99901
|
Ion M, Dinulescu S, Firtat B, Savin M, Ionescu ON, Moldovan C. Design and Fabrication of a New Wearable Pressure Sensor for Blood Pressure Monitoring. SENSORS 2021; 21:s21062075. [PMID: 33809497 PMCID: PMC8000553 DOI: 10.3390/s21062075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 01/28/2023]
Abstract
In recent years, research into the field of materials for flexible sensors and fabrication techniques directed towards wearable devices has helped to raise awareness of the need for new sensors with healthcare applicability. Our goal was to create a wearable flexible pressure sensor that could be integrated into a clinically approved blood pressure monitoring device. The sensor is built from a microfluidic channel encapsulated between two polymer layers, one layer being covered by metal transducers and the other being a flexible membrane containing the microfluidic channel, which also acts as a sealant for the structure. The applied external pressure deforms the channel, causing changes in resistance to the microfluidic layer. Electrical characterization has been performed in 5 different configurations, using alternating current (AC) and (DC) direct current measurements. The AC measurements for the fabricated pressure sensor resulted in impedance values at tens of hundreds of kOhm. Our sensor proved to have a high sensitivity for pressure values between 0 and 150 mm Hg, being subjected to repeatable external forces. The novelty presented in our work consists in the unique technological flow for the fabrication of the flexible wearable pressure sensor. The proposed miniaturized pressure sensor will ensure flexibility, low production cost and ease of use. It is made of very sensitive microfluidic elements and biocompatible materials and can be integrated into a wearable cuffless device for continuous blood pressure monitoring.
Collapse
|
99902
|
Hong JY, Hung CF, Yang KHO, Chiu KC, Ling DC, Chiang WC, Lin MT. Electrically programmable magnetoresistance in [Formula: see text]-based magnetic tunnel junctions. Sci Rep 2021; 11:6027. [PMID: 33727577 PMCID: PMC7966802 DOI: 10.1038/s41598-021-84749-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/18/2021] [Indexed: 11/11/2022] Open
Abstract
We report spin-dependent transport properties and I-V hysteresis characteristics in an [Formula: see text]-based magnetic tunnel junction (MTJ). The bipolar resistive switching and the magnetoresistances measured at high resistance state (HRS) and low resistance state (LRS) yield four distinctive resistive states in a single device. The temperature dependence of resistance at LRS suggests that the resistive switching is not triggered by the metal filaments within the [Formula: see text] layer. The role played by oxygen vacancies in [Formula: see text] is the key to determine the resistive state. Our study reveals the possibility of controlling the multiple resistive states in a single [Formula: see text]-based MTJ by the interplay of both electric and magnetic fields, thus providing potential applications for future multi-bit memory devices.
Collapse
Affiliation(s)
- Jhen-Yong Hong
- Department of Physics, Tamkang University, New Taipei City, 25137 Taiwan
| | - Chen-Feng Hung
- Department of Physics, National Taiwan University, Taipei, 10617 Taiwan
| | - Kui-Hon Ou Yang
- Department of Physics, National Taiwan University, Taipei, 10617 Taiwan
| | - Kuan-Chia Chiu
- Department of Physics, National Taiwan University, Taipei, 10617 Taiwan
| | - Dah-Chin Ling
- Department of Physics, Tamkang University, New Taipei City, 25137 Taiwan
| | - Wen-Chung Chiang
- Department of Optoelectric Physics, Chinese Culture University, Taipei, 11114 Taiwan
| | - Minn-Tsong Lin
- Department of Physics, National Taiwan University, Taipei, 10617 Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617 Taiwan
| |
Collapse
|
99903
|
Liu K, Qin R, Zheng N. Insights into the Interfacial Effects in Heterogeneous Metal Nanocatalysts toward Selective Hydrogenation. J Am Chem Soc 2021; 143:4483-4499. [PMID: 33724821 DOI: 10.1021/jacs.0c13185] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heterogeneous metal catalysts are distinguished by their structure inhomogeneity and complexity. The chameleonic nature of heterogeneous metal catalysts have prevented us from deeply understanding their catalytic mechanisms at the molecular level and thus developing industrial catalysts with perfect catalytic selectivity toward desired products. This Perspective aims to summarize recent research advances in deciphering complicated interfacial effects in heterogeneous hydrogenation metal nanocatalysts toward the design of practical heterogeneous catalysts with clear catalytic mechanism and thus nearly perfect selectivity. The molecular insights on how the three key components (i.e., catalytic metal, support, and ligand modifier) of a heterogeneous metal nanocatalyst induce effective interfaces determining the hydrogenation activity and selectivity are provided. The interfaces influence not only the H2 activation pathway but also the interaction of substrates to be hydrogenated with catalytic metal surface and thus the hydrogen transfer process. As for alloy nanocatalysts, together with the electronic and geometric ensemble effects, spillover hydrogenation occurring on catalytically "inert" metal by utilizing hydrogen atom spillover from active metal is highlighted. The metal-support interface effects are then discussed with emphasis on the molecular involvement of ligands located at the metal-support interface as well as cationic species from the support in hydrogenation. The mechanisms of how organic modifiers, with the ability to induce both 3D steric and electronic effects, on metal nanocatalysts manipulate the hydrogenation pathways are demonstrated. A brief summary is finally provided together with a perspective on the development of enzyme-like heterogeneous hydrogenation metal catalysts.
Collapse
Affiliation(s)
- Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
99904
|
Alam MM, Mahbub S, Hosen MM, Kumar D, Hoque MA. A conductivity and cloud point investigation of interaction of cationic and non-ionic surfactants with sodium carboxymethyl cellulose: effect of polyols and urea. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01568-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
99905
|
Abstract
Structural DNA nanotechnology is a pioneering biotechnology that presents the opportunity to engineer DNA-based hardware that will mediate a profound interface to the nanoscale. To date, an enormous library of shaped 3D DNA nanostructures have been designed and assembled. Moreover, recent research has demonstrated DNA nanostructures that are not only static but can exhibit specific dynamic motion. DNA nanostructures have thus garnered significant research interest as a template for pursuing shape and motion-dependent nanoscale phenomena. Potential applications have been explored in many interdisciplinary areas spanning medicine, biosensing, nanofabrication, plasmonics, single-molecule chemistry, and facilitating biophysical studies. In this review, we begin with a brief overview of general and versatile design techniques for 3D DNA nanostructures as well as some techniques and studies that have focused on improving the stability of DNA nanostructures in diverse environments, which is pivotal for its reliable utilization in downstream applications. Our main focus will be to compile a wide body of existing research on applications of 3D DNA nanostructures that demonstrably rely on the versatility of their mechanical design. Furthermore, we frame reviewed applications into three primary categories, namely encapsulation, surface templating, and nanomechanics, that we propose to be archetypal shape- or motion-related functions of DNA nanostructures found in nanoscience applications. Our intent is to identify core concepts that may define and motivate specific directions of progress in this field as we conclude the review with some perspectives on the future.
Collapse
|
99906
|
Han S, Xia H, Lu YM, Liu WJ, Xu WY, Fang M, Cao PJ, Zhu DL. UV response characteristics of mixed-phase MgZnO thin films with different structure distributions, high I uv/I dark ratios, and fast speed MgZnO UV detectors with tunneling breakdown mechanisms. NANOTECHNOLOGY 2021; 32:235202. [PMID: 33724929 DOI: 10.1088/1361-6528/abe824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-performance ultraviolet (UV) detectors with both high responses and fast speeds are hard to make on homogeneous crystal semiconductor materials. Here, the UV response characteristics of mixed-phase MgZnO thin films with different internal structure distributions are studied. The mixed-phase MgZnO-based detector with the given crystal composition has a high response at both deep UV light (96 A W-1 at 240 nm) and near UV light (80 A W-1 at 335 nm). Meanwhile, because of the quasi-tunneling breakdown mechanism within the device, the high-response UV detector also shows a fast response speed (tr = 0.11 μs) and recovery speed (td1 = 26 μs) at deep UV light, which is much faster than both low-response mixed-phase MgZnO-based UV detectors with other structure constitutions and reported high-response UV devices on homogenous crystal materials. The Idark of the device is just 4.27 pA under a 5 V bias voltage, so the signal-to-noise ratio of the device reached 23852 at 5.5 uW cm-2 235 nm UV light. The new quasi-tunneling breakdown mechanism is observed in some mixed-phase MgZnO thin films that contain both c-MgZnO and h-MgZnO parts, which introduce a high response, signal-to-noise ratio, and fast speed into mixed-phase MgZnO-based UV detectors at weak deep UV light.
Collapse
Affiliation(s)
- Shun Han
- College of Materials Science and Engineering, Shenzhen University, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
99907
|
Riboni N, Spadini C, Cabassi CS, Bianchi F, Grolli S, Conti V, Ramoni R, Casoli F, Nasi L, de Julián Fernández C, Luches P, Careri M. OBP-functionalized/hybrid superparamagnetic nanoparticles for Candida albicans treatment. RSC Adv 2021; 11:11256-11265. [PMID: 35423627 PMCID: PMC8695780 DOI: 10.1039/d1ra01112j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Infections caused by the opportunistic yeast Candida albicans are one of the major life threats for hospitalized and immunocompromised patients, as a result of antibiotic and long-term antifungal treatment abuse. Odorant binding proteins can be considered interesting candidates to develop systems able to reduce the proliferation and virulence of this yeast, because of their intrinsic antimicrobial properties and complexation capabilities toward farnesol, the major quorum sensing molecule of Candida albicans. In the present study, a hybrid system characterized by a superparamagnetic iron oxide core functionalized with bovine odorant binding protein (bOBP) was successfully developed. The nanoparticles were designed to be suitable for magnetic protein delivery to inflamed areas of the body. The inorganic superparamagnetic core was characterized by an average diameter of 6.5 ± 1.1 nm and a spherical shape. Nanoparticles were functionalized by using 11-phosphonoundecanoic acid as spacer and linked to bOBP via amide bonds, resulting in a concentration level of 26.0 ± 1.2 mg bOBP/g SPIONs. Finally, both the biocompatibility of the developed hybrid system and the fungistatic activity against Candida albicans by submicromolar OBP levels were demonstrated by in vitro experiments.
