51
|
Lacaita PG, Luger A, Plank F, Barbieri F, Beyer C, Thurner T, Scharll Y, Deeg J, Widmann G, Feuchtner GM. Coronary Computed Tomography Angiography (CTA) Findings in COVID-19. J Cardiovasc Dev Dis 2024; 11:325. [PMID: 39452295 PMCID: PMC11508304 DOI: 10.3390/jcdd11100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
(1) Background: The novel SARS-CoV-2 virus infects the endothelium. Vasculitis may lead to specific coronary artery wall lesions. Coronary computed tomography angiography (CTA) imaging findings have not been systematically reported. The aim of this study was to describe a case series using CTA. (2) Methods: Patients with recent RT-PCR confirmed SARS-CoV-2 infection referred for coronary CTA for clinical indications (e.g., chest pain, troponin+, and ECG abnormalities) were included. Coronary CTA findings, such as atypical coronary lesions suggestive of vasculitis, perivascular inflammation measured by using pericoronary fat attenuation (PCAT) index, coronary artery disease, and extracoronary findings were collected. (3) Results: Results for 12 patients (54.8 ± 22 years; four females) with SARS-CoV-2 infection within 60 days (four acute care and eight stable patients) are reported. Time to positive RT-PCR was a mean of 15.1 days (range, 0-51). In four acute patients with signs of myocardial injury, plaque rupture (n = 1), hyperenhancing myocardium/MINOCA (n = 1), MINOCA (n = 1), and pericarditis with acute heart failure (LVEF 20%) (n = 1) were found. All (100%) had pericardial effusion and signs of perivascular inflammation. Among eight stable patients, pericardial effusion or perivascular inflammation were found in only two (25%). Coronary artery disease was ruled out in five (62.5%) (4) Conclusions: Coronary CTA is a useful imaging modality in the diagnostic work up of patients with COVID-19 infection, and is able to describe coronary and other cardiac abnormalities.
Collapse
Affiliation(s)
- Pietro G. Lacaita
- Department Radiology, Innsbruck Medical University, 6020 Innsbruck, Austria; (P.G.L.); (C.B.); (Y.S.); (J.D.); (G.W.)
| | - Anna Luger
- Department Radiology, Innsbruck Medical University, 6020 Innsbruck, Austria; (P.G.L.); (C.B.); (Y.S.); (J.D.); (G.W.)
| | - Fabian Plank
- Department Internal Medicine, Tyrol Clinicum Hall, 6060 Hall, Austria;
| | - Fabian Barbieri
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany;
| | - Christoph Beyer
- Department Radiology, Innsbruck Medical University, 6020 Innsbruck, Austria; (P.G.L.); (C.B.); (Y.S.); (J.D.); (G.W.)
| | | | - Yannick Scharll
- Department Radiology, Innsbruck Medical University, 6020 Innsbruck, Austria; (P.G.L.); (C.B.); (Y.S.); (J.D.); (G.W.)
| | - Johannes Deeg
- Department Radiology, Innsbruck Medical University, 6020 Innsbruck, Austria; (P.G.L.); (C.B.); (Y.S.); (J.D.); (G.W.)
| | - Gerlig Widmann
- Department Radiology, Innsbruck Medical University, 6020 Innsbruck, Austria; (P.G.L.); (C.B.); (Y.S.); (J.D.); (G.W.)
| | - Gudrun M. Feuchtner
- Department Radiology, Innsbruck Medical University, 6020 Innsbruck, Austria; (P.G.L.); (C.B.); (Y.S.); (J.D.); (G.W.)
