51
|
Hainfellner A, Borkovec M, Seebrecht L, Neuhauser M, Roetzer-Pejrimovsky T, Greutter L, Surböck B, Hager-Seifert A, Gorka-Vom Hof D, Urbanic-Purkart T, Stultschnig M, Cijan C, Würtz F, Calabek-Wohinz B, Pichler J, Höllmüller I, Leibetseder A, Weis S, Kleindienst W, Seiberl M, Bieler L, Hecker C, Schwartz C, Iglseder S, Heugenhauser J, Nowosielski M, Thomé C, Moser P, Hoffermann M, Loibnegger K, Dieckmann K, Tomschik M, Widhalm G, Rössler K, Marosi C, Wöhrer A, Hainfellner JA, Oberndorfer S. Glioblastoma in the real-world setting: patterns of care and outcome in the Austrian population. J Neurooncol 2024; 170:407-418. [PMID: 39192069 PMCID: PMC11538164 DOI: 10.1007/s11060-024-04808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
PURPOSE We present results of a retrospective population-based investigation of patterns of care and outcome of glioblastoma patients in Austria. PATIENTS AND METHODS In this nation-wide cooperative project, all Austrian glioblastoma patients newly diagnosed between 2014 and 2018 and registered in the ABTR-SANOnet database were included. Histological typing used criteria of the WHO classification of CNS tumors, 4th edition 2016. Patterns of care were assessed, and all patients were followed until the end of 2019. RESULTS 1,420 adult glioblastoma cases were identified. 813 (57.3%) patients were male and 607 (42.7%) female. Median age at diagnosis was 64 years (range: 18-88). Median overall survival (OS) was 11.6 months in the total cohort and 10.9 months in patients with proven IDH-wildtype. Median OS in the patient group ≤ 65 years receiving postoperative standard of care therapy was 16.1 months. In the patient group > 65 years with postoperative therapy, median OS was 11.2 months. Follow-up ≥ 5 years identified 13/264 (4.9%) long-term survivors. Brain tumor surgery frequently was assisted by 5-aminolevulinic acid (5-ALA) fluorescence (up to 55%). Postoperative treatment was initiated around one month after surgery (median: 31 days) following standardized protocols in 1,041/1,420 (73.3%) cases. In 830 patients (58.5%), concomitant radiochemotherapy was started according to the established standard of care. Treatment in case of progressive disease was considerably variable. 170/1,420 patients (12.0%) underwent a second surgical procedure, 467 (33.0%) received systemic treatment after progression, and 173 (12.2%) were re-irradiated. CONCLUSION Our data illustrate and confirm nation-wide translation of effective standard of care to Austrian glioblastoma patients in the recent past. In the case of progressive disease, highly variable therapeutic approaches were used, most frequently accompanied by anti-angiogenic therapy. Long-term survival was observed in a minor proportion of mostly younger patients who typically had gross total tumor resection, a favorable postoperative ECOG score, and standard of care therapy.
Collapse
Affiliation(s)
- Andreas Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Medical University Campus AKH 4J, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.
| | - Martin Borkovec
- Division of Neuropathology and Neurochemistry, Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Medical University Campus AKH 4J, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Lukas Seebrecht
- Division of Neuropathology and Neurochemistry, Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Medical University Campus AKH 4J, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Magdalena Neuhauser
- Division of Neuropathology and Neurochemistry, Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Medical University Campus AKH 4J, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Thomas Roetzer-Pejrimovsky
- Division of Neuropathology and Neurochemistry, Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Medical University Campus AKH 4J, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Lisa Greutter
- Division of Neuropathology and Neurochemistry, Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Medical University Campus AKH 4J, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Birgit Surböck
- Department of Neurology, Clinic Favoriten, Vienna, Austria
| | | | | | | | | | - Clemens Cijan
- Department of Neurology, State Hospital Klagenfurt, Klagenfurt, Austria
| | - Franz Würtz
- Department of Pathology, State Hospital Klagenfurt, Klagenfurt, Austria
| | | | - Josef Pichler
- Department of Internal Medicine and Neuro-Oncology, Neuromed Campus, Kepler University Hospital, Johannes Kepler University of Linz, Linz, Austria
| | - Isolde Höllmüller
- Department of Internal Medicine and Neuro-Oncology, Neuromed Campus, Kepler University Hospital, Johannes Kepler University of Linz, Linz, Austria
| | - Annette Leibetseder
- Department of Neurology, Neuromed Campus, Kepler University Hospital, Johannes Kepler University of Linz, Linz, Austria
| | - Serge Weis
- Division of Neuropathology, Department of Pathology and Molecular Pathology, Neuromed Campus, Kepler University Hospital, and Clinical Research Institute for Neurosciences, Johannes Kepler University of Linz, Linz, Austria
| | - Waltraud Kleindienst
- Department of Neurology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Michael Seiberl
- Department of Neurology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Lara Bieler
- Department of Neurology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Constantin Hecker
- Department of Neurology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
- Department of Neurosurgery, University Hospital Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Christoph Schwartz
- Department of Neurosurgery, University Hospital Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Sarah Iglseder
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Martha Nowosielski
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Moser
- Laboratory of Neuropathology, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Markus Hoffermann
- Department of Neurosurgery, State Hospital Feldkirch, Feldkirch, Austria
| | - Karin Loibnegger
- Department of Radiation Oncology, State Hospital Feldkirch, Feldkirch, Austria
| | - Karin Dieckmann
- Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Matthias Tomschik
- Department of Neurosurgery, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Karl Rössler
- Department of Neurosurgery, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Christine Marosi
- Division of Palliative Care, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Division of Oncology, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Adelheid Wöhrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Medical University Campus AKH 4J, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Medical University Campus AKH 4J, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Stefan Oberndorfer
- Department of Neurology, University Hospital St. Pölten, Dunant-Platz 1, 3100, St. Pölten, Austria.
- Karl Landsteiner Institute for Clinical Neurology and Neuropsychology, Department of Neurology, University Hospital St. Pölten, St. Pölten, Austria.
| |
Collapse
|
52
|
Cai Z, Yang Z, Wang Y, Li Y, Zhao H, Zhao H, Yang X, Wang C, Meng T, Tong X, Zheng H, He Z, Niu C, Yang J, Chen F, Yang Z, Zou Z, Li W. Tumor treating induced fields: a new treatment option for patients with glioblastoma. Front Neurol 2024; 15:1413236. [PMID: 39484048 PMCID: PMC11524832 DOI: 10.3389/fneur.2024.1413236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/10/2024] [Indexed: 11/03/2024] Open
Abstract
Purpose Currently, a range of electromagnetic therapies, including magnetic field therapy, micro-currents therapy, and tumor treating fields, are under investigation for their potential in central nervous system tumor research. Each of these electromagnetic therapies possesses distinct effects and limitations. Our focus is on overcoming these limitations by developing a novel electric field generator. This generator operates by producing alternating induced currents within the tumor area through electromagnetic induction. Methods Finite element analysis was employed to calculate the distribution of electric fields. Cell viability was assessed using the CCK-8 assay. Tumor volumes and weights served as indicators to evaluate the effectiveness of TTIF. The in-vivo imaging system was utilized to confirm tumor growth in the brains of mice. Results TTIF significantly inhibited the proliferation of U87 cells both in vitro and in vivo. Conclusion TTIF significantly inhibited the proliferation of U87 cells both in vitro and in vivo. Consequently, TTIF emerges as a potential treatment option for patients with progressive or metastatic GBM.
Collapse
Affiliation(s)
- Zehao Cai
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zukai Yang
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Ying Wang
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Ye Li
- Kunlun Tripot (Beijing) Medical Technology Co., Ltd., Beijing, China
| | - Hong Zhao
- Kunlun Tripot (Beijing) Medical Technology Co., Ltd., Beijing, China
| | - Hanwen Zhao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xue Yang
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Can Wang
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tengteng Meng
- Kunlun Tripot (Beijing) Medical Technology Co., Ltd., Beijing, China
| | - Xiao Tong
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Hao Zheng
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Zhaoyong He
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Chunli Niu
- Kunlun Tripot (Beijing) Medical Technology Co., Ltd., Beijing, China
| | - Junzhi Yang
- Kunlun Tripot (Beijing) Medical Technology Co., Ltd., Beijing, China
| | - Feng Chen
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhi Yang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Zhige Zou
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenbin Li
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
53
|
Taule EM, Brekke J, Miletic H, Sætran H, Maric S, HogenEsch I, Mahesparan R. Breaking boundaries: A rare case of glioblastoma with uncommon extraneural metastases: A case report and literature review. BRAIN & SPINE 2024; 4:103927. [PMID: 39823071 PMCID: PMC11736052 DOI: 10.1016/j.bas.2024.103927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 01/19/2025]
Abstract
Introduction Extraneural metastases (ENM) from glioblastoma (GBM) remain extremely rare with only a scarce number of cases described in the literature. The lack of cases leads to no consensus on the optimal treatment and follow-up of these patients. Research question Do patient or tumor characteristics describe risk factors for ENM in GBM patients, and is it possible to identify mechanisms of action? Material and methods This study presents a 55-year-old man with diagnosed GBM who was referred to a CT due to reduced general condition and mild back pain which revealed extensive systemic metastases. A literature review was conducted to identify potential patient or tumor characteristics that may serve as risk factors for metastasis. Results ENM from GBM are likely underreported, with limited examples in the literature and low survival rates of only a few months. Certain clinical and histopathological factors, such as male sex, younger age, temporal lobe location, and specific biological markers, have been associated with a higher likelihood of metastasis formation. Bone and/or bone marrow metastases are the most common sites. Despite various treatment regimens being attempted, there is no consensus on the optimal therapeutic approach for this patient group. Conclusion Clinical and histopathological factors can aid clinicians in recognizing the potential for ENM in GBM patients. Our review identifies some of the possible patient- and tumor-related risk factors. However, further research is crucial to identify specific molecular markers and elucidate the underlying biological mechanisms that is essential for development of targeted therapies.
Collapse
Affiliation(s)
- Erlend Moen Taule
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009, Bergen, Norway
| | - Jorunn Brekke
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Hrvoje Miletic
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Hege Sætran
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Snezana Maric
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Ineke HogenEsch
- Department of Neurology, Fonna Hospital Trust, Haugesund, Norway
| | - Rupavathana Mahesparan
- Department of Clinical Medicine, University of Bergen Faculty of Medicine and Dentistry, Bergen, Norway
- Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
54
|
Yang X, Hu C, Li L. Technical note: Computational study on thermal management schemes for tumor-treating fields therapy. Med Phys 2024; 51:7632-7644. [PMID: 39023183 DOI: 10.1002/mp.17296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The study focuses on thermal management in tumor-treating fields (TTFields) therapy, crucial for patient compliance and therapeutic effectiveness. TTFields therapy, an established treatment for glioblastoma, involves applying alternating electric fields to the brain. However, managing the thermal effects generated by electrodes is a major challenge, impacting patient comfort and treatment efficiency. PURPOSE This research aims to explore methods for controlling temperature increases during TTFields therapy without reducing its duty cycle. The study emphasizes optimizing electrode configurations and array arrangements to mitigate temperature rise, thereby maintaining therapy effectiveness and patient compliance. METHODS Using a simplified multi-layer tissue model and finite element analysis, various electrode configurations and array shapes were tested in COMSOL Multiphysics v6.0. Adjustments included changing the electrode gel layer radius from 8 to 12 mm, electrode spacing, and transitioning to a more uniform array arrangement, such as a square array or a circular array. RESULTS The study revealed a strong correlation between high temperatures and edge current density distributions on electrodes. It was found that increasing the electrode gel layer's diameter, enlarging electrode spacing, and adopting a uniform array arrangement markedly mitigated temperature rises. By increasing the gel layer radius from the original 10 to 12 mm, a reduction in the peak temperature increases of approximately 0.3°C was observed. Changing the layout from rectangular to circular with the same area further reduced the peak temperature rise by 0.5°C. Additionally, enlarging the spacing between electrodes also contributed to temperature control. By integrating these strategies, we designed a new circular electrode array with an electrode spacing of 45 mm and a gel radius of 12 mm, successfully reducing the peak temperature from 42.1°C to 40.8°C, effectively achieving temperature control. CONCLUSIONS The research demonstrates that improving electrode and array configurations can effectively manage temperature in TTFields therapy without compromising treatment duration. This strategy is crucial as TTFields therapy relies on prolonged field exposure for effectiveness. The findings offer valuable insights into thermal management in electrode array design and could lead to enhanced patient compliance and treatment efficacy in TTFields therapy.
Collapse
Affiliation(s)
- Xin Yang
- National Engineering Research Centre of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Chunhua Hu
- National Engineering Research Centre of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Luming Li
- National Engineering Research Centre of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, China
- Changping Laboratory, Beijing, China
| |
Collapse
|
55
|
Zheng J, Xu G, Guo W, Wang Y, Wu J, Zong D, Ding B, Sun L, He X. Preliminary study of feasibility of surface-guided radiotherapy with concurrent tumor treating fields for glioblastoma: region of interest. Radiat Oncol 2024; 19:129. [PMID: 39334165 PMCID: PMC11430246 DOI: 10.1186/s13014-024-02525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVE To evaluate the impact of the residual setup errors from differently shaped region of interest (ROI) and investigate if surface-guided setup can be used in radiotherapy with concurrent tumor treating fields (TTFields) for glioblastoma. METHODS Fifteen patients undergone glioblastoma radiotherapy with concurrent TTFields were involved. Firstly, four shapes of region of interest (ROI) (strip-shaped, T-shaped, ⊥ -shaped and cross-shaped) with medium size relative to the whole face were defined dedicate for patients wearing TTFields transducer arrays. Then, ROI-shape-dependent residual setup errors in six degrees were evaluated using an anthropomorphic head and neck phantom taking CBCT data as reference. Finally, the four types of residual setup errors were converted into corresponding dosimetry deviations (including the target coverage and the organ at risk sparing) of the fifteen radiotherapy plans using a feasible and robust geometric-transform-based method. RESULTS The algebraic sum of the average residual setup errors in six degrees (mm in translational directions and ° in rotational directions) of the four types were 6.9, 1.1, 4.1 and 3.5 respectively. In terms of the ROI-shape-dependent dosimetry deviations, the D98% of PTV dropped off by (3.4 ± 2.0)% (p < 0.05), (0.3 ± 0.5)% (p < 0.05), (0.9 ± 0.9)% (p < 0.05) and (1.1 ± 0.8)% (p < 0.05). The D98% of CTV dropped off by (0.5 ± 0.6)% (p < 0.05) for the strip-shaped ROI while remained unchanged for others. CONCLUSION Surface-guided setup is feasible in radiotherapy with concurrent TTFields and a medium-sized T-shaped ROI is appropriate for the surface-based guidance.