Collapse
Affiliation(s)
- Nicolò Riboni
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability Parco Area delle Scienze 17/A 43124 Parma Italy +39 0521 905556 +39 0521 905128 +39 0521 905446
| | - Costanza Spadini
- University of Parma, Department of Veterinary Science Via del Taglio 10 43126 Parma Italy
| | - Clotilde S Cabassi
- University of Parma, Department of Veterinary Science Via del Taglio 10 43126 Parma Italy
| | - Federica Bianchi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability Parco Area delle Scienze 17/A 43124 Parma Italy +39 0521 905556 +39 0521 905128 +39 0521 905446
- University of Parma, Interdepartmental Center for Packaging (CIPACK) Parco Area delle Scienze 43124 Parma Italy
| | - Stefano Grolli
- University of Parma, Department of Veterinary Science Via del Taglio 10 43126 Parma Italy
| | - Virna Conti
- University of Parma, Department of Veterinary Science Via del Taglio 10 43126 Parma Italy
| | - Roberto Ramoni
- University of Parma, Department of Veterinary Science Via del Taglio 10 43126 Parma Italy
| | - Francesca Casoli
- Institute of Materials for Electronics and Magnetism Parco Area delle Scienze 37/A 43124 Parma Italy
| | - Lucia Nasi
- Institute of Materials for Electronics and Magnetism Parco Area delle Scienze 37/A 43124 Parma Italy
| | - César de Julián Fernández
- Institute of Materials for Electronics and Magnetism Parco Area delle Scienze 37/A 43124 Parma Italy
| | - Paola Luches
- Center S3, Istituto Nanoscienze, CNR Via G. Campi 213/A 41125 Modena Italy
| | - Maria Careri
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability Parco Area delle Scienze 17/A 43124 Parma Italy +39 0521 905556 +39 0521 905128 +39 0521 905446
| |
Collapse
|
99908
|
de Oliveira DM, Menezes DB, Andrade LR, Lima FDC, Hollanda L, Zielinska A, Sanchez-Lopez E, Souto EB, Severino P. Silver nanoparticles obtained from Brazilian pepper extracts with synergistic anti-microbial effect: production, characterization, hydrogel formulation, cell viability, and in vitro efficacy. Pharm Dev Technol 2021; 26:539-548. [PMID: 33685334 DOI: 10.1080/10837450.2021.1898634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis of silver nanoparticles using plant extracts is known as a green approach, as it does not require the use of high pressure, energy, high temperature, or toxic chemicals. The approach makes use of plant extracts in a process called bioreduction, which is mediated by enzymes, proteins, amino acids, and metabolites found in bark, seed, and leaf extracts, transforming silver ions into metallic silver. This work aimed at developing silver nanoparticles (AgNPs) from Brazilian pepper, applying this green methodology. Hydroalcoholic extract of leaves of Schinus terebinthifolius Raddi was prepared and its concentration of polyphenols, tannins, and saponins quantified. The produced nanoparticles were characterized by UV-Vis spectroscopy, thermogravimetric analysis (TG), dynamic light scattering (DLS), and zeta potential (ZP). AgNPs were formulated in sodium alginate hydrogels to obtain a nano-based semi-solid formulation for skin application. The obtained silver nanoparticles of mean size between 350 and 450 nm showed no cytotoxicity against L929 mouse fibroblasts within the concentration range of 0.025 mg/mL and 10 mg/mL. Schinus terebinthifolius Raddi was found to enhance microbial inhibition against the tested strains, especially against gram-negative bacteria. Its potential use as an alternative to overcome bacterial resistance can be expected.
Collapse
Affiliation(s)
- Daniele M de Oliveira
- Laboratory of Nanotechnology and Nanomedicine (LNMED), Institute of Technology and Research (ITP), Tiradentes University (UNIT), Aracaju, Brazil.,Industrial Biotechnology Program, University of Tiradentes (UNIT), Aracaju, Brazil
| | - Diego B Menezes
- Laboratory of Nanotechnology and Nanomedicine (LNMED), Institute of Technology and Research (ITP), Tiradentes University (UNIT), Aracaju, Brazil.,Industrial Biotechnology Program, University of Tiradentes (UNIT), Aracaju, Brazil
| | - Lucas R Andrade
- Laboratory of Nanotechnology and Nanomedicine (LNMED), Institute of Technology and Research (ITP), Tiradentes University (UNIT), Aracaju, Brazil.,Industrial Biotechnology Program, University of Tiradentes (UNIT), Aracaju, Brazil
| | - Felipe da C Lima
- Laboratory of Nanotechnology and Nanomedicine (LNMED), Institute of Technology and Research (ITP), Tiradentes University (UNIT), Aracaju, Brazil.,Industrial Biotechnology Program, University of Tiradentes (UNIT), Aracaju, Brazil
| | - Luciana Hollanda
- Laboratory of Nanotechnology and Nanomedicine (LNMED), Institute of Technology and Research (ITP), Tiradentes University (UNIT), Aracaju, Brazil.,Industrial Biotechnology Program, University of Tiradentes (UNIT), Aracaju, Brazil
| | - Aleksandra Zielinska
- Faculty of Pharmacy (FFUC), Department of Pharmaceutical Technology, University of Coimbra, Coimbra, Portugal.,Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Elena Sanchez-Lopez
- Faculty of Pharmacy (FFUC), Department of Pharmaceutical Technology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- Faculty of Pharmacy (FFUC), Department of Pharmaceutical Technology, University of Coimbra, Coimbra, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Patrícia Severino
- Laboratory of Nanotechnology and Nanomedicine (LNMED), Institute of Technology and Research (ITP), Tiradentes University (UNIT), Aracaju, Brazil.,Industrial Biotechnology Program, University of Tiradentes (UNIT), Aracaju, Brazil.,Tiradentes Institute, Dorchester, MA, USA.,Center for Biomedical Engineering, Department of Medicine, Brigham and Women & Hospital, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
99909
|
Oieni J, Lolli A, D'Atri D, Kops N, Yayon A, van Osch GJVM, Machluf M. Nano-ghosts: Novel biomimetic nano-vesicles for the delivery of antisense oligonucleotides. J Control Release 2021; 333:28-40. [PMID: 33741386 DOI: 10.1016/j.jconrel.2021.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
Antisense oligonucleotides (ASOs) carry an enormous therapeutic potential in different research areas, however, the lack of appropriate carriers for their delivery to the target tissues is hampering their clinical translation. The present study investigates the application of novel biomimetic nano-vesicles, Nano-Ghosts (NGs), for the delivery of ASOs to human mesenchymal stem cells (MSCs), using a microRNA inhibitor (antimiR) against miR-221 as proof-of-concept. The integration of this approach with a hyaluronic acid-fibrin (HA-FB) hydrogel scaffold is also studied, thus expanding the potential of NGs applications in regenerative medicine. The study shows robust antimiR encapsulation in the NGs using electroporation and the NGs ability to be internalized in MSCs and to deliver their cargo while avoiding endo-lysosomal degradation. This leads to rapid and strong knock-down of miR-221 in hMSCs in vitro, both in 2D and 3D hydrogel culture conditions (>90% and > 80% silencing efficiency, respectively). Finally, in vivo studies performed with an osteochondral defect model demonstrate the NGs ability to effectively deliver antimiR to endogenous cells. Altogether, these results prove that the NGs can operate as stand-alone system or as integrated platform in combination with scaffolds for the delivery of ASOs for a wide range of applications in drug delivery and regenerative medicine.
Collapse
Affiliation(s)
- Jacopo Oieni
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Andrea Lolli
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam 3015GD, the Netherlands; Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam 3015GD, the Netherlands
| | - Domenico D'Atri
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Nicole Kops
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam 3015GD, the Netherlands
| | - Avner Yayon
- Procore Ltd., Weizmann Science Park, 7 Golda Meir St., Ness Ziona 7414002, Israel
| | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam 3015GD, the Netherlands; Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, 3015GD, the Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628, the Netherlands
| | - Marcelle Machluf
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
99910
|
Kim KH, Kim M, Moon J, Huh J, Bang J. Bottlebrush Copolymer as Surface Neutralizer for Vertical Alignment of Block Copolymer Nanodomains in Thin Films. ACS Macro Lett 2021; 10:346-353. [PMID: 35549064 DOI: 10.1021/acsmacrolett.0c00879] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein we designed bottlebrush copolymers for use as a neutral additive to block copolymer (BCP) thin films in which they are segregated to the interfaces via architectural effects and produce nonpreferential interfaces to induce perpendicular orientation of BCP microdomains. Two BCP systems were employed, a conventional poly(styrene-b-methyl methacrylate) (PS-b-PMMA) with relatively low χ and similar surface energies between blocks, and a high χ poly(styrene-b-methacrylic acid) (PS-b-PMAA) with distinct surface energies. The bottlebrushes, with either short side-chains of PS-r-PMMA or PS-r-PMAA random copolymers, were synthesized via ring-opening metathesis polymerization (ROMP). Remarkably, it was observed that the top and bottom interfaces of both BCP films were enriched with bottlebrush copolymers, regardless of the surface energy difference between blocks, hence, vertically oriented microdomains were achieved for both BCP systems. This can be attributed to the screening of polymer interactions by a good solvent during the spin-casting process, allowing architectural effects to play a role in surface segregation of bottlebrush copolymers, as confirmed by contact angle measurements and time-of-flight secondary ion mass spectroscopy (TOF-SIMS). We believe that this concept can be further extended to various applications that require polymer films with functional surfaces.
Collapse
Affiliation(s)
- Ki Hyun Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Mincheol Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Junsoo Moon
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - June Huh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
99911
|
Joseph S, Thomas S, Mohan J, Kumar AS, Jayasree ST, Thomas S, Kalarikkal N. Theoretical Study on Tuning Band Gap and Electronic Properties of Atomically Thin Nanostructured MoS 2/Metal Cluster Heterostructures. ACS OMEGA 2021; 6:6623-6628. [PMID: 33748575 PMCID: PMC7970460 DOI: 10.1021/acsomega.0c05274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Nano-heterostructures have attracted immense attention recently due to their remarkable interfacial properties determined by the heterointerface of different nanostructures. Here, using first-principles density functional theory (DFT) calculations, we examine what range the variable electronic properties such as the electronic band gap can be tuned by combining two dissimilar nanostructures consisting of atomically thin nanostructured MoS2 clusters with small silver and gold nanoparticles (Ag/Au NPs). Most interestingly, our calculations show that the electronic band gap of the nanostructured MoS2 cluster can be tuned from 2.48 to 1.58 and 1.61 eV, by the formation of heterostructures with silver and gold metal nanoclusters, respectively. This band gap is ideal for various applications ranging from flexible nanoelectronics to nanophotonics applications. Furthermore, the adsorption of H2 molecules on both nano-heterostructures is investigated, and the computed binding energies are found to be within the desirable range. The reported theoretical results provide inspiration for engineering various optoelectronic applications for nanostructured MoS2-based heterostructures.