| |
Collapse
|
52
|
Ammar MM, Ben Said NM, Ben Said YN, Abdelsalam AM, Levushkin SP, Laptev A, Inoubli M, Chlif M. Comparative Analysis of Heart Rate Variability and Arterial Stiffness in Elite Male Athletes after COVID-19. J Clin Med 2024; 13:5990. [PMID: 39408050 PMCID: PMC11477989 DOI: 10.3390/jcm13195990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
This study investigated the long-term cardiovascular effects of coronavirus disease (COVID-19) in elite male athletes by comparing the heart rate variability (HRV), arterial stiffness, and other cardiovascular parameters between those with and without prior COVID-19 infection. Methods: This cross-sectional study evaluated 120 elite male athletes (60 post COVID-19, 60 controls) using anthropometric measurements, body composition analysis, pulmonary function tests, HRV analysis, arterial stiffness assessments, hemodynamic monitoring, and microcirculatory function tests. Results: Athletes post COVID-19 showed significantly higher lean mass (p = 0.007), forced vital capacity (p = 0.001), and forced expiratory volume in 1 s (p = 0.007) than controls. HRV parameters did not significantly differ between the groups. Post-COVID-19 athletes exhibited peripheral vascular resistance (p = 0.048) and reflection index (p = 0.038). No significant differences were observed in the blood pressure, cardiac output, oxygen saturation, or microcirculatory oxygen absorption. Conclusions: Elite male athletes showed notable cardiovascular resilience after COVID-19, with only minor differences in vascular function. The maintained cardiac autonomic function and improved lung parameters in post-COVID-19 athletes suggests an adaptive response. These findings support the cardiovascular health of elite athletes following COVID-19 but emphasize the importance of continued monitoring.
Collapse
Affiliation(s)
- Mohamed M. Ammar
- Exercise Physiology Department, College of Sport Science and Physical Activities, King Saud University, Riyadh 11362, Saudi Arabia
| | - Noureddine M. Ben Said
- Biomechanics and Motor Behavior Department, College of Sport Science and Physical Activities, King Saud University, Riyadh 12371, Saudi Arabia; (N.M.B.S.); (A.M.A.)
| | | | - Ahmed M. Abdelsalam
- Biomechanics and Motor Behavior Department, College of Sport Science and Physical Activities, King Saud University, Riyadh 12371, Saudi Arabia; (N.M.B.S.); (A.M.A.)
| | - Sergey P. Levushkin
- Research Institute of Sports and Sports Medicine, Russian University of Sports «GTSOLIFK», Moscow 105122, Russia;
| | - Aleksey Laptev
- Laboratory of Scientific and Methodological Support for Athletes of National Teams, Institute of Sports and Sports Medicine, Moscow 105122, Russia;
| | - Mokhtar Inoubli
- Research Laboratory of Exercise Performance, Health, and Society, Institute of Sport and Physical Education, Manouba University, La Manouba 2010, Tunisia;
| | - Mehdi Chlif
- EA 3300, Exercise Physiology and Rehabilitation Laboratory, Sport Sciences Department, Picardie Jules Verne University, F-80025 Amiens, France
- National Center of Medicine and Science in Sports (NCMSS), Tunisian Research Laboratory Sports Performance Optimization, El Menzah, Tunis 263, Tunisia
| |
Collapse
|
53
|
Wiedmann F, Boondej E, Stanifer M, Paasche A, Kraft M, Prüser M, Seeger T, Uhrig U, Boulant S, Schmidt C. SARS-CoV-2 ORF 3a-mediated currents are inhibited by antiarrhythmic drugs. Europace 2024; 26:euae252. [PMID: 39412366 PMCID: PMC11481279 DOI: 10.1093/europace/euae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 10/19/2024] Open
Abstract
AIMS Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been linked to cardiovascular complications, notably cardiac arrhythmias. The open reading frame (ORF) 3a of the coronavirus genome encodes for a transmembrane protein that can function as an ion channel. The aim of this study was to investigate the role of the SARS-CoV-2 ORF 3a protein in COVID-19-associated arrhythmias and its potential as a pharmacological target. METHODS AND RESULTS Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and cultured human fibroblasts were infected with SARS-CoV-2. Subsequent immunoblotting assays revealed the expression of ORF 3a protein in hiPSC-CM but not in fibroblasts. After intracytoplasmic injection of RNA encoding ORF 3a proteins into Xenopus laevis oocytes, macroscopic outward currents could be measured. While class I, II, and IV antiarrhythmic drugs showed minor effects on ORF 3a-mediated currents, a robust inhibition was detected after application of class III antiarrhythmics. The strongest effects were observed with dofetilide and amiodarone. Finally, molecular docking simulations and mutagenesis studies identified key amino acid residues involved in drug binding. CONCLUSION Class III antiarrhythmic drugs are potential inhibitors of ORF 3a-mediated currents, offering new options for the treatment of COVID-19-related cardiac complications.