901
|
Kubarenko A, Sergiev P, Wintermeyer W, Dontsova O, Rodnina MV. Involvement of helix 34 of 16 S rRNA in decoding and translocation on the ribosome. J Biol Chem 2006; 281:35235-44. [PMID: 16990269 DOI: 10.1074/jbc.m608060200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Helix 34 of 16 S rRNA is located in the head of the 30 S ribosomal subunit close to the decoding center and has been invoked in a number of ribosome functions. In the present work, we have studied the effects of mutations in helix 34 both in vivo and in vitro. Several nucleotides in helix 34 that are either highly conserved or form important tertiary contacts in 16 S rRNA (U961, C1109, A1191, and A1201) were mutated, and the mutant ribosomes were expressed in the Escherichia coli MC250 Delta7 strain that lacks all seven chromosomal rRNA operons. Mutations at positions A1191 and U961 reduced the efficiency of subunit association and resulted in structural rearrangements in helix 27 (position 908) and helix 31 (position 974) of 16 S rRNA. All mutants exhibited increased levels of frameshifting and nonsense readthrough. The effects on frameshifting were specific in that -1 frameshifting was enhanced with mutant A1191G and +1 frameshifting with the other mutants. Mutations of A1191 moderately (approximately 2-fold) inhibited tRNA translocation. No significant effects were found on efficiency and rate of initiation, misreading of sense codons, or binding of tRNA to the E site. The data indicate that helix 34 is involved in controlling the maintenance of the reading frame and in tRNA translocation.
Collapse
Affiliation(s)
- Andrew Kubarenko
- Institute of Physical Biochemistry, University of Witten/Herdecke, 58448 Witten, Germany
| | | | | | | | | |
Collapse
|
902
|
LeBarron J, Mitra K, Frank J. Displaying 3D data on RNA secondary structures: coloRNA. J Struct Biol 2006; 157:262-70. [PMID: 17070699 DOI: 10.1016/j.jsb.2006.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 08/23/2006] [Accepted: 08/25/2006] [Indexed: 12/20/2022]
Abstract
RNA performs a variety of diverse functions and therefore must adopt many different three-dimensional conformations. The number and complexity of RNA structures that are currently available are steadily increasing, necessitating the generation of versatile structure visualization tools. Here, we describe a new RNA secondary and tertiary structure visualization tool, the display program coloRNA. This program colors each nucleotide in a secondary structure schematic according to the value of an assigned property of the corresponding backbone phosphate group, such as the distance between corresponding residues in two atomic models of the same RNA molecule. To assist in analyzing tertiary structure, coloRNA also colors nucleotides based on the three-dimensional distances between a user-selected nucleotide and all others. Minimum and maximum thresholds can be used to focus in on, or eliminate, a particular value range. coloRNA can display a user-specified group of nucleotides by outlining the structure in an automatically assigned, but user-changeable color. As an example, we have used coloRNA to analyze a pair of recently published structures of the Escherichia coli 70S ribosome. When coloRNA is used to display the conformational difference between the two structures, the large movement of the small subunit head stands visually out from the background changes in the remaining domains of the small subunit.
Collapse
Affiliation(s)
- Jamie LeBarron
- Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | |
Collapse
|
903
|
Auchtung TA, Takacs-Vesbach CD, Cavanaugh CM. 16S rRNA phylogenetic investigation of the candidate division "Korarchaeota". Appl Environ Microbiol 2006; 72:5077-82. [PMID: 16820509 PMCID: PMC1489347 DOI: 10.1128/aem.00052-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The environmental distribution and phylogeny of "Korarchaeota," a proposed ancient archaeal division, was investigated by using the 16S rRNA gene framework. Korarchaeota-specific primers were designed based on previously published sequences and used to screen a variety of environments. Korarchaeota 16S rRNA genes were amplified exclusively from high temperature Yellowstone National Park hot springs and a 9 degrees N East Pacific Rise deep-sea hydrothermal vent. Phylogenetic analyses of these and all available sequences suggest that Korarchaeota exhibit a high level of endemicity.
Collapse
Affiliation(s)
- Thomas A Auchtung
- Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
904
|
Nesbø CL, Dlutek M, Zhaxybayeva O, Doolittle WF. Evidence for existence of "mesotogas," members of the order Thermotogales adapted to low-temperature environments. Appl Environ Microbiol 2006; 72:5061-8. [PMID: 16820506 PMCID: PMC1489369 DOI: 10.1128/aem.00342-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All cultivated isolates of the bacterial order Thermotogales are either thermophiles or hyperthermophiles, but Thermotogales 16S rRNA gene sequences have been detected in many mesophilic anaerobic and microaerophilic environments, particularly within communities involved in the remediation of pollutants. Here we provide metagenomic evidence for the existence of Thermotogales lineages, which we informally call "mesotoga," that are adapted to growth at lower temperatures. Two fosmid clones containing mesotoga DNA, originating from a low-temperature enrichment culture that degrades a polychlorinated biphenyl congener, were sequenced. Phylogenetic analysis clearly puts this bacterial lineage within the Thermotogales order, with the rRNA gene trees and 21 of 58 open reading frames strongly supporting this relationship. An analysis of protein sequence composition showed that mesotoga proteins are adapted to function at lower temperatures than are their identifiable homologs from thermophilic and hyperthermophilic members of the order Thermotogales, supporting the notion that this bacterium lives and grows optimally at lower temperatures. The phylogenetic analysis suggests that the mesotoga lineage from which our fosmids derive has used both the acquisition of genes from its neighbors and the modification of existing thermophilic sequences to adapt to a mesophilic lifestyle.
Collapse
Affiliation(s)
- Camilla L Nesbø
- Dalhousie University, Biochemistry & Molecular Biology, 5850 College Street, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | |
Collapse
|
905
|
Oline DK. Phylogenetic comparisons of bacterial communities from serpentine and nonserpentine soils. Appl Environ Microbiol 2006; 72:6965-71. [PMID: 16950906 PMCID: PMC1636195 DOI: 10.1128/aem.00690-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
I present the results of a culture-independent survey of soil bacterial communities from serpentine soils and adjacent nonserpentine comparator soils using a variety of newly developed phylogenetically based statistical tools. The study design included site-based replication of the serpentine-to-nonserpentine community comparison over a regional scale ( approximately 100 km) in Northern California and Southern Oregon by producing 16S rRNA clone libraries from pairs of samples taken on either side of the serepentine-nonserpentine edaphic boundary at three geographical sites. At the division level, the serpentine and nonserpentine communities were similar to each other and to previous data from forest soils. Comparisons of both richness and Shannon diversity produced no significant differences between any of the libraries, but the vast majority of phylogenetically based tests were significant, even with only 50 sequences per library. These results suggest that most samples were distinct, consisting of a collection of lineages generally not found in other samples. The pattern of results showed that serpentine communities tended to be more similar to each other than they were to nonserpentine communities, and these differences were at a lower taxonomic scale. Comparisons of two nonserpentine communities generally showed differences, and some results suggest that the geographical site may control community composition as well. These results show the power of phylogenetic tests to discern differences between 16S rRNA libraries compared to tests that discard DNA data to bin sequences into operational taxonomic units, and they stress the importance of replication at larger scales for inferences regarding microbial biogeography.
Collapse
Affiliation(s)
- David K Oline
- Department of Biology, Southern Oregon University, 1250 Siskiyou Boulevard, Ashland, Oregon 97520, USA.
| |
Collapse
|
906
|
Melchers WJG, Zoll J, Tessari M, Bakhmutov DV, Gmyl AP, Agol VI, Heus HA. A GCUA tetranucleotide loop found in the poliovirus oriL by in vivo SELEX (un)expectedly forms a YNMG-like structure: Extending the YNMG family with GYYA. RNA (NEW YORK, N.Y.) 2006; 12:1671-82. [PMID: 16894217 PMCID: PMC1557697 DOI: 10.1261/rna.113106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 06/10/2006] [Indexed: 05/11/2023]
Abstract
The cloverleaf structure in the 5'-untranslated region of enterovirus RNA that regulates viral RNA replication contains an evolutionarily conserved YNMG tetraloop closed by a Y-G base pair. This loop is believed to interact specifically with the viral protease 3C. To further characterize the specificity of this interaction, the tetraloop and two flanking base pairs of the poliovirus RNA were randomized, and viable viral clones were obtained using in vivo SELEX. Among many different mutants with the canonical YNMG sequences to be described elsewhere, a large-plaque-forming clone contained a deviating uGCUAg sequence. The NMR structure of a small hairpin capped with uGCUAg that we present here shows that the GCUA tetraloop adopts a novel fold, which is highly similar to that of the YNMG tetraloop with common stacking properties and hydrogen-bond interactions including an unusual syn conformation of the adenosine. Thermodynamic studies show moderate stabilities of hairpins with canonical YNMG and the novel GCUA loops, which, together with the similarity of spatial structures, illustrates that the tetraloop structure itself is crucial for the RNA-protein interaction required for the viral replication. A re-evaluation of the ribosomal secondary structure database reveals a hairpin containing a GCUA loop, which covaries with YNMG and is involved in a tertiary interaction, and in the 50S ribosomal subunit from Haloarcula marismortui the structurally comparable apex of stem-loop 35a is a recognition site for protein L2. These observations show a more general occurrence and importance of the so-far unrecognized GYYA hairpin loops.
Collapse
Affiliation(s)
- Willem J G Melchers
- NCMLS, Department of Medical Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
907
|
Presting GG. Identification of conserved regions in the plastid genome: implications for DNA barcoding and biological function. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-117] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
All oligonucleotides of the sugarcane chloroplast genome that are conserved in one or more of 36 other completed plastid genomes have been identified by computer-assisted sequence comparison. These regions are of interest because they (i) are indicative of strong selection pressures to maintain specific nucleotide sequences that may yield insights into plastid biology and (ii) can be used as priming sites for amplifying intervening sequences that represent potential DNA barcodes for species identification. The majority of conserved sites are located in the inverted repeat (IR) region, but several sites in the single copy region (predominantly in tRNA and psa/psb genes) are conserved among chloroplasts of all higher plants examined here. Of particular interest are protein coding regions that have been conserved at the nucleotide level, as these may be involved in transcript regulation. This analysis also provides the basis for rational design of a DNA barcode for plastids, and several potential barcode regions have been identified. In particular, two oligonucleotides of length 33 and 25, and separated by approximately 362 nucleotides, are found in all cyanobacteria, red, brown and green algae, as well as diatoms, euglenids, apicomplexans and land plants that have been examined to date. Their widespread occurrence makes the intervening sequence a universal marker for all photosynthetic lineages. Analysis of 160 GenBank accessions illustrates that this region discriminates many algae at the species level, but lacks sufficient variation among the more recently diverged land plants to serve as a single DNA barcode for this taxon. However, this marker should be particularly useful for the DNA barcoding of algal lineages and lichens, as well as for environmental sampling. More rapidly evolving regions of the plastid genome also identified here serve as a starting point to design and test barcodes for more narrowly defined lineages, including the more recently diverged angiosperms.