Collapse
Affiliation(s)
- Saju Joseph
- International
and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686560 Kerala, India
| | - Simil Thomas
- Department
of Physics, Government College Nedumangad, Trivandrum, 695541 Kerala, India
| | - Jainy Mohan
- International
and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686560 Kerala, India
| | - Anusha Saji Kumar
- School
of Pure and Applied Physics, Mahatma Gandhi
University, Kottayam, 686560 Kerala, India
| | | | - Sabu Thomas
- International
and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686560 Kerala, India
- School
of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560 Kerala, India
| | - Nandakumar Kalarikkal
- International
and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686560 Kerala, India
- School
of Pure and Applied Physics, Mahatma Gandhi
University, Kottayam, 686560 Kerala, India
| |
Collapse
|
99912
|
A Low-Temperature Heat Output Photoactive Material-Based High-Performance Thermal Energy Storage Closed System. MATERIALS 2021; 14:ma14061434. [PMID: 33809446 PMCID: PMC8000957 DOI: 10.3390/ma14061434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/26/2021] [Accepted: 02/25/2021] [Indexed: 11/18/2022]
Abstract
Designing and synthesizing photothermal conversion materials with better storage capacity, long-term stability as well as low temperature energy output capability is still a huge challenge in the area of photothermal storage. In this work, we report a brand new photothermal conversion material obtained by attaching trifluoromethylated azobenzene (AzoF) to reduced graphene oxide (rGO). AzoF-rGO exhibits outstanding heat storage density and power density up to 386.1 kJ·kg−1 and 890.6 W·kg−1, respectively, with a long half-life (87.7 h) because of the H-bonds based on high attachment density. AzoF-rGO also exhibits excellent cycling stability and is equipped with low-temperature energy output capability, which achieves the reversible cycle of photothermal conversion within a closed system. This novel AzoF-rGO complex, which on the one hand exhibits remarkable energy storage performance as well as excellent storage life span, and on the other hand is equipped with the ability to release heat at low temperatures, shows broad prospects in the practical application of actual photothermal storage.
Collapse
|
99913
|
Liu N, Huang Y, Zhang H, Wang T, Tao C, Zhang A, Chen B, Yin Y, Song M, Qu G, Liang Y, Shi J, He B, Hu L, Jiang G. Unified Probability Distribution and Dynamics of Lead Contents in Human Erythrocytes Revealed by Single-Cell Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3819-3826. [PMID: 33660988 DOI: 10.1021/acs.est.0c05989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the presence and dynamics of chemical pollutants in individual cells is fundamentally important for their trafficking, fate, and toxicity in humans. The presence of molecular components (i.e., proteins and mRNA) in individual cells of higher organisms is considered a stochastic event. The characteristics of chemical pollutants, as extrinsic compounds, in subpopulation of human cells on single-cell basis have not been explored yet. Here, we demonstrated the lead (Pb) content in individual mature erythrocytes (m-erythrocytes) of Pb-intoxicated patients, and healthy subjects exhibited a unified pattern in probability distribution (gamma distribution) and dynamics, despite being highly heterogeneous. The Pb content in individual m-erythrocytes decreased with the lifetime of m-erythrocytes. Meanwhile, the distribution and dynamics were found to be highly related to the Pb content in m-erythrocytes and was independent of patients and their status. This is the first study to analyze the distribution pattern of chemical pollutants at a single-cell level in higher organisms. This study sheds light on the molecular mechanism of Pb trafficking and fate in humans and the search for an efficient strategy to improve Pb excretion during Pb treatment.
Collapse
Affiliation(s)
- Nian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshun Huang
- Department of Occupational Medicine, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong 510300, China
| | - Huazhou Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wang
- Huizhou City Occupational Disease Prevention and Control Hospital, Huizhou, Guangdong 516008, China
| | - Chen Tao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
99914
|
Chen QY, Liu MY, Cao C, He Y. Strain-dependent optical properties of the novel monolayer group-IV dichalcogenides SiS 2semiconductor: a first-principles study. NANOTECHNOLOGY 2021; 32:235201. [PMID: 33647888 DOI: 10.1088/1361-6528/abeada] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
We studied the structural, electronic, and optical characters of SiS2, a new type of group IV-VI two-dimensional semiconductor, in this article. We focused on monolayer SiS2and its characteristic changes when different strains are applied on it. Results reveal that the monolayer SiS2is dynamically stable when no strain is applied. In terms of electronic properties, it remains a semiconductor under applied strain within the range from -10% to 10%. Besides, its indirect band-gap is altered regularly after applying a strain, whereas different strains lead to various changing trends. As for its optical properties, it exhibits remarkable transparency for infrared and most visible light. Its main absorption and reflection regions lie in the blue and ultraviolet areas. The applied uniaxial strain causes its different optical properties along the armchair direction and zigzag direction. Moreover, the tensile strain could tune its optical properties more effectively than the compressive strain. When different strains are applied, the major changes are in blue and ultraviolet regions, but only minor changes can be found in infrared and visible regions. So its optical properties reveal good stability in infrared and visible regions. Therefore, SiS2has a promising prospect in nano-electronic and nano-photoelectric devices.
Collapse
Affiliation(s)
- Qing-Yuan Chen
- School of Physical Science and Technology, Kunming University, Kunming, 650214, People's Republic of China
| | - Ming-Yang Liu
- Department of Physics, Yunnan University, NO.2 Green Lake North Road, Wu Hua Qu, Kunming, Yunnan Province 650091, People's Republic of China
| | - Chao Cao
- Department of Physics, Hangzhou Normal University, NO.16 Xue Lin Street, Xia Sha Gao Jiao Yuan Qu Hangzhou, Zhe Jiang Province 310036, People's Republic of China
| | - Yao He
- Department of Physics, Yunnan University, NO.2 Green Lake North Road, Wu Hua Qu, Kunming, Yunnan Province 650091, People's Republic of China
| |
Collapse
|
99915
|
Han S, Xia H, Lu Y, Hu S, Zhang D, Xu W, Fang M, Liu W, Cao P, Zhu D. Great Enhancement Effect of 20-40 nm Ag NPs on Solar-Blind UV Response of the Mixed-Phase MgZnO Detector. ACS OMEGA 2021; 6:6699-6707. [PMID: 33748583 PMCID: PMC7970469 DOI: 10.1021/acsomega.0c05555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/10/2021] [Indexed: 05/25/2023]
Abstract
High-performance solar-blind UV detector with high response and fast speed is needed in multiple types of areas, which is hard to achieve in one device with a simple structure and device fabrication process. Here, the effects of Ag nanoparticles (NPs) with different sizes on UV response characteristics of the device are studied, the Ag NPs with different sizes that are made from a simple vacuum anneal method. Ag NPs with different sizes could modulate the peak response position of the mixed-phase MgZnO detector from near UV range (350 nm) to deep UV range (235 nm), and the enhancement effect of the Ag NPs on the UV response differs much with the crystal structure and the basic UV response of the MgZnO thin film. When high density 20-40 nm Ag NPs is induced, the deep UV (235 nm) response of the mixed-phase MgZnO detector is increased by 226 times, the I uv/I dark ratio of the modified device is increased by 17.5 times. The slight enhancement in UV light intensity from 20 to 40 nm Ag NPs induces multiple tunnel breakdown phenomena within the mixed-phase MgZnO thin film, which is the main reason for the abnormal great enhancement effect on deep UV response of the device, so the recovery speed of the modified device is not influenced. Therefore, Ag NPs with different sizes could effectively modulate the UV response peak position of mixed-phase MgZnO thin films, and the introduction of Ag NPs with high density and small size is a simple way to greatly increase the sensitivity of the mixed-phase MgZnO detector at deep UV light without decreasing the device speed.
Collapse
Affiliation(s)
- Shun Han
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
| | - Hao Xia
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
| | - YouMing Lu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
| | - Sirong Hu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
| | - DaoHua Zhang
- LUMINOUS!
Centre of Excellence for Semiconductor Lighting and Displays, School
of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Wangying Xu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
| | - Ming Fang
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
| | - WenJun Liu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
| | - PeiJiang Cao
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
| | - DeLiang Zhu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
| |
Collapse
|
99916
|
Wang L, Tian M, Qi X, Sun X, Xu T, Liu X, Zhu S, Zhang X, Qu L. Customizable Textile Sensors Based on Helical Core-Spun Yarns for Seamless Smart Garments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3122-3129. [PMID: 33682406 DOI: 10.1021/acs.langmuir.0c03595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most of the current sensors cannot meet the needs for seamless integration into the textile substrates of smart clothing and require improvements in terms of comfort and durability. Herein, smart textile-based sensors that have different sensing properties with integrated electronic elements were fabricated by knitting graphene-based helical conductive core-spun yarns. Such graphene-modified core-spun yarns are employed as building blocks of textile strain sensors, which showed high elasticity (ε > 300%), fast response time (120 ms), excellent reproducibility (over 10 000 cycles), wide sensing range (up to 100% strain), and low detection limit (0.3% strain). Thus, resistance-type strain sensors and capacitance-type pressure sensors composed of graphene-based smart fabric could be used to monitor large-scale limb movement and subtle human physiological signals. Such seamless smart textile-based fabric composed of superelastic helical conductive core-spun yarns shows great potential for fabricating an intelligent device to achieve real-time precise medicine and healthcare.