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Emika Boondej
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | - Megan Stanifer
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Amelie Paasche
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Manuel Kraft
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Merten Prüser
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Timon Seeger
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Ulrike Uhrig
- Chemical Biology Core Facility, EMBL, Heidelberg, Germany
| | - Steeve Boulant
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
54
|
Kern AL, Pink I, Bonifacius A, Kaireit T, Speth M, Behrendt L, Klimeš F, Voskrebenzev A, Hohlfeld JM, Hoeper MM, Welte T, Wacker F, Eiz-Vesper B, Vogel-Claussen J. Alveolar membrane and capillary function in COVID-19 convalescents: insights from chest MRI. Eur Radiol 2024; 34:6502-6513. [PMID: 38460013 PMCID: PMC11399308 DOI: 10.1007/s00330-024-10669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/22/2024] [Accepted: 02/10/2024] [Indexed: 03/11/2024]
Abstract
OBJECTIVES To investigate potential presence and resolution of longer-term pulmonary diffusion limitation and microvascular perfusion impairment in COVID-19 convalescents. MATERIALS AND METHODS This prospective, longitudinal study was carried out between May 2020 and April 2023. COVID-19 convalescents repeatedly and age/sex-matched healthy controls once underwent MRI including hyperpolarized 129Xe MRI. Blood samples were obtained in COVID-19 convalescents for immunophenotyping. Ratios of 129Xe in red blood cells (RBC), tissue/plasma (TP), and gas phase (GP) as well as lung surface-volume ratio were quantified and correlations with CD4+/CD8+ T cell frequencies were assessed using Pearson's correlation coefficient. Signed-rank tests were used for longitudinal and U tests for group comparisons. RESULTS Thirty-five participants were recruited. Twenty-three COVID-19 convalescents (age 52.1 ± 19.4 years, 13 men) underwent baseline MRI 12.6 ± 4.2 weeks after symptom onset. Fourteen COVID-19 convalescents underwent follow-up MRI and 12 were included for longitudinal comparison (baseline MRI at 11.5 ± 2.7 weeks and follow-up 38.0 ± 5.5 weeks). Twelve matched controls were included for comparison. In COVID-19 convalescents, RBC-TP was increased at follow-up (p = 0.04). Baseline RBC-TP was lower in patients treated on intensive care unit (p = 0.03) and in patients with severe/critical disease (p = 0.006). RBC-TP correlated with CD4+/CD8+ T cell frequencies (R = 0.61/ - 0.60) at baseline. RBC-TP was not significantly different compared to matched controls at follow-up (p = 0.25). CONCLUSION Impaired microvascular pulmonary perfusion and alveolar membrane function persisted 12 weeks after symptom onset and resolved within 38 weeks after COVID-19 symptom onset. CLINICAL RELEVANCE STATEMENT 129Xe MRI shows improvement of microvascular pulmonary perfusion and alveolar membrane function between 11.5 ± 2.7 weeks and 38.0 ± 5.5 weeks after symptom onset in patients after COVID-19, returning to normal in subjects without significant prior disease. KEY POINTS • The study aims to investigate long-term effects of COVID-19 on lung function, in particular gas uptake efficiency, and on the cardiovascular system. • In COVID-19 convalescents, the ratio of 129Xe in red blood cells/tissue plasma increased longitudinally (p = 0.04), but was not different from matched controls at follow-up (p = 0.25). • Microvascular pulmonary perfusion and alveolar membrane function are impaired 11.5 weeks after symptom onset in patients after COVID-19, returning to normal in subjects without significant prior disease at 38.0 weeks.