Collapse
Affiliation(s)
- Gernot G. Presting
- Department of Molecular Biosciences and Bioengineering, 1955 East-West Road, Agricultural Science Building Room 218, University of Hawaii, Honolulu, HI 96822, USA (e-mail: )
| |
Collapse
|
908
|
Carapelli A, Vannini L, Nardi F, Boore JL, Beani L, Dallai R, Frati F. The mitochondrial genome of the entomophagous endoparasite Xenos vesparum (Insecta: Strepsiptera). Gene 2006; 376:248-59. [PMID: 16766140 DOI: 10.1016/j.gene.2006.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 03/21/2006] [Accepted: 04/08/2006] [Indexed: 11/25/2022]
Abstract
In this study, the nearly complete sequence (14,519 bp) of the mitochondrial DNA (mtDNA) of the entomophagous endoparasite Xenos vesparum (Insecta: Strepsiptera) is described. All protein coding genes (PCGs) are in the arrangement known to be ancestral for insects, but three tRNA genes (trnA, trnS(gcu), and trnL(uag)) have transposed to derived positions and there are three tandem copies of trnH, each of which is potentially functional. All of these rearrangements except for that of trnL(uag) is within the short span between nad3 and nad4 and there are numerous blocks of unassignable sequence in this region, perhaps as remnants of larger scale predisposing rearrangements. X. vesparum mtDNA nucleotide composition is strongly biased toward A and T, as is typical for insect mtDNAs. There is also a significant strand skew in the distribution of these nucleotides, with the J-strand being richer in A than T and in C than G, and the N-strand showing an opposite skew for complementary pairs of nucleotides. The hypothetical secondary structure of the LSU rRNA has also been reconstructed, obtaining a structural model similar to that of other insects.
Collapse
MESH Headings
- Animals
- Base Composition
- Base Pairing
- Base Sequence
- Codon
- DNA, Circular/chemistry
- DNA, Circular/genetics
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- Evolution, Molecular
- Gene Dosage
- Gene Expression Profiling
- Gene Order
- Gene Rearrangement
- Genes, Insect
- Genome
- Insecta/classification
- Insecta/genetics
- Microsatellite Repeats
- Molecular Sequence Data
- Nucleic Acid Conformation
- Open Reading Frames
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, DNA
- Translocation, Genetic
Collapse
|
909
|
Alkemar G, Nygård O. Probing the secondary structure of expansion segment ES6 in 18S ribosomal RNA. Biochemistry 2006; 45:8067-78. [PMID: 16800631 DOI: 10.1021/bi052149z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expansion segment ES6 in 18S ribosomal RNA is, unlike many other expansion segments, present in all eukaryotes. The available data suggest that ES6 is located on the surface of the small ribosomal subunit. Here we have analyzed the secondary structure of the complete ES6 sequence in intact ribosomes from three eukaryotes, wheat, yeast, and mouse, representing different eukaryotic kingdoms. The availability of the ES6 sequence for modification and cleavage by structure sensitive chemicals and enzymatic reagents was analyzed by primer extension and gel electrophoresis on an ABI 377 automated DNA sequencer. The experimental results were used to restrict the number of possible secondary structure models of ES6 generated by the folding software MFOLD. The modification data obtained from the three experimental organisms were very similar despite the sequence variation. Consequently, similar secondary structure models were obtained for the ES6 sequence in wheat, yeast, and mouse ribosomes. A comparison of sequence data from more than 6000 eukaryotes showed that similar structural elements could also be formed in other organisms. The comparative analysis also showed that the extent of compensatory base changes in the suggested helices was low. The in situ structure analysis was complemented by a secondary structure analysis of wheat ES6 transcribed and folded in vitro. The obtained modification data indicate that the secondary structure of the in vitro transcribed sequence differs from that observed in the intact ribosome. These results suggest that chaperones, ribosomal proteins, and/or tertiary rRNA interactions could be involved in the in vivo folding of ES6.
Collapse
MESH Headings
- Animals
- Base Pairing
- Base Sequence
- Cloning, Molecular
- DNA Primers
- Mice
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oligoribonucleotides/chemistry
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- Saccharomyces cerevisiae/genetics
- Software
- Triticum/genetics
Collapse
Affiliation(s)
- Gunnar Alkemar
- School of Life Sciences, Södertörns högskola, S-141 04 Huddinge, Sweden
| | | |
Collapse
|
910
|
Roberts E, Eargle J, Wright D, Luthey-Schulten Z. MultiSeq: unifying sequence and structure data for evolutionary analysis. BMC Bioinformatics 2006; 7:382. [PMID: 16914055 PMCID: PMC1586216 DOI: 10.1186/1471-2105-7-382] [Citation(s) in RCA: 319] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 08/16/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since the publication of the first draft of the human genome in 2000, bioinformatic data have been accumulating at an overwhelming pace. Currently, more than 3 million sequences and 35 thousand structures of proteins and nucleic acids are available in public databases. Finding correlations in and between these data to answer critical research questions is extremely challenging. This problem needs to be approached from several directions: information science to organize and search the data; information visualization to assist in recognizing correlations; mathematics to formulate statistical inferences; and biology to analyze chemical and physical properties in terms of sequence and structure changes. RESULTS Here we present MultiSeq, a unified bioinformatics analysis environment that allows one to organize, display, align and analyze both sequence and structure data for proteins and nucleic acids. While special emphasis is placed on analyzing the data within the framework of evolutionary biology, the environment is also flexible enough to accommodate other usage patterns. The evolutionary approach is supported by the use of predefined metadata, adherence to standard ontological mappings, and the ability for the user to adjust these classifications using an electronic notebook. MultiSeq contains a new algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of a homologous group of distantly related proteins. The method, based on the multidimensional QR factorization of multiple sequence and structure alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. CONCLUSION MultiSeq is a major extension of the Multiple Alignment tool that is provided as part of VMD, a structural visualization program for analyzing molecular dynamics simulations. Both are freely distributed by the NIH Resource for Macromolecular Modeling and Bioinformatics and MultiSeq is included with VMD starting with version 1.8.5. The MultiSeq website has details on how to download and use the software: http://www.scs.uiuc.edu/~schulten/multiseq/
Collapse
Affiliation(s)
- Elijah Roberts
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John Eargle
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dan Wright
- Graduate School of Library and Information Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zaida Luthey-Schulten
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
911
|
Chen G, Kennedy SD, Qiao J, Krugh TR, Turner DH. An alternating sheared AA pair and elements of stability for a single sheared purine-purine pair flanked by sheared GA pairs in RNA. Biochemistry 2006; 45:6889-903. [PMID: 16734425 PMCID: PMC4121271 DOI: 10.1021/bi0524464] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A previous NMR structure of the duplex 5'GGU GGA GGCU/PCCG AAG CCG5' revealed an unusually stable RNA internal loop with three consecutive sheared GA pairs. Here, we report NMR studies of two duplexes, 5'GGU GGA GGCU/PCCA AAG CCG5' (replacing the UG pair with a UA closing pair) and 5'GGU GAA GGCU/PCCG AAG CCG5' (replacing the middle GA pair with an AA pair). An unusually stable loop with three consecutive sheared GA pairs forms in the duplex 5'GGU GGA GGCU/PCCA AAG CCG5'. The structure contrasts with that reported for this loop in the crystal structure of the large ribosomal subunit of Deinococcus radiodurans [Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., Bartels, H., Franceschi, F., and Yonath, A. (2001) Cell 107, 679-688]. The middle AA pair in the duplex 5'GGU GAA GGCU/PCCG AAG CCG5' rapidly exchanges orientations, resulting in alternative base stacking and pseudosymmetry with exclusively sheared pairs. The U GAA G/G AAG C internal loop is 2.1 kcal/mol less stable than the U GGA G/G AAG C internal loop at 37 degrees C. Structural, energetic, and dynamic consequences upon functional group substitutions within related 3 x 3 and 3 x 6 internal loops are also reported.
Collapse
Affiliation(s)
- Gang Chen
- Department of Chemistry, University of Rochester, RC Box 270216, Rochester, NY 14627
| | - Scott D. Kennedy
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642
| | - Jing Qiao
- Department of Chemistry, University of Rochester, RC Box 270216, Rochester, NY 14627
| | - Thomas R. Krugh
- Department of Chemistry, University of Rochester, RC Box 270216, Rochester, NY 14627
| | - Douglas H. Turner
- Department of Chemistry, University of Rochester, RC Box 270216, Rochester, NY 14627
- Center for Pediatric Biomedical Research and Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
- To whom correspondence should be addressed. Phone: (585) 275-3207. Fax: (585) 276-0205.
| |
Collapse
|
912
|
Hury J, Nagaswamy U, Larios-Sanz M, Fox GE. Ribosome origins: the relative age of 23S rRNA Domains. ORIGINS LIFE EVOL B 2006; 36:421-9. [PMID: 16972151 DOI: 10.1007/s11084-006-9011-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 01/10/2006] [Indexed: 10/24/2022]
Abstract
The modern ribosome and its component RNAs are quite large and it is likely that at an earlier time they were much smaller. Hence, not all regions of the modern ribosomal RNAs (rRNA) are likely to be equally old. In the work described here, it is hypothesized that the oldest regions of the RNAs will usually be highly integrated into the machinery. When this is the case, an examination of the interconnectivity between local RNA regions can provide insight to the relative age of the various regions. Herein, we describe an analysis of all known long-range RNA/RNA interactions within the 23S rRNA and between the 23S rRNA and the 16S rRNA in order to assess the interconnectivity between the usual Domains as defined by secondary structure. Domain V, which contains the peptidyl transferase center is centrally located, extensively connected, and therefore likely to be the oldest region. Domain IV and Domain II are extensively interconnected with both themselves and Domain V. A portion of Domain IV is also extensively connected with the 30S subunit and hence Domain IV may be older than Domain II. These results are consistent with other evidence relating to the relative age of RNA regions. Although the relative time of addition of the GTPase center can not be reliably deduced it is pointed out that the development of this may have dramatically affected the progenotes that preceded the last common ancestor.
Collapse
Affiliation(s)
- James Hury
- Department Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | | | | | |
Collapse
|
913
|
Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J. Microarray applications in microbial ecology research. MICROBIAL ECOLOGY 2006; 52:159-75. [PMID: 16897303 DOI: 10.1007/s00248-006-9072-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 04/07/2006] [Indexed: 05/11/2023]
Abstract
Microarray technology has the unparalleled potential to simultaneously determine the dynamics and/or activities of most, if not all, of the microbial populations in complex environments such as soils and sediments. Researchers have developed several types of arrays that characterize the microbial populations in these samples based on their phylogenetic relatedness or functional genomic content. Several recent studies have used these microarrays to investigate ecological issues; however, most have only analyzed a limited number of samples with relatively few experiments utilizing the full high-throughput potential of microarray analysis. This is due in part to the unique analytical challenges that these samples present with regard to sensitivity, specificity, quantitation, and data analysis. This review discusses specific applications of microarrays to microbial ecology research along with some of the latest studies addressing the difficulties encountered during analysis of complex microbial communities within environmental samples. With continued development, microarray technology may ultimately achieve its potential for comprehensive, high-throughput characterization of microbial populations in near real time.