Collapse
Affiliation(s)
- Lihong Wang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P. R. China
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P. R. China
| | - Xiangjun Qi
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P. R. China
| | - Xuantong Sun
- School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Tailin Xu
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P. R. China
| | - Xuqing Liu
- School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Shifeng Zhu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P. R. China
| | - Lijun Qu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
99917
|
Synthetic heparan sulfate standards and machine learning facilitate the development of solid-state nanopore analysis. Proc Natl Acad Sci U S A 2021; 118:2022806118. [PMID: 33688052 DOI: 10.1073/pnas.2022806118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The application of solid-state (SS) nanopore devices to single-molecule nucleic acid sequencing has been challenging. Thus, the early successes in applying SS nanopore devices to the more difficult class of biopolymer, glycosaminoglycans (GAGs), have been surprising, motivating us to examine the potential use of an SS nanopore to analyze synthetic heparan sulfate GAG chains of controlled composition and sequence prepared through a promising, recently developed chemoenzymatic route. A minimal representation of the nanopore data, using only signal magnitude and duration, revealed, by eye and image recognition algorithms, clear differences between the signals generated by four synthetic GAGs. By subsequent machine learning, it was possible to determine disaccharide and even monosaccharide composition of these four synthetic GAGs using as few as 500 events, corresponding to a zeptomole of sample. These data suggest that ultrasensitive GAG analysis may be possible using SS nanopore detection and well-characterized molecular training sets.
Collapse
|
99918
|
Chen Y, Lerch S, Say Z, Tiburski C, Langhammer C, Moth-Poulsen K. Catalytically active and thermally stable core-shell gold-silica nanorods for CO oxidation. RSC Adv 2021; 11:11642-11650. [PMID: 35423604 PMCID: PMC8695914 DOI: 10.1039/d1ra01577j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/13/2021] [Indexed: 11/21/2022] Open
Abstract
Deactivation based on sintering phenomena is one of the most costly issues for the industrial application of metal nanoparticle catalysts. To address this drawback, mesoporous silica encapsulation is reported as a promising strategy to stabilize metallic nanoparticles towards use in high temperature catalytic applications. These protective shells provide significant structural support to the nanoparticles, while the mesoporosity allows for efficient transport of the reactants to the catalytically active surface of the metallic nanoparticle in the core. Here, we extend the use of gold nanorods with mesoporous silica shells by investigating their stability in the CO oxidation reaction as an example of high temperature gas phase catalysis. Gold nanorods were chosen as the model system due to the availability of a simple, high yield synthesis method for both the metallic nanorods and the mesoporous silica shells. We demonstrate the catalytic activity of gold nanorods with mesoporous silica shells at temperatures up to 350 °C over several cycles, as well as the thermal stability up to 500 °C, and compare these results to surfactant-stabilized gold nanorods of similar size, which degrade, and lose most of their catalytic activity, before reaching 150 °C. These results show that the gold nanorods protected by the mesoporous silica shells have a significantly higher thermal stability than surfactant-stabilized gold nanorods and that the mesoporous silica shell allows for stable catalytic activity with little degradation at high temperatures.
Collapse
Affiliation(s)
- Yidong Chen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology SE-412-96 Gothenburg Sweden
| | - Sarah Lerch
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology SE-412-96 Gothenburg Sweden
| | - Zafer Say
- Department of Physics, Chalmers University of Technology SE-412-96 Gothenburg Sweden
| | - Christopher Tiburski
- Department of Physics, Chalmers University of Technology SE-412-96 Gothenburg Sweden
| | - Christoph Langhammer
- Department of Physics, Chalmers University of Technology SE-412-96 Gothenburg Sweden
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology SE-412-96 Gothenburg Sweden
| |
Collapse
|
99919
|
Mirtaleb MS, Mirtaleb AH, Nosrati H, Heshmatnia J, Falak R, Zolfaghari Emameh R. Potential therapeutic agents to COVID-19: An update review on antiviral therapy, immunotherapy, and cell therapy. Biomed Pharmacother 2021; 138:111518. [PMID: 33774315 PMCID: PMC7962551 DOI: 10.1016/j.biopha.2021.111518] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, in December 2020 and coronavirus disease 19 (COVID-19) was later announced as pandemic by the World Health Organization (WHO). Since then, several studies have been conducted on the prevention and treatment of COVID-19 by potential vaccines and drugs. Although, the governments and global population have been attracted by some vaccine production projects, the presence of SARS-CoV-2-specific antiviral drugs would be an urge necessity in parallel with the efficient preventive vaccines. Various nonspecific drugs produced previously against other bacterial, viral, and parasite infections were recently evaluated for treating patients with COVID-19. In addition to therapeutic properties of these anti-COVID-19 compounds, some adverse effects were observed in different human organs as well. Not only several attentions were paid to antiviral therapy and treatment of COVID-19, but also nanomedicine, immunotherapy, and cell therapy were conducted against this viral infection. In this review study, we planned to introduce the present and potential future treatment strategies against COVID-19 and define the advantages and disadvantages of each treatment strategy.
Collapse
Affiliation(s)
- Mona Sadat Mirtaleb
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161 Tehran, Iran.
| | - Amir Hossein Mirtaleb
- Department of Materials Science & Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, PO Box 14115-143, Tehran, Iran.
| | - Hassan Nosrati
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Jalal Heshmatnia
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran; Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161 Tehran, Iran.
| |
Collapse
|
99920
|
Mar‐Pineda CG, Poggi‐Varaldo HM, Ponce‐Noyola MT, Estrada‐Bárcenas DA, Ríos‐Leal E, Esparza‐García FJ, Galíndez‐Mayer J, Rinderknecht‐Seijas NF. Effect of zero‐valent iron nanoparticles on the remediation of a clayish soil contaminated with γ‐hexachlorocyclohexane (lindane) in a bioelectrochemical slurry reactor. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Catherine G. Mar‐Pineda
- Environmental Biotechnology and Renewable Energies Group, Department of Biotechnology and Bioengineering CINVESTAV‐IPN Mexico City Mexico
| | - Héctor M. Poggi‐Varaldo
- Environmental Biotechnology and Renewable Energies Group, Department of Biotechnology and Bioengineering CINVESTAV‐IPN Mexico City Mexico
- Transdisciplinary Doctoral Program Science and Technology for Society CINVESTAV‐IPN Mexico City Mexico
| | | | | | - Elvira Ríos‐Leal
- Department of Biotechnology and Bioengineering CINVESTAV‐IPN Mexico City Mexico
| | | | - Juvencio Galíndez‐Mayer
- Department of Biochemical Engineering National School of Biological Sciences ENCB‐IPN Mexico City Mexico
| | - Noemí F. Rinderknecht‐Seijas
- Division of Basic Science School of Chemical Engineering and Extractive Industries ESIQIE‐IPN Mexico City Mexico
| |
Collapse
|
99921
|
Zhao Y, Lu F, Zhang Y, Zhang M, Zhao Y, Luo J, Kong H, Qu H. Water-Soluble Carbon Dots in Cigarette Mainstream Smoke: Their Properties and the Behavioural, Neuroendocrinological, and Neurotransmitter Changes They Induce in Mice. Int J Nanomedicine 2021; 16:2203-2217. [PMID: 33762821 PMCID: PMC7982445 DOI: 10.2147/ijn.s291670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/17/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND It is well known that smoking is harmful to health; however, it can also ameliorate anxiety. To date, it is unclear whether any nanoparticles found in cigarette mainstream smoke (CS) contribute to this effect. AIM The aim of this study was to assess the particle composition of CS to identify novel anti-anxiety components. METHODS Carbon dots (CDs) from CS (CS-CDs) were characterised using high-resolution transmission electron microscopy, Fourier-transform infrared, ultraviolet, fluorescence, X-ray photoelectron spectroscopy, X-ray diffraction and high-performance liquid chromatography. The anti-anxiety effects of CS-CDs in mouse models were evaluated and confirmed with the elevated plus maze and open-field tests. RESULTS The quantum yield of CS-CDs was 13.74%, with a composition of C, O, and N. In addition, the surface groups contained O-H, C-H, C=O, C-N, N-H, C-O-C, and COO- bonds. Acute toxicity testing revealed that CS-CDs had low in vitro and in vivo toxicity within a certain concentration range. The results of the elevated plus maze and open-field tests showed that CS-CDs had a significant anti-anxiety effect and a certain sedative effect in mice. The mechanism of these effects may be related to the decrease in glutamate levels and promotion of norepinephrine production in the mouse brain, and the decrease in dopamine in mouse serum due to CS-CDs. CONCLUSION CS-CDs may have anti-anxiety and certain sedative effects. This study provides a new perspective for a more comprehensive understanding of the components, properties, and functions of CS. Furthermore, it offers a novel target for the development of smoking cessation treatments, such as nicotine replacement therapy.
Collapse
Affiliation(s)
- Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Fang Lu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yusheng Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Juan Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Huihua Qu
- Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
99922
|
Fazli-Shokouhi S, Nasirpouri F, Khatamian M. Epoxy-matrix polyaniline/ p-phenylenediamine-functionalised graphene oxide coatings with dual anti-corrosion and anti-fouling performance. RSC Adv 2021; 11:11627-11641. [PMID: 35423603 PMCID: PMC8696046 DOI: 10.1039/d0ra10665h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/07/2021] [Indexed: 11/21/2022] Open
Abstract
This research work reports on the anti-corrosion and anti-fouling properties of epoxy (E) coatings reinforced with polyaniline (PANI)/p-phenylenediamine-functionalised graphene oxide (PGO) composites. The mass ratio of graphene oxide/p-phenylenediamine in any PGO was assumed to be 1 : 1, but different PANI-PGO composites containing various loadings of PGO were prepared. An ultrasonic-assisted in situ polymerization method was employed to produce PANI-PGO at low temperature (0 °C). Several analytical and microscopical techniques, i.e., Fourier-transfer infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM), were used to confirm that PANI-PGO composites were successfully synthesized. The epoxy-based coatings (E/PANI-PGO (x), x = 0.05-0.4 g) were applied by brushing them onto carbon steel substrates, which exhibited dual anti-corrosion and anti-fouling performance. Electrochemical impedance spectroscopy (EIS) results show that E/PANI-PGO (0.2) has the highest corrosion resistance (8.87 × 106 Ω cm2) after 192 h of immersion in 3.5 wt% NaCl amongst all the coatings compared with neat epoxy (1.00 × 104 Ω cm2) and E/PANI (6.82 × 103 Ω cm2). Efficient antifouling performance at the macroscopic level under simulated marine conditions was observed for the epoxy-based PANI-PGO coatings with a range of PGO compositions, in particular for the 0.1 and 0.2 g PGO coatings.