Collapse
Affiliation(s)
- Agilo Luitger Kern
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, Hannover, 30625, Germany.
| | - Isabell Pink
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover/Brunswick, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Till Kaireit
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Milan Speth
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Lea Behrendt
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Filip Klimeš
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Andreas Voskrebenzev
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jens M Hohlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
- Department of Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Marius M Hoeper
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover/Brunswick, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
55
|
Kole C, Stefanou Ε, Karvelas N, Schizas D, Toutouzas KP. Acute and Post-Acute COVID-19 Cardiovascular Complications: A Comprehensive Review. Cardiovasc Drugs Ther 2024; 38:1017-1032. [PMID: 37209261 PMCID: PMC10199303 DOI: 10.1007/s10557-023-07465-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/22/2023]
Abstract
PURPOSE OF REVIEW The risk of cardiovascular complications due to SARS-CoV-2 are significantly increased within the first 6 months of the infection. Patients with COVID-19 have an increased risk of death, and there is evidence that many may experience a wide range of post-acute cardiovascular complications. Our work aims to provide an update on current clinical aspects of diagnosis and treatment of cardiovascular manifestations during acute and long-term COVID-19. RECENT FINDINGS SARS-CoV-2 has been shown to be associated with increased incidence of cardiovascular complications such as myocardial injury, heart failure, and dysrhythmias, as well as coagulation abnormalities not only during the acute phase but also beyond the first 30 days of the infection, associated with high mortality and poor outcomes. Cardiovascular complications during long-COVID-19 were found regardless of comorbidities such as age, hypertension, and diabetes; nevertheless, these populations remain at high risk for the worst outcomes during post-acute COVID-19. Emphasis should be given to the management of these patients. Treatment with low-dose oral propranolol, a beta blocker, for heart rate management may be considered, since it was found to significantly attenuate tachycardia and improve symptoms in postural tachycardia syndrome, while for patients on ACE inhibitors or angiotensin-receptor blockers (ARBs), under no circumstances should these medications be withdrawn. In addition, in patients at high risk after hospitalization due to COVID-19, thromboprophylaxis with rivaroxaban 10 mg/day for 35 days improved clinical outcomes compared with no extended thromboprophylaxis. In this work we provide a comprehensive review on acute and post-acute COVID-19 cardiovascular complications, symptomatology, and pathophysiology mechanisms. We also discuss therapeutic strategies for these patients during acute and long-term care and highlight populations at risk. Our findings suggest that older patients with risk factors such as hypertension, diabetes, and medical history of vascular disease have worse outcomes during acute SARS-CoV-2 infection and are more likely to develop cardiovascular complications during long-COVID-19.
Collapse
Affiliation(s)
- Christo Kole
- Cardiology Department, Sismanoglio General Hospital of Attica, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Εleni Stefanou
- Artificial Kidney Unit, General Hospital of Messinia, Kalamata, Greece
| | - Nikolaos Karvelas
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | | |
Collapse
|
56
|
Contreras J, Tinuoye EO, Folch A, Aguilar J, Free K, Ilonze O, Mazimba S, Rao R, Breathett K. Heart Failure with Reduced Ejection Fraction and COVID-19, when the Sick Get Sicker: Unmasking Racial and Ethnic Inequities During a Pandemic. Heart Fail Clin 2024; 20:353-361. [PMID: 39216921 DOI: 10.1016/j.hfc.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Minoritized racial and ethnic groups have the highest incidence, prevalence, and hospitalization rate for heart failure. Despite improvement in medical therapies and overall survival, the morbidity and mortality of these groups remain elevated. The reasons for this disparity are multifactorial, including social determinant of health (SDOH) such as access to care, bias, and structural racism. These same factors contributed to higher rates of COVID-19 infection among minoritized racial and ethnic groups. In this review, we aim to explore the lessons learned from the COVID-19 pandemic and its interconnection between heart failure and SDOH. The pandemic presents a window of opportunity for achieving greater equity in the health care of all vulnerable populations.