Collapse
Affiliation(s)
- T J Gentry
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | | | | |
Collapse
|
914
|
Johansen SK, Maus CE, Plikaytis BB, Douthwaite S. Capreomycin Binds across the Ribosomal Subunit Interface Using tlyA-Encoded 2′-O-Methylations in 16S and 23S rRNAs. Mol Cell 2006; 23:173-82. [PMID: 16857584 DOI: 10.1016/j.molcel.2006.05.044] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 04/11/2006] [Accepted: 05/30/2006] [Indexed: 11/30/2022]
Abstract
The cyclic peptide antibiotics capreomycin and viomycin are generally effective against the bacterial pathogen Mycobacterium tuberculosis. However, recent virulent isolates have become resistant by inactivation of their tlyA gene. We show here that tlyA encodes a 2'-O-methyltransferase that modifies nucleotide C1409 in helix 44 of 16S rRNA and nucleotide C1920 in helix 69 of 23S rRNA. Loss of these previously unidentified rRNA methylations confers resistance to capreomycin and viomycin. Many bacterial genera including enterobacteria lack a tlyA gene and the ensuing methylations and are less susceptible than mycobacteria to capreomycin and viomycin. We show that expression of recombinant tlyA in Escherichia coli markedly increases susceptibility to these drugs. When the ribosomal subunits associate during translation, the two tlyA-encoded methylations are brought into close proximity at interbridge B2a. The location of these methylations indicates the binding site and inhibitory mechanism of capreomycin and viomycin at the ribosome subunit interface.
Collapse
MESH Headings
- Antibiotics, Antitubercular/pharmacology
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Capreomycin/pharmacology
- Cloning, Molecular
- Drug Resistance, Bacterial/genetics
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Mass Spectrometry
- Methylation
- Molecular Sequence Data
- Mutation
- Mycobacteriaceae/drug effects
- Nucleic Acid Conformation
- RNA, Bacterial/drug effects
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 28S/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Shanna K Johansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
915
|
Bubunenko M, Korepanov A, Court DL, Jagannathan I, Dickinson D, Chaudhuri BR, Garber MB, Culver GM. 30S ribosomal subunits can be assembled in vivo without primary binding ribosomal protein S15. RNA (NEW YORK, N.Y.) 2006; 12:1229-39. [PMID: 16682557 PMCID: PMC1484426 DOI: 10.1261/rna.2262106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Accepted: 03/16/2006] [Indexed: 05/09/2023]
Abstract
Assembly of 30S ribosomal subunits from Escherichia coli has been dissected in detail using an in vitro system. Such studies have allowed characterization of the role for ribosomal protein S15 in the hierarchical assembly of 30S subunits; S15 is a primary binding protein that orchestrates the assembly of ribosomal proteins S6, S11, S18, and S21 with the central domain of 16S ribosomal RNA to form the platform of the 30S subunit. In vitro S15 is the sole primary binding protein in this cascade, performing a critical role during assembly of these four proteins. To investigate the role of S15 in vivo, the essential nature of rpsO, the gene encoding S15, was examined. Surprisingly, E. coli with an in-frame deletion of rpsO are viable, although at 37 degrees C this DeltarpsO strain has an exaggerated doubling time compared to its parental strain. In the absence of S15, the remaining four platform proteins are assembled into ribosomes in vivo, and the overall architecture of the 30S subunits formed in the DeltarpsO strain at 37 degrees C is not altered. Nonetheless, 30S subunits lacking S15 appear to be somewhat defective in subunit association in vivo and in vitro. In addition, this strain is cold sensitive, displaying a marked ribosome biogenesis defect at low temperature, suggesting that under nonideal conditions S15 is critical for assembly. The viability of this strain indicates that in vivo functional populations of 70S ribosomes must form in the absence of S15 and that 30S subunit assembly has a plasicity that has not previously been revealed or characterized.
Collapse
Affiliation(s)
- Mikhail Bubunenko
- Basic Research Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
916
|
Podsiadlowski L, Carapelli A, Nardi F, Dallai R, Koch M, Boore JL, Frati F. The mitochondrial genomes of Campodea fragilis and Campodea lubbocki (Hexapoda: Diplura): High genetic divergence in a morphologically uniform taxon. Gene 2006; 381:49-61. [PMID: 16919404 DOI: 10.1016/j.gene.2006.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 05/15/2006] [Accepted: 06/05/2006] [Indexed: 11/20/2022]
Abstract
Complete mitochondrial genome sequences are presented from two dipluran hexapods (i.e., a group of "primarily wingless insects") of the genus Campodea and compared to those of other arthropods. Their gene order is the same as in most other hexapods and crustaceans. Structural changes have occurred in tRNA-C, tRNA-R, tRNA-S1 and tRNA-S2 as well as in both ribosomal RNAs. These mtDNAs have striking biases in nucleotide and amino acid composition. Although the two Campodea species are morphologically highly similar, their genetic divergence is larger than expected, suggesting a long evolutionary history, perhaps under stable ecological conditions.
Collapse
Affiliation(s)
- L Podsiadlowski
- Department of Animal Systematics and Evolution, Freie Universität Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
917
|
Jackson GW, McNichols RJ, Fox GE, Willson RC. Bacterial genotyping by 16S rRNA mass cataloging. BMC Bioinformatics 2006; 7:321. [PMID: 16796754 PMCID: PMC1522025 DOI: 10.1186/1471-2105-7-321] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 06/23/2006] [Indexed: 11/29/2022] Open
Abstract
Background It has recently been demonstrated that organism identifications can be recovered from mass spectra using various methods including base-specific fragmentation of nucleic acids. Because mass spectrometry is extremely rapid and widely available such techniques offer significant advantages in some applications. A key element in favor of mass spectrometric analysis of RNA fragmentation patterns is that a reference database for analysis of the results can be generated from sequence information. In contrast to hybridization approaches, the genetic affinity of any unknown isolate can in principle be determined within the context of all previously sequenced 16S rRNAs without prior knowledge of what the organism is. In contrast to the original RNase T1 cataloging method, when digestion products are analyzed by mass spectrometry, products with the same base composition cannot be distinguished. Hence, it is possible that organisms that are not closely related (having different underlying sequences) might be falsely identified by mass spectral coincidence. We present a convenient spectral coincidence function for expressing the degree of similarity (or distance) between any two mass-spectra. Trees constructed using this function are consistent with those produced by direct comparison of primary sequences, demonstrating that the inherent degeneracy in mass spectrometric analysis of RNA fragments does not preclude correct organism identification. Results Neighbor-joining trees for important bacterial pathogens were generated using distances based on mass spectrometric observables and the spectral coincidence function. These trees demonstrate that most pathogens will be readily distinguished using mass spectrometric analyses of RNA digestion products. A more detailed, genus-level analysis of pathogens and near relatives was also performed, and it was found that assignments of genetic affinity were consistent with those obtained by direct sequence comparisons. Finally, typical values of the coincidence between organisms were also examined with regard to phylogenetic level and sequence variability. Conclusion Cluster analysis based on comparison of mass spectrometric observables using the spectral coincidence function is an extremely useful tool for determining the genetic affinity of an unknown bacterium. Additionally, fragmentation patterns can determine within hours if an unknown isolate is potentially a known pathogen among thousands of possible organisms, and if so, which one.
Collapse
Affiliation(s)
- George W Jackson
- BioTex, Inc. 8058 El Rio St. Houston, TX 77054, USA
- Department of Chemical Engineering, University of Houston, 4800 Calhoun Avenue, Houston, TX 77204-4004, USA
| | | | - George E Fox
- Department of Chemical Engineering, University of Houston, 4800 Calhoun Avenue, Houston, TX 77204-4004, USA
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Avenue, Houston, TX 77204-5001, USA
| | - Richard C Willson
- Department of Chemical Engineering, University of Houston, 4800 Calhoun Avenue, Houston, TX 77204-4004, USA
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Avenue, Houston, TX 77204-5001, USA
| |
Collapse
|
918
|
Lee JC, Gutell RR, Russell R. The UAA/GAN internal loop motif: a new RNA structural element that forms a cross-strand AAA stack and long-range tertiary interactions. J Mol Biol 2006; 360:978-88. [PMID: 16828489 DOI: 10.1016/j.jmb.2006.05.066] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 05/24/2006] [Accepted: 05/29/2006] [Indexed: 11/19/2022]
Abstract
Analysis of aligned RNA sequences and high-resolution crystal structures has revealed a new RNA structural element, termed the UAA/GAN motif. Found in internal loops of the 23 S rRNA, as well as in RNase P RNA and group I and II introns, this six-nucleotide motif adopts a distinctive local structure that includes two base-pairs with non-canonical conformations and three conserved adenine bases, which form a cross-strand AAA stack in the minor groove. Most importantly, the motif invariably forms long-range tertiary contacts, as the AAA stack typically forms A-minor interactions and the flipped-out N nucleotide forms additional contacts that are specific to the structural context of each loop. The widespread presence of this motif and its propensity to form long-range contacts suggest that it plays a critical role in defining the architectures of structured RNAs.
Collapse
Affiliation(s)
- Jung C Lee
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712-0159, USA
| | | | | |
Collapse
|
919
|
Stahley MR, Strobel SA. RNA splicing: group I intron crystal structures reveal the basis of splice site selection and metal ion catalysis. Curr Opin Struct Biol 2006; 16:319-26. [PMID: 16697179 DOI: 10.1016/j.sbi.2006.04.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/10/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
The group I intron has served as a model for RNA catalysis since its discovery 25 years ago. Four recently determined high-resolution crystal structures complement extensive biochemical studies on this system. Structures of the Azoarcus, Tetrahymena and bacteriophage Twort group I introns mimic different states of the splicing or ribozyme reaction pathway and provide information on splice site selection and metal ion catalysis. The 5'-splice site is selected by formation of a conserved G.U wobble pair between the 5'-exon terminus and the intron. The 3'-splice site is identified through stacking of three base triples, in which the middle triple contains the conserved terminal nucleotide of the intron, OmegaG. The structures support a two-metal-ion mechanism for group I intron splicing that might have corollaries to group II intron and pre-mRNA splicing by the spliceosome.