Collapse
Affiliation(s)
- Sara Fazli-Shokouhi
- Faculty of Materials Engineering, Sahand University of Technology Tabriz Iran +98 41 33444333 +98 41 33459450
| | - Farzad Nasirpouri
- Faculty of Materials Engineering, Sahand University of Technology Tabriz Iran +98 41 33444333 +98 41 33459450
| | - Maasoumeh Khatamian
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz Tabriz Iran
| |
Collapse
|
99923
|
Shiomoto S, Higuchi H, Yamaguchi K, Takaba H, Kobayashi M. Spreading Dynamics of a Precursor Film of Ionic Liquid or Water on a Micropatterned Polyelectrolyte Brush Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3049-3056. [PMID: 33667098 DOI: 10.1021/acs.langmuir.0c03260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Time evolution of the microscopic wetting velocity of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) or water on a micrometer-scale line-patterned surface with a poly(3-sulfopropyl methacrylate) brush and a hydrophobic perfluoroalkyl monolayer was precisely measured by direct observation using optical microscopy and a selective dyeing method over a long period (178 days). When a liquid droplet was placed on the dyed line-patterned brush surface, the liquid penetrated and spread into the polymer brush layer, forming a precursor thin film that extended beyond the macroscopic contact line. The elongation proceeded in two stages by an adiabatic process followed by a diffusive process. The elongation distance X increased with time in proportion to t2.6 for water and t0.81 for EMI-TFSI during the adiabatic process. In a diffusive process, the advancing velocity of the precursor film was markedly reduced to be expressed as X ∝ t0.66 for water and X ∝ t0.21 for EMI-TFSI, indicating that the diffusive process was affected by the energy dissipation of the wetting system. The high viscosity and the strong molecular interaction of EMI-TFSI with the polymer brush gave a large entropy change during the wetting process to result in a slower spreading velocity.
Collapse
Affiliation(s)
- Shohei Shiomoto
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Hayato Higuchi
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Kazuo Yamaguchi
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Hiromitsu Takaba
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Motoyasu Kobayashi
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| |
Collapse
|
99924
|
Chiesa M, Giamello E. On the Role and Applications of Electron Magnetic Resonance Techniques in Surface Chemistry and Heterogeneous Catalysis. Catal Letters 2021. [DOI: 10.1007/s10562-021-03576-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Some relevant aspects of Electron Paramagnetic Resonance (EPR) applied to the fields of surface chemistry and heterogeneous catalysis are illustrated in this perspective paper that aims to show the potential of these techniques in describing critical features of surface structures and reactivity. Selected examples are employed covering distinct aspects of catalytic science from morphological analysis of surfaces to detailed descriptions of chemical bonding and catalytic sites topology. In conclusions the pros and cons related to the acquisition of EPR instrumentations in an advanced laboratory of surface chemistry and heterogeneous catalysis are briefly considered.
Graphic Abstract
Collapse
|
99925
|
Esposito MC, Corsi I, Russo GL, Punta C, Tosti E, Gallo A. The Era of Nanomaterials: A Safe Solution or a Risk for Marine Environmental Pollution? Biomolecules 2021; 11:441. [PMID: 33809769 PMCID: PMC8002239 DOI: 10.3390/biom11030441] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, the application of engineered nanomaterials (ENMs) in environmental remediation gained increasing attention. Due to their large surface area and high reactivity, ENMs offer the potential for the efficient removal of pollutants from environmental matrices with better performances compared to conventional techniques. However, their fate and safety upon environmental application, which can be associated with their release into the environment, are largely unknown. It is essential to develop systems that can predict ENM interactions with biological systems, their overall environmental and human health impact. Until now, Life-Cycle Assessment (LCA) tools have been employed to investigate ENMs potential environmental impact, from raw material production, design and to their final disposal. However, LCA studies focused on the environmental impact of the production phase lacking information on their environmental impact deriving from in situ employment. A recently developed eco-design framework aimed to fill this knowledge gap by using ecotoxicological tools that allow the assessment of potential hazards posed by ENMs to natural ecosystems and wildlife. In the present review, we illustrate the development of the eco-design framework and review the application of ecotoxicology as a valuable strategy to develop ecosafe ENMs for environmental remediation. Furthermore, we critically describe the currently available ENMs for marine environment remediation and discuss their pros and cons in safe environmental applications together with the need to balance benefits and risks promoting an environmentally safe nanoremediation (ecosafe) for the future.
Collapse
Affiliation(s)
- Maria Consiglia Esposito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy;
| | - Gian Luigi Russo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano and INSTM Local Unit, Via Mancinelli 7, 20131 Milano, Italy;
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| | - Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| |
Collapse
|
99926
|
Wang D, Zhang H, Vu T, Zhan Y, Malhotra A, Wang P, Chitgupi U, Rai A, Zhang S, Wang L, Huizinga JD, Lovell JF, Xia J. Trans-illumination intestine projection imaging of intestinal motility in mice. Nat Commun 2021; 12:1682. [PMID: 33727562 PMCID: PMC7966380 DOI: 10.1038/s41467-021-21930-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Functional intestinal imaging holds importance for the diagnosis and evaluation of treatment of gastrointestinal diseases. Currently, preclinical imaging of intestinal motility in animal models is performed either invasively with excised intestines or noninvasively under anesthesia, and cannot reveal intestinal dynamics in the awake condition. Capitalizing on near-infrared optics and a high-absorbing contrast agent, we report the Trans-illumination Intestine Projection (TIP) imaging system for free-moving mice. After a complete system evaluation, we performed in vivo studies, and obtained peristalsis and segmentation motor patterns of free-moving mice. We show the in vivo typical segmentation motor pattern, that was previously shown in ex vivo studies to be controlled by intestinal pacemaker cells. We also show the effects of anesthesia on motor patterns, highlighting the possibility to study the role of the extrinsic nervous system in controlling motor patterns, which requires unanesthetized live animals. Combining with light-field technologies, we further demonstrated 3D imaging of intestine in vivo (3D-TIP). Importantly, the added depth information allows us to extract intestines located away from the abdominal wall, and to quantify intestinal motor patterns along different directions. The TIP system should open up avenues for functional imaging of the GI tract in conscious animals in natural physiological states.
Collapse
Affiliation(s)
- Depeng Wang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Huijuan Zhang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Tri Vu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ye Zhan
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Akash Malhotra
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Pei Wang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Aliza Rai
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Sizhe Zhang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Lidai Wang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jan D Huizinga
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Ontario, Canada
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
99927
|
Xu S, Ding X, Shi H, Zhang X, Sun X, Ji N, Zhang X, Zhang Z. EA-Directing Formamidinium-Based Perovskite Microwires with A-Site Doping. ACS OMEGA 2021; 6:7157-7164. [PMID: 33748629 PMCID: PMC7970562 DOI: 10.1021/acsomega.1c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
One recent development to improve optoelectronic properties of perovskites is to use a larger cation for multication engineering. The chain-like ethylammonium (EA) [(C2H5)NH3]+ cation is more likely to form a one-dimensional perovskite structure; however, there is no remarkable evidence in this connection. Therefore, in this work, for the first time, the EA cation as an alternative cation was introduced into FAPbBr3 cubic crystals to explore the stabilities and optoelectronic properties of mixed FA x EA(1-x)PbBr3 perovskites. The results indicate that replacing FA with EA is a more effective way to realize band gap tuning and morphology transformation between the cubic shape and microwires. The tuned band gap of perovskite is due to the variation of Pb-Br-Pb angles induced by the insertion of the larger EA cation. We highlight that this work provides new physical insights into the correlation between the engineering of organic cations and the formation of perovskite microwires and the tunable band gap. This observation will help us to find new ways to grow perovskite microwires and subsequently study the optoelectronic performance of low-dimensional perovskites devices.
Collapse
Affiliation(s)
- Shan Xu
- School
of Science and Engineering and Shenzhen Key Lab of Semiconductor Lasers, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- School
of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, China
- Department
of Optics and Optical Engineering, University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xue Ding
- School
of Science and Engineering and Shenzhen Key Lab of Semiconductor Lasers, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Huafeng Shi
- Southern
University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xinhai Zhang
- Southern
University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaowei Sun
- Southern
University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ning Ji
- School
of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, China
| | - Xiaoli Zhang
- School
of Science and Engineering and Shenzhen Key Lab of Semiconductor Lasers, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zhaoyu Zhang
- School
of Science and Engineering and Shenzhen Key Lab of Semiconductor Lasers, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
99928
|
Occupational Exposure to Carbon Nanotubes and Carbon Nanofibres: More Than a Cobweb. NANOMATERIALS 2021; 11:nano11030745. [PMID: 33809629 PMCID: PMC8002294 DOI: 10.3390/nano11030745] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 01/20/2023]
Abstract
Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) are erroneously considered as singular material entities. Instead, they should be regarded as a heterogeneous class of materials bearing different properties eliciting particular biological outcomes both in vitro and in vivo. Given the pace at which the industrial production of CNTs/CNFs is increasing, it is becoming of utmost importance to acquire comprehensive knowledge regarding their biological activity and their hazardous effects in humans. Animal studies carried out by inhalation showed that some CNTs/CNFs species can cause deleterious effects such as inflammation and lung tissue remodeling. Their physico-chemical properties, biological behavior and biopersistence make them similar to asbestos fibers. Human studies suggest some mild effects in workers handling CNTs/CNFs. However, owing to their cross-sectional design, researchers have been as yet unable to firmly demonstrate a causal relationship between such an exposure and the observed effects. Estimation of acceptable exposure levels should warrant a proper risk management. The aim of this review is to challenge the conception of CNTs/CNFs as a single, unified material entity and prompt the establishment of standardized hazard and exposure assessment methodologies able to properly feed risk assessment and management frameworks.
Collapse
|
99929
|
Karker O, Bange R, Bano E, Stambouli V. Optimizing interferences of DUV lithography on SOI substrates for the rapid fabrication of sub-wavelength features. NANOTECHNOLOGY 2021; 32:235301. [PMID: 33545695 DOI: 10.1088/1361-6528/abe3b6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Scalable fabrication of Si nanowires with a critical dimension of about 100 nm is essential to a variety of applications. Current techniques used to reach these dimensions often involve e-beam lithography or deep-UV (DUV) lithography combined with resolution enhancement techniques. In this study, we report the fabrication of <150 nm Si nanowires from SOI substrates using DUV lithography (λ = 248 nm) by adjusting the exposure dose. Irregular resist profiles generated by in-plane interference under masking patterns of width 800 nm were optimized to split the resulting features into twin Si nanowires. However, masking patterns of micrometre size or more on the same photomask does not generate split features. The resulting resist profiles are verified by optical lithography computer simulation based on Huygens-Fresnel diffraction theory. Photolithography simulation results validate that the key factors in the fabrication of subwavelength nanostructures are the air gap value and the photoresist thickness. This enables the parallel top-down fabrication of Si nanowires and nanoribbons in a single DUV lithography step as a rapid and inexpensive alternative to conventional e-beam techniques.