Collapse
Affiliation(s)
- Johanna Contreras
- Division of Cardiovascular Medicine, The Mount Sinai Health System, 1190 5th Avenue, 1st Floor, New York, NY 10029, USA
| | - Elizabeth O Tinuoye
- Division of Cardiovascular Medicine, The Mount Sinai Health System, 1190 5th Avenue, 1st Floor, New York, NY 10029, USA
| | - Alejandro Folch
- Division of Cardiovascular Medicine, The Mount Sinai Health System, 1190 5th Avenue, 1st Floor, New York, NY 10029, USA
| | - Jose Aguilar
- Division of Cardiovascular Medicine, The Mount Sinai Health System, 1190 5th Avenue, 1st Floor, New York, NY 10029, USA
| | - Kendall Free
- Department of Biofunction Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Onyedika Ilonze
- Division of Cardiovascular Medicine, Indiana University, 1800 North Capitol Avenue, Indianapolis, IN 46202, USA
| | - Sula Mazimba
- Division of Cardiovascular Medicine, University of Virginia, 1215 Lee Street, Charlottesville, VA 22908-0158, USA
| | - Roopa Rao
- Division of Cardiovascular Medicine, Indiana University, 1800 North Capitol Avenue, Indianapolis, IN 46202, USA
| | - Khadijah Breathett
- Division of Cardiovascular Medicine, Indiana University, 1800 North Capitol Avenue, Indianapolis, IN 46202, USA.
| |
Collapse
|
57
|
Krishna B, Metaxaki M, Sithole N, Landín P, Martín P, Salinas-Botrán A. Cardiovascular disease and covid-19: A systematic review. IJC HEART & VASCULATURE 2024; 54:101482. [PMID: 39189008 PMCID: PMC11345335 DOI: 10.1016/j.ijcha.2024.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
Background Cardiovascular complications of COVID-19 are numerous and aspects of this phenomenon are not well known. The main objective of this manuscript is a systematic review of the acute and chronic cardiovascular complications secondary to COVID-19. Methods A systematic review of the literature through Medline via PubMed was conducted (2020-2024). Results There is a plethora of effects of COVID-19 on the heart in the acute setting. Here we discuss pathophysiology, myocardial infarctions, heart failure, Takotsubo Cardiomyopathy, myocardial injury, myocarditis and arrhythmias that are caused by COVID-19. Additionally, these cardiovascular injuries can linger and may be an underlying cause of some Long COVID symptoms. Conclusions Cardiovascular complications of COVID-19 are numerous and life-threatening. Long COVID can affect cardiovascular health. Microclotting induced by SARS-CoV-2 infection could be a therapeutic target for some aspects of Long Covid.