Collapse
Affiliation(s)
- Jiajun Zheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, China.
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 210024, China.
| | - Geng Xu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Wenjie Guo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Yuanyuan Wang
- Department of Clinical Physics and Technique, Ion Medical Center of the First Affiliated Hospital of University of Science and Technology of China (Hefei Ion Medical Center), Hefei, 230088, China
| | - Jianfeng Wu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Dan Zong
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Boyang Ding
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Li Sun
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, China.
| | - Xia He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, China.
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210024, China.
| |
Collapse
|
56
|
Zhong W, Mao J, Wu D, Peng J, Ye W. The efficacy of stereotactic radiotherapy followed by bevacizumab and temozolomide in the treatment of recurrent glioblastoma: a case report. Front Pharmacol 2024; 15:1401000. [PMID: 39295944 PMCID: PMC11408163 DOI: 10.3389/fphar.2024.1401000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor among adults. Despite advancements in multimodality therapy for GBM, the overall prognosis remains poor, with an extremely high risk of recurrence. Currently, there is no established consensus on the optimal treatment option for recurrent GBM, which may include reoperation, reirradiation, chemotherapy, or a combination of the above. Bevacizumab is considered a first-line treatment option for recurrent GBM, as is temozolomide. However, in recurrent GBM, it is necessary to balance the risks and benefits of reirradiation in combination with bevacizumab and temozolomide. Herein, we report the case of a patient with recurrent GBM after standard treatment who benefited from stereotactic radiotherapy followed by bevacizumab and temozolomide maintenance therapy. Following 16 months of concurrent chemoradiotherapy (CCRT), the patient was diagnosed with recurrent GBM by a 3-T contrast-enhanced magnetic resonance imaging (MRI). The addition of localized radiotherapy to the ongoing treatment regimen of bevacizumab, in combination with temozolomide therapy, prolonged the patient's disease-free survival to over 2 years, achieving a significant long-term outcome, with no notable adverse effects observed. This clinical case may provide a promising new option for patients with recurrent GBM.
Collapse
Affiliation(s)
- Wangyan Zhong
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Jiwei Mao
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Dongping Wu
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Jianghua Peng
- Department of General Practice, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Wanli Ye
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
57
|
Oishi T, Koizumi S, Kurozumi K. Mesenchymal stem cells as therapeutic vehicles for glioma. Cancer Gene Ther 2024; 31:1306-1314. [PMID: 38654128 DOI: 10.1038/s41417-024-00775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Glioma is a disease with a poor prognosis despite the availability of multimodality treatments, and the development of novel therapies is urgently needed. Challenges in glioma treatment include the difficulty for drugs to cross the blood-brain barrier when administered systemically and poor drug diffusion when administered locally. Mesenchymal stem cells exhibit advantages for glioma therapy because of their ability to pass through the blood-brain barrier and migrate to tumor cells and their tolerance to the immune system. Therefore, mesenchymal stem cells have been explored as vehicles for various therapeutic agents for glioma treatment. Mesenchymal stem cells loaded with chemotherapeutic drugs show improved penetration and tumor accumulation. For gene therapy, mesenchymal stem cells can be used as vehicles for suicide genes, the so-called gene-directed enzyme prodrug therapy. Mesenchymal stem cell-based oncolytic viral therapies have been attempted in recent years to enhance the efficacy of infection against the tumor, viral replication, and distribution of viral particles. Many uncertainties remain regarding the function and behavior of mesenchymal stem cells in gliomas. However, strategies to increase mesenchymal stem cell migration to gliomas may improve the delivery of therapeutic agents and enhance their anti-tumor effects, representing promising potential for patient treatment.
Collapse
Affiliation(s)
- Tomoya Oishi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinichiro Koizumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhiko Kurozumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
58
|
Ius T, Somma T, Pasqualetti F, Berardinelli J, Vitulli F, Caccese M, Cella E, Cenciarelli C, Pozzoli G, Sconocchia G, Zeppieri M, Gerardo C, Caffo M, Lombardi G. Local therapy in glioma: An evolving paradigm from history to horizons (Review). Oncol Lett 2024; 28:440. [PMID: 39081966 PMCID: PMC11287108 DOI: 10.3892/ol.2024.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/14/2024] [Indexed: 08/02/2024] Open
Abstract
Despite the implementation of multimodal treatments after surgery, glioblastoma (GBM) remains an incurable disease, posing a significant challenge in neuro-oncology. In this clinical setting, local therapy (LT), a developing paradigm, has received significant interest over time due to its potential to overcome the drawbacks of conventional therapy options for GBM. The present review aimed to trace the historical development, highlight contemporary advances and provide insights into the future horizons of LT in GBM management. In compliance with the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols criteria, a systematic review of the literature on the role of LT in GBM management was conducted. A total of 2,467 potentially relevant articles were found and, after removal of duplicates, 2,007 studies were screened by title and abstract (Cohen's κ coefficient=0.92). Overall, it emerged that 15, 10 and 6 clinical studies explored the clinical efficiency of intraoperative local treatment modalities, local radiotherapy and local immunotherapy, respectively. GBM recurrences occur within 2 cm of the radiation field in 80% of cases, emphasizing the significant influence of local factors on recurrence. This highlights the urgent requirement for LT strategies. In total, three primary reasons have thus led to the development of numerous LT solutions in recent decades: i) Intratumoral implants allow the blood-brain barrier to be bypassed, resulting in limited systemic toxicity; ii) LT facilitates bridging therapy between surgery and standard treatments; and iii) given the complexity of GBM, targeting multiple components of the tumor microenvironment through ligands specific to various elements could have a synergistic effect in treatments. Considering the spatial and temporal heterogeneity of GBM, the disease prognosis could be significantly improved by a combination of therapeutic strategies in the era of precision medicine.
Collapse
Affiliation(s)
- Tamara Ius
- Unit of Neurosurgery, Head-Neck and Neurosciences Department, University Hospital of Udine, I-33100 Udine, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | | | - Jacopo Berardinelli
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | - Francesca Vitulli
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | - Mario Caccese
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
| | - Eugenia Cella
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
- Medical Oncology 2, San Martino Hospital-IRCCS, I-16131 Genoa Italy
| | - Carlo Cenciarelli
- Institute of Translational Pharmacology, National Research Council, I-00133 Roma, Italy
| | - Giacomo Pozzoli
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council, I-00133 Roma, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, I-33100 Udine, Italy
| | - Caruso Gerardo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital of Messina, I-98125 Messina, Italy
| | - Maria Caffo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital of Messina, I-98125 Messina, Italy
| | - Giuseppe Lombardi
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
| |
Collapse
|
59
|
Fu X, Ren C, Dai K, Ren M, Yan C. Epithelial-Mesenchymal Transition Related Score Functions as a Predictive Tool for Immunotherapy and Candidate Drugs in Glioma. J Chem Inf Model 2024; 64:6648-6661. [PMID: 39116318 DOI: 10.1021/acs.jcim.4c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Gliomas are aggressive CNS tumors where the epithelial-mesenchymal transition (EMT) is crucial for prognosis. We developed an EMT-based score predicting overall survival (OS) and conducted pathway analyses, revealing functions such as cell proliferation and immune response in glioma progression. The EMT score, correlated with immune functions and cell infiltration, shows potential as an immune response indicator. We identified two promising compounds, BIX02189 and QL-XI-92, as potential glioma treatments based on candidate gene analysis.
Collapse
Affiliation(s)
- Xiaojun Fu
- Sanbo Brain Hospital, Capital Medical University No. 50, Yikesong Road, Xiangshan, Haidian District, Beijing 100070, China
- Laboratory for Clinical Medicine, Capital Medical University, No. 10, You'anmenwai, Fengtai District, Beijing 100070, China
| | - Changyuan Ren
- Sanbo Brain Hospital, Capital Medical University No. 50, Yikesong Road, Xiangshan, Haidian District, Beijing 100070, China
- Beijing Neurosurgical Institute, Capital Medical University, No. 119 South Fourth Ring Road West, Fengtai District, Beijing 100070, China
| | - Kaining Dai
- Sanbo Brain Hospital, Capital Medical University No. 50, Yikesong Road, Xiangshan, Haidian District, Beijing 100070, China
- Laboratory for Clinical Medicine, Capital Medical University, No. 10, You'anmenwai, Fengtai District, Beijing 100070, China
| | - Ming Ren
- Sanbo Brain Hospital, Capital Medical University No. 50, Yikesong Road, Xiangshan, Haidian District, Beijing 100070, China
| | - Changxiang Yan
- Sanbo Brain Hospital, Capital Medical University No. 50, Yikesong Road, Xiangshan, Haidian District, Beijing 100070, China
| |
Collapse
|
60
|
Biedermann GB, Merrifield K, Lustgarten L. Case report: Safety of Tumor Treating Fields therapy with an implantable cardiac pacemaker in a patient with glioblastoma. Front Oncol 2024; 14:1441146. [PMID: 39239269 PMCID: PMC11374662 DOI: 10.3389/fonc.2024.1441146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/23/2024] [Indexed: 09/07/2024] Open
Abstract
Tumor Treating Fields (TTFields) therapy is an anti-cancer treatment modality that is delivered noninvasively to the tumor site via skin-placed arrays. The therapy is US Food and Drug Administration (FDA) approved and Conformité Européenne (CE) marked for adults with newly diagnosed and recurrent glioblastoma (GBM) (grade 4 glioma in the European Union). To date, there are limited data on the safety and efficacy of TTFields therapy in patients with implanted cardiac pacemakers. Herein, we report a case of a 79-year-old male patient with GBM receiving TTFields therapy with a prior medical history of cardiac events necessitating a cardiac pacemaker. The patient presented to the emergency department in May 2021 with newly onset left-sided weakness along with seizures. Based on an initial evaluation and results of the initial computed tomography (CT) scans (May 2021), the patient was clinically diagnosed with a high-grade glioma which was later confirmed as IDH wildtype following a biopsy. He was treated with radiotherapy (40 Gy in 15 fractions), followed by adjuvant temozolomide (TMZ) (75 mg/m2). TTFields therapy was initiated alongside maintenance TMZ (150 mg/m2). Average TTFields therapy usage was 67% throughout the duration of treatment. Follow-up CT scans (February and May of 2022) indicated stable disease. CT scans in August 2022 showed an increase in size of a mass with heterogeneous contrast enhancement and the patient subsequently passed away in October 2022. The patient's last cardiac tests demonstrated that the pacemaker was operational with adequate cardiac function. This report suggests that TTFields therapy concomitant with an implanted electronic device may be safe in patients with GBM.
Collapse
Affiliation(s)
- Gregory B Biedermann
- Department of Radiation Oncology, University of Missouri, Columbia, MO, United States
| | - Kathleen Merrifield
- Department of Global Medical Safety, Novocure Inc., New York, NY, United States
| | | |
Collapse
|
61
|
Li P, Su G, Cui Y. Integrative single-cell and bulk transcriptome analyses identify a distinct pro-tumor macrophage signature that has a major prognostic impact on glioblastomas. Clin Exp Med 2024; 24:187. [PMID: 39136841 PMCID: PMC11322272 DOI: 10.1007/s10238-024-01454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
Glioblastoma (GBM) is a highly heterogeneous disease with poor clinical outcomes. To comprehensively dissect the molecular landscape of GBM and heterogeneous macrophage clusters in the progression of GBM, this study integrates single-cell and bulk transcriptome data to recognize a distinct pro-tumor macrophage cluster significantly associated with the prognosis of GBM and develop a GBM prognostic signature to facilitate prior subtypes. Leveraging glioma single-cell sequencing data, we identified a novel pro-tumor macrophage subgroup, marked by S100A9, which might interact with endothelial cells to facilitate tumor progression via angiogenesis. To further benefit clinical application, a prognostic signature was established with the genes associated with pro-tumor macrophages. Patients classified within the high-risk group characterized with enrichment in functions related to tumor progression, including epithelial-mesenchymal transition and hypoxia, displays elevated mutations in the TERT promoter region, reduced methylation in the MGMT promoter region, poorer prognoses, and diminished responses to temozolomide therapy, thus effectively discriminating between the prognostic outcomes of GBM patients. Our research sheds light on the intricate microenvironment of gliomas and identifies potential molecular targets for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Peilin Li
- Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, 450002, China
| | - Guolei Su
- The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450002, China
| | - Yinglin Cui
- The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450002, China.
| |
Collapse
|
62
|
Latzer P, Zelba H, Battke F, Reinhardt A, Shao B, Bartsch O, Rabsteyn A, Harter J, Schulze M, Okech T, Golf A, Kyzirakos-Feger C, Kayser S, Pieper N, Feldhahn M, Wünsche J, Seitz C, Hadaschik D, Garbe C, Hauser TK, la Fougère C, Biskup D, Brooke D, Parker D, Martens UM, Illerhaus G, Blumenthal DT, Merrell R, Lorenzo LS, Hidvégi M, de Robles P, Kebir S, Li WW, Li VW, Williams M, Miller AM, Kesari S, Castro M, Desjardins A, Ashley DM, Friedman HS, Wen PY, Neil EC, Iwamoto FM, Sipos B, Geletneky K, Zender L, Glas M, Reardon DA, Biskup S. A real-world observation of patients with glioblastoma treated with a personalized peptide vaccine. Nat Commun 2024; 15:6870. [PMID: 39127809 PMCID: PMC11316744 DOI: 10.1038/s41467-024-51315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Current treatment outcome of patients with glioblastoma (GBM) remains poor. Following standard therapy, recurrence is universal with limited survival. Tumors from 173 GBM patients are analysed for somatic mutations to generate a personalized peptide vaccine targeting tumor-specific neoantigens. All patients were treated within the scope of an individual healing attempt. Among all vaccinated patients, including 70 treated prior to progression (primary) and 103 treated after progression (recurrent), the median overall survival from first diagnosis is 31.9 months (95% CI: 25.0-36.5). Adverse events are infrequent and are predominantly grade 1 or 2. A vaccine-induced immune response to at least one of the vaccinated peptides is detected in blood samples of 87 of 97 (90%) monitored patients. Vaccine-specific T-cell responses are durable in most patients. Significantly prolonged survival is observed for patients with multiple vaccine-induced T-cell responses (53 months) compared to those with no/low induced responses (27 months; P = 0.03). Altogether, our results highlight that the application of personalized neoantigen-targeting peptide vaccine is feasible and represents a promising potential treatment option for GBM patients.