Collapse
Affiliation(s)
- Mary R Stahley
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
920
|
Niehuis O, Yen SH, Naumann CM, Misof B. Higher phylogeny of zygaenid moths (Insecta: Lepidoptera) inferred from nuclear and mitochondrial sequence data and the evolution of larval cuticular cavities for chemical defence. Mol Phylogenet Evol 2006; 39:812-29. [PMID: 16483803 DOI: 10.1016/j.ympev.2006.01.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 12/01/2005] [Accepted: 01/04/2006] [Indexed: 11/23/2022]
Abstract
Zygaenid moths are capable of releasing hydrogen cyanide in their defense by enzymatic break-down of cyanoglucosides, but only larvae of chalcosiine and zygaenine moths store cyanogenic compounds in cuticular cavities and thus are able to discharge defense droplets, which effectively deter potential predators. A previously proposed phylogeny of Zygaenidae hypothesized a sister group relationship of chalcosiine and zygaenine moths because of their similar larval defense system. Not all chalcosiine taxa possess cuticular cavities, however, and a comparable defense mechanism has been reported in larvae of the zygaenoid family Heterogynidae. Considering sequence data of seven molecular loci, the present study estimates the posterior probability of phylogenetic hypotheses explaining the occurrence of larval cuticular cavities. The molecular data confirm the previous exclusion of Himantopteridae from Zygaenidae and suggest their close affinity to Somabrachyidae. The sequence data also corroborate the recently proposed exclusion of the Phaudinae from the Zygaenidae, because this subfamily is recovered in a reasonably well supported species cluster consisting of members of the families Lacturidae, Limacodidae, Himantopteridae, and Somabrachyidae. We consequently agree to raise Phaudinae to family rank. Within Zygaenidae, the subfamilies Callizygaeninae, Chalcosiinae, and Procridinae most likely constitute a monophyletic group, which is sister to the Zygaeninae. Our results imply that cuticular cavities were probably present in the larvae of the most recent common ancestor of Zygaenidae. Heterogynidae cannot be confirmed as sister taxon to this family, but appear at the very first split of the Zygaenoidea, although with poor support. The specific pattern of taxa in the molecular phylogeny showing larval cuticular cavities opens the possibility that these structures could have been already present in the most recent common ancestor of the Zygaenoidea.
Collapse
Affiliation(s)
- Oliver Niehuis
- Alexander Koenig Research Institute and Museum of Zoology, Bonn, Germany.
| | | | | | | |
Collapse
|
921
|
Fiskaa T, Lundblad EW, Henriksen JR, Johansen SD, Einvik C. RNA reprogramming of α-mannosidase mRNA sequencesin vitroby myxomycete group IC1 and IE ribozymes. FEBS J 2006; 273:2789-800. [PMID: 16817905 DOI: 10.1111/j.1742-4658.2006.05295.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trans-splicing group I ribozymes have been introduced in order to mediate RNA reprogramming (including RNA repair) of therapeutically relevant RNA transcripts. Efficient RNA reprogramming depends on the appropriate efficiency of the reaction, and several attempts, including optimization of target recognition and ribozyme catalysis, have been performed. In most studies, the Tetrahymena group IC1 ribozyme has been applied. Here we investigate the potential of group IC1 and group IE intron ribozymes, derived from the myxomycetes Didymium and Fuligo, in addition to the Tetrahymena ribozyme, for RNA reprogramming of a mutated alpha-mannosidase mRNA sequence. Randomized internal guide sequences were introduced for all four ribozymes and used to select accessible sites within isolated mutant alpha-mannosidase mRNA from mammalian COS-7 cells. Two accessible sites common to all the group I ribozymes were identified and further investigated in RNA reprogramming by trans-splicing analyses. All the myxomycete ribozymes performed the trans-splicing reaction with high fidelity, resulting in the conversion of mutated alpha-mannosidase RNA into wild-type sequence. RNA protection analysis revealed that the myxomycete ribozymes perform trans-splicing at approximately similar efficiencies as the Tetrahymena ribozyme. Interestingly, the relative efficiency among the ribozymes tested correlates with structural features of the P4-P6-folding domain, consistent with the fact that efficient folding is essential for group I intron trans-splicing.
Collapse
Affiliation(s)
- Tonje Fiskaa
- Department of Molecular Biotechnology, RNA Research group, Institute of Medical Biology, University of Tromsø, Norway
| | | | | | | | | |
Collapse
|
922
|
Maeder C, Conn GL, Draper DE. Optimization of a ribosomal structural domain by natural selection. Biochemistry 2006; 45:6635-43. [PMID: 16716074 PMCID: PMC2698295 DOI: 10.1021/bi052544p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A conserved, independently folding domain in the large ribosomal subunit consists of 58 nt of rRNA and a single protein, L11. The tertiary structure of an rRNA fragment carrying the Escherichia coli sequence is marginally stable in vitro but can be substantially stabilized by mutations found in other organisms. To distinguish between possible reasons why natural selection has not evolved a more stable rRNA structure in E. coli, mutations affecting the rRNA tertiary structure were assessed for their in vitro effects on rRNA stability and L11 affinity (in the context of an rRNA fragment) or in vivo effects on cell growth rate and L11 content of ribosomes. The rRNA fragment stabilities ranged from -4 to +9 kcal/mol relative to the wild-type sequence. Variants in the range of -4 to +5 kcal/mol had almost no observable effect in vivo, while more destabilizing mutations (>7 kcal/mol) were not tolerated. The data suggest that the in vivo stability of the complex is roughly -6 kcal/mol and that any single tertiary interaction is dispensable for function as long as a minimum stability of the complex is maintained. On the basis of these data, it seems that the evolution of this domain has not been constrained by inherent structural or functional limits on stability. The estimated stability corresponds to only a few ribosomes per bacterial cell dissociated from L11 at any time; thus the selective advantage for any further increase in stability may be so small as to be outweighed by other competing selective pressures.
Collapse
Affiliation(s)
- Corina Maeder
- Program in Molecular and Computational Biophysics Johns Hopkins University Baltimore, MD 21218
- Department of Chemistry Johns Hopkins University Baltimore, MD 21218
| | - Graeme L. Conn
- Department of Chemistry Johns Hopkins University Baltimore, MD 21218
| | - David E. Draper
- Program in Molecular and Computational Biophysics Johns Hopkins University Baltimore, MD 21218
- Department of Chemistry Johns Hopkins University Baltimore, MD 21218
| |
Collapse
|
923
|
Rospert S, Rakwalska M, Dubaquié Y. Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes. REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY 2006; 155:1-30. [PMID: 15928926 DOI: 10.1007/3-540-28217-3_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During protein translation, a variety of quality control checks ensure that the resulting polypeptides deviate minimally from their genetic encoding template. Translational fidelity is central in order to preserve the function and integrity of each cell. Correct termination is an important aspect of translational fidelity, and a multitude of mechanisms and players participate in this exquisitely regulated process. This review explores our current understanding of eukaryotic termination by highlighting the roles of the different ribosomal components as well as termination factors and ribosome-associated proteins, such as chaperones.
Collapse
Affiliation(s)
- S Rospert
- Universität Freiburg, Institut für Biochemie und Molekularbiologie, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
924
|
Krieger J, Hett AK, Fuerst PA, Birstein VJ, Ludwig A. Unusual intraindividual variation of the nuclear 18S rRNA gene is widespread within the Acipenseridae. ACTA ACUST UNITED AC 2006; 97:218-25. [PMID: 16714428 DOI: 10.1093/jhered/esj035] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significant intraindividual variation in the sequence of the 18S rRNA gene is unusual in animal genomes. In a previous study, multiple 18S rRNA gene sequences were observed within individuals of eight species of sturgeon from North America but not in the North American paddlefish, Polyodon spathula, in two species of Polypterus (Polypterus delhezi and Polypterus senegalus), in other primitive fishes (Erpetoichthys calabaricus, Lepisosteus osseus, Amia calva) or in a lungfish (Protopterus sp.). These observations led to the hypothesis that this unusual genetic characteristic arose within the Acipenseriformes after the presumed divergence of the sturgeon and paddlefish families. In the present study, a survey of nearly all Eurasian acipenseriform species was conducted to examine 18S rDNA variation. Intraindividual variation was not found in the polyodontid species, the Chinese paddlefish, Psephurus gladius, but variation was detected in all Eurasian acipenserid species. The comparison of sequences from two major segments of the 18S rRNA gene and identification of sites where insertion/deletion events have occurred are placed in the context of evolutionary relationships within the Acipenseriformes and the evolution of rDNA variation in this group.
Collapse
Affiliation(s)
- Jeannette Krieger
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, RI 02912, USA.
| | | | | | | | | |
Collapse
|
925
|
Sato H, Suzuki K, Osanai A, Kamiya H, Furuoka H. Identification and characterization of the threadworm, Strongyloides procyonis, from feral raccoons (Procyon lotor) in Japan. J Parasitol 2006; 92:63-8. [PMID: 16629317 DOI: 10.1645/ge-623r.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Strongyloides procyonis Little, 1966 was detected about 45 years ago in raccoons (Procyon lotor) of southern Louisiana, U.S.A., and was demonstrated experimentally to cause creeping eruption and a short-lived intestinal infection in a healthy human volunteer. After its description and demonstration of its pathogenicity in humans, S. procyonis has not been found in raccoons in North America despite repeated surveys. During a survey on feral raccoons in Japan, S. procyonis parasitic females were identified in 66 (28.3%) of 233 raccoons collected between May 2004 and January 2005. The number of parasitic females recovered from individual raccoons was 1-197 (geomean, 3.2). Both the morphological features and the nucleotide sequences of the small and large subunit ribosomal RNA genes (SSU/LSU rDNA) of S. procyonis closely resembled those of zoonotic Strongyloides stercoralis. The sequences of internal transcribed spacer (ITS)1 and 28S rDNA could differentiate clearly these 2 species. Awareness of S. procyonis in raccoons in North America and other places worldwide where raccoons are introduced and naturalized is important to assess the epidemiological significance of this potentially zoonotic helminth species.
Collapse
Affiliation(s)
- Hiroshi Sato
- Department of Parasitology, Hirosaki University School of Medicine, Hirosaki 036-8562, Japan.
| | | | | | | | | |
Collapse
|
926
|
Pramateftaki PV, Kouvelis VN, Lanaridis P, Typas MA. The mitochondrial genome of the wine yeast Hanseniaspora uvarum: a unique genome organization among yeast/fungal counterparts. FEMS Yeast Res 2006; 6:77-90. [PMID: 16423073 DOI: 10.1111/j.1567-1364.2005.00018.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The complete sequence of the apiculate wine yeast Hanseniaspora uvarum mtDNA has been determined and analysed. It is an extremely compact linear molecule containing the shortest functional region ever found in fungi (11 094 bp long), flanked by Type 2 telomeric inverted repeats. The latter contained a 2704-bp-long subterminal region and tandem repeats of 839-bp units. In consequence, a population of mtDNA molecules that differed at the number of their telomeric reiterations was detected. The functional region of the mitochondrial genome coded for 32 genes, which included seven subunits of respiratory complexes and ATP synthase (the genes encoding for NADH oxidoreductase subunits were absent), two rRNAs and 23 tRNA genes which recognized codons for all amino acids. A single intron interrupted the cytochrome oxidase subunit 1 gene. A number of reasons contributed towards its strikingly small size, namely: (1) the remarkable size reduction (by >40%) of the rns and rnl genes; (2) that most tRNA genes and five of the seven protein-coding genes were the shortest among known yeast homologs; and (3) that the noncoding regions were restricted to 5.1% of the genome. In addition, the genome showed multiple changes in the orientation of transcription and the gene order differed drastically from other yeasts. When all protein coding gene sequences were considered as one unit and were compared with the corresponding molecules from all other complete mtDNAs of yeasts, the phylogenetic trees constructed robustly supported its placement basal to the yeast species of the 'Saccharomyces complex', demonstrating the advantage of this approach over single-gene or multigene approaches of unlinked genes.