Collapse
Affiliation(s)
- B.A. Krishna
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - M. Metaxaki
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - N. Sithole
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Infectious Diseases, Cambridge University, Cambridge, United Kingdom
| | - P. Landín
- Department of Cardiology, Hospital Clínico San Carlos, Madrid, Spain
| | - P. Martín
- Department of Respiratory Medicine, Hospital Clínico San Carlos, Madrid, Spain
| | - A. Salinas-Botrán
- Department of Infectious Diseases, Hospital Clínico San Carlos, Madrid, Spain
- Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
58
|
Schaustz EB, Secco JCP, Barroso JM, Ferreira JR, Tortelly MB, Pimentel AL, Figueiredo ACBS, Albuquerque DC, Sales ARK, Rosado de-Castro PH, Pinheiro MVT, Souza OF, Medei E, Luiz RR, Silvestre-Sousa A, Camargo GC, Moll-Bernardes R. Cardiac remodeling and inflammation detected by magnetic resonance imaging in COVID-19 survivors. INTERNATIONAL JOURNAL OF CARDIOLOGY. HEART & VASCULATURE 2024; 54:101499. [PMID: 39280695 PMCID: PMC11400604 DOI: 10.1016/j.ijcha.2024.101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Background Concerns have been raised about cardiac inflammation in patients with long COVID-19, particularly those with myocardial injury during the acute phase of the disease. This study was conducted to examine myopericardial involvement, detected by cardiac magnetic resonance (CMR) imaging in patients hospitalized for COVID-19. Methods Adult patients hospitalized with COVID-19 who presented myocardial injury or increased D-dimers were enrolled in this prospective study. All patients were invited to undergo CMR imaging examination after discharge. During follow-up, patients with nonischemic myocardial or pericardial involvement detected on the first CMR imaging examination underwent second examinations. CMR imaging findings were compared with those of a control group of healthy patients with no comorbidity. Results Of 180 included patients, 53 underwent CMR imaging examination. The mean age was 58.4 ± 18.3 years, and 73.6 % were male. Myocardial and pericardial LGE was reported in 43.4 % and 35.8 % of patients, respectively. Nonischemic myocardial or pericardial involvement was reported in 26 (49.1 %) patients. The prevalence of pericardial LGE was associated inversely with the interval between hospital discharge and CMR. COVID-19 survivors had higher end-systolic volume indices (ESVis) and lower left-ventricular ejection fractions than did healthy controls. Seventeen patients underwent follow-up CMR imaging; the end-diastolic volume index, ESVi, and prevalence of pericardial LGE, but not that of nonischemic LGE, were reduced. Conclusion Among COVID-19 survivors with myocardial injury during the acute phase of the disease, the incidences of nonischemic myocardial and pericardial LGE and CMR imaging-detected signs of cardiac remodeling, partially reversed during follow-up, were high.
Collapse
Affiliation(s)
| | | | - Julia M Barroso
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Juliana R Ferreira
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, Brazil
| | - Mariana B Tortelly
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, Brazil
| | - Adriana L Pimentel
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, Brazil
| | - Ana Cristina B S Figueiredo
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, Brazil
| | - Denilson C Albuquerque
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology Department, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Allan R Kluser Sales
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Olga F Souza
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, Brazil
| | - Emiliano Medei
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging, UFRJ, Rio de Janeiro, Brazil
| | - Ronir R Luiz
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Institute for Studies in Public Health-IESC, UFRJ, Rio de Janeiro, Brazil
| | - Andréa Silvestre-Sousa
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
59
|
Dmytrenko O, Das S, Kovacs A, Cicka M, Liu M, Scheaffer SM, Bredemeyer A, Mack M, Diamond MS, Lavine KJ. Infiltrating monocytes drive cardiac dysfunction in a cardiomyocyte-restricted mouse model of SARS-CoV-2 infection. J Virol 2024; 98:e0117924. [PMID: 39207134 PMCID: PMC11406924 DOI: 10.1128/jvi.01179-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular manifestations of coronavirus disease 2019 (COVID-19) include myocardial injury, heart failure, and myocarditis and are associated with long-term disability and mortality. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antigens are found in the myocardium of COVID-19 patients, and human cardiomyocytes are susceptible to infection in cell or organoid cultures. While these observations raise the possibility that cardiomyocyte infection may contribute to the cardiac sequelae of COVID-19, a causal relationship between cardiomyocyte infection and myocardial dysfunction and pathology has not been established. Here, we generated a mouse model of cardiomyocyte-restricted infection by selectively expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, in cardiomyocytes. Inoculation of Myh6-Cre Rosa26loxP-STOP-loxP-hACE2 mice with an ancestral, non-mouse-adapted strain of SARS-CoV-2 resulted in viral replication within the heart, accumulation of macrophages, and moderate left ventricular (LV) systolic dysfunction. Cardiac pathology in this model was transient and resolved with viral clearance. Blockade of monocyte trafficking reduced macrophage accumulation, suppressed the development of LV systolic dysfunction, and promoted viral clearance in the heart. These findings establish a mouse model of SARS-CoV-2 cardiomyocyte infection that recapitulates features of cardiac dysfunctions of COVID-19 and suggests that both viral replication and resultant innate immune responses contribute to cardiac pathology.IMPORTANCEHeart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune response to the virus. SARS-CoV-2 is capable of entering contractile cells of the heart in a culture dish. However, it remains unclear how such infection affects the function of the heart in the body. Here, we designed a mouse in which only heart muscle cells can be infected with a SARS-CoV-2 strain to study cardiac infection in isolation from other organ systems. In our model, infected mice show viral infection, worse function, and accumulation of immune cells in the heart. A subset of immune cells facilitates such worsening heart function. As this model shows features similar to those observed in patients, it may be useful for understanding the heart disease that occurs as a part of COVID-19.