Collapse
Affiliation(s)
| | - Henning Zelba
- Zentrum für Humangenetik Tübingen, Tübingen, Germany
| | | | | | - Borong Shao
- Zentrum für Humangenetik Tübingen, Tübingen, Germany
| | | | | | | | | | - Thomas Okech
- MVZ Zentrum für ambulante Onkologie GmbH, Tübingen, Germany
| | - Alexander Golf
- MVZ Zentrum für ambulante Onkologie GmbH, Tübingen, Germany
| | | | - Simone Kayser
- Zentrum für Humangenetik Tübingen, Tübingen, Germany
| | | | | | - Julian Wünsche
- Zentrum für Humangenetik Tübingen, Tübingen, Germany
- MVZ Zentrum für ambulante Onkologie GmbH, Tübingen, Germany
| | - Christian Seitz
- Universitätsklinikum Heidelberg, KiTZ, Hopp Children's Cancer Center, Heidelberg, Germany
| | | | - Claus Garbe
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | | | - Christian la Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Universitätsklinikum Tübingen, Tübingen, Germany
| | | | - Dawn Brooke
- Provenance Precision Medicine Foundation, Wilmette, IL, USA
| | | | - Uwe M Martens
- Department of Hematology and Oncology, Cancer Center Heilbronn-Franken, SLK Kliniken GmbH, Heilbronn, Germany
| | | | | | - Ryan Merrell
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Máté Hidvégi
- Jewish Theological Seminary-University of Jewish Studies (OR-ZSE), Budapest, Hungary
| | - Paula de Robles
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Sied Kebir
- Universitätsklinikum Essen, Essen, Germany
| | | | - Vincent W Li
- Angiogenesis Foundation, Cambridge, MA, USA
- Harvard Medical School Dermatology, Boston, MA, USA
| | | | - Alexandra M Miller
- Brain and Spine Tumor Center, NYU Langone Health's Perlmutter Cancer Center, New York, NY, USA
| | - Santosh Kesari
- Pacific Neuroscience Institute, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Michael Castro
- Cellworks Group Inc, South San Francisco, CA, USA
- Personalized Cancer Medicine, PLLC, Santa Monica, CA, USA
| | - Annick Desjardins
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - David M Ashley
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
- Preston Robert Tisch Brain Tumor Centre, Duke University, Durham, NC, USA
| | - Henry S Friedman
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Elisabeth C Neil
- Department of Neurology, University of Minnesota Health, Minneapolis, MN, USA
| | | | - Bence Sipos
- BAG für Pathologie und Molekularpathologie Stuttgart, Molekularpathologie Baden-Württemberg GbR, Stuttgart, Germany
| | | | - Lars Zender
- University Hospital Tübingen, Internal Medicine VIII, Tübingen, Germany
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology, Universitätsklinikum Essen Klinik für Neurologie, Essen, Germany
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saskia Biskup
- Zentrum für Humangenetik Tübingen, Tübingen, Germany.
- CeGaT GmbH, Tübingen, Germany.
| |
Collapse
|
63
|
Balinda HU, Kelly WJ, Kaklamani VG, Lathrop KI, Canola MM, Ghamasaee P, Sareddy GR, Michalek J, Gilbert AR, Surapaneni P, Tiziani S, Pandey R, Chiou J, Lodi A, Floyd JR, Brenner AJ. Sacituzumab Govitecan in patients with breast cancer brain metastases and recurrent glioblastoma: a phase 0 window-of-opportunity trial. Nat Commun 2024; 15:6707. [PMID: 39112464 PMCID: PMC11306739 DOI: 10.1038/s41467-024-50558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Sacituzumab Govitecan (SG) is an antibody-drug conjugate that has demonstrated efficacy in patients with TROP-2 expressing epithelial cancers. In a xenograft model of intracranial breast cancer, SG inhibited tumor growth and increased mouse survival. We conducted a prospective window-of-opportunity trial (NCT03995706) at the University of Texas Health Science Center at San Antonio to examine the intra-tumoral concentrations and intracranial activity of SG in patients undergoing craniotomy for breast cancer with brain metastases (BCBM) or recurrent glioblastoma (rGBM). We enrolled 25 patients aged ≥18 years diagnosed with BCBM and rGBM to receive a single intravenous dose of SG at 10 mg/kg given one day before resection and continued on days 1 and 8 of 21-day cycles following recovery. The PFS was 8 months and 2 months for BCBM and rGBM cohorts, respectively. The OS was 35.2 months and 9.5 months, respectively. Grade≥3 AE included neutropenia (28%), hypokalemia (8%), seizure (8%), thromboembolic event (8%), urinary tract infection (8%) and muscle weakness of the lower limb (8%). In post-surgical tissue, the median total SN-38 was 249.8 ng/g for BCBM and 104.5 ng/g for rGBM, thus fulfilling the primary endpoint. Biomarker analysis suggests delivery of payload by direct release at target site and that hypoxic changes do not drive indirect release. Secondary endpoint of OS was 35.2 months for the BCBM cohort and 9.5 months for rGBM. Non-planned exploratory endpoint of ORR was 38% for BCBM and 29%, respectively. Exploratory endpoint of Trop-2 expression was observed in 100% of BCBM and 78% of rGBM tumors. In conclusion, SG was found to be well tolerated with adequate penetration into intracranial tumors and promising preliminary activity within the CNS. Trial Registration: Trial (NCT03995706) enrolled at Clinical Trials.gov as Neuro/Sacituzumab Govitecan/Breast Brain Metastasis/Glioblastoma/Ph 0: https://clinicaltrials.gov/study/NCT03995706?cond=NCT03995706 .
Collapse
Affiliation(s)
- Henriette U Balinda
- Mays Cancer Center at UT Health San Antonio, 7979 Wurzbach Road, San Antonio, TX, 78229, USA
| | - William J Kelly
- Mays Cancer Center at UT Health San Antonio, 7979 Wurzbach Road, San Antonio, TX, 78229, USA
| | - Virginia G Kaklamani
- Mays Cancer Center at UT Health San Antonio, 7979 Wurzbach Road, San Antonio, TX, 78229, USA
| | - Kate I Lathrop
- Mays Cancer Center at UT Health San Antonio, 7979 Wurzbach Road, San Antonio, TX, 78229, USA
| | - Marcela Mazo Canola
- Mays Cancer Center at UT Health San Antonio, 7979 Wurzbach Road, San Antonio, TX, 78229, USA
| | - Pegah Ghamasaee
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Gangadhara R Sareddy
- Mays Cancer Center at UT Health San Antonio, 7979 Wurzbach Road, San Antonio, TX, 78229, USA
- Department of Obstetrics & Gynecology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Joel Michalek
- Department of Population Health Sciences Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Andrea R Gilbert
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Prathibha Surapaneni
- START Center for Cancer Care, 155 E Sonterra Blvd STE. 200, San Antonio, TX, 78258, USA
| | - Stefano Tiziani
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, 78723, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA
| | - Renu Pandey
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jennifer Chiou
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Alessia Lodi
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - John R Floyd
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Andrew J Brenner
- Mays Cancer Center at UT Health San Antonio, 7979 Wurzbach Road, San Antonio, TX, 78229, USA.
| |
Collapse
|
64
|
Janssen JBE, Brahm CG, Driessen CML, Nuver J, Labots M, Kouwenhoven MCM, Sanchez Aliaga E, Enting RH, de Groot JC, Walenkamp AME, van Linde ME, Verheul HMW. The STELLAR trial: a phase II/III randomized trial of high-dose, intermittent sunitinib in patients with recurrent glioblastoma. Brain Commun 2024; 6:fcae241. [PMID: 39114330 PMCID: PMC11303865 DOI: 10.1093/braincomms/fcae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Previously, the tyrosine kinase inhibitor sunitinib failed to show clinical benefit in patients with recurrent glioblastoma. Low intratumoural sunitinib accumulation in glioblastoma patients was reported as a possible explanation for the lack of therapeutic benefit. We designed a randomized phase II/III trial to evaluate whether a high-dose intermittent sunitinib schedule, aimed to increase intratumoural drug concentrations, would result in improved clinical benefit compared to standard treatment with lomustine. Patients with recurrent glioblastoma were randomized 1:1 to high-dose intermittent sunitinib 300 mg once weekly (Q1W, part 1) or 700 mg once every two weeks (Q2W, part 2) or lomustine. The primary end-point was progression-free survival. Based on the pre-planned interim analysis, the trial was terminated for futility after including 26 and 29 patients in parts 1 and 2. Median progression-free survival of sunitinib 300 mg Q1W was 1.5 months (95% CI 1.4-1.7) compared to 1.5 months (95% CI 1.4-1.6) in the lomustine arm (P = 0.59). Median progression-free survival of sunitinib 700 mg Q2W was 1.4 months (95% CI 1.2-1.6) versus 1.6 months (95% CI 1.3-1.8) for lomustine (P = 0.70). Adverse events (≥grade 3) were observed in 25%, 21% and 31% of patients treated with sunitinib 300 mg Q1W, sunitinib 700 mg Q2W and lomustine, respectively (P = 0.92). To conclude, high-dose intermittent sunitinib treatment failed to improve the outcome of patients with recurrent glioblastoma when compared to standard lomustine therapy. Since lomustine remains a poor standard treatment strategy for glioblastoma, innovative treatment strategies are urgently needed.
Collapse
Affiliation(s)
- Jorien B E Janssen
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Cyrillo G Brahm
- Department of Medical Oncology, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV, Amsterdam, The Netherlands
| | - Chantal M L Driessen
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Janine Nuver
- Department of Medical Oncology, University Medical Center Groningen, University Groningen, 9713 GZ, Groningen, The Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV, Amsterdam, The Netherlands
| | - Mathilde C M Kouwenhoven
- Department of Neurology, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV, Amsterdam, The Netherlands
| | - Esther Sanchez Aliaga
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV, Amsterdam, The Netherlands
| | - Roelien H Enting
- Department of Neurology, University Medical Center Groningen, University Groningen, 9713 GZ, Groningen, The Netherlands
| | - Jan Cees de Groot
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University Groningen, 9713 GZ, Groningen, The Netherlands
| | - Annemiek M E Walenkamp
- Department of Medical Oncology, University Medical Center Groningen, University Groningen, 9713 GZ, Groningen, The Netherlands
| | - Myra E van Linde
- Department of Medical Oncology, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV, Amsterdam, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
- Department of Medical Oncology, Erasmus University Medical Center, Cancer Institute, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
65
|
Webb LM, Webb MJ, Campian JL, Caron SJ, Ruff MW, Uhm JH, Sener U. A case series of osseous metastases in patients with glioblastoma. Medicine (Baltimore) 2024; 103:e38794. [PMID: 38968484 PMCID: PMC11224798 DOI: 10.1097/md.0000000000038794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Extracranial metastases occur in <2% of cases of glioblastoma (GBM). When metastases do occur, bone is the most common destination. Herein, we review clinical characteristics of GBM patients with osseous metastases and evaluate both potential risk factors and prognostic significance. METHODS Using an institutional database, we identified and retrospectively analyzed 6 patients with both GBM and osseous metastases. We collected data on patient demographics, tumor genetics, clinical courses, and outcomes. Given the rarity of metastatic GBM, we conducted historical comparisons using previously published literature. RESULTS Five patients with osseous metastases (83%) were male, with a median age of 46 years at GBM diagnosis (range: 20-84). All patients had IDH-wildtype, MGMT promoter unmethylated GBM and 5 (83%) had alterations in TP53. All patients underwent surgical resection for GBM followed by radiation with concurrent and adjuvant temozolomide. Four patients (67%) received bevacizumab prior to bone metastasis diagnosis. Bone metastases were discovered at a median of 12.2 months (range: 5.3-35.2) after GBM diagnosis and 4.8 months after starting bevacizumab (range: 3.5-13.2). Three patients (50%) received immunotherapy. After osseous metastasis diagnosis, the median survival was 25 days (range: 13-225). CONCLUSION In our cohort, most patients were male and young at the time of GBM diagnosis. All patients had IDH-wildtype, MGMT promoter unmethylated GBM, and most had alterations in TP53, which may be important for osseous metastasis. Most patients received bevacizumab, which has been associated with earlier metastasis. Osseous metastases of GBM occur and portend a dismal prognosis in an already aggressive malignancy.
Collapse
Affiliation(s)
| | - Mason J. Webb
- Department of Hematology/Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jian L. Campian
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samantha J. Caron
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael W. Ruff
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joon H. Uhm
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
66
|
Cao X, Li J, Ren J, Peng J, Zhong R, He J, Xu T, Yu Z, Jin H, Hao S, Liu R, Xu B. Minimally-invasive implantable device enhances brain cancer suppression. EMBO Mol Med 2024; 16:1704-1716. [PMID: 38902433 PMCID: PMC11250787 DOI: 10.1038/s44321-024-00091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Current brain tumor treatments are limited by the skull and BBB, leading to poor prognosis and short survival for glioma patients. We introduce a novel minimally-invasive brain tumor suppression (MIBTS) device combining personalized intracranial electric field therapy with in-situ chemotherapeutic coating. The core of our MIBTS technique is a wireless-ultrasound-powered, chip-sized, lightweight device with all functional circuits encapsulated in a small but efficient "Swiss-roll" structure, guaranteeing enhanced energy conversion while requiring tiny implantation windows ( ~ 3 × 5 mm), which favors broad consumers acceptance and easy-to-use of the device. Compared with existing technologies, competitive advantages in terms of tumor suppressive efficacy and therapeutic resolution were noticed, with maximum ~80% higher suppression effect than first-line chemotherapy and 50-70% higher than the most advanced tumor treating field technology. In addition, patient-personalized therapy strategies could be tuned from the MIBTS without increasing size or adding circuits on the integrated chip, ensuring the optimal therapeutic effect and avoid tumor resistance. These groundbreaking achievements of MIBTS offer new hope for controlling tumor recurrence and extending patient survival.
Collapse
Affiliation(s)
- Xiaona Cao
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P.R. China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P.R. China
| | - Jie Li
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P.R. China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P.R. China
| | - Jinliang Ren
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P.R. China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P.R. China
| | - Jiajin Peng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P.R. China
| | - Ruyue Zhong
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P.R. China
| | - Jiahao He
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P.R. China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P.R. China
| | - Ting Xu
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P.R. China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P.R. China
| | - Zhenhua Yu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Huawei Jin
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Siqi Hao
- School of Naval Architecture & Ocean Engineering, Guangzhou Maritime University, 101 Hongshan 3rd Road, Huangpu District, Guangzhou, Guangdong, 510725, P.R. China
| | - Ruiwei Liu
- School of Naval Architecture & Ocean Engineering, Guangzhou Maritime University, 101 Hongshan 3rd Road, Huangpu District, Guangzhou, Guangdong, 510725, P.R. China
| | - Bingzhe Xu
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P.R. China.