Collapse
Affiliation(s)
- Olfa Karker
- IMEP-LaHC, Univ. Grenoble Alpes, CNRS, Grenoble INP, F-38000 Grenoble, France
- LMGP, Univ. Grenoble Alpes, CNRS, Grenoble INP, F-38000 Grenoble, France
| | - Romain Bange
- IMEP-LaHC, Univ. Grenoble Alpes, CNRS, Grenoble INP, F-38000 Grenoble, France
- LMGP, Univ. Grenoble Alpes, CNRS, Grenoble INP, F-38000 Grenoble, France
| | - Edwige Bano
- IMEP-LaHC, Univ. Grenoble Alpes, CNRS, Grenoble INP, F-38000 Grenoble, France
| | - Valérie Stambouli
- LMGP, Univ. Grenoble Alpes, CNRS, Grenoble INP, F-38000 Grenoble, France
| |
Collapse
|
99930
|
Zhou C, Chu Z, Hou W, Wang X. Lanthanide-Doped Upconversion-Linked Immunosorbent Assay for the Sensitive Detection of Carbohydrate Antigen 19-9. Front Chem 2021; 8:592445. [PMID: 33718326 PMCID: PMC7954120 DOI: 10.3389/fchem.2020.592445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/10/2020] [Indexed: 12/22/2022] Open
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted considerable attention in detection of biological analytes and bioimaging owing to their superior optical properties, including high photochemical stability, sharp emission bandwidth, large anti-Stokes shifts, and low toxicity. In this work, we fabricated UCNP-linked immunosorbent assay (ULISA) for the sensitive detection of carbohydrate antigen 19-9 (CA19-9). The design is based on amino-functionalized SiO2-coated Gd-doped NaYF4:Yb3+,Er3+ upconversion nanoparticles (UCNPs@SiO2-NH2) as a direct background-free luminescent reporter; a secondary anti-IgG antibody (Ab2) was conjugated to the surface of UCNPs@SiO2-NH2 (UCNP-Ab2), and UCNP-Ab2 was used for specific targeting of CA19-9. The UCNPs were well characterized by TEM, SEM, XRD, FT-IR, and UV-vis. The detection process was similar to enzyme-linked immunosorbent assay (ELISA). UCNPs were used as signal transducer to replace the color compounds for an enzyme-mediated signal amplification step. An anti-CA19-9 primary antibody (Ab1) was fixed for capturing the CA19-9, and the fluorescence signal was obtained from the specific immunoreaction between UCNP-Ab2 and CA19-9. Under optimum conditions, this ULISA shows sensitive detection of CA19-9 with a dynamic range of 5-2,000 U/ml. The ULISA system shows higher detection sensitivity and wider detection range compared with the traditional ELISA for CA19-9 detection. This strategy using UCNPs as signal transducer may pave a new avenue for the exploration of rare doped UCNPs in ELISA assay for clinical applications in the future.
Collapse
Affiliation(s)
- Chaohui Zhou
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, School of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Zhongyun Chu
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, School of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Wenyue Hou
- School of Intellectual Property, Xihua University, Chengdu, China
| | - Xiuying Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, School of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| |
Collapse
|
99931
|
Qiao T, Son DH. Synthesis and Properties of Strongly Quantum-Confined Cesium Lead Halide Perovskite Nanocrystals. Acc Chem Res 2021; 54:1399-1408. [PMID: 33566565 DOI: 10.1021/acs.accounts.0c00706] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ConspectusSemiconducting metal halide perovskite (MHP) nanocrystals have emerged as an important new class of materials as the source of photons and charges for various applications that can outperform many other semiconductor nanocrystals utilized for the same purposes. However, the majority of the studies of MHP nanocrystals focused on weakly or nonconfined systems, where the quantum confinement giving rise to various size-dependent and confinement-enhanced photophysical properties cannot be explored readily. This was partially due to the challenge in producing strongly quantum-confined MHP nanocrystals, since the traditional kinetic control approach was less effective for the size control. Recent synthetic progress in MHP nanocrystals utilizing the equilibrium-based size control achieved the precise control of quantum confinement with high ensemble uniformity, enabling the exploration of the unique properties of MHP nanocrystals under strong quantum confinement. In this Account, we review the recent progress made in the synthesis of strongly quantum-confined cesium lead halide nanocrystals and investigation of the properties of exciton modified by strong quantum confinement. The main body of this Account discusses the key results of the research in this field in two separate sections. Section 2 describes the thermodynamic equilibrium-based synthesis method to control the size of cesium lead halide perovskite quantum dots in strongly confined regime. Size control in anisotropic nanocrystals with one- and two-dimensional quantum confinement is also discussed. Section 3 covers the following three topics that highlight the effects of quantum confinement on various spectroscopic properties of excitons in cesium lead halide perovskite nanocrystals: (1) Size-dependent absorption cross section of cesium lead halide quantum dots; (2) confinement effect on exciton fine structure and access to the dark exciton exhibiting intense and long-lived photoluminescence; (3) activation of forbidden exciton transition via dynamic lattice distortion by the photoexcited charge carriers enhanced by quantum confinement. The impact of strong quantum confinement goes beyond the properties of excitons covered in this Account and is expected to expand the functionality of MHP nanocrystals as the source of photons and charges. For instance, realization of the possible enhancement of photon down- and upconversion and hot carrier generation via quantum confinement will further increase the usefulness of strongly confined MHP nanocrystals in their applications.
Collapse
Affiliation(s)
- Tian Qiao
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Dong Hee Son
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (BME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
99932
|
Sun Y, Terrones M, Schaak RE. Colloidal Nanostructures of Transition-Metal Dichalcogenides. Acc Chem Res 2021; 54:1517-1527. [PMID: 33662209 DOI: 10.1021/acs.accounts.1c00006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ConspectusLayered transition-metal dichalcogenides (TMDs) are intriguing two-dimensional (2D) compounds where metal and chalcogen atoms are covalently bonded in each monolayer, and the monolayers are held together by weak van der Waals forces. Distinct from graphene, which is chemically inert, layered TMDs exhibit a wide range of electronic, optical, catalytic, and magnetic properties dependent upon their compositions, crystal structures, and thicknesses, which make them fundamentally and technologically important. TMD nanostructures are traditionally synthesized using gas-phase chemical deposition methods, which are typically limited to small-scale samples of substrate-bound planar materials. Colloidal synthesis has emerged as an alternative synthesis approach to enable the scalable synthesis of free-standing TMDs. The judicious selection of precursors, solvents, and capping ligands together with the optimization of synthesis parameters such as concentrations and temperatures leads to the fabrication of colloidal TMD nanostructures exhibiting tunable properties. In addition, understanding the formation and transformation of TMD nanostructures in solution contributes to the discovery of important structure-function relationships, which may be extendable to other anisotropic systems.In this Account, we summarize recent progress in the colloidal synthesis, characterization, and applications of TMD nanostructures with tunable compositions, structures, and thicknesses. On the basis of the preparation of Mo- and W-based disulfide, diselenide, and ditelluride nanostructures, we discuss examples of phase engineering where various metastable TMD compounds can be directly accessed at low temperatures in solution. We also analyze the chemistry involved in broadly tuning the composition across the MoSe2-WSe2, WS2-WSe2, and MoTe2-WTe2 solid solutions as well as atomic-level microscopic characterization and the resulting composition-tunable properties. We then highlight how the high densities of defects in the colloidally synthesized TMD nanostructures enable unique catalytic properties, including their ability to facilitate the selective hydrogenation of substituted nitroarenes using molecular hydrogen. Finally, using this library of colloidal TMD nanostructures as substrates, we discuss the pathways by which noble metals deposit onto them in solution. We highlight the importance of the relative strengths of the interfacial metal-chalcogen bonds in determining the sizes and morphologies of the deposited noble metal components. These synthesis capabilities for colloidal TMD nanostructures, which have been generalized to a library of composition-tunable phases, enable new systematic studies of structure-property relationships and chemical reactivity in this important class of 2D materials.
Collapse
|
99933
|
Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:746. [PMID: 33809633 PMCID: PMC8000772 DOI: 10.3390/nano11030746] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
To achieve the promise of stimuli-responsive drug delivery systems for the treatment of cancer, they should (1) avoid premature clearance; (2) accumulate in tumors and undergo endocytosis by cancer cells; and (3) exhibit appropriate stimuli-responsive release of the payload. It is challenging to address all of these requirements simultaneously. However, the numerous proof-of-concept studies addressing one or more of these requirements reported every year have dramatically expanded the toolbox available for the design of drug delivery systems. This review highlights recent advances in the targeting and stimuli-responsiveness of drug delivery systems. It begins with a discussion of nanocarrier types and an overview of the factors influencing nanocarrier biodistribution. On-demand release strategies and their application to each type of nanocarrier are reviewed, including both endogenous and exogenous stimuli. Recent developments in stimuli-responsive targeting strategies are also discussed. The remaining challenges and prospective solutions in the field are discussed throughout the review, which is intended to assist researchers in overcoming interdisciplinary knowledge barriers and increase the speed of development. This review presents a nanocarrier-based drug delivery systems toolbox that enables the application of techniques across platforms and inspires researchers with interdisciplinary information to boost the development of multifunctional therapeutic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
| | - Edward Davis
- Materials Engineering Program, Mechanical Engineering Department, Auburn University, 101 Wilmore Drive, Auburn, AL 36830, USA;
| |
Collapse
|
99934
|
Anderson HL, Patrick CW, Scriven LM, Woltering SL. A Short History of Cyclocarbons. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200345] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Harry L. Anderson
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Connor W. Patrick
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Lorel M. Scriven
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Steffen L. Woltering
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| |
Collapse
|
99935
|
A perfusable, multifunctional epicardial device improves cardiac function and tissue repair. Nat Med 2021; 27:480-490. [PMID: 33723455 DOI: 10.1038/s41591-021-01279-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
Despite advances in technologies for cardiac repair after myocardial infarction (MI), new integrated therapeutic approaches still need to be developed. In this study, we designed a perfusable, multifunctional epicardial device (PerMed) consisting of a biodegradable elastic patch (BEP), permeable hierarchical microchannel networks (PHMs) and a system to enable delivery of therapeutic agents from a subcutaneously implanted pump. After its implantation into the epicardium, the BEP is designed to provide mechanical cues for ventricular remodeling, and the PHMs are designed to facilitate angiogenesis and allow for infiltration of reparative cells. In a rat model of MI, implantation of the PerMed improved ventricular function. When connected to a pump, the PerMed enabled targeted, sustained and stable release of platelet-derived growth factor-BB, amplifying the efficacy of cardiac repair as compared to the device without a pump. We also demonstrated the feasibility of minimally invasive surgical PerMed implantation in pigs, demonstrating its promise for clinical translation to treat heart disease.