Collapse
Affiliation(s)
- Oleksandr Dmytrenko
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shibali Das
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Attila Kovacs
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Markus Cicka
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Meizi Liu
- Department of Medicine, Infectious Disease, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Suzanne M. Scheaffer
- Department of Medicine, Infectious Disease, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrea Bredemeyer
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Matthias Mack
- Department of Internal Medicine II, Division of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Michael S. Diamond
- Department of Medicine, Infectious Disease, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
60
|
Colleran R, Fitzgerald S, Rai H, McGovern L, Byrne RJ, Mansur A, Cradock A, Lavery R, Bisset J, McKeogh S, Cantwell G, O'Ciardha D, Wilson H, Begossi N, Blake N, Fitzgibbon M, McNulty J, Széplaki G, Heffernan E, Hannan M, O'Donnell JS, Byrne RA. Symptom burden, coagulopathy and heart disease after acute SARS-CoV-2 infection in primary practice. Sci Rep 2024; 14:21229. [PMID: 39261512 PMCID: PMC11390729 DOI: 10.1038/s41598-024-71535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/28/2024] [Indexed: 09/13/2024] Open
Abstract
SETANTA (Study of HEarT DiseAse and ImmuNiTy After COVID-19 in Ireland) study aimed to investigate symptom burden and incidence of cardiac abnormalities after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/COVID-19 and to correlate these results with biomarkers of immunological response and coagulation. SETANTA was a prospective, single-arm observational cross-sectional study condcuted in a primary practice setting, and prospectively registered with ClinicalTrials.gov (identifier: NCT04823182). Patients with recent COVID-19 infection (≥ 6 weeks and ≤ 12 months) were prospectively enrolled. Primary outcomes of interest were markers of cardiac injury detected by cardiac magnetic resonance imaging (CMR), which included left ventricular ejection fraction, late gadolinium enhancement and pericardial abnormalities, as well as relevant biomarkers testing immunological response and coagulopathy. 100 patients (n = 129 approached) were included, amongst which 64% were female. Mean age of the total cohort was 45.2 years. The median (interquartile range) time interval between COVID-19 infection and enrolment was 189 [125, 246] days. 83% of participants had at least one persistent symptom, while 96% had positive serology for prior SARS-CoV-2 infection. Late gadolinium enhancement, pericardial effusion, was present in 2.2% and 8.3% respectively, while left ventricular ejection fraction was below the normal reference limit in 17.4% of patients. Von Willebrand factor antigen was elevated in 32.7% of patients and Fibrinogen and D-Dimer levels were found to be elevated in 10.2% and 11.1% of patients, respectively. In a cohort of primary practice patients recently recovered from SARS-CoV-2 infection, prevalence of persistent symptoms and markers of abnormal coagulation were high, despite a lower frequency of abnormalities on CMR compared with prior reports of patients assessed in a hospital setting.Trial Registration: Clinicaltrials.gov, NCT04823182 (prospectively registered on 30th March 2021).