Collapse
|
927
|
Vecenie CJ, Morrow CV, Zyra A, Serra MJ. Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops. Biochemistry 2006; 45:1400-7. [PMID: 16445282 DOI: 10.1021/bi051750u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermodynamic parameters are reported for hairpin formation in 1 M NaCl by RNA sequence of the types GCGXUAAUYCGC and GGUXUAAUYACC with Watson-Crick loop closure, where XY is the set of 10 possible mismatch base pairs. A nearest-neighbor analysis of the data indicates the free energy of loop formation at 37 degrees C varies from 3.1 to 5.1 kcal/mol. These results agree with the model previously developed [Vecenie, C. J., and Serra, M. J. (2004) Biochemistry 43, 11813] to predict the stability of RNA hairpin loops: DeltaG degrees (37L(n) = DeltaG degrees (37i(n) + DeltaG degrees (37MM) - 0.8 (if first mismatch is GA or UU) - 0.8 (if first mismatch is GG and loop is closed on the 5' side by a purine). Here, DeltaG degrees (37i(n) is the free energy for initiating a loop of n nucleotides, and DeltaG degrees (37MM) is the free energy for the interaction of the first mismatch with the closing base pair. Thermodynamic parameters are also reported for hairpin formation in 1 M NaCl by RNA sequence of the types GACGXUAAUYUGUC and GGUXUAAUYGCC with GU base pair closure, where XY is the set of 10 possible mismatch base pairs. A nearest-neighbor analysis of the data indicates the free energy of loop formation at 37 degrees C varies from 3.6 to 5.3 kcal/mol. These results allow the development of a model for predicting the stability of hairpin loops closed by GU base pairs. DeltaG degrees (37L(n) (kcal/mol) = DeltaG degrees (37i(n) - 0.8 (if the first mismatch is GA) - 0.8 (if the first mismatch is GG and the loop is closed on the 5' side by a purine). Note that for these hairpins, the stability of the loops does not depend on DeltaG degrees (37MM). For hairpin loops closed by GU base pairs, the DeltaG degrees (37i(n) values, when n = 4, 5, 6, 7, and 8, are 4.9, 5.0, 4.6, 5.0, and 4.8 kcal/mol, respectively. The model gives good agreement when tested against six naturally occurring hairpin sequences. Thermodynamic values for terminal mismatches adjacent to GC, GU, and UG base pairs are also reported.
Collapse
Affiliation(s)
- Christopher J Vecenie
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville, Pennsylvania 16335, USA
| | | | | | | |
Collapse
|
928
|
Anwar M, Nguyen T, Turcotte M. Identification of consensus RNA secondary structures using suffix arrays. BMC Bioinformatics 2006; 7:244. [PMID: 16677380 PMCID: PMC1475642 DOI: 10.1186/1471-2105-7-244] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 05/05/2006] [Indexed: 11/16/2022] Open
Abstract
Background The identification of a consensus RNA motif often consists in finding a conserved secondary structure with minimum free energy in an ensemble of aligned sequences. However, an alignment is often difficult to obtain without prior structural information. Thus the need for tools to automate this process. Results We present an algorithm called Seed to identify all the conserved RNA secondary structure motifs in a set of unaligned sequences. The search space is defined as the set of all the secondary structure motifs inducible from a seed sequence. A general-to-specific search allows finding all the motifs that are conserved. Suffix arrays are used to enumerate efficiently all the biological palindromes as well as for the matching of RNA secondary structure expressions. We assessed the ability of this approach to uncover known structures using four datasets. The enumeration of the motifs relies only on the secondary structure definition and conservation only, therefore allowing for the independent evaluation of scoring schemes. Twelve simple objective functions based on free energy were evaluated for their potential to discriminate native folds from the rest. Conclusion Our evaluation shows that 1) support and exclusion constraints are sufficient to make an exhaustive search of the secondary structure space feasible. 2) The search space induced from a seed sequence contains known motifs. 3) Simple objective functions, consisting of a combination of the free energy of matching sequences, can generally identify motifs with high positive predictive value and sensitivity to known motifs.
Collapse
Affiliation(s)
- Mohammad Anwar
- School of Information Technology and Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Truong Nguyen
- School of Information Technology and Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Marcel Turcotte
- School of Information Technology and Engineering, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
929
|
Kumar Y, Westram R, Kipfer P, Meier H, Ludwig W. Evaluation of sequence alignments and oligonucleotide probes with respect to three-dimensional structure of ribosomal RNA using ARB software package. BMC Bioinformatics 2006; 7:240. [PMID: 16672074 PMCID: PMC1513611 DOI: 10.1186/1471-2105-7-240] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 05/04/2006] [Indexed: 11/12/2022] Open
Abstract
Background Availability of high-resolution RNA crystal structures for the 30S and 50S ribosomal subunits and the subsequent validation of comparative secondary structure models have prompted the biologists to use three-dimensional structure of ribosomal RNA (rRNA) for evaluating sequence alignments of rRNA genes. Furthermore, the secondary and tertiary structural features of rRNA are highly useful and successfully employed in designing rRNA targeted oligonucleotide probes intended for in situ hybridization experiments. RNA3D, a program to combine sequence alignment information with three-dimensional structure of rRNA was developed. Integration into ARB software package, which is used extensively by the scientific community for phylogenetic analysis and molecular probe designing, has substantially extended the functionality of ARB software suite with 3D environment. Results Three-dimensional structure of rRNA is visualized in OpenGL 3D environment with the abilities to change the display and overlay information onto the molecule, dynamically. Phylogenetic information derived from the multiple sequence alignments can be overlaid onto the molecule structure in a real time. Superimposition of both statistical and non-statistical sequence associated information onto the rRNA 3D structure can be done using customizable color scheme, which is also applied to a textual sequence alignment for reference. Oligonucleotide probes designed by ARB probe design tools can be mapped onto the 3D structure along with the probe accessibility models for evaluation with respect to secondary and tertiary structural conformations of rRNA. Conclusion Visualization of three-dimensional structure of rRNA in an intuitive display provides the biologists with the greater possibilities to carry out structure based phylogenetic analysis. Coupled with secondary structure models of rRNA, RNA3D program aids in validating the sequence alignments of rRNA genes and evaluating probe target sites. Superimposition of the information derived from the multiple sequence alignment onto the molecule dynamically allows the researchers to observe any sequence inherited characteristics (phylogenetic information) in real-time environment. The extended ARB software package is made freely available for the scientific community via .
Collapse
Affiliation(s)
- Yadhu Kumar
- Lehrstuhl für Mikrobiologie, Technische Universität München, D-85350 Freising, Germany
| | - Ralf Westram
- Lehrstuhl für Mikrobiologie, Technische Universität München, D-85350 Freising, Germany
| | - Peter Kipfer
- Lehrstuhl für Computer Graphik und Visualisierung, Technische Universität München, D-85748 Garching, Germany
| | - Harald Meier
- Lehrstuhl für Rechnertechnik und Rechnerorganisation, Technische Universität München, D-85748 Garching, Germany
| | - Wolfgang Ludwig
- Lehrstuhl für Mikrobiologie, Technische Universität München, D-85350 Freising, Germany
| |
Collapse
|
930
|
Yanshina DD, Malygin AA, Karpova GG. Binding of human ribosomal protein S5 with 18S rRNA fragment 1203–1236/1521–1698. Mol Biol 2006. [DOI: 10.1134/s0026893306030071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
931
|
Starmer J, Stomp A, Vouk M, Bitzer D. Predicting Shine-Dalgarno sequence locations exposes genome annotation errors. PLoS Comput Biol 2006; 2:e57. [PMID: 16710451 PMCID: PMC1463019 DOI: 10.1371/journal.pcbi.0020057] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 04/10/2006] [Indexed: 12/19/2022] Open
Abstract
In prokaryotes, Shine-Dalgarno (SD) sequences, nucleotides upstream from start codons on messenger RNAs (mRNAs) that are complementary to ribosomal RNA (rRNA), facilitate the initiation of protein synthesis. The location of SD sequences relative to start codons and the stability of the hybridization between the mRNA and the rRNA correlate with the rate of synthesis. Thus, accurate characterization of SD sequences enhances our understanding of how an organism's transcriptome relates to its cellular proteome. We implemented the Individual Nearest Neighbor Hydrogen Bond model for oligo-oligo hybridization and created a new metric, relative spacing (RS), to identify both the location and the hybridization potential of SD sequences by simulating the binding between mRNAs and single-stranded 16S rRNA 3' tails. In 18 prokaryote genomes, we identified 2,420 genes out of 58,550 where the strongest binding in the translation initiation region included the start codon, deviating from the expected location for the SD sequence of five to ten bases upstream. We designated these as RS+1 genes. Additional analysis uncovered an unusual bias of the start codon in that the majority of the RS+1 genes used GUG, not AUG. Furthermore, of the 624 RS+1 genes whose SD sequence was associated with a free energy release of less than -8.4 kcal/mol (strong RS+1 genes), 384 were within 12 nucleotides upstream of in-frame initiation codons. The most likely explanation for the unexpected location of the SD sequence for these 384 genes is mis-annotation of the start codon. In this way, the new RS metric provides an improved method for gene sequence annotation. The remaining strong RS+1 genes appear to have their SD sequences in an unexpected location that includes the start codon. Thus, our RS metric provides a new way to explore the role of rRNA-mRNA nucleotide hybridization in translation initiation.
Collapse
Affiliation(s)
- J Starmer
- Bioinformatics Program, North Carolina State University, Raleigh, North Carolina, USA.
| | | | | | | |
Collapse
|
932
|
Rackham O, Wang K, Chin JW. Functional epitopes at the ribosome subunit interface. Nat Chem Biol 2006; 2:254-8. [PMID: 16582919 DOI: 10.1038/nchembio783] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 03/14/2006] [Indexed: 11/09/2022]
Abstract
The ribosome is a 2.5-MDa molecular machine that synthesizes cellular proteins encoded in mRNAs. The 30S and 50S subunits of the ribosome associate through structurally defined intersubunit bridges burying 6,000 A(2), 80% of which is buried in conserved RNA-RNA interactions. Intersubunit bridges bind translation factors, may coordinate peptide bond formation and translocation and may be actively remodeled in the post-termination complex, but the functional importance of numerous 30S bridge nucleotides had been unknown. We carried out large-scale combinatorial mutagenesis and in vivo selections on 30S nucleotides that form RNA-RNA intersubunit bridges in the Escherichia coli ribosome. We determined the covariation and functional importance of bridge nucleotides, allowing comparison of the structural interface and phylogenetic data to the functional epitope. Our results reveal how information for ribosome function is partitioned across bridges, and suggest a subset of nucleotides that may have measurable effects on individual steps of the translational cycle.