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P.R. China.
| |
Collapse
|
67
|
Berckmans Y, Ene HM, Ben-Meir K, Martinez-Conde A, Wouters R, Van den Ende B, Van Mechelen S, Monin R, Frechtel-Gerzi R, Gabay H, Dor-On E, Haber A, Weinberg U, Vergote I, Giladi M, Coosemans A, Palti Y. Tumor Treating Fields (TTFields) induce homologous recombination deficiency in ovarian cancer cells, thus mitigating drug resistance. Front Oncol 2024; 14:1402851. [PMID: 38993641 PMCID: PMC11238040 DOI: 10.3389/fonc.2024.1402851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Background Ovarian cancer is the leading cause of mortality among gynecological malignancies. Carboplatin and poly (ADP-ribose) polymerase inhibitors (PARPi) are often implemented in the treatment of ovarian cancer. Homologous recombination deficient (HRD) tumors demonstrate increased sensitivity to these treatments; however, many ovarian cancer patients are homologous recombination proficient (HRP). TTFields are non-invasive electric fields that induce an HRD-like phenotype in various cancer types. The current study aimed to investigate the impact of TTFields applied together with carboplatin or PARPi (olaparib or niraparib) in preclinical ovarian cancer models. Methods A2780 (HRP), OVCAR3 (HRD), and A2780cis (platinum-resistant) human ovarian cancer cells were treated in vitro with TTFields (1 V/cm RMS, 200 kHz, 72 h), alone or with various drug concentrations. Treated cells were measured for cell count, colony formation, apoptosis, DNA damage, expression of DNA repair proteins, and cell cycle. In vivo, ID8-fLuc (HRP) ovarian cancer cells were inoculated intraperitoneally to C57BL/6 mice, which were then treated with either sham, TTFields (200 kHz), olaparib (50 mg/kg), or TTFields plus olaparib; over a period of four weeks. Tumor growth was analyzed using bioluminescent imaging at treatment cessation; and survival analysis was performed. Results The nature of TTFields-drug interaction was dependent on the drug's underlying mechanism of action and on the genetic background of the cells, with synergistic interactions between TTFields and carboplatin or PARPi seen in HRP and resistant cells. Treated cells demonstrated elevated levels of DNA damage, accompanied by G2/M arrest, and induction of an HRD-like phenotype. In the tumor-bearing mice, TTFields and olaparib co-treatment resulted in reduced tumor volume and a survival benefit relative to olaparib monotherapy and to control. Conclusion By inducing an HRD-like phenotype, TTFields sensitize HRP and resistant ovarian cancer cells to treatment with carboplatin or PARPi, potentially mitigating a-priori and de novo drug resistance, a major limitation in ovarian cancer treatment.
Collapse
Affiliation(s)
- Yani Berckmans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | | | | | | | - Roxanne Wouters
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Oncoinvent AS, Oslo, Norway
| | - Bieke Van den Ende
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sara Van Mechelen
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | - Ignace Vergote
- Department of Gynecology and Obstetrics, Gynecologic Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | | | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
68
|
Liang T, Gu L, Kang X, Li J, Song Y, Wang Y, Ma W. Programmed cell death disrupts inflammatory tumor microenvironment (TME) and promotes glioblastoma evolution. Cell Commun Signal 2024; 22:333. [PMID: 38890642 PMCID: PMC11184850 DOI: 10.1186/s12964-024-01602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 06/20/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor and has a dismal prognosis even under the current first-line treatment, with a 5-year survival rate less than 7%. Therefore, it is important to understand the mechanism of treatment resistance and develop new anti-tumor strategies. Induction of programmed cell death (PCD) has become a promising anti-tumor strategy, but its effectiveness in treating GBM remains controversial. On the one hand, PCD triggers tumor cell death and then release mediators to draw in immune cells, creating a pro-inflammatory tumor microenvironment (TME). One the other hand, mounting evidence suggests that PCD and inflammatory TME will force tumor cells to evolve under survival stress, leading to tumor recurrence. The purpose of this review is to summarize the role of PCD and inflammatory TME in the tumor evolution of GBM and promising methods to overcome tumor evolution.
Collapse
Affiliation(s)
- Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lingui Gu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoman Kang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- '4+4' Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yixuan Song
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
69
|
Zhang L, Ren Y, Peng Y, Luo Y, Liu Y, Wang X, Yang Y, Liu L, Ai P, Yang X, Li Y, Mao Q, Wang F. Tumor treating fields for newly diagnosed high-grade glioma based on the criteria of 2021 WHO CNS5: A retrospective analysis of Chinese patients in a single center. Cancer Med 2024; 13:e7350. [PMID: 38859683 PMCID: PMC11165168 DOI: 10.1002/cam4.7350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/04/2024] [Accepted: 05/26/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND AND OBJECTIVE High-grade glioma (HGG) is known to be characterized by a high degree of malignancy and a worse prognosis. The classical treatment is safe resection supplemented by radiotherapy and chemotherapy. Tumor treating fields (TTFields), an emerging physiotherapeutic modality that targets malignant solid tumors using medium-frequency, low-intensity, alternating electric fields to interfere with cell division, have been used for the treatment of new diagnosis of glioblastoma, however, their administration in HGG requires further clinical evidence. The efficacy and safety of TTFields in Chinese patients with HGG were retrospectively evaluated by us in a single center. METHODS We enrolled and analyzed 52 patients with newly diagnosed HGG undergoing surgery and standard chemoradiotherapy regimens from December 2019 to June 2022, and followed them until June 2023. Based on whether they used TTFields, they were divided into a TTFields group and a non-TTFields group. Progression-free survival (PFS) and overall survival (OS) were compared between the two groups. RESULTS There were 26 cases in the TTFields group and 26 cases in the non-TTFields group. In the TTFields group, the median PFS was 14.2 months (95% CI: 9.50-18.90), the median OS was 19.7 months (95% CI: 14.95-24.25) , the median interval from surgery to the start of treatment with TTFields was 2.47 months (95% CI: 1.47-4.13), and the median duration of treatment with TTFields was 10.6 months (95% CI: 9.57-11.63). 15 (57.69%) patients experienced an adverse event and no serious adverse event was reported. In the non-TTFields group, the median PFS was 9.57 months (95% CI: 6.23-12.91) and the median OS was 16.07 months (95% CI: 12.90-19.24). There was a statistically significant difference in PFS (p = 0.005) and OS (p = 0.007) between the two groups. CONCLUSIONS In this retrospective analysis, TTFields were observed to improve newly diagnosed HGG patients' median PFS and OS. Compliance was much higher than reported in clinical trials and safety remained good.
Collapse
Affiliation(s)
- Li Zhang
- Head and Neck Oncology Ward, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Yanming Ren
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Youheng Peng
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Yong Luo
- Head and Neck Oncology Ward, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Yanhui Liu
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Xiang Wang
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Yuan Yang
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Lei Liu
- Head and Neck Oncology Ward, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Ping Ai
- Head and Neck Oncology Ward, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Xiaoyan Yang
- Head and Neck Oncology Ward, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Yanchu Li
- Head and Neck Oncology Ward, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Qing Mao
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Feng Wang
- Head and Neck Oncology Ward, Cancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
70
|
Beckham TH, Rooney MK, McAleer MF, Ghia AJ, Tom MC, Perni S, McGovern S, Grosshans D, Chung C, Wang C, De B, Swanson T, Paulino A, Jiang W, Ferguson S, Patel CB, Li J, Yeboa DN. Hypofractionated radiotherapy for glioblastoma: A large institutional retrospective assessment of 2 approaches. Neurooncol Pract 2024; 11:266-274. [PMID: 38737610 PMCID: PMC11085842 DOI: 10.1093/nop/npae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Background Glioblastoma (GBM) poses therapeutic challenges due to its aggressive nature, particularly for patients with poor functional status and/or advanced disease. Hypofractionated radiotherapy (RT) regimens have demonstrated comparable disease outcomes for this population while allowing treatment to be completed more quickly. Here, we report our institutional outcomes of patients treated with 2 hypofractionated RT regimens: 40 Gy/15fx (3w-RT) and 50 Gy/20fx (4w-RT). Methods A single-institution retrospective analysis was conducted of 127 GBM patients who underwent 3w-RT or 4w-RT. Patient characteristics, treatment regimens, and outcomes were analyzed. Univariate and multivariable Cox regression models were used to estimate progression-free survival (PFS) and overall survival (OS). The impact of chemotherapy and RT schedule was explored through subgroup analyses. Results Median OS for the entire cohort was 7.7 months. There were no significant differences in PFS or OS between 3w-RT and 4w-RT groups overall. Receipt and timing of temozolomide (TMZ) emerged as the variable most strongly associated with survival, with patients receiving adjuvant-only or concurrent and adjuvant TMZ having significantly improved PFS and OS (P < .001). In a subgroup analysis of patients that did not receive TMZ, patients in the 4w-RT group demonstrated a trend toward improved OS as compared to the 3w-RT group (P = .12). Conclusions This study demonstrates comparable survival outcomes between 3w-RT and 4w-RT regimens in GBM patients. Receipt and timing of TMZ were strongly associated with survival outcomes. The potential benefit of dose-escalated hypofractionation for patients not receiving chemotherapy warrants further investigation and emphasizes the importance of personalized treatment approaches.
Collapse
Affiliation(s)
- Thomas H Beckham
- Department of Radiation Oncology, CNS/Pediatrics Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael K Rooney
- Department of Radiation Oncology, CNS/Pediatrics Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mary F McAleer
- Department of Radiation Oncology, CNS/Pediatrics Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amol J Ghia
- Department of Radiation Oncology, CNS/Pediatrics Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Martin C Tom
- Department of Radiation Oncology, CNS/Pediatrics Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Subha Perni
- Department of Radiation Oncology, CNS/Pediatrics Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan McGovern
- Department of Radiation Oncology, CNS/Pediatrics Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David Grosshans
- Department of Radiation Oncology, CNS/Pediatrics Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Caroline Chung
- Department of Radiation Oncology, CNS/Pediatrics Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chenyang Wang
- Department of Radiation Oncology, CNS/Pediatrics Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brain De
- Department of Radiation Oncology, CNS/Pediatrics Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Todd Swanson
- Department of Radiation Oncology, CNS/Pediatrics Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Arnold Paulino
- Department of Radiation Oncology, CNS/Pediatrics Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wen Jiang
- Department of Radiation Oncology, CNS/Pediatrics Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sherise Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chirag B Patel
- Department of Radiation Oncology, CNS/Pediatrics Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Li
- Department of Radiation Oncology, CNS/Pediatrics Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Debra N Yeboa
- Department of Radiation Oncology, CNS/Pediatrics Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
71
|
Chellen T, Bausart M, Maus P, Vanvarenberg K, Limaye N, Préat V, Malfanti A. In situ administration of STING-activating hyaluronic acid conjugate primes anti-glioblastoma immune response. Mater Today Bio 2024; 26:101057. [PMID: 38660475 PMCID: PMC11040137 DOI: 10.1016/j.mtbio.2024.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor, with a highly immunosuppressive tumor immune microenvironment (TIME). In this work, we investigated the use of the STimulator of INterferon Genes (STING) pathway as an effective means to remodel the GBM TIME through the recruitment of both innate and adaptive immune cell populations. Using hyaluronic acid (HA), we developed a novel polymer-drug conjugate of a non-nucleotide STING agonist (MSA2), called HA-MSA2 for the in situ treatment of GBM. In JAWSII cells, HA-MSA2 exerted a greater increase of STING signaling and upregulation of STING-related downstream cyto-/chemokines in immune cells than the free drug. HA-MSA2 also elicited cancer cell-intrinsic immunostimulatory gene expression and promoted immunogenic cell death of GBM cells. In the SB28 GBM model, local delivery of HA-MSA2 induced a delay in tumor growth and a significant extension of survival. The analysis of the TIME showed a profound shift in the GBM immune landscape after HA-MSA2 treatment, with higher infiltration by innate and adaptive immune cells including dendritic, natural killer (NK) and CD8 T cell populations. The therapeutic potential of this novel polymer conjugate warrants further investigation, particularly with other chemo-immunotherapeutics or cancer vaccines as a promising combinatorial therapeutic approach.
Collapse
Affiliation(s)
- Teenesha Chellen
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Mathilde Bausart
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Pierre Maus
- UCLouvain, de Duve Institute, Genetics of Autoimmune Diseases and Cancer, Brussels, Belgium
| | - Kevin Vanvarenberg
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Nisha Limaye
- UCLouvain, de Duve Institute, Genetics of Autoimmune Diseases and Cancer, Brussels, Belgium
| | - Véronique Préat
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Alessio Malfanti
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
72
|
Wu H, Zhou F, Gao W, Chen P, Wei Y, Wang F, Zhao H. Current status and research progress of minimally invasive treatment of glioma. Front Oncol 2024; 14:1383958. [PMID: 38835394 PMCID: PMC11148461 DOI: 10.3389/fonc.2024.1383958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Glioma has a high malignant degree and poor prognosis, which seriously affects the prognosis of patients. Traditional treatment methods mainly include craniotomy tumor resection, postoperative radiotherapy and chemotherapy. Although above methods have achieved remarkable curative effect, they still have certain limitations and adverse reactions. With the introduction of the concept of minimally invasive surgery and its clinical application as well as the development and progress of imaging technology, minimally invasive treatment of glioma has become a research hotspot in the field of neuromedicine, including photothermal treatment, photodynamic therapy, laser-induced thermal theraphy and TT-Fields of tumor. These therapeutic methods possess the advantages of precision, minimally invasive, quick recovery and significant curative effect, and have been widely used in clinical practice. The purpose of this review is to introduce the progress of minimally invasive treatment of glioma in recent years and the achievements and prospects for the future.
