernitana” Internal Medicine and Hepatology Unit, Via Allende, 84081 Baronissi, Salerno, Italy
| | - Carmelina Loguercio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
948
|
Animal Models of Hepatocellular Carcinoma: The Role of Immune System and Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11101487. [PMID: 31581753 PMCID: PMC6826986 DOI: 10.3390/cancers11101487] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer in adults and has one of the highest mortality rates of solid cancers. Ninety percent of HCCs are associated with liver fibrosis or cirrhosis developed from chronic liver injuries. The immune system of the liver contributes to the severity of the necrotic-inflammatory tissue damage, the establishment of fibrosis and cirrhosis, and the disease progression towards HCC. Immunotherapies have emerged as an exciting strategy for HCC treatment, but their effect is limited, and an extensive translation research is urgently needed to enhance anti-tumor efficacy and clinical success. Establishing HCC animal models that are analogous to human disease settings, i.e., mimicking the tumor microenvironment of HCC, is extremely challenging. Hence, this review discusses different animal models of HCC by summarizing their advantages and their limits with a specific focus on the role of the immune system and tumor microenvironment.
Collapse
|
949
|
Asadipooya K, Lankarani KB, Raj R, Kalantarhormozi M. RAGE is a Potential Cause of Onset and Progression of Nonalcoholic Fatty Liver Disease. Int J Endocrinol 2019; 2019:2151302. [PMID: 31641351 PMCID: PMC6766674 DOI: 10.1155/2019/2151302] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 08/05/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Fatty liver is a rising global health concern, significantly increasing the burden of health care cost. Nonalcoholic fatty liver disease (NAFLD) has a correlation with metabolic syndrome and its complications. METHOD We reviewed the literature regarding the mechanisms of developing NAFLD through AGE-RAGE signaling. RESULTS NAFLD, metabolic syndrome, and production of advanced glycation end-products (AGEs) share many common risk factors and appear to be connected. AGE induces production of the receptor for AGE (RAGE). AGE-RAGE interaction contributes to fat accumulation in the liver leading to inflammation, fibrosis, insulin resistance, and other complications of the fatty liver disease. The immune system, especially macrophages, has an important defense mechanism against RAGE pathway activities. CONCLUSION Soluble form of RAGE (sRAGE) has the capability to reduce inflammation by blocking the interaction of AGE with RAGE. However, sRAGE has some limitations, and the best method of usage is probably autotransplantation of transfected stem cells or monocytes, as a precursor of macrophages and Kupffer cells, with a virus that carries sRAGE to alleviate the harmful effects of AGE-RAGE signaling in the settings of fatty liver disease.
Collapse
Affiliation(s)
- Kamyar Asadipooya
- Division of Endocrinology and Molecular Medicine, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Kamran B. Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rishi Raj
- Division of Endocrinology and Molecular Medicine, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Mohammadreza Kalantarhormozi
- Endocrinology and Internal Medicine, The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
950
|
Huang X, Lee F, Teng Y, Lingam CB, Chen Z, Sun M, Song Z, Balachander GM, Leo HL, Guo Q, Shah I, Yu H. Sequential drug delivery for liver diseases. Adv Drug Deliv Rev 2019; 149-150:72-84. [PMID: 31734169 DOI: 10.1016/j.addr.2019.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
The liver performs critical physiological functions such as metabolism/detoxification and blood homeostasis/biliary excretion. A high degree of blood access means that a drug's resident time in any cell is relatively short. This short drug exposure to cells requires local sequential delivery of multiple drugs for optimal efficacy, potency, and safety. The high metabolism and excretion of drugs also impose both technical challenges and opportunities to sequential drug delivery. This review provides an overview of the sequential events in liver regeneration and the related liver diseases. Using selected examples of liver cancer, hepatitis B viral infection, fatty liver diseases, and drug-induced liver injury, we highlight efforts made for the sequential delivery of small and macromolecular drugs through different biomaterials, cells, and microdevice-based delivery platforms that allow fast delivery kinetics and rapid drug switching. As this is a nascent area of development, we extrapolate and compare the results with other sequential drug delivery studies to suggest possible application in liver diseases, wherever appropriate.
Collapse
Affiliation(s)
- Xiaozhong Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore; Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore
| | - Fan Lee
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore
| | - Yao Teng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore; Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore
| | - Corey Bryen Lingam
- Department of Biomedical Engineering, National University of Singapore, Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583, Singapore
| | - Zijian Chen
- Department of Biomedical Engineering, National University of Singapore, Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583, Singapore; Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China
| | - Min Sun
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
| | - Ziwei Song
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore; Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore
| | - Gowri M Balachander
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583, Singapore
| | - Qiongyu Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China
| | - Imran Shah
- National Center for Computational Toxicology, United States Environmental Protection Agency, 4930 Old Page Rd., Durham, NC 27703, USA
| | - Hanry Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore; Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore; Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411, Singapore; CAMP, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Level 4 Enterprise Wing, Singapore 138602, Singapore; Gastroenterology Department, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|