Collapse
Affiliation(s)
- Oliver Rackham
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England, UK
| | | | | |
Collapse
|
933
|
Kierzek E, Kierzek R, Turner DH, Catrina IE. Facilitating RNA structure prediction with microarrays. Biochemistry 2006; 45:581-93. [PMID: 16401087 PMCID: PMC4070881 DOI: 10.1021/bi051409+] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Determining RNA secondary structure is important for understanding structure-function relationships and identifying potential drug targets. This paper reports the use of microarrays with heptamer 2'-O-methyl oligoribonucleotides to probe the secondary structure of an RNA and thereby improve the prediction of that secondary structure. When experimental constraints from hybridization results are added to a free-energy minimization algorithm, the prediction of the secondary structure of Escherichia coli 5S rRNA improves from 27 to 92% of the known canonical base pairs. Optimization of buffer conditions for hybridization and application of 2'-O-methyl-2-thiouridine to enhance binding and improve discrimination between AU and GU pairs are also described. The results suggest that probing RNA with oligonucleotide microarrays can facilitate determination of secondary structure.
Collapse
Affiliation(s)
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Douglas H. Turner
- To whom correspondence should be addressed. Phone: (585) 275-3207. Fax: (585) 276-0205.
| | | |
Collapse
|
934
|
Uzilov AV, Keegan JM, Mathews DH. Detection of non-coding RNAs on the basis of predicted secondary structure formation free energy change. BMC Bioinformatics 2006; 7:173. [PMID: 16566836 PMCID: PMC1570369 DOI: 10.1186/1471-2105-7-173] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 03/27/2006] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Non-coding RNAs (ncRNAs) have a multitude of roles in the cell, many of which remain to be discovered. However, it is difficult to detect novel ncRNAs in biochemical screens. To advance biological knowledge, computational methods that can accurately detect ncRNAs in sequenced genomes are therefore desirable. The increasing number of genomic sequences provides a rich dataset for computational comparative sequence analysis and detection of novel ncRNAs. RESULTS Here, Dynalign, a program for predicting secondary structures common to two RNA sequences on the basis of minimizing folding free energy change, is utilized as a computational ncRNA detection tool. The Dynalign-computed optimal total free energy change, which scores the structural alignment and the free energy change of folding into a common structure for two RNA sequences, is shown to be an effective measure for distinguishing ncRNA from randomized sequences. To make the classification as a ncRNA, the total free energy change of an input sequence pair can either be compared with the total free energy changes of a set of control sequence pairs, or be used in combination with sequence length and nucleotide frequencies as input to a classification support vector machine. The latter method is much faster, but slightly less sensitive at a given specificity. Additionally, the classification support vector machine method is shown to be sensitive and specific on genomic ncRNA screens of two different Escherichia coli and Salmonella typhi genome alignments, in which many ncRNAs are known. The Dynalign computational experiments are also compared with two other ncRNA detection programs, RNAz and QRNA. CONCLUSION The Dynalign-based support vector machine method is more sensitive for known ncRNAs in the test genomic screens than RNAz and QRNA. Additionally, both Dynalign-based methods are more sensitive than RNAz and QRNA at low sequence pair identities. Dynalign can be used as a comparable or more accurate tool than RNAz or QRNA in genomic screens, especially for low-identity regions. Dynalign provides a method for discovering ncRNAs in sequenced genomes that other methods may not identify. Significant improvements in Dynalign runtime have also been achieved.
Collapse
Affiliation(s)
- Andrew V Uzilov
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, USA
- Department of Biostatistics & Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, USA
- Center for Pediatric Biomedical Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, USA
| | - Joshua M Keegan
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, USA
- Department of Biostatistics & Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, USA
- Center for Pediatric Biomedical Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, USA
- Department of Biostatistics & Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, USA
- Center for Pediatric Biomedical Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, USA
| |
Collapse
|
935
|
Criswell D, Tobiason VL, Lodmell JS, Samuels DS. Mutations conferring aminoglycoside and spectinomycin resistance in Borrelia burgdorferi. Antimicrob Agents Chemother 2006; 50:445-52. [PMID: 16436695 PMCID: PMC1366916 DOI: 10.1128/aac.50.2.445-452.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We have isolated and characterized in vitro mutants of the Lyme disease agent Borrelia burgdorferi that are resistant to spectinomycin, kanamycin, gentamicin, or streptomycin, antibiotics that target the small subunit of the ribosome. 16S rRNA mutations A1185G and C1186U, homologous to Escherichia coli nucleotides A1191 and C1192, conferred >2,200-fold and 1,300-fold resistance to spectinomycin, respectively. A 16S rRNA A1402G mutation, homologous to E. coli A1408, conferred >90-fold resistance to kanamycin and >240-fold resistance to gentamicin. Two mutations were identified in the gene for ribosomal protein S12, at a site homologous to E. coli residue Lys-87, in mutants selected in streptomycin. Substitutions at codon 88, K88R and K88E, conferred 7-fold resistance and 10-fold resistance, respectively, to streptomycin on B. burgdorferi. The 16S rRNA A1185G and C1186U mutations, associated with spectinomycin resistance, appeared in a population of B. burgdorferi parental strain B31 at a high frequency of 6 x 10(-6). These spectinomycin-resistant mutants successfully competed with the wild-type strain during 100 generations of coculture in vitro. The aminoglycoside-resistant mutants appeared at a frequency of 3 x 10(-9) to 1 x10(-7) in a population and were unable to compete with wild-type strain B31 after 100 generations. This is the first description of mutations in the B. burgdorferi ribosome that confer resistance to antibiotics. These results have implications for the evolution of antibiotic resistance, because the 16S rRNA mutations conferring spectinomycin resistance have no significant fitness cost in vitro, and for the development of new selectable markers.
Collapse
Affiliation(s)
- Daniel Criswell
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812-4824, USA
| | | | | | | |
Collapse
|
936
|
Mokdad A, Krasovska MV, Sponer J, Leontis NB. Structural and evolutionary classification of G/U wobble basepairs in the ribosome. Nucleic Acids Res 2006; 34:1326-41. [PMID: 16522645 PMCID: PMC1390688 DOI: 10.1093/nar/gkl025] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present a comprehensive structural, evolutionary and molecular dynamics (MD) study of the G/U wobble basepairs in the ribosome based on high-resolution crystal structures, including the recent Escherichia coli structure. These basepairs are classified according to their tertiary interactions, and sequence conservation at their positions is determined. G/U basepairs participating in tertiary interactions are more conserved than those lacking any interactions. Specific interactions occurring in the G/U shallow groove pocket--like packing interactions (P-interactions) and some phosphate backbone interactions (phosphate-in-pocket interactions)--lead to higher G/U conservation than others. Two salient cases of unique phylogenetic compensation are discovered. First, a P-interaction is conserved through a series of compensatory mutations involving all four participating nucleotides to preserve or restore the G/U in the optimal orientation. Second, a G/U basepair forming a P-interaction and another one forming a phosphate-in-pocket interaction are replaced by GNRA loops that maintain similar tertiary contacts. MD simulations were carried out on eight P-interactions. The specific GU/CG signature of this interaction observed in structure and sequence analysis was rationalized, and can now be used for improving sequence alignments.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- Conserved Sequence
- Crystallography, X-Ray
- Evolution, Molecular
- Guanine/chemistry
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phosphates/chemistry
- RNA, Archaeal/chemistry
- RNA, Bacterial/chemistry
- RNA, Ribosomal/chemistry
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 5S/chemistry
- Ribosomes/chemistry
- Sequence Analysis, RNA
- Uracil/chemistry
Collapse
Affiliation(s)
- Ali Mokdad
- To whom correspondence should be addressed. Tel: +1 419 372 2332; Fax: +1 419 372 2024;
| | - Maryna V. Krasovska
- Institute of Biophysics, Academy of Sciences of the Czech RepublicKralovopolska 135, 612 65, Brno, Czech Republic
| | - Jiri Sponer
- Institute of Biophysics, Academy of Sciences of the Czech RepublicKralovopolska 135, 612 65, Brno, Czech Republic
| | - Neocles B. Leontis
- To whom correspondence should be addressed. Tel: +1 419 372 2332; Fax: +1 419 372 2024;
| |
Collapse
|
937
|
Polacek N, Mankin AS. The ribosomal peptidyl transferase center: structure, function, evolution, inhibition. Crit Rev Biochem Mol Biol 2006; 40:285-311. [PMID: 16257828 DOI: 10.1080/10409230500326334] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The ribosomal peptidyl transferase center (PTC) resides in the large ribosomal subunit and catalyzes the two principal chemical reactions of protein synthesis: peptide bond formation and peptide release. The catalytic mechanisms employed and their inhibition by antibiotics have been in the focus of molecular and structural biologists for decades. With the elucidation of atomic structures of the large ribosomal subunit at the dawn of the new millennium, these questions gained a new level of molecular significance. The crystallographic structures compellingly confirmed that peptidyl transferase is an RNA enzyme. This places the ribosome on the list of naturally occurring ribozymes that outlived the transition from the pre-biotic RNA World to contemporary biology. Biochemical, genetic and structural evidence highlight the role of the ribosome as an entropic catalyst that accelerates peptide bond formation primarily by substrate positioning. At the same time, peptide release should more strongly depend on chemical catalysis likely involving an rRNA group of the PTC. The PTC is characterized by the most pronounced accumulation of universally conserved rRNA nucleotides in the entire ribosome. Thus, it came as a surprise that recent findings revealed an unexpected high level of variation in the mode of antibiotic binding to the PTC of ribosomes from different organisms.