Collapse
Affiliation(s)
- Hao Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Feng Zhou
- Department of Neurosurgery, The First Hospital of Yu Lin, Yulin, China
| | - Wenwen Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Peng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Yao Wei
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Fenglu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Haikang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| |
Collapse
|
73
|
Xing Y, Yasinjan F, Cui J, Peng Y, He M, Liu W, Hong X. Advancements and current trends in tumor treating fields: a scientometric analysis. Int J Surg 2024; 110:2978-2991. [PMID: 38349201 PMCID: PMC11093503 DOI: 10.1097/js9.0000000000001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/26/2024] [Indexed: 05/16/2024]
Abstract
Tumor treating fields (TTFields) therapy is a novel and effective noninvasive cancer therapy, and it has been approved by FDA in the treatment of recurrent and newly diagnosed glioblastoma, and malignant pleural mesothelioma. Moreover, TTFields therapy has been widely studied in both clinical trials and preclinical studies in recent years. Based on its high efficacy, research on TTFields therapy has been a hot topic. Thus, the authors made this scientometric analysis of TTfields to reveal the scientometric distributions such as annual publications and citations, countries and institutions, authors, journals, references, and more importantly, research status and hot topics of the field. In recent years, publication numbers have been stable at high values, and citation numbers have been increasing greatly. The United States and Israel were the top two countries with the highest publication numbers, followed by Germany and Switzerland. Scientometric analyses of keywords indicated that clinical applications and antitumor mechanisms are probably the two main parts of current research on TTfields. Most clinical trials of TTfields focus on the treatment of glioblastoma. And a variety of other cancers such as lung cancer especially nonsmall cell lung cancer, hepatic cancer, other brain tumors, etc. have also been studied in both clinical trials and preclinical studies.
Collapse
Affiliation(s)
- Yang Xing
- Department of Neurosurgery, The First Hospital of Jilin University
| | - Feroza Yasinjan
- Department of Neurosurgery, The First Hospital of Jilin University
| | - Jiayue Cui
- Department of Histology and Embryology, College of Basic Medical Sciences
| | - Yizhao Peng
- Department of Neurosurgery, The First Hospital of Jilin University
| | - Minghua He
- College of Computer Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Wenhui Liu
- Department of Histology and Embryology, College of Basic Medical Sciences
| | - Xinyu Hong
- Department of Neurosurgery, The First Hospital of Jilin University
| |
Collapse
|
74
|
Thomas-Joulié A, Tran S, El Houari L, Seyve A, Bielle F, Birzu C, Lozano-Sanchez F, Mokhtari K, Giry M, Marie Y, Laigle-Donadey F, Dehais C, Houillier C, Psimaras D, Alentorn A, Laurenge A, Touat M, Sanson M, Hoang-Xuan K, Kas A, Rozenblum L, Habert MO, Nichelli L, Leclercq D, Galanaud D, Jacob J, Karachi C, Capelle L, Carpentier A, Mathon B, Belin L, Idbaih A. Prognosis of glioblastoma patients improves significantly over time interrogating historical controls. Eur J Cancer 2024; 202:114004. [PMID: 38493668 DOI: 10.1016/j.ejca.2024.114004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common devastating primary brain cancer in adults. In our clinical practice, median overall survival (mOS) of GBM patients seems increasing over time. METHODS To address this observation, we have retrospectively analyzed the prognosis of 722 newly diagnosed GBM patients, aged below 70, in good clinical conditions (i.e. Karnofsky Performance Status -KPS- above 70%) and treated in our department according to the standard of care (SOC) between 2005 and 2018. Patients were divided into two groups according to the year of diagnosis (group 1: from 2005 to 2012; group 2: from 2013 to 2018). RESULTS Characteristics of patients and tumors of both groups were very similar regarding confounding factors (age, KPS, MGMT promoter methylation status and treatments). Follow-up time was fixed at 24 months to ensure comparable survival times between both groups. Group 1 patients had a mOS of 19 months ([17.3-21.3]) while mOS of group 2 patients was not reached. The recent period of diagnosis was significantly associated with a longer mOS in univariate analysis (HR=0.64, 95% CI [0.51 - 0.81]), p < 0.001). Multivariate Cox analysis showed that the period of diagnosis remained significantly prognostic after adjustment on confounding factors (adjusted Hazard Ratio (aHR) 0.49, 95% CI [0.36-0.67], p < 0.001). CONCLUSION This increase of mOS over time in newly diagnosed GBM patients could be explained by better management of potentially associated non-neurological diseases, optimization of validated SOC, better management of treatments side effects, supportive care and participation in clinical trials.
Collapse
Affiliation(s)
- A Thomas-Joulié
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie-Oncologie, F-75013 Paris, France; AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service d'Oncologie-Radiothérapie, F-75013 Paris, France
| | - S Tran
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuropathologie-Escourolle, F-75013 Paris, France
| | - L El Houari
- Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Unité de Recherche Clinique, F-75013 Paris, France
| | - A Seyve
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie-Oncologie, F-75013 Paris, France
| | - F Bielle
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuropathologie-Escourolle, F-75013 Paris, France
| | - C Birzu
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie-Oncologie, F-75013 Paris, France
| | - F Lozano-Sanchez
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie-Oncologie, F-75013 Paris, France
| | - K Mokhtari
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuropathologie-Escourolle, F-75013 Paris, France
| | - M Giry
- Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, F-75013 Paris, France
| | - Y Marie
- Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, F-75013 Paris, France
| | - F Laigle-Donadey
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie-Oncologie, F-75013 Paris, France
| | - C Dehais
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie-Oncologie, F-75013 Paris, France
| | - C Houillier
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie-Oncologie, F-75013 Paris, France
| | - D Psimaras
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie-Oncologie, F-75013 Paris, France
| | - A Alentorn
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie-Oncologie, F-75013 Paris, France
| | - A Laurenge
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie-Oncologie, F-75013 Paris, France
| | - M Touat
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie-Oncologie, F-75013 Paris, France
| | - M Sanson
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie-Oncologie, F-75013 Paris, France
| | - K Hoang-Xuan
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie-Oncologie, F-75013 Paris, France
| | - A Kas
- Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Médecine Nucléaire, F-75013 Paris, France; Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, 75006 Paris, France
| | - L Rozenblum
- Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Médecine Nucléaire, F-75013 Paris, France; Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, 75006 Paris, France
| | - M-O Habert
- Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Médecine Nucléaire, F-75013 Paris, France; Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, 75006 Paris, France
| | - L Nichelli
- Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuroradiologie, F-75013 Paris, France
| | - D Leclercq
- Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuroradiologie, F-75013 Paris, France
| | - D Galanaud
- Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuroradiologie, F-75013 Paris, France
| | - J Jacob
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service d'Oncologie-Radiothérapie, F-75013 Paris, France
| | - C Karachi
- Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurochirurgie, F-75013 Paris, France
| | - L Capelle
- Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurochirurgie, F-75013 Paris, France
| | - A Carpentier
- Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurochirurgie, F-75013 Paris, France
| | - B Mathon
- Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurochirurgie, F-75013 Paris, France
| | - L Belin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Département de Santé Publique, Unité de Recherche Clinique Pitié-Salpêtrière-Charles Foix, Paris, France
| | - A Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie-Oncologie, F-75013 Paris, France; Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Département de Santé Publique, Unité de Recherche Clinique Pitié-Salpêtrière-Charles Foix, Paris, France.
| |
Collapse
|
75
|
Yu T, Wang K, Wang J, Liu Y, Meng T, Hu F, Yuan H. M-MDSCs mediated trans-BBB drug delivery for suppression of glioblastoma recurrence post-standard treatment. J Control Release 2024; 369:199-214. [PMID: 38537717 DOI: 10.1016/j.jconrel.2024.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 05/24/2024]
Abstract
We found that immunosuppressive monocytic-myeloid-derived suppressor cells (M-MDSCs) were more likely to be recruited by glioblastoma (GBM) through adhesion molecules on GBM-associated endothelial cells upregulated post-chemoradiotherapy. These cells are continuously generated during tumor progression, entering tumors and expressing PD-L1 at a high level, allowing GBM to exhaust T cells and evade attack from the immune system, thereby facilitating GBM relapse. αLy-6C-LAMP is composed of (i) drug cores with slightly negative charges condensed by cationic protamine and plasmids encoding PD-L1 trap protein, (ii) pre-formulated cationic liposomes targeted to Ly-6C for encapsulating the drug cores, and (iii) a layer of red blood cell membrane on the surface for effectuating long-circulation. αLy-6C-LAMP persistently targets peripheral, especially splenic, M-MDSCs and delivers secretory PD-L1 trap plasmids, leveraging M-MDSCs to transport the plasmids crossing the blood-brain barrier (BBB), thus expressing PD-L1 trap protein in tumors to inhibit PD-1/PD-L1 pathway. Our proposed drug delivery strategy involving intermediaries presents an efficient cross-BBB drug delivery concept that incorporates live-cell targeting and long-circulating nanotechnology to address GBM recurrence.
Collapse
Affiliation(s)
- Tong Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, PR China
| | - Kai Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, PR China
| | - Jianwei Wang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Yupeng Liu
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, PR China
| | - Tingting Meng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, PR China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, PR China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
76
|
Kumthekar P, Lyleroehr M, Lacson L, Lukas RV, Dixit K, Stupp R, Kruser T, Raizer J, Hou A, Sachdev S, Schwartz M, Pa JB, Lezon R, Schmidt K, Amidei C, Kaiser K. A qualitative evaluation of factors influencing Tumor Treating fields (TTFields) therapy decision making among brain tumor patients and physicians. BMC Cancer 2024; 24:527. [PMID: 38664630 PMCID: PMC11046887 DOI: 10.1186/s12885-024-12042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Tumor Treating Fields (TTFields) Therapy is an FDA-approved therapy in the first line and recurrent setting for glioblastoma. Despite Phase 3 evidence showing improved survival with TTFields, it is not uniformly utilized. We aimed to examine patient and clinician views of TTFields and factors shaping utilization of TTFields through a unique research partnership with medical neuro oncology and medical social sciences. METHODS Adult glioblastoma patients who were offered TTFields at a tertiary care academic hospital were invited to participate in a semi-structured interview about their decision to use or not use TTFields. Clinicians who prescribe TTFields were invited to participate in a semi-structured interview about TTFields. RESULTS Interviews were completed with 40 patients with a mean age of 53 years; 92.5% were white and 60% were male. Participants who decided against TTFields stated that head shaving, appearing sick, and inconvenience of wearing/carrying the device most influenced their decision. The most influential factors for use of TTFields were the efficacy of the device and their clinician's opinion. Clinicians (N = 9) stated that TTFields was a good option for glioblastoma patients, but some noted that their patients should consider the burdens and benefits of TTFields as it may not be the desired choice for all patients. CONCLUSIONS This is the first study to examine patient decision making for TTFields. Findings suggest that clinician support and efficacy data are among the key decision-making factors. Properly understanding the path to patients' decision making is crucial in optimizing the use of TTFields and other therapeutic decisions for glioblastoma patients.
Collapse
Affiliation(s)
- Priya Kumthekar
- Department of Neurology, Northwestern University Feinberg School of Medicine, Abbott Hall Suite 1122 710 N Lake Shore Drive, Chicago, IL, 60611, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States
| | - Madison Lyleroehr
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Leilani Lacson
- Equal Hope, 300 South Ashland Avenue, Chicago, IL, 60607, USA
| | - Rimas V Lukas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Abbott Hall Suite 1122 710 N Lake Shore Drive, Chicago, IL, 60611, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States
| | - Karan Dixit
- Department of Neurology, Northwestern University Feinberg School of Medicine, Abbott Hall Suite 1122 710 N Lake Shore Drive, Chicago, IL, 60611, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States
| | - Roger Stupp
- Department of Neurology, Northwestern University Feinberg School of Medicine, Abbott Hall Suite 1122 710 N Lake Shore Drive, Chicago, IL, 60611, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States
| | - Timothy Kruser
- Equal Hope, 300 South Ashland Avenue, Chicago, IL, 60607, USA
| | - Jeff Raizer
- Department of Neurology, Northwestern University Feinberg School of Medicine, Abbott Hall Suite 1122 710 N Lake Shore Drive, Chicago, IL, 60611, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States
| | - Alexander Hou
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, 600 Highland Ave, Madison, WI, 53705, USA
| | - Sean Sachdev
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States
- Northwestern University Feinberg School of Medicine, 420 E. Superior St, Chicago, IL, 60611, USA
| | - Margaret Schwartz
- Department of Neurology, Northwestern University Feinberg School of Medicine, Abbott Hall Suite 1122 710 N Lake Shore Drive, Chicago, IL, 60611, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States
| | - Jessica Bajas Pa
- Department of Neurology, Northwestern University Feinberg School of Medicine, Abbott Hall Suite 1122 710 N Lake Shore Drive, Chicago, IL, 60611, USA
| | - Ray Lezon
- Department of Neurology, Northwestern University Feinberg School of Medicine, Abbott Hall Suite 1122 710 N Lake Shore Drive, Chicago, IL, 60611, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States
| | - Karyn Schmidt
- Department of Neurology, Northwestern University Feinberg School of Medicine, Abbott Hall Suite 1122 710 N Lake Shore Drive, Chicago, IL, 60611, USA
| | - Christina Amidei
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 1820, Chicago, IL, 60611, USA
| | - Karen Kaiser
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA.
| |
Collapse
|
77
|
Nagai K, Akimoto J, Fukami S, Saito Y, Ogawa E, Takanashi M, Kuroda M, Kohno M. Efficacy of interstitial photodynamic therapy using talaporfin sodium and a semiconductor laser for a mouse allograft glioma model. Sci Rep 2024; 14:9137. [PMID: 38644422 PMCID: PMC11033255 DOI: 10.1038/s41598-024-59955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
To investigate the therapeutic potential of photodynamic therapy (PDT) for malignant gliomas arising in unresectable sites, we investigated the effect of tumor tissue damage by interstitial PDT (i-PDT) using talaporfin sodium (TPS) in a mouse glioma model in which C6 glioma cells were implanted subcutaneously. A kinetic study of TPS demonstrated that a dose of 10 mg/kg and 90 min after administration was appropriate dose and timing for i-PDT. Performing i-PDT using a small-diameter plastic optical fiber demonstrated that an irradiation energy density of 100 J/cm2 or higher was required to achieve therapeutic effects over the entire tumor tissue. The tissue damage induced apoptosis in the area close to the light source, whereas vascular effects, such as fibrin thrombus formation occurred in the area slightly distant from the light source. Furthermore, when irradiating at the same energy density, irradiation at a lower power density for a longer period of time was more effective than irradiation at a higher power density for a shorter time. When performing i-PDT, it is important to consider the rate of delivery of the irradiation light into the tumor tissue and to set irradiation conditions that achieve an optimal balance between cytotoxic and vascular effects.