Collapse
|
99936
|
Ding H, Wang D, Sadat A, Li Z, Hu X, Xu M, de Morais PC, Ge B, Sun S, Ge J, Chen Y, Qian Y, Shen C, Shi X, Huang X, Zhang RQ, Bi H. Single-Atom Gadolinium Anchored on Graphene Quantum Dots as a Magnetic Resonance Signal Amplifier. ACS APPLIED BIO MATERIALS 2021; 4:2798-2809. [PMID: 35014319 DOI: 10.1021/acsabm.1c00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A single-atom metal doped on carbonaceous nanomaterials has attracted increasing attention due to its potential applications as high-performance catalysts. However, few studies focus on the applications of such nanomaterials as nanotheranostics for simultaneous bioimaging and cancer therapy. Herein, it is pioneeringly demonstrated that the single-atom Gd anchored onto graphene quantum dots (SAGd-GQDs), with dendrite-like morphology, was successfully prepared. More importantly, the as-fabricated SAGd-GQDs exhibits a robustly enhanced longitudinal relaxivity (r1 = 86.08 mM-1 s-1) at a low Gd3+ concentration of 2 μmol kg-1, which is 25 times higher than the commercial Gd-DTPA (r1 = 3.44 mM-1 s-1). In vitro and in vivo studies suggest that the obtained SAGd-GQDs is a highly potent and contrast agent to obtain high-definition MRI, thereby opening up more opportunities for future precise clinical theranostics.
Collapse
Affiliation(s)
- Haizhen Ding
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Dong Wang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Anwar Sadat
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Zhenzhen Li
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Xiaolong Hu
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Mingsheng Xu
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Paulo C de Morais
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China.,Catholic University of Brasília, Brasília, Distrito Federal 70790-160, Brazil.,University of Brasília, Brasília, Distrito Federal 70910-900, Brazil
| | - Binghui Ge
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Song Sun
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Jiechao Ge
- Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei 230601, P. R. China
| | - Yinfeng Qian
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Chengliang Shen
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, P. R. China
| | - Xianyang Shi
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, P. R. China
| | - Xin Huang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Ren-Quan Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Hong Bi
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
99937
|
Bai T, Ai J, Liao L, Luo J, Song C, Duan Y, Han L, Che S. Chiral Mesostructured NiO Films with Spin Polarisation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Te Bai
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Jing Ai
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Liyang Liao
- Laboratory of Advanced Materials (MOE) School of Materials Science and Engineering Tsinghua University Beijing 100084 P. R. China
| | - Junwei Luo
- State Key Laboratory of Superlattices and Microstructures Institute of Semiconductors Chinese Academy of Sciences Beijing 100083 P.R. China
| | - Cheng Song
- Laboratory of Advanced Materials (MOE) School of Materials Science and Engineering Tsinghua University Beijing 100084 P. R. China
| | - Yingying Duan
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Lu Han
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Shunai Che
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P.R. China
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| |
Collapse
|
99938
|
Martini F, Cibella S, Gaggero A, Mattioli F, Leoni R. Waveguide integrated hot electron bolometer for classical and quantum photonics. OPTICS EXPRESS 2021; 29:7956-7965. [PMID: 33820252 DOI: 10.1364/oe.410317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The development of performant integrated detectors, which are sensitive to quantum fluctuations of coherent light, are strongly desired to realize a scalable and determinist photonic quantum processor based on continuous variables states of light. Here, we investigate the performance of hot electron bolometers (HEBs) fabricated on top of a silicon-on-insulator (SOI) photonic circuit showing responsivities up to 8600 V/W and a record noise equivalent temperature of 1.1 dB above the quantum limit. Thanks to a detailed analysis of the noise sources of the waveguide integrated HEB, we estimate 14.8 dBV clearance between the shot noise and electrical noise with just 1.1µW of local oscillator power. The full technology compatibility with superconducting nanowire single photon detectors (SNSPDs) opens the possibility of nonclassical state engineering and state tomography performed within the same platform, enabling a new class of optical quantum processors.
Collapse
|
99939
|
Ahangarpour A, Alboghobeish S, Oroojan AA, Dehghani MA. Caffeic acid protects mice pancreatic islets from oxidative stress induced by multi-walled carbon nanotubes (MWCNTs). VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2021; 12:77-85. [PMID: 33953877 PMCID: PMC8094137 DOI: 10.30466/vrf.2019.94666.2279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
Abstract
Increasing applications of carbon nanotubes (CNTs) indicate the necessity to examine their toxicity. According to previous studies, CNTs caused oxidative stress that impaired β-cell functions and reduced insulin secretion. Our previous study indicated that single-walled carbon nanotubes (SWCNTs) could induce oxidative stress in pancreatic islets. However, there is no study on the effects of multi-walled carbon nanotubes (MWCNTs) on islets and β-cells. Therefore, the present study aims to evaluate effects of MWCNTs on the oxidative stress of islets and the protective effects of caffeic acid (CA) as an antioxidant. The effects of MWCNTs and CA on islets were investigated using MTT assay, reactive oxygen species (ROS), malondialdehyde (MDA), activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), the content of glutathione (GSH) and mitochondrial membrane potential (MMP) and insulin secretion measurements. The lower viability of islet cells was dose-dependent due to the exposure to MWCNTs according to the MTT assay. Further studies revealed that MWCNTs decreased insulin secretion and MMP, induced ROS creation, increased the MDA level, and decreased activities of SOD, GSH-Px, CAT, and content of GSH. Furthermore, the pretreatment of islets with CA returned the changes. These findings indicated that MWCNTs might induce the oxidative stress of pancreatic islets occurring diabetes and protective CA effects that were mediated by the augmentation of the antioxidant defense system of islets. Our research suggested the necessity of conducting further studies on effects of MWCNTs and CA on the diabetes.
Collapse
Affiliation(s)
- Akram Ahangarpour
- Diabetes Research Center, Health Research Institute, Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soheila Alboghobeish
- Student Research Committee, Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
| | - Ali Akbar Oroojan
- Student Research Committee, Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Mohammad Amin Dehghani
- Student Research Committee, Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
99940
|
Li L, Lin X, Chen T, Liu K, Chen Y, Yang Z, Liu D, Xu G, Wang X, Lin G. Systematic evaluation of CdSe/ZnS quantum dots toxicity on the reproduction and offspring health in male BALB/c mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111946. [PMID: 33493718 DOI: 10.1016/j.ecoenv.2021.111946] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/25/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Increased applications of quantum dots (QDs) in the biomedical field have aroused attention for their potential toxicological effects. Although numerous studies have been carried out on the toxicity of QDs, their effects on reproductive and development are still unclear. In this study, we systematically evaluated the male reproductive toxicity and developmental toxicity of CdSe/ZnS QDs in BALB/c mice. The male mice were injected intravenously with CdSe/ZnS QDs at the dosage of 2.5 mg/kg BW or 25 mg/kg BW, respectively, and the survival status, biodistribution of QDs in testes, serum sex hormone levels, histopathology, sperm motility and acrosome integrity was measured on Day 1, 7, 14, 28 and 42 after injection. On Day 35 after treatment, male mice were housed with non-exposed female mice, and then offspring number, body weight, organ index and histopathology of major organs, blood routine and biochemical tests of offspring were measured to evaluate the fertility and offspring health. The results showed that CdSe/ZnS QDs could rapidly distribute in the testis, and the fluorescence of QDs could still be detected on Day 42 post-injection. QDs had no adverse effect on the structure of testis and epididymis, but high-dose QDs could induce apoptosis of Leydig cells in testis at an early stage. No significant differences in survival of state, body weight organ index of testis and epididymis, sex hormones levels, sperm quality, sperm acrosome integrity and fertility of male mice were observed in QDs exposed groups. However, the development of offspring was obviously influenced, which was mainly manifested in the slow growth of offspring, changes in organ index of main organs, and the abnormality of liver and kidney function parameters. Our findings revealed that CdSe/ZnS QDs were able to cross the blood-testis barrier (BTB), produce no discernible toxic effects on the male reproductive system, but could affect the healthy growth of future generations to some extent. In view of the broad application prospect of QDs in biomedical fields, our findings might provide insight into the biological safety evaluation of the reproductive health of QDs.
Collapse
Affiliation(s)
- Li Li
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiaotan Lin
- Department of Family Planning, Second Clinical Medical College of Jinan University; Shenzhen People's Hospital, Shenzhen 518060, China
| | - Tingting Chen
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Kan Liu
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Yajing Chen
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Zhiwen Yang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Dongmeng Liu
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Xiaomei Wang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Guimiao Lin
- School of Public Health, Shenzhen University Health Sciences Center, Shenzhen 518060, China; Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
99941
|
Gao Z, Xu B, Fan Y, Zhang T, Chen S, Yang S, Zhang W, Sun X, Wei Y, Wang Z, Wang X, Meng X, Zhao YS. Topological‐Distortion‐Driven Amorphous Spherical Metal‐Organic Frameworks for High‐Quality Single‐Mode Microlasers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhenhua Gao
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Baoyuan Xu
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Yuqing Fan
- Key Laboratory of photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Tongjin Zhang
- Key Laboratory of photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Shunwei Chen
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Shuo Yang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Weiguang Zhang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xun Sun
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Yanhui Wei
- College of Chemistry and Material Science Shandong Agricultural University Taian 271018 Shandong China
| | - Zifei Wang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xue Wang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xiangeng Meng
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Yong Sheng Zhao
- Key Laboratory of photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
99942
|
Influence of the Thermomechanical Characteristics of Low-Density Polyethylene Substrates on the Thermoresistive Properties of Graphite Nanoplatelet Coatings. COATINGS 2021. [DOI: 10.3390/coatings11030332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Morphological, structural, and thermoresistive properties of films deposited on low-density polyethylene (LDPE) substrates are investigated for possible application in flexible electronics. Scanning and transmission electron microscopy analyses, and X-ray diffraction measurements show that the films consist of overlapped graphite nanoplatelets (GNP) each composed on average of 41 graphene layers. Differential scanning calorimetry and dynamic-mechanical-thermal analysis indicate that irreversible phase transitions and large variations of mechanical parameters in the polymer substrates can be avoided by limiting the temperature variations between −40 and 40 °C. Electrical measurements performed in such temperature range reveal that the resistance of GNP films on LDPE substrates increases as a function of the temperature, unlike the behavior of graphite-based materials in which the temperature coefficient of resistance is negative. The explanation is given by the strong influence of the thermal expansion properties of the LDPE substrates on the thermo-resistive features of GNP coating films. The results show that, narrowing the temperature range from 20 to 40 °C, the GNP on LDPE samples can work as temperature sensors having linear temperature-resistance relationship, while keeping constant the temperature and applying mechanical strains in the 0–4.2 × 10−3 range, they can operate as strain gauges with a gauge factor of about 48.