Collapse
Affiliation(s)
- Norbert Polacek
- Innsbruck Biocenter, Division of Genomics and RNomics, Innsbruck Medical University, Innsbruck, Austria.
| | | |
Collapse
|
938
|
Guo F, Gooding AR, Cech TR. Comparison of crystal structure interactions and thermodynamics for stabilizing mutations in the Tetrahymena ribozyme. RNA (NEW YORK, N.Y.) 2006; 12:387-95. [PMID: 16431981 PMCID: PMC1383578 DOI: 10.1261/rna.2198206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although general mechanisms of RNA folding and catalysis have been elucidated, little is known about how ribozymes achieve structural stability at high temperature. A previous in vitro evolution experiment identified a small number of mutations that significantly increase the thermostability of the tertiary structure of the Tetrahymena ribozyme. Because we also determined the crystal structure of this thermostable ribozyme, we have for the first time the opportunity to compare the structural interactions and thermodynamic contributions of individual nucleotides in a ribozyme. We investigated the contribution of five mutations to thermostability by using temperature gradient gel electrophoresis. Unlike the case with several well-studied proteins, the effects of individual mutations on thermostability of this RNA were highly context dependent. The three most important mutations for thermostability were actually destabilizing in the wild-type background. A269G and A304G contributed to stability only when present as a pair, consistent with their proximity in the ribozyme structure. In an evolutionary context, this work supports and extends the idea that one advantage of protein enzyme systems over an RNA world is the ability of proteins to accumulate stabilizing single-site mutations, whereas RNA may often require much rarer double mutations to improve the stability of both its tertiary and secondary structures.
Collapse
Affiliation(s)
- Feng Guo
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | | | | |
Collapse
|
939
|
Luyten YA, Thompson JR, Morrill W, Polz MF, Distel DL. Extensive variation in intracellular symbiont community composition among members of a single population of the wood-boring bivalve Lyrodus pedicellatus (Bivalvia: Teredinidae). Appl Environ Microbiol 2006; 72:412-7. [PMID: 16391072 PMCID: PMC1352252 DOI: 10.1128/aem.72.1.412-417.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shipworms (wood-boring bivalves of the family Teredinidae) harbor in their gills intracellular bacterial symbionts thought to produce enzymes that enable the host to consume cellulose as its primary carbon source. Recently, it was demonstrated that multiple genetically distinct symbiont populations coexist within one shipworm species, Lyrodus pedicellatus. Here we explore the extent to which symbiont communities vary among individuals of this species by quantitatively examining the diversity, abundance, and pattern of occurrence of symbiont ribotypes (unique 16S rRNA sequence types) among specimens drawn from a single laboratory-reared population. A total of 18 ribotypes were identified in two clone libraries generated from gill tissue of (i) a single specimen and (ii) four pooled specimens. Phylogenetic analysis assigned all of the ribotypes to a unique clade within the gamma subgroup of proteobacteria which contained at least five well-supported internal clades (phylotypes). By competitive quantitative PCR and constant denaturant capillary electrophoresis, we estimated the number and abundance of symbiont phylotypes in gill samples of 13 individual shipworm specimens. Phylotype composition varied greatly; however, in all specimens the numerically dominant symbiont belonged to one of two nearly mutually exclusive phylotypes, each of which was detected with similar frequencies among specimens. A third phylotype, containing the culturable symbiont Teredinibacter turnerae, was identified in nearly all specimens, and two additional phylotypes were observed more sporadically. Such extensive variation in ribotype and phylotype composition among host specimens adds to a growing body of evidence that microbial endosymbiont populations may be both complex and dynamic and suggests that such genetic variation should be evaluated with regard to physiological and ecological differentiation.
Collapse
Affiliation(s)
- Yvette A Luyten
- Ocean Genome Legacy Foundation, Center for Marine Genomic Research and Conservation, 240 County Rd., Ipswich, MA 01938, USA
| | | | | | | | | |
Collapse
|
940
|
Ding Y. Statistical and Bayesian approaches to RNA secondary structure prediction. RNA (NEW YORK, N.Y.) 2006; 12:323-31. [PMID: 16495231 PMCID: PMC1383571 DOI: 10.1261/rna.2274106] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Prediction of RNA secondary structure is a fundamental problem in computational structural biology. For several decades, free energy minimization has been the most popular method for prediction from a single sequence. In recent years, the McCaskill algorithm for computation of partition function and base-pair probabilities has become increasingly appreciated. This paradigm-shifting work has inspired the developments of extended partition function algorithms, statistical sampling and clustering, and application of Bayesian statistical inference. The performance of thermodynamics-based methods is limited by thermodynamic rules and parameters. However, further improvements may come from statistical estimates derived from structural databases for thermodynamics parameters with weak or little experimental data. The Bayesian inference approach appears to be promising in this context.
Collapse
Affiliation(s)
- Ye Ding
- Wadsworth Center, New York State Department of Health, Center for Medical Science, 150 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
941
|
Newby Lambert M, Vöcker E, Blumberg S, Redemann S, Gajraj A, Meiners JC, Walter NG. Mg2+-induced compaction of single RNA molecules monitored by tethered particle microscopy. Biophys J 2006; 90:3672-85. [PMID: 16500956 PMCID: PMC1440748 DOI: 10.1529/biophysj.105.067793] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have applied tethered particle microscopy (TPM) as a single molecule analysis tool to studies of the conformational dynamics of poly-uridine(U) messenger (m)RNA and 16S ribosomal (r)RNA molecules. Using stroboscopic total internal reflection illumination and rigorous selection criteria to distinguish from nonspecific tethering, we have tracked the nanometer-scale Brownian motion of RNA-tethered fluorescent microspheres in all three dimensions at pH 7.5, 22 degrees C, in 10 mM or 100 mM NaCl in the absence or presence of 10 mM MgCl(2). The addition of Mg(2+) to low-ionic strength buffer results in significant compaction and stiffening of poly(U) mRNA, but not of 16S rRNA. Furthermore, the motion of poly(U)-tethered microspheres is more heterogeneous than that of 16S rRNA-tethered microspheres. Analysis of in-plane bead motion suggests that poly(U) RNA, but less so 16S rRNA, can be modeled both in the presence and absence of Mg(2+) by a statistical Gaussian polymer model. We attribute these differences to the Mg(2+)-induced compaction of the relatively weakly structured and structurally disperse poly(U) mRNA, in contrast to Mg(2+)-induced reinforcement of existing secondary and tertiary structure contacts in the highly structured 16S rRNA. Both effects are nonspecific, however, as they are dampened in the presence of higher concentrations of monovalent cations.
Collapse
Affiliation(s)
- Meredith Newby Lambert
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | | | | | |
Collapse
|
942
|
Mears JA, Sharma MR, Gutell RR, McCook AS, Richardson PE, Caulfield TR, Agrawal RK, Harvey SC. A structural model for the large subunit of the mammalian mitochondrial ribosome. J Mol Biol 2006; 358:193-212. [PMID: 16510155 PMCID: PMC3495566 DOI: 10.1016/j.jmb.2006.01.094] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 01/25/2006] [Accepted: 01/27/2006] [Indexed: 11/30/2022]
Abstract
Protein translation is essential for all forms of life and is conducted by a macromolecular complex, the ribosome. Evolutionary changes in protein and RNA sequences can affect the 3D organization of structural features in ribosomes in different species. The most dramatic changes occur in animal mitochondria, whose genomes have been reduced and altered significantly. The RNA component of the mitochondrial ribosome (mitoribosome) is reduced in size, with a compensatory increase in protein content. Until recently, it was unclear how these changes affect the 3D structure of the mitoribosome. Here, we present a structural model of the large subunit of the mammalian mitoribosome developed by combining molecular modeling techniques with cryo-electron microscopic data at 12.1A resolution. The model contains 93% of the mitochondrial rRNA sequence and 16 mitochondrial ribosomal proteins in the large subunit of the mitoribosome. Despite the smaller mitochondrial rRNA, the spatial positions of RNA domains known to be involved directly in protein synthesis are essentially the same as in bacterial and archaeal ribosomes. However, the dramatic reduction in rRNA content necessitates evolution of unique structural features to maintain connectivity between RNA domains. The smaller rRNA sequence also limits the likelihood of tRNA binding at the E-site of the mitoribosome, and correlates with the reduced size of D-loops and T-loops in some animal mitochondrial tRNAs, suggesting co-evolution of mitochondrial rRNA and tRNA structures.
Collapse
Affiliation(s)
- Jason A Mears
- Department of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | | | |
Collapse
|
943
|
Manske AK, Glaeser J, Kuypers MMM, Overmann J. Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black Sea. Appl Environ Microbiol 2006; 71:8049-60. [PMID: 16332785 PMCID: PMC1317439 DOI: 10.1128/aem.71.12.8049-8060.2005] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biomass, phylogenetic composition, and photoautotrophic metabolism of green sulfur bacteria in the Black Sea was assessed in situ and in laboratory enrichments. In the center of the western basin, bacteriochlorophyll e (BChl e) was detected between depths of 90 and 120 m and reached maxima of 54 and 68 ng liter(-1). High-pressure liquid chromatography analysis revealed a dominance of farnesyl esters and the presence of four unusual geranyl ester homologs of BChl e. Only traces of BChl e (8 ng liter(-1)) were found at the northwestern slope of the Black Sea basin, where the chemocline was positioned at a significantly greater depth of 140 m. Stable carbon isotope fractionation values of farnesol indicated an autotrophic growth mode of the green sulfur bacteria. For the first time, light intensities in the Black Sea chemocline were determined employing an integrating quantum meter, which yielded maximum values between 0.0022 and 0.00075 micromol quanta m(-2) s(-1) at the top of the green sulfur bacterial layer around solar noon in December. These values represent by far the lowest values reported for any habitat of photosynthetic organisms. Only one 16S rRNA gene sequence type was detected in the chemocline using PCR primers specific for green sulfur bacteria. This previously unknown phylotype groups with the marine cluster of the Chlorobiaceae and was successfully enriched in a mineral medium containing sulfide, dithionite, and freshly prepared yeast extract. Under precisely controlled laboratory conditions, the enriched green sulfur bacterium proved to be capable of exploiting light intensities as low as 0.015 micromol quanta m(-2) s(-1) for photosynthetic 14CO2 fixation. Calculated in situ doubling times of the green sulfur bacterium range between 3.1 and 26 years depending on the season, and anoxygenic photosynthesis contributes only 0.002 to 0.01% to total sulfide oxidation in the chemocline. The stable population of green sulfur bacteria in the Black Sea chemocline thus represents the most extremely low-light-adapted and slowest-growing type of phototroph known to date.