Collapse
Affiliation(s)
- Kenta Nagai
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Jiro Akimoto
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan.
| | - Shinjiro Fukami
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Yuki Saito
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Emiyu Ogawa
- Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | | | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Michihiro Kohno
- Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| |
Collapse
|
78
|
Gunasegaran B, Ashley CL, Marsh-Wakefield F, Guillemin GJ, Heng B. Viruses in glioblastoma: an update on evidence and clinical trials. BJC REPORTS 2024; 2:33. [PMID: 39516641 PMCID: PMC11524015 DOI: 10.1038/s44276-024-00051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 02/22/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Glioblastoma (GB) is a lethal and aggressive brain tumour. While molecular characteristics of GB is studied extensively, the aetiology of GB remains uncertain. The interest in exploring viruses as a potential contributor to the development of GB stems from the notion that viruses are known to play a key role in pathogenesis of other human cancers such as cervical cancer. Nevertheless, the role of viruses in GB remains controversial. METHODS This review delves into the current body of knowledge surrounding the presence of viruses in GB as well as provide updates on clinical trials examining the potential inclusion of antiviral therapies as part of the standard of care protocol. CONCLUSIONS The review summarises current evidences and important gaps in our knowledge related to the presence of viruses in GB.
Collapse
Affiliation(s)
- Bavani Gunasegaran
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Caroline L Ashley
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Felix Marsh-Wakefield
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Centenary Institute, Camperdown, NSW, Australia
| | | | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia.
| |
Collapse
|
79
|
Chen X, Cui Y, Zou L. Treatment advances in high-grade gliomas. Front Oncol 2024; 14:1287725. [PMID: 38660136 PMCID: PMC11039916 DOI: 10.3389/fonc.2024.1287725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
High-grade gliomas (HGG) pose significant challenges in modern tumour therapy due to the distinct biological properties and limitations of the blood-brain barrier. This review discusses recent advancements in HGG treatment, particularly in the context of immunotherapy and cellular therapy. Initially, treatment strategies focus on targeting tumour cells guided by the molecular characteristics of various gliomas, encompassing chemotherapy, radiotherapy and targeted therapy for enhanced precision. Additionally, technological enhancements are augmenting traditional treatment modalities. Furthermore, immunotherapy, emphasising comprehensive tumour management, has gained widespread attention. Immune checkpoint inhibitors, vaccines and CAR-T cells exhibit promising efficacy against recurrent HGG. Moreover, emerging therapies such as tumour treating fields (TTFields) offer additional treatment avenues for patients with HGG. The combination of diverse treatments holds promise for improving the prognosis of HGG, particularly in cases of recurrence.
Collapse
Affiliation(s)
- Xi Chen
- Department of Radiotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Cui
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Liqun Zou
- Department of Medical Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
80
|
Giglio RM, Hou N, Wyatt A, Hong J, Shi L, Vaikunthan M, Fuchs H, Nima JP, Malinowski SW, Ligon KL, McFaline-Figueroa JR, Yosef N, Azizi E, McFaline-Figueroa JL. A heterogeneous pharmaco-transcriptomic landscape induced by targeting a single oncogenic kinase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.587960. [PMID: 38645018 PMCID: PMC11030430 DOI: 10.1101/2024.04.08.587960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Over-activation of the epidermal growth factor receptor (EGFR) is a hallmark of glioblastoma. However, EGFR-targeted therapies have led to minimal clinical response. While delivery of EGFR inhibitors (EGFRis) to the brain constitutes a major challenge, how additional drug-specific features alter efficacy remains poorly understood. We apply highly multiplex single-cell chemical genomics to define the molecular response of glioblastoma to EGFRis. Using a deep generative framework, we identify shared and drug-specific transcriptional programs that group EGFRis into distinct molecular classes. We identify programs that differ by the chemical properties of EGFRis, including induction of adaptive transcription and modulation of immunogenic gene expression. Finally, we demonstrate that pro-immunogenic expression changes associated with a subset of tyrphostin family EGFRis increase the ability of T-cells to target glioblastoma cells.
Collapse
Affiliation(s)
- Ross M. Giglio
- Department of Molecular Pharmacology and Therapeutics, Columbia University Medical Center, New York, NY 10032, USA
| | - Nicholas Hou
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Adeya Wyatt
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Justin Hong
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Lingting Shi
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
| | - Mathini Vaikunthan
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Henry Fuchs
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Jose Pomarino Nima
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Seth W. Malinowski
- Department of Oncologic Pathology, Brigham and Women’s Hospital, Boston Children’s Hospital, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Keith L. Ligon
- Department of Oncologic Pathology, Brigham and Women’s Hospital, Boston Children’s Hospital, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Nir Yosef
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Elham Azizi
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Computer Science, Columbia University, New York, NY 10027, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Data Science Institute, Columbia University, New York, NY 10027, USA
| | - José L. McFaline-Figueroa
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
81
|
Nguyen H, Schubert KE, Pohling C, Chang E, Yamamoto V, Zeng Y, Nie Y, Van Buskirk S, Schulte RW, Patel CB. Impact of glioma peritumoral edema, tumor size, and tumor location on alternating electric fields (AEF) therapy in realistic 3D rat glioma models: a computational study. Phys Med Biol 2024; 69:085015. [PMID: 38417178 DOI: 10.1088/1361-6560/ad2e6c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Objective.Alternating electric fields (AEF) therapy is a treatment modality for patients with glioblastoma. Tumor characteristics such as size, location, and extent of peritumoral edema may affect the AEF strength and distribution. We evaluated the sensitivity of the AEFs in a realistic 3D rat glioma model with respect to these properties.Approach.The electric properties of the peritumoral edema were varied based on calculated and literature-reported values. Models with different tumor composition, size, and location were created. The resulting AEFs were evaluated in 3D rat glioma models.Main results.In all cases, a pair of 5 mm diameter electrodes induced an average field strength >1 V cm-1. The simulation results showed that a negative relationship between edema conductivity and field strength was found. As the tumor core size was increased, the average field strength increased while the fraction of the shell achieving >1.5 V cm-1decreased. Increasing peritumoral edema thickness decreased the shell's mean field strength. Compared to rostrally/caudally, shifting the tumor location laterally/medially and ventrally (with respect to the electrodes) caused higher deviation in field strength.Significance.This study identifies tumor properties that are key drivers influencing AEF strength and distribution. The findings might be potential preclinical implications.
Collapse
Affiliation(s)
- Ha Nguyen
- Baylor University, Waco, TX, 76706, United States of America
| | | | - Christoph Pohling
- Loma Linda University, Loma Linda, CA, 92350, United States of America
| | - Edwin Chang
- Stanford University, Stanford, CA, 94305, United States of America
| | - Vicky Yamamoto
- University of Southern California-Keck School of Medicine, Los Angeles, CA, 90033, United States of America
| | - Yuping Zeng
- University of Delaware, Newark, DE, 19716, United States of America
| | - Ying Nie
- Loma Linda University, Loma Linda, CA, 92350, United States of America
| | - Samuel Van Buskirk
- University of Texas at San Antonio, San Antonio, TX, 78249, United States of America
| | | | - Chirag B Patel
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States of America
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, United States of America
| |
Collapse
|
82
|
Tripathy S, Singh S, Banerjee M, Modi DR, Prakash A. Coagulation proteases and neurotransmitters in pathogenicity of glioblastoma multiforme. Int J Neurosci 2024; 134:398-408. [PMID: 35896309 DOI: 10.1080/00207454.2022.2107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
Glioblastoma is an aggressive type of cancer that begins in cells called astrocytes that support nerve cells that can occur in the brain or spinal cord. It can form in the brain or spinal cord. Despite the variety of modern therapies against GBM, it is still a deadly disease. Patients usually have a median survival of approximately 14 to 15 months from the diagnosis. Glioblastoma is also known as glioblastoma multiforme. The pathogenesis contributing to the proliferation and metastasis of cancer involves aberrations of multiple signalling pathways through multiple genetic mutations and altered gene expression. The coagulant factors like thrombin and tissue factor play a noteworthy role in cancer invasion. They are produced in the microenvironment of glioma through activation of protease-activated receptors (PARs) which are activated by coagulation proteases. PARs are members of family G-protein-coupled receptors (GPCRs) that are activated by coagulation proteases. These components play a key role in tumour cell angiogenesis, migration, invasion, and interactions with host vascular cells. Further, the release of neurotransmitters is also found to regulate malignancy in gliomas. Exploration of the interplay between malignant neural circuitry with the normal conditions is also decisive in finding effective therapies for these apparently invasive tumours. The present review discusses the molecular classification of gliomas, activation of PARs by coagulation protease, and its role in metastasis of gliomas. Further, the differential involvement of neurotransmitters in the pathogenesis of gliomas has also been discussed. Targeting these molecules may present a potential therapeutic approach for the treatment of gliomas.
Collapse
Affiliation(s)
- Sukanya Tripathy
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sanjay Singh
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Monisha Banerjee
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - Dinesh Raj Modi
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Anand Prakash
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| |
Collapse
|
83
|
Nejati M, Soheili M, Salami M, Khedri M. The effect of redox bacteria on the programmed cell death-1 cancer immunotherapy. Res Pharm Sci 2024; 19:228-237. [PMID: 39035583 PMCID: PMC11257211 DOI: 10.4103/rps.rps_28_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/12/2023] [Accepted: 12/18/2023] [Indexed: 07/23/2024] Open
Abstract
Background and purpose Extracellular electron transferring (EET) or redox bacteria employ a shuttle of flavins to transfer electrons to the oxygen in the intestinal mucosa. Although clinical studies suggest that the gut microbiome modulates the efficiency of immune checkpoint therapy in patients with cancer, the modulation mechanisms have not been well-characterized yet. Experimental approach In the present study, the oral gavage administration of Shewanella oneidensis MR-1 as a prototypic EET bacteria was assayed in a mouse model of lung cancer to determine the effect of EET bacterium on the efficacy of the programmed cell death protein 1 (PD1)-immune checkpoint therapy. Findings/Results It was indicated that in vitro EET from S. oneidensis was mediated by riboflavins that were supplied through extrinsic sources. Co-administration of S. oneidensis and anti-PD 1 antibodies represent better tumor remission compared to the single-administration of each one; however, no statistically significant change was observed in the tumor volume. Conclusion and implications More detailed studies are needed to definitively confirm the therapeutic effects of electrogenic bacteria in patients with cancer. Given the findings of the present study, increasing flavin compounds or EET bacteria in the intestine may provide novel strategies for modulating cancer immunotherapy.
Collapse
Affiliation(s)
- Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Masoud Soheili
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mostafa Khedri
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
84
|
Rocca A, Giudici F, Donofrio CA, Bottin C, Pinamonti M, Ferrari B, Schettini F, Pineda E, Panni S, Cominetti M, D’Auria P, Bianchini S, Varotti E, Ungari M, Ciccarelli S, Filippini M, Brenna S, Fiori V, Di Mambro T, Sparti A, Magnani M, Zanconati F, Generali D, Fioravanti A. CD99 Expression and Prognostic Impact in Glioblastoma: A Single-Center Cohort Study. Cells 2024; 13:597. [PMID: 38607036 PMCID: PMC11012029 DOI: 10.3390/cells13070597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Glioblastoma is the most frequent and aggressive brain tumor in adults. This study aims to evaluate the expression and prognostic impact of CD99, a membrane glycoprotein involved in cellular migration and invasion. In a cohort of patients with glioblastoma treated with surgery, radiotherapy and temozolomide, we retrospectively analyzed tumor expression of CD99 by immunohistochemistry (IHC) and by quantitative real-time polymerase chain reaction (qRT-PCR) for both the wild type (CD99wt) and the truncated (CD99sh) isoforms. The impact on overall survival (OS) was assessed with the Kaplan-Meier method and log-rank test and by multivariable Cox regression. Forty-six patients with glioblastoma entered this study. Immunohistochemical expression of CD99 was present in 83%. Only the CD99wt isoform was detected by qRT-PCR and was significantly correlated with CD99 expression evaluated by IHC (rho = 0.309, p = 0.037). CD99 expression was not associated with OS, regardless of the assessment methodology used (p = 0.61 for qRT-PCR and p = 0.73 for IHC). In an exploratory analysis of The Cancer Genome Atlas, casuistry of glioblastomas CD99 expression was not associated with OS nor with progression-free survival. This study confirms a high expression of CD99 in glioblastoma but does not show any significant impact on survival. Further preclinical studies are needed to define its role as a therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Andrea Rocca
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Fabiola Giudici
- Cancer Epidemiology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Carmine Antonio Donofrio
- Neurosurgery, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Maurizio Pinamonti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Benvenuto Ferrari
- Breast and Brain Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), C. Villaroel 170, 08036 Barcelona, Spain
- Medical Oncology Department, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Estela Pineda
- Medical Oncology Department, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Stefano Panni
- Breast and Brain Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Marika Cominetti
- Neurosurgery, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Patrizia D’Auria
- Neurosurgery, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | | | - Elena Varotti
- Pathology Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Marco Ungari
- Pathology Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Stefano Ciccarelli
- Radiotherapy Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Marzia Filippini
- Radiotherapy Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Sarah Brenna
- Radiotherapy Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | | | | | - Angelo Sparti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147 Trieste, Italy
- Breast and Brain Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | | |
Collapse
|
85
|
Morrison C, Weterings E, Gravbrot N, Hammer M, Weinand M, Sanan A, Pandey R, Mahadevan D, Stea B. Gene Expression Patterns Associated with Survival in Glioblastoma. Int J Mol Sci 2024; 25:3668. [PMID: 38612480 PMCID: PMC11011684 DOI: 10.3390/ijms25073668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of this study was to investigate gene expression alterations associated with overall survival (OS) in glioblastoma (GBM). Using the Nanostring nCounter platform, we identified four genes (COL1A2, IGFBP3, NGFR, and WIF1) that achieved statistical significance when comparing GBM with non-neoplastic brain tissue. The four genes were included in a multivariate Cox Proportional Hazard model, along with age, extent of resection, and O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation, to create a unique glioblastoma prognostic index (GPI). The GPI score inversely correlated with survival: patient with a high GPI had a median OS of 7.5 months (18-month OS = 9.7%) whereas patients with a low GPI had a median OS of 20.1 months (18-month OS = 54.5%; log rank p-value = 0.004). The GPI score was then validated in 188 GBM patients from The Cancer Genome Atlas (TCGA) from a national data base; similarly, patients with a high GPI had a median OS of 10.5 months (18-month OS = 12.4%) versus 16.9 months (18-month OS = 41.5%) for low GPI (log rank p-value = 0.0003). We conclude that this novel mRNA-based prognostic index could be useful in classifying GBM patients into risk groups and refine prognosis estimates to better inform treatment decisions or stratification into clinical trials.