Collapse
|
99943
|
Dushaq G, Rasras M. Multilayer 2D germanium phosphide (GeP) infrared phototransistor. OPTICS EXPRESS 2021; 29:9419-9428. [PMID: 33820370 DOI: 10.1364/oe.420431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Layered two-dimensional (2D) materials with broadband photodetection capability have tremendous potential in the design and engineering of future optoelectronics devices. To date, studies of 2D semiconductors are actively focused on graphene, black phosphorus, and black arsenic phosphorus as attractive candidates. So far, however, novel group IV-V 2D semiconductors (e.g., GeAs and SiAs) have not been extensively explored for broad-band optoelectronics applications. Here, we report a high-performance multilayered 2D GeP gate-tunable photodetector that operates at a short-wavelength infrared (SWIR) regime. With a back-gate device geometry, a p-type behavior is observed at room temperature. Furthermore, a broadband spectral response from UV to optical communication wavelengths is detected. Under a nanowatt-level illumination, a peak responsivity of 25.5 A/W at λ = 1310 nm is achieved with detectivity of ∼ 1×1011 cm.Hz1/2.W-1 at a source-drain bias of -5 V and medium gate voltage bias of -30 V. Additionally, the devices show a relatively low dark current of 40-250 nA for device area in the range of 50-600 µm2 and excellent stability and reproducibility. Our work demonstrates the potential of 2D GeP as an alternative mid-infrared material with broad optical tunability suitable for optical communication and low-light-level detection applications.
Collapse
|
99944
|
Zha Z, Liu R, Yang W, Li C, Gao J, Shafi M, Fan X, Li Z, Du X, Jiang S. Surface-enhanced Raman scattering by the composite structure of Ag NP-multilayer Au films separated by Al 2O 3. OPTICS EXPRESS 2021; 29:8890-8901. [PMID: 33820330 DOI: 10.1364/oe.419133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
In the present study, a nanoparticle-multilayer metal film substrate was presented with silver nanoparticles (Ag NPs) assembled on a multilayer gold (Au) film by employing alumina (Al2O3) as a spacer. The SERS performance of the proposed structures was determined. It was suggested that the SERS effect was improved with the increase in the number of layers, which was saturated at four layers. The SERS performance of the structures resulted from the mutual coupling of multiple plasmon modes [localized surface plasmons (LSPs), surface plasmon polaritons (SPPs), as well as bulk plasmon polaritons (BPPs)] generated by the Ag NP-multilayer Au film structure. Furthermore, the electric field distribution of the hybrid system was studied with COMSOL Multiphysics software, which changed in almost consistency with the experimentally achieved results. For this substrate, the limit of detection (LOD) was down to 10-13 M for the rhodamine 6G (R6G), and the proposed SERS substrate was exhibited prominently quantitatively detected capability and high reproducibility. Moreover, a highly sensitive detection was conducted on toluidine blue (TB) molecules. As revealed from the present study, the Ag NP-multilayer Au film structure can act as a dependable SERS substrate for its sensitive molecular sensing applications in the medical field.
Collapse
|
99945
|
Zhu S, Xu Z, Zhang H, Yang K, Wang N, Liu H, Wang Y, Xia J, Huang L. Liquid crystal integrated metadevice for reconfigurable hologram displays and optical encryption. OPTICS EXPRESS 2021; 29:9553-9564. [PMID: 33820380 DOI: 10.1364/oe.419914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The ultimate goal of metasurface research in recent years is to apply metasurface to reality applications and improve the performance compared to its counterpart, namely conventional optical elements with the same function. Inspired by the application of electrically addressing spatial light modulator (EA-SLM) and based on the binary holographic algorithm, here we propose a reconfigurable metadevice integrated with the nematic liquid crystal (NLC). The smart metadevice directly uses the subwavelength antennas as the main contributor to the phase accumulation instead of the NLC layer. By applying different electrical modulation patterns on the NLC, the metadevice can realize the function of dynamic holographic display as traditional SLMs but features in smaller size, higher resolution and lager field of view. In addition, we improved the existing computer-generated hologram algorithm to generate three holograms with quantitative correlation and also propose a new optical encryption method based on our metadevice. The encryption method needs four elements in total to decrypt and can fully meets the requirements of the various encrypted content. We believe such metadevice paves the way for the new generation of micro-optical display and optical encryption devices.
Collapse
|
99946
|
Liu T, Zhou C, Xiao S. Tailoring anisotropic absorption in a borophene-based structure via critical coupling. OPTICS EXPRESS 2021; 29:8941-8950. [PMID: 33820334 DOI: 10.1364/oe.419792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The research of two-dimensional (2D) materials with atomic-scale thicknesses and unique optical properties has become a frontier in photonics and electronics. Borophene, a newly reported 2D material, provides a novel building block for nanoscale materials and devices. We present a simple borophene-based absorption structure to boost the light-borophene interaction via critical coupling in the visible wavelengths. The proposed structure consists of borophene monolayer deposited on a photonic crystal slab backed with a metallic mirror. The numerical simulations and theoretical analysis show that the light absorption of the structure can be remarkably enhanced as high as 99.80% via critical coupling mechanism with guided resonance, and the polarization-dependent absorption behaviors are demonstrated due to the strong anisotropy of borophene. We also examine the tunability of the absorption behaviors by adjusting carrier density and lifetime of borophene, air hole radius in the slab, the incident angle and polarization angle. The proposed absorption structure provides novel access to the flexible and effective manipulation of light-borophene interactions in the visible and shows a good prospect for the future borophene-based electronic and photonic devices.
Collapse
|
99947
|
Gao Y, Qin Y, Wan C, Sun Y, Meng J, Huang J, Hu Y, Jin H, Yang K. Small Extracellular Vesicles: A Novel Avenue for Cancer Management. Front Oncol 2021; 11:638357. [PMID: 33791224 PMCID: PMC8005721 DOI: 10.3389/fonc.2021.638357] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles are small membrane particles derived from various cell types. EVs are broadly classified as ectosomes or small extracellular vesicles, depending on their biogenesis and cargoes. Numerous studies have shown that EVs regulate multiple physiological and pathophysiological processes. The roles of small extracellular vesicles in cancer growth and metastasis remain to be fully elucidated. As endogenous products, small extracellular vesicles are an ideal drug delivery platform for anticancer agents. However, several aspects of small extracellular vesicle biology remain unclear, hindering the clinical implementation of small extracellular vesicles as biomarkers or anticancer agents. In this review, we summarize the utility of cancer-related small extracellular vesicles as biomarkers to detect early-stage cancers and predict treatment outcomes. We also review findings from preclinical and clinical studies of small extracellular vesicle-based cancer therapies and summarize interventional clinical trials registered in the United States Food and Drug Administration and the Chinese Clinical Trials Registry. Finally, we discuss the main challenges limiting the clinical implementation of small extracellular vesicles and recommend possible approaches to address these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
99948
|
Francius G, Cervulle M, Clément E, Bellanger X, Ekrami S, Gantzer C, Duval JFL. Impacts of Mechanical Stiffness of Bacteriophage-Loaded Hydrogels on Their Antibacterial Activity. ACS APPLIED BIO MATERIALS 2021; 4:2614-2627. [PMID: 35014378 DOI: 10.1021/acsabm.0c01595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The elaboration of efficient hydrogel-based materials with antimicrobial properties requires a refined control of defining their physicochemical features, which includes mechanical stiffness, so as to properly mediate their antibacterial activity. In this work, we design hydrogels consisting of polyelectrolyte multilayer films for the loading of T4 and φX174 bacteria-killing viruses, also called bacteriophages. We investigate the antiadhesion and bactericidal performances of this biomaterial against Escherichia coli, with a specific focus on the effects of chemical cross-linking of the hydrogel matrix, which, in turn, mediates the hydrogel stiffness. Depending on the latter and on phage replication features, it is found that the hydrogels loaded with the bacteria-killing viruses make both contact killing (targeted bacteria are those adhered at the hydrogel surface) and release killing (planktonic bacteria are the targets) possible with ca. 20-80% efficiency after only 4 h of incubation at 25 °C as compared to cases where hydrogels are free of viruses. We further demonstrate the lack of dependence of virus diffusion within the hydrogel and of the maximal viral storage capacity on the hydrogel mechanical properties. In addition to the evidenced bacteriolytic activity of the phages loaded in the hydrogels, the antimicrobial property of the phage-loaded materials is shown to be partly controlled by the chemistry of the hydrogel skeleton and, more specifically, by the mobility of the peripheral free polycationic components, known for their ability to weaken and permeabilize membranes of bacteria, the latter then becoming "easier" targets for the viruses.
Collapse
Affiliation(s)
| | - Manon Cervulle
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Eloïse Clément
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | - Saeid Ekrami
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | | |
Collapse
|
99949
|
Pielmeier MRP, Nilges T. Bildungsmechanismen für Phosphoren und SnIP. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Markus R. P. Pielmeier
- Department Chemie Technische Universität München (TUM) Lichtenbergstraße 4 85748 Garching b. München Deutschland
| | - Tom Nilges
- Department Chemie Technische Universität München (TUM) Lichtenbergstraße 4 85748 Garching b. München Deutschland
| |
Collapse
|
99950
|
Ariga K, Shionoya M. Nanoarchitectonics for Coordination Asymmetry and Related Chemistry. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200362] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|