Collapse
Affiliation(s)
- Ann K Manske
- Department Biologie I, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Maria-Ward-Str. 1a, D-80638 München, Germany
| | | | | | | |
Collapse
|
944
|
Dunn CW, Pugh PR, Haddock SHD. Molecular phylogenetics of the siphonophora (Cnidaria), with implications for the evolution of functional specialization. Syst Biol 2006; 54:916-35. [PMID: 16338764 DOI: 10.1080/10635150500354837] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Siphonophores are a group of pelagic colonial hydrozoans (Cnidaria) that have long been of general interest because of the division of labor between the polyps and medusae that make up these "superorganisms." These polyps and medusae are each homologous to free living animals but are generated by an incomplete asexual budding process that leaves them physiologically integrated. They are functionally specialized for different tasks and are precisely organized within each colony. The number of functional types of polyps and medusae varies across taxa, and different authors have used this character to construct phylogenies polarized in opposite directions, depending on whether they thought siphonophore evolution proceeded by a reduction or an increase in functional specialization. We have collected taxa across all major groups of siphonophores, many of which are found exclusively in the deep sea, using remotely operated underwater vehicles (ROVs) and by SCUBA diving from ships in the open ocean. We have used 52 siphonophores and four outgroup taxa to estimate the siphonophore phylogeny with molecular data from the nuclear small subunit ribosomal RNA gene (18S) and the mitochondrial large subunit ribosomal RNA gene (16S). Parsimony reconstructions indicate that functionally specialized polyps and medusae have been gained and lost across the phylogeny. Maximum likelihood and Bayesian analyses of morphological data suggest that the transition rate for decreased functional specialization is greater than the transition rate for increased functional specialization for three out of the four investigated categories of polyps and medusae. The present analysis also bears on several long-standing questions about siphonophore systematics. It indicates that the cystonects are sister to all other siphonophores, a group that we call the Codonophora. We also find that the Calycophorae are nested within the Physonectae, and that the Brachystelia, a historically recognized grouping of short-stemmed taxa, are polyphyletic. [Cnidaria; colonial animals; deep sea; division of labor; functional specialization; Hydrozoa; phylogenetics; Siphonophores.].
Collapse
Affiliation(s)
- Casey W Dunn
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.
| | | | | |
Collapse
|
945
|
Stoeck T, Hayward B, Taylor GT, Varela R, Epstein SS. A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist 2006; 157:31-43. [PMID: 16431157 DOI: 10.1016/j.protis.2005.10.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Accepted: 10/30/2005] [Indexed: 11/28/2022]
Abstract
The Cariaco Basin off the Venezuelan coast in the Caribbean Sea is the world's largest truly marine body of anoxic water. The first rRNA survey of microbial eukaryotes in this environment revealed a number of novel lineages, but sampled only a fraction of the entire diversity. The goal of this study was to significantly improve recovery of protistan rRNA from the Basin. This was achieved by a systematic application of multiple PCR primer sets and substantially larger sequencing efforts. We focused on the most diverse habitat in the basin, anoxic waters approximately 100m below the oxic-anoxic interface, and detected novel lineages that escaped the single PCR primer approach. All clones obtained proved unique. A 99% sequence similarity cut-off value combined these clones into operational taxonomic units (OTUs), over 75% of which proved novel. Some of these OTUs form deep branches within established protistan groups. Others signify discovery of novel protistan lineages that appear unrelated to any known microeukaryote. Surprisingly, even this large-scale multi-primer rRNA approach still missed a substantial part of the samples' rRNA diversity. The overlap between the species lists obtained with different primers is low, with only 4% of OTUs shared by all three libraries, and the number of species detected only once is large (55%). This strongly indicates that, at least in anoxic environments, protistan diversity may be much larger than is commonly thought. A single sample appears to contain thousands of largely novel protistan species. Multiple PCR primer combinations may be needed to capture these species.
Collapse
Affiliation(s)
- Thorsten Stoeck
- Department of Ecology, Technical University Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
946
|
Misof B, Niehuis O, Bischoff I, Rickert A, Erpenbeck D, Staniczek A. A Hexapod nuclear SSU rRNA secondary-structure model and catalog of taxon-specific structural variation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2006; 306:70-88. [PMID: 16161065 DOI: 10.1002/jez.b.21040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
RNA molecules and in particular the nuclear SSU RNA play an important role in molecular systematics. With the advent of increasingly parameterized substitution models in systematic research, the incorporation of secondary-structure information became a realistic option compensating interdependence of character variation. As a prerequisite, consensus structures of eukaryotic SSU RNA molecules have become available through extensive comparative analyses and crystallographic studies. Despite extensive research in hexapod phylogenetics, consensus SSU RNA secondary structures focusing on hexapods have not yet been explored. In this study, we compiled a representative hexapod SSU data set of 261 sequences and inferred a specific consensus SSU secondary-structure model. Our search for conserved structural motives relied on a combined approach of thermodynamic and covariation analyses. The hexapod consensus-structure model deviates from the canonical eukaryotic model in a number of helices. Additionally, in several helices the hexapod sequences did not support a single consensus structure. We provide consensus structures of these sections of single less-inclusive taxa, thus facilitating the adaptation of the consensus hexapod model to less-inclusive phylogenetic questions. The secondary-structure catalog will foster the application of RNA structure models in phylogenetic analyses using the SSU rRNA molecule, and it will improve the realism of substitution models and the reliability of reconstructions based on rRNA sequences.
Collapse
Affiliation(s)
- Bernhard Misof
- Zoologisches Forschungsinstitut und Museum A. Koenig Adenauerallee 160, 53113 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
947
|
Smit S, Yarus M, Knight R. Natural selection is not required to explain universal compositional patterns in rRNA secondary structure categories. RNA (NEW YORK, N.Y.) 2006; 12:1-14. [PMID: 16373489 PMCID: PMC1370880 DOI: 10.1261/rna.2183806] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We have encountered an unexpected property of rRNA secondary structures that may generalize to all RNAs. Analysis of 8892 ribosomal RNA sequences and structures from a wide range of species revealed unexpected universal compositional trends. First, different categories of rRNA secondary structure (stems, loops, bulges, and junctions) have distinct, characteristic base compositions. Second, the observed patterns of variation are similar among sequences from large and small rRNA subunits and all domains of life, despite extensive evolutionary divergence. Surprisingly, these differences do not seem to be related to selection for different compositions in different structural categories, but rather relate to the overall composition of the molecule: Randomized RNAs with no evolutionary history show the same structure-dependent compositional biases as rRNAs. These compositional trends may improve the accuracy of RNA secondary structure prediction, because they allow us to compare predicted structures against known compositional preferences. They also suggest caution in interpreting differences in the rate of change of the GC content in different parts of the molecule as evidence of differential selection.
Collapse
Affiliation(s)
- Sandra Smit
- Department of Chemistry and Biochemistry, Campus Box 215, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | |
Collapse
|
948
|
Yilmaz LS, Okten HE, Noguera DR. Making all parts of the 16S rRNA of Escherichia coli accessible in situ to single DNA oligonucleotides. Appl Environ Microbiol 2006; 72:733-44. [PMID: 16391113 PMCID: PMC1352245 DOI: 10.1128/aem.72.1.733-744.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 09/21/2005] [Indexed: 11/20/2022] Open
Abstract
rRNA accessibility is a major sensitivity issue limiting the design of working probes for fluorescence in situ hybridization (FISH). Previous studies empirically highlighted the accessibility of target sites on rRNA maps by grouping probes into six classes according to their brightness levels. In this study, a recently proposed mechanistic model of FISH, based on the thermodynamics of secondary nucleic acid interactions, was used to evaluate the accessibility of the 16S rRNA of Escherichia coli to fluorescein-labeled oligonucleotides when thermodynamic and kinetic barriers were eliminated. To cover the entire 16S rRNA, 109 probes were designed with an average thermodynamic affinity (DeltaGo (overall)) of -13.5 kcal/mol. Fluorescence intensity was measured by flow cytometry, and a brightness threshold between classes 3 and 4 was used as the requirement for proof of accessibility. While 46% of the probes were above this threshold with conventional 3-h hybridizations, extending the incubation period to 96 h dramatically increased the fraction of bright probes to 86%. Insufficient thermodynamic affinity and/or fluorophore quenching was demonstrated to cause the low fluorescence intensity of the remaining 14% of the probes. In the end, it was proven that every nucleotide in the 16S rRNA of E. coli could be targeted with a bright probe and, therefore, that there were no truly inaccessible target regions in the 16S rRNA. Based on our findings and mechanistic modeling, a rational design strategy involving DeltaGo(overall), hybridization kinetics, and fluorophore quenching is recommended for the development of bright probes.
Collapse
Affiliation(s)
- L Safak Yilmaz
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706-1691, USA
| | | | | |
Collapse
|
949
|
Schmeing TM, Huang KS, Kitchen DE, Strobel SA, Steitz TA. Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol Cell 2005; 20:437-48. [PMID: 16285925 DOI: 10.1016/j.molcel.2005.09.006] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/19/2005] [Accepted: 09/06/2005] [Indexed: 11/22/2022]
Abstract
Peptide bond formation is catalyzed at the peptidyl transferase center (PTC) of the large ribosomal subunit. Crystal structures of the large ribosomal subunit of Haloarcula marismortui (Hma) complexed with several analogs that represent either the substrates or the transition state intermediate of the peptidyl transferase reaction show that this reaction proceeds through a tetrahedral intermediate with S chirality. The oxyanion of the tetrahedral intermediate interacts with a water molecule that is positioned by nucleotides A2637 (E. coli numbering, 2602) and (methyl)U2619(2584). There are no Mg2+ ions or monovalent metal ions observed in the PTC that could directly promote catalysis. The A76 2' hydroxyl of the peptidyl-tRNA is hydrogen bonded to the alpha-amino group and could facilitate peptide bond formation by substrate positioning and by acting as a proton shuttle between the alpha-amino group and the A76 3' hydroxyl of the peptidyl-tRNA.
Collapse
Affiliation(s)
- T Martin Schmeing
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
950
|
Mincer TJ, Fenical W, Jensen PR. Culture-dependent and culture-independent diversity within the obligate marine actinomycete genus Salinispora. Appl Environ Microbiol 2005; 71:7019-28. [PMID: 16269737 PMCID: PMC1287694 DOI: 10.1128/aem.71.11.7019-7028.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salinispora is the first obligate marine genus within the order Actinomycetales and a productive source of biologically active secondary metabolites. Despite a worldwide, tropical or subtropical distribution in marine sediments, only two Salinispora species have thus far been cultivated, suggesting limited species-level diversity. To further explore Salinispora diversity and distributions, the phylogenetic diversity of more than 350 strains isolated from sediments collected around the Bahamas was examined, including strains cultured using new enrichment methods. A culture-independent method, using a Salinispora-specific seminested PCR technique, was used to detect Salinispora from environmental DNA and estimate diversity. Overall, the 16S rRNA gene sequence diversity of cultured strains agreed well with that detected in the environmental clone libraries. Despite extensive effort, no new species level diversity was detected, and 97% of the 105 strains examined by restriction fragment length polymorphism belonged to one phylotype (S. arenicola). New intraspecific diversity was detected in the libraries, including an abundant new phylotype that has yet to be cultured, and a new depth record of 1,100 m was established for the genus. PCR-introduced error, primarily from Taq polymerase, significantly increased clone library sequence diversity and, if not masked from the analyses, would have led to an overestimation of total diversity. An environmental DNA extraction method specific for vegetative cells provided evidence for active actinomycete growth in marine sediments while indicating that a majority of sediment samples contained predominantly Salinispora spores at concentrations that could not be detected in environmental clone libraries. Challenges involved with the direct sequence-based detection of spore-forming microorganisms in environmental samples are discussed.
Collapse
Affiliation(s)
- Tracy J Mincer
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0204, USA
| | | | | |
Collapse
|