Collapse
Affiliation(s)
- Christopher Morrison
- Department of Radiation Oncology, University of Arizona, Tucson, AZ 85719, USA; (C.M.)
| | - Eric Weterings
- Department of Radiation Oncology, University of Arizona, Tucson, AZ 85719, USA; (C.M.)
| | - Nicholas Gravbrot
- College of Medicine, University of Arizona, Tucson Campus, Tucson, AZ 85724, USA; (N.G.); (M.H.)
| | - Michael Hammer
- College of Medicine, University of Arizona, Tucson Campus, Tucson, AZ 85724, USA; (N.G.); (M.H.)
- Department of Neurology, University of Arizona Genetics Core, Tucson, AZ 85724, USA
| | - Martin Weinand
- Department of Neurosurgery, University of Arizona, Tucson, AZ 85724, USA;
| | - Abhay Sanan
- Center for Neurosciences, Tucson, AZ 85719, USA;
| | - Ritu Pandey
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center Bioinformatics Shared Resource, and College of Medicine, University of Arizona, Tucson, AZ 85724, USA;
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health, San Antonio, TX 78229, USA;
| | - Baldassarre Stea
- Department of Radiation Oncology, University of Arizona, Tucson, AZ 85719, USA; (C.M.)
| |
Collapse
|
86
|
Wang J, Du Q, Chen J, Liu J, Gu Z, Wang X, Zhang A, Gao S, Shao A, Zhang J, Wang Y. Tumor treating fields in glioblastoma: long-term treatment and high compliance as favorable prognostic factors. Front Oncol 2024; 14:1345190. [PMID: 38571508 PMCID: PMC10987822 DOI: 10.3389/fonc.2024.1345190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Tumor treating fields (TTFields) have earned substantial attention in recent years as a novel therapeutic approach with the potential to improve the prognosis of glioblastoma (GBM) patients. However, the impact of TTFields remains a subject of ongoing debate. This study aimed to offer real-world evidence on TTFields therapy for GBM, and to investigate the clinical determinants affecting its efficacy. Methods We have reported a retrospective analysis of 81 newly diagnosed Chinese GBM patients who received TTFields/Stupp treatment in the Second Affiliated Hospital of Zhejiang University. Overall survival (OS) and progression-free survival (PFS) were analyzed using Kaplan-Meier method. Cox regression models with time-dependent covariates were utilized to address non-proportional hazards and to assess the influence of clinical variables on PFS and OS. Results The median PFS and OS following TTFields/STUPP treatment was 12.6 months (95% CI 11.0-14.1) and 21.3 months (95% CI 10.0-32.6) respectively. Long-term TTFields treatment (>2 months) exhibits significant improvements in PFS and OS compared to the short-term treatment group (≤2 months). Time-dependent covariate COX analysis revealed that longer TTFields treatment was correlated with enhanced PFS and OS for up to 12 and 13 months, respectively. Higher compliance to TTFields (≥ 0.8) significantly reduced the death risk (HR=0.297, 95%CI 0.108-0.819). Complete surgical resection and MGMT promoter methylation were associated with significantly lower risk of progression (HR=0.337, 95% CI 0.176-0.643; HR=0.156, 95% CI 0.065-0.378) and death (HR=0.276, 95% CI 0.105-0.727; HR=0.249, 95% CI 0.087-0.710). Conclusion The TTFields/Stupp treatment may prolong median OS and PFS in GBM patients, with long-term TTFields treatment, higher TTFields compliance, complete surgical resection, and MGMT promoter methylation significantly improving prognosis.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Quan Du
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neurosurgery, Hangzhou First People’s Hospital, Hangzhou, China
| | - Jiarui Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jianjian Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Zhaowen Gu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
87
|
Rejimon AC, Ramesh KK, Trivedi AG, Huang V, Schreibmann E, Weinberg BD, Kleinberg LR, Shu HKG, Shim H, Olson JJ. The Utility of Spectroscopic MRI in Stereotactic Biopsy and Radiotherapy Guidance in Newly Diagnosed Glioblastoma. Tomography 2024; 10:428-443. [PMID: 38535775 PMCID: PMC10975697 DOI: 10.3390/tomography10030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
Current diagnostic and therapeutic approaches for gliomas have limitations hindering survival outcomes. We propose spectroscopic magnetic resonance imaging as an adjunct to standard MRI to bridge these gaps. Spectroscopic MRI is a volumetric MRI technique capable of identifying tumor infiltration based on its elevated choline (Cho) and decreased N-acetylaspartate (NAA). We present the clinical translatability of spectroscopic imaging with a Cho/NAA ≥ 5x threshold for delineating a biopsy target in a patient diagnosed with non-enhancing glioma. Then, we describe the relationship between the undertreated tumor detected with metabolite imaging and overall survival (OS) from a pilot study of newly diagnosed GBM patients treated with belinostat and chemoradiation. Each cohort (control and belinostat) were split into subgroups using the median difference between pre-radiotherapy Cho/NAA ≥ 2x and the treated T1-weighted contrast-enhanced (T1w-CE) volume. We used the Kaplan-Meier estimator to calculate median OS for each subgroup. The median OS was 14.4 months when the difference between Cho/NAA ≥ 2x and T1w-CE volumes was higher than the median compared with 34.3 months when this difference was lower than the median. The T1w-CE volumes were similar in both subgroups. We find that patients who had lower volumes of undertreated tumors detected via spectroscopy had better survival outcomes.
Collapse
Affiliation(s)
- Abinand C. Rejimon
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (A.C.R.); (K.K.R.); (E.S.); (H.-K.G.S.); (H.S.)
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Karthik K. Ramesh
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (A.C.R.); (K.K.R.); (E.S.); (H.-K.G.S.); (H.S.)
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anuradha G. Trivedi
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (A.C.R.); (K.K.R.); (E.S.); (H.-K.G.S.); (H.S.)
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vicki Huang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (A.C.R.); (K.K.R.); (E.S.); (H.-K.G.S.); (H.S.)
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Eduard Schreibmann
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (A.C.R.); (K.K.R.); (E.S.); (H.-K.G.S.); (H.S.)
| | - Brent D. Weinberg
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA;
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Lawrence R. Kleinberg
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Hui-Kuo G. Shu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (A.C.R.); (K.K.R.); (E.S.); (H.-K.G.S.); (H.S.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Hyunsuk Shim
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (A.C.R.); (K.K.R.); (E.S.); (H.-K.G.S.); (H.S.)
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA;
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Jeffrey J. Olson
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Neurosurgery, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
88
|
Fernando D, Ahmed AU, Williams BRG. Therapeutically targeting the unique disease landscape of pediatric high-grade gliomas. Front Oncol 2024; 14:1347694. [PMID: 38525424 PMCID: PMC10957575 DOI: 10.3389/fonc.2024.1347694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Pediatric high-grade gliomas (pHGG) are a rare yet devastating malignancy of the central nervous system's glial support cells, affecting children, adolescents, and young adults. Tumors of the central nervous system account for the leading cause of pediatric mortality of which high-grade gliomas present a significantly grim prognosis. While the past few decades have seen many pediatric cancers experiencing significant improvements in overall survival, the prospect of survival for patients diagnosed with pHGGs has conversely remained unchanged. This can be attributed in part to tumor heterogeneity and the existence of the blood-brain barrier. Advances in discovery research have substantiated the existence of unique subgroups of pHGGs displaying alternate responses to different therapeutics and varying degrees of overall survival. This highlights a necessity to approach discovery research and clinical management of the disease in an alternative subtype-dependent manner. This review covers traditional approaches to the therapeutic management of pHGGs, limitations of such methods and emerging alternatives. Novel mutations which predominate the pHGG landscape are highlighted and the therapeutic potential of targeting them in a subtype specific manner discussed. Collectively, this provides an insight into issues in need of transformative progress which arise during the management of pHGGs.
Collapse
Affiliation(s)
- Dasun Fernando
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Afsar U. Ahmed
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Bryan R. G. Williams
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
89
|
Liu K, Zhu Y, Zhu H, Zeng M. Combination tumor-treating fields treatment for patients with metastatic non-small cell lung cancer: A cost-effectiveness analysis. Cancer Med 2024; 13:e7070. [PMID: 38468503 DOI: 10.1002/cam4.7070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Tumor-treating field (TTFields) was a novel antitumor therapy that provided significant survival for previously treated metastatic non-small cell lung cancer (mNSCLC). The consistency of the cost of the new treatment regimen with its efficacy was the main objective of the study. METHODS The primary parameters, derived from the Phase 3 LUNAR study, were collected to evaluate the cost and efficacy of TTFields plus standard-of-care (SOC) (immune checkpoint inhibitors [ICIs] and docetaxel [DTX]) or SOC in patients with mNSCLC by establishing a three-state Markov model over a 15-year time horizon. Primary outcome measures for this study included costs, life-years (LYs), quality-adjusted LYs (QALYs), and incremental cost-effectiveness ratios (ICERs). Sensitivity analyses were performed. RESULTS The total costs of TTFields plus SOC, TTFields plus ICI, and TTFields plus DTX were $319,358, $338,688, and $298,477, generating 1.23 QALYs, 1.58 QALYs, and 0.89 QALYs, respectively. The ICERs of TTFields plus SOC versus SOC, TTFields plus ICI versus ICI, and TTFields plus DTX versus DTX were $613,379/QALY, $387,542/QALY, and $1,359,559/QALY, respectively. At willingness-to-pay (WTP) thresholds of $150,000/QALY, the probability of combination TTFields being cost-effective was 0%. In addition, TTFields plus SOC exhibited similar efficacy (1.12 QALYs and 1.14 QALYs) and costs ($309,822 and $312,531) in the treatment of squamous cell carcinoma (SCC) and non-squamous cell carcinoma (NSCC) populations. CONCLUSIONS In the United States, TTFields plus SOC as second-line treatment was not a more cost-effective strategy for patients with mNSCLC. Of the analyzed regimens, TTFields plus ICI was associated with most significant health benefits.
Collapse
Affiliation(s)
- Kun Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youwen Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manting Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
90
|
Carpentier A, Stupp R, Sonabend AM, Dufour H, Chinot O, Mathon B, Ducray F, Guyotat J, Baize N, Menei P, de Groot J, Weinberg JS, Liu BP, Guemas E, Desseaux C, Schmitt C, Bouchoux G, Canney M, Idbaih A. Repeated blood-brain barrier opening with a nine-emitter implantable ultrasound device in combination with carboplatin in recurrent glioblastoma: a phase I/II clinical trial. Nat Commun 2024; 15:1650. [PMID: 38396134 PMCID: PMC10891097 DOI: 10.1038/s41467-024-45818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Here, the results of a phase 1/2 single-arm trial (NCT03744026) assessing the safety and efficacy of blood-brain barrier (BBB) disruption with an implantable ultrasound system in recurrent glioblastoma patients receiving carboplatin are reported. A nine-emitter ultrasound implant was placed at the end of tumor resection replacing the bone flap. After surgery, activation to disrupt the BBB was performed every four weeks either before or after carboplatin infusion. The primary objective of the Phase 1 was to evaluate the safety of escalating numbers of ultrasound emitters using a standard 3 + 3 dose escalation. The primary objective of the Phase 2 was to evaluate the efficacy of BBB opening using magnetic resonance imaging (MRI). The secondary objectives included safety and clinical efficacy. Thirty-three patients received a total of 90 monthly sonications with carboplatin administration and up to nine emitters activated without observed DLT. Grade 3 procedure-related adverse events consisted of pre syncope (n = 3), fatigue (n = 1), wound infection (n = 2), and pain at time of device connection (n = 7). BBB opening endpoint was met with 90% of emitters showing BBB disruption on MRI after sonication. In the 12 patients who received carboplatin just prior to sonication, the progression-free survival was 3.1 months, the 1-year overall survival rate was 58% and median overall survival was 14.0 months from surgery.
Collapse
Affiliation(s)
- Alexandre Carpentier
- Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurochirurgie, Paris, France.
| | - Roger Stupp
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Henry Dufour
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neuro-Oncologie, Marseille, France
| | - Olivier Chinot
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neuro-Oncologie, Marseille, France
| | - Bertrand Mathon
- Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurochirurgie, Paris, France
| | - François Ducray
- Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Service de Neuro-Oncologie, Hospices Civils de Lyon, Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Cancer Cell Plasticity Department, Lyon, France
| | - Jacques Guyotat
- Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Service de Neuro-Oncologie, Hospices Civils de Lyon, Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Cancer Cell Plasticity Department, Lyon, France
| | | | | | - John de Groot
- Departments of Neurology and Neurosurgery, University of California, San Francisco, CA, USA
| | - Jeffrey S Weinberg
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Benjamin P Liu
- Departments of Radiology and Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuro-Oncologie, Paris, France
| |
Collapse
|
91
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
92
|
Nelson N, Relógio A. Molecular mechanisms of tumour development in glioblastoma: an emerging role for the circadian clock. NPJ Precis Oncol 2024; 8:40. [PMID: 38378853 PMCID: PMC10879494 DOI: 10.1038/s41698-024-00530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Glioblastoma is one of the most lethal cancers with current therapeutic options lacking major successes. This underlines the necessity to understand glioblastoma biology on other levels and use these learnings for the development of new therapeutic concepts. Mounting evidence in the field of circadian medicine points to a tight interplay between disturbances of the circadian system and glioblastoma progression. The circadian clock, an internal biological mechanism governing numerous physiological processes across a 24-h cycle, also plays a pivotal role in regulationg key cellular functions, including DNA repair, cell cycle progression, and apoptosis. These processes are integral to tumour development and response to therapy. Disruptions in circadian rhythms can influence tumour growth, invasion, and response to treatment in glioblastoma patients. In this review, we explore the robust association between the circadian clock, and cancer hallmarks within the context of glioblastoma. We further discuss the impact of the circadian clock on eight cancer hallmarks shown previously to link the molecular clock to different cancers, and summarize the putative role of clock proteins in circadian rhythm disturbances and chronotherapy in glioblastoma. By unravelling the molecular mechanisms behind the intricate connections between the circadian clock and glioblastoma progression, researchers can pave the way for the identification of potential therapeutic targets, the development of innovative treatment strategies and personalized medicine approaches. In conclusion, this review underscores the significant influence of the circadian clock on the advancement and understanding of future therapies in glioblastoma, ultimately leading to enhanced outcomes for glioblastoma patients.
Collapse
Affiliation(s)
- Nina Nelson
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Angela Relógio
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany.
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Molecular Cancer Research Center (MKFZ), Medical Department of Haematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
| |
Collapse
|
93
|
Noch EK, Palma L, Yim I, Bullen N, Barnett D, Walsh A, Bhinder B, Benedetti E, Krumsiek J, Gurvitch J, Khwaja S, Atlas D, Elemento O, Cantley LC. Cysteine induces mitochondrial reductive stress in glioblastoma through hydrogen peroxide production. Proc Natl Acad Sci U S A 2024; 121:e2317343121. [PMID: 38359293 PMCID: PMC10895255 DOI: 10.1073/pnas.2317343121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/21/2023] [Indexed: 02/17/2024] Open
Abstract
Glucose and amino acid metabolism are critical for glioblastoma (GBM) growth, but little is known about the specific metabolic alterations in GBM that are targetable with FDA-approved compounds. To investigate tumor metabolism signatures unique to GBM, we interrogated The Cancer Genome Atlas for alterations in glucose and amino acid signatures in GBM relative to other human cancers and found that GBM exhibits the highest levels of cysteine and methionine pathway gene expression of 32 human cancers. Treatment of patient-derived GBM cells with the FDA-approved single cysteine compound N-acetylcysteine (NAC) reduced GBM cell growth and mitochondrial oxygen consumption, which was worsened by glucose starvation. Normal brain cells and other cancer cells showed no response to NAC. Mechanistic experiments revealed that cysteine compounds induce rapid mitochondrial H2O2 production and reductive stress in GBM cells, an effect blocked by oxidized glutathione, thioredoxin, and redox enzyme overexpression. From analysis of the clinical proteomic tumor analysis consortium (CPTAC) database, we found that GBM cells exhibit lower expression of mitochondrial redox enzymes than four other cancers whose proteomic data are available in CPTAC. Knockdown of mitochondrial thioredoxin-2 in lung cancer cells induced NAC susceptibility, indicating the importance of mitochondrial redox enzyme expression in mitigating reductive stress. Intraperitoneal treatment of mice bearing orthotopic GBM xenografts with a two-cysteine peptide induced H2O2 in brain tumors in vivo. These findings indicate that GBM is uniquely susceptible to NAC-driven reductive stress and could synergize with glucose-lowering treatments for GBM.
Collapse
Affiliation(s)
- Evan K. Noch
- Department of Neurology, Division of Neuro-Oncology, Weill Cornell Medicine, Cornell University, New York, NY10021
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY10021
| | - Laura Palma
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY10021
| | - Isaiah Yim
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY10021
| | - Nayah Bullen
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY10021
| | - Daniel Barnett
- Neuroscience Graduate Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY10021
| | - Alexander Walsh
- Neuroscience Graduate Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY10021
| | - Bhavneet Bhinder
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10021
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY10021
| | - Elisa Benedetti
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10021
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY10021
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10021
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY10021
| | - Justin Gurvitch
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY10021
| | - Sumaiyah Khwaja
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY10021
| | - Daphne Atlas
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10021
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY10021
| | - Lewis C. Cantley
- Department of Cell Biology, Harvard Medical School, Boston, MA02114
| |
Collapse
|
94
|
Heinrich MA, Huynh NT, Heinrich L, Prakash J. Understanding glioblastoma stromal barriers against NK cell attack using tri-culture 3D spheroid model. Heliyon 2024; 10:e24808. [PMID: 38317968 PMCID: PMC10838749 DOI: 10.1016/j.heliyon.2024.e24808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Glioblastoma multiforme (GBM), a highly aggressive tumor type with a dismal survival rate, has a poor outcome which is at least partly attributed to the crosstalk between cancer cells and cells from the tumor microenvironment such as astrocytes and microglia. We aimed to decipher the effect of these cells on GBM progression and on cell-based therapies using 3D co-cultures. Co-culturing of glioblastoma cells with patient-derived astrocytes or microglia or both formed dense and heterogeneous spheroids. Both, astrocytes and microglia, enhanced the spheroid growth rate and formed a physical barrier for macromolecules penetration, while only astrocytes enhanced the migration. Interestingly bi-/tri-cultured spheroids showed significant resistance against NK-92 cells, likely attributed to dense stroma and induced expression of immunosuppressive genes such as IDO1 or PTGES2. Altogether, our novel 3D GBM spheroid model recapitulates the cell-to-cell interactions of human glioblastoma and can serve as a suitable platform for evaluating cancer therapeutics.
Collapse
Affiliation(s)
| | | | - Lena Heinrich
- Department of Advanced Organ Bioengineering & Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Jai Prakash
- Department of Advanced Organ Bioengineering & Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| |
Collapse
|
95
|
Li S, Yuan J, Cheng Z, Li Y, Cheng S, Liu X, Huang S, Xu Z, Wu A, Liu L, Dong J. Hsa_circ_0021205 enhances lipolysis via regulating miR-195-5p/HSL axis and drives malignant progression of glioblastoma. Cell Death Discov 2024; 10:71. [PMID: 38341418 DOI: 10.1038/s41420-024-01841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Abnormal lipid metabolism is an essential hallmark of glioblastoma. Hormone sensitive lipase (HSL), an important rate-limiting enzyme contributed to lipolysis, which was involved in aberrant lipolysis of glioblastoma, however, its definite roles and the relevant regulatory pathway have not been fully elucidated. Our investigations disclosed high expression of HSL in glioblastoma. Knock-down of HSL restrained proliferation, migration, and invasion of glioblastoma cells while adding to FAs could significantly rescue the inhibitory effect of si-HSL on tumor cells. Overexpression of HSL further promoted tumor cell proliferation and invasion. Bioinformatics analysis and dual-luciferase reporter assay were performed to predict and verify the regulatory role of ncRNAs on HSL. Mechanistically, hsa_circ_0021205 regulated HSL expression by sponging miR-195-5p, which further promoted lipolysis and drove the malignant progression of glioblastoma. Besides, hsa_circ_0021205/miR-195-5p/HSL axis activated the epithelial-mesenchymal transition (EMT) signaling pathway. These findings suggested that hsa_circ_0021205 promoted tumorigenesis of glioblastoma through regulation of HSL, and targeting hsa_circ_0021205/miR-195-5p/HSL axis can serve as a promising new strategy against glioblastoma.
Collapse
Affiliation(s)
- Suwen Li
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaqi Yuan
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurosurgery, the Zhangjiagang Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Zhe Cheng
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurosurgery, the Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yongdong Li
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shan Cheng
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinglei Liu
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shilu Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhipeng Xu
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Anyi Wu
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Dong
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
96
|
Chen E, Ling AL, Reardon DA, Chiocca EA. Lessons learned from phase 3 trials of immunotherapy for glioblastoma: Time for longitudinal sampling? Neuro Oncol 2024; 26:211-225. [PMID: 37995317 PMCID: PMC10836778 DOI: 10.1093/neuonc/noad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
Glioblastoma (GBM)'s median overall survival is almost 21 months. Six phase 3 immunotherapy clinical trials have recently been published, yet 5/6 did not meet approval by regulatory bodies. For the sixth, approval is uncertain. Trial failures result from multiple factors, ranging from intrinsic tumor biology to clinical trial design. Understanding the clinical and basic science of these 6 trials is compelled by other immunotherapies reaching the point of advanced phase 3 clinical trial testing. We need to understand more of the science in human GBMs in early trials: the "window of opportunity" design may not be best to understand complex changes brought about by immunotherapeutic perturbations of the GBM microenvironment. The convergence of increased safety of image-guided biopsies with "multi-omics" of small cell numbers now permits longitudinal sampling of tumor and biofluids to dissect the complex temporal changes in the GBM microenvironment as a function of the immunotherapy.
Collapse
Affiliation(s)
- Ethan Chen
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Alexander L Ling
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
97
|
Lai Y, Wu Y, Chen X, Gu W, Zhou G, Weng M. MRI-based Machine Learning Radiomics Can Predict CSF1R Expression Level and Prognosis in High-grade Gliomas. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:209-229. [PMID: 38343263 DOI: 10.1007/s10278-023-00905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 03/02/2024]
Abstract
The purpose of this study is to predict the mRNA expression of CSF1R in HGG non-invasively using MRI (magnetic resonance imaging) omics technology and to evaluate the correlation between the established radiomics model and prognosis. We investigated the predictive value of CSF1R in the Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA) database. The Support vector machine (SVM) and the Logistic regression (LR) algorithms were used to create a radiomics_score (Rad_score), respectively. The effectiveness and performance of the radiomics model was assessed in the training (n = 89) and tenfold cross-validation sets. We further analyzed the correlation between Rad_score and macrophage-related genes using Spearman correlation analysis. A radiomics nomogram combining the clinical factors and Rad_score was constructed to validate the radiomic signatures for individualized survival estimation and risk stratification. The results showed that CSF1R expression was markedly elevated in HGG tissues, which was related to worse prognosis. CSF1R expression was closely related to the abundance of infiltrating immune cells, such as macrophages. We identified nine features for establishing a radiomics model. The radiomics model predicting CSF1R achieved high AUC in training (0.768 in SVM and 0.792 in LR) and tenfold cross-validation sets (0.706 in SVM and 0.717 in LR). Rad_score was highly associated with tumor-related macrophage genes. A radiomics nomogram combining the Rad_score and clinical factors was constructed and revealed satisfactory performance. MRI-based Rad_score is a novel way to predict CSF1R expression and prognosis in high-grade glioma patients. The radiomics nomogram could optimize individualized survival estimation for HGG patients.
Collapse
Affiliation(s)
- Yuling Lai
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yiyang Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiangyuan Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan.
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Guoxia Zhou
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Meilin Weng
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
98
|
Iv M, Naya L, Sanan S, Van Buskirk SL, Nagpal S, Thomas RP, Recht LD, Patel CB. Tumor treating fields increases blood-brain barrier permeability and relative cerebral blood volume in patients with glioblastoma. Neuroradiol J 2024; 37:107-118. [PMID: 37931176 PMCID: PMC10863570 DOI: 10.1177/19714009231207083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVE 200 kHz tumor treating fields (TTFields) is clinically approved for newly-diagnosed glioblastoma (nGBM). Because its effects on conventional surveillance MRI brain scans are equivocal, we investigated its effects on perfusion MRI (pMRI) brain scans. METHODS Each patient underwent institutional standard pMRI: dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast (DSC) pMRI at three time points: baseline, 2-, and 6-months on-adjuvant therapy. At each timepoint, the difference between T1 pre- versus post-contrast tumor volume (ΔT1) and these pMRI metrics were evaluated: normalized and standardized relative cerebral blood volume (nRCBV, sRCBV); fractional plasma volume (Vp), volume of extravascular extracellular space (EES) per volume of tissue (Ve), blood-brain barrier (BBB) permeability (Ktrans), and time constant for gadolinium reflux from EES back into the vascular system (Kep). Between-group comparisons were performed using rank-sum analysis, and bootstrapping evaluated likely reproducibility of the results. RESULTS Among 13 pMRI datasets (11 nGBM, 2 recurrent GBM), therapies included temozolomide-only (n = 9) and temozolomide + TTFields (n = 4). No significant differences were found in patient or tumor characteristics. Compared to temozolomide-only, temozolomide + TTFields did not significantly affect the percent-change in pMRI metrics from baseline to 2 months. But during the 2- to 6-month period, temozolomide + TTFields significantly increased the percent-change in nRCBV (+26.9% [interquartile range 55.1%] vs -39.1% [37.0%], p = 0.049), sRCBV (+9.5% [39.7%] vs -30.5% [39.4%], p = 0.049), Ktrans (+54.6% [1768.4%] vs -26.9% [61.2%], p = 0.024), Ve (+111.0% [518.1%] vs -13.0% [22.5%], p = 0.048), and Vp (+98.8% [2172.4%] vs -24.6% [53.3%], p = 0.024) compared to temozolomide-only. CONCLUSION Using pMRI, we provide initial in-human validation of pre-clinical studies regarding the effects of TTFields on tumor blood volume and BBB permeability in GBM.
Collapse
Affiliation(s)
- Michael Iv
- Division of Neuroradiology, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lewis Naya
- Stanford Cancer Institute, Stanford, CA, USA
| | - Sajal Sanan
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Samuel L Van Buskirk
- Department of Psychology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Seema Nagpal
- Division of Neuro-Oncology, Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Reena P Thomas
- Division of Neuro-Oncology, Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lawrence D Recht
- Division of Neuro-Oncology, Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chirag B Patel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center, University of Texas at Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center-University of Texas at Houston Graduate School of Biomedical Sciences (GSBS), USA
| |
Collapse
|
99
|
Yang Z, Sun L, Chen H, Sun C, Xia L. New progress in the treatment of diffuse midline glioma with H3K27M alteration. Heliyon 2024; 10:e24877. [PMID: 38312649 PMCID: PMC10835306 DOI: 10.1016/j.heliyon.2024.e24877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Diffuse midline glioma with H3K27 M alteration is a primary malignant tumor located along the linear structure of the brain, predominantly manifesting in children and adolescents. The mortality rate is exceptionally high, with a mere 1 % 5-year survival rate for newly diagnosed patients. Beyond conventional surgery, radiotherapy, and chemotherapy, novel approaches are imperative to enhance patient prognosis. This article comprehensively reviews current innovative treatment modalities and provides updates on the latest research advancements in preclinical studies and clinical trials focusing on H3K27M-altered diffuse midline glioma. The goal is to contribute positively to clinical treatment strategies.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Haibin Chen
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Caixing Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Xia
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| |
Collapse
|
100
|
Shikalov A, Koman I, Kogan NM. Targeted Glioma Therapy-Clinical Trials and Future Directions. Pharmaceutics 2024; 16:100. [PMID: 38258110 PMCID: PMC10820492 DOI: 10.3390/pharmaceutics16010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of glioma, with a median survival of 14.6 months post-diagnosis. Understanding the molecular profile of such tumors allowed the development of specific targeted therapies toward GBM, with a major role attributed to tyrosine kinase receptor inhibitors and immune checkpoint inhibitors. Targeted therapeutics are drugs that work by specific binding to GBM-specific or overexpressed markers on the tumor cellular surface and therefore contain a recognition moiety linked to a cytotoxic agent, which produces an antiproliferative effect. In this review, we have summarized the available information on the targeted therapeutics used in clinical trials of GBM and summarized current obstacles and advances in targeted therapy concerning specific targets present in GBM tumor cells, outlined efficacy endpoints for major classes of investigational drugs, and discussed promising strategies towards an increase in drug efficacy in GBM.
Collapse
Affiliation(s)
| | | | - Natalya M. Kogan
- Department of Molecular Biology, Institute of Personalized and Translational Medicine, Ariel University, Ariel 40700, Israel; (A.S.); (I.K.)
| |
Collapse
|