Collapse
Affiliation(s)
- Roisin Colleran
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Sean Fitzgerald
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | - Himanshu Rai
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Laurna McGovern
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | | | | | - Andrea Cradock
- School of Medicine, University College Dublin, Dublin, Ireland
| | | | | | | | - Gordon Cantwell
- Drs Cantwell and Spillane Practice, Family and General Medicine, Dublin, Ireland
| | - Darach O'Ciardha
- Institute of Population Health, Trinity College Dublin, Dublin, Ireland
| | - Hannah Wilson
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | - Nicoletta Begossi
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | - Nial Blake
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | | | | | - Gábor Széplaki
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | - Emma Heffernan
- Department of Pathology, Mater Private Network, Dublin, Ireland
| | - Margaret Hannan
- Department of Pathology, Mater Private Network, Dublin, Ireland
| | - James S O'Donnell
- Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Robert A Byrne
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland.
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
61
|
Popovic M, Cvetic V, Popadic V, Ilic K, Radojevic A, Klasnja A, Milic N, Rajovic N, Lasica R, Gostiljac D, Klasnja S, Mahmutovic E, Zdravkovic M. The Correlation between Cardiac Magnetic Resonance Findings and Post-COVID-19: The Impact of Myocardial Injury on Quality of Life. Diagnostics (Basel) 2024; 14:1937. [PMID: 39272722 PMCID: PMC11394307 DOI: 10.3390/diagnostics14171937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND In the post-COVID-19 era, there is growing concern regarding its impact on cardiovascular health and the following effects on the overall quality of life of affected individuals. This research seeks to investigate cardiac magnetic resonance (CMR) findings following COVID-19 and their impact on the quality of life of affected individuals. METHODS An observational, cross-sectional study was conducted in consecutive patients with persistent cardiovascular symptoms after COVID-19 who were referred to CMR due to suspected myocardial injury. In addition, patients completed a questionnaire about symptoms and the quality of life during the post-COVID-19 period. RESULTS In this study, 85 patients were included. The study population consisted of patients with a mean age of 42.5 ± 13.4 years, predominantly women, who made up 69.4% of the study population, while men made up 30.6%. CMR findings showed non-ischemic myocardial injury in 78.8% of patients and myocardial edema in 14.1% of patients. Late pericardial enhancement was present in 40% of patients and pericardial effusion in 51.8% of patients. Pericardial effusion (p = 0.001) was more prevalent in patients who reported more pronounced symptoms in the post-COVID-19 period compared to the acute infection phase. Predictors of lower quality of life in the post-COVID-19 period were the presence of irregular heartbeat (p = 0.039), cardiovascular problems that last longer than 12 weeks (p = 0.018), and the presence of pericardial effusion (p = 0.037). CONCLUSION Acute myocarditis was observed in a minority of patients after COVID-19, while non-ischemic LGE pattern and pericardial effusion were observed in the majority. Quality of life was worse during the post-COVID-19 period in patients with CMR abnormalities, primarily in patients with pericardial effusion. Also, irregular heartbeat, cardiovascular symptoms that last longer than 12 weeks, as well as pericardial effusion were independent predictors of lower quality of life during the post-COVID-19 period.
Collapse
Affiliation(s)
- Maja Popovic
- Department for Radiology, University Hospital Medical Center Bežanijska kosa, 11000 Belgrade, Serbia
| | - Vladimir Cvetic
- Department for Cardiovascular Radiology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Viseslav Popadic
- Department for Cardiology, University Hospital Medical Center Bežanijska kosa, 11000 Belgrade, Serbia
| | - Kristina Ilic
- Department for Radiology, University Hospital Medical Center Bežanijska kosa, 11000 Belgrade, Serbia
| | - Aleksandra Radojevic
- Department for Cardiology, University Hospital Medical Center Bežanijska kosa, 11000 Belgrade, Serbia
| | - Andrea Klasnja
- Department for Cardiology, University Hospital Medical Center Bežanijska kosa, 11000 Belgrade, Serbia
| | - Natasa Milic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Nina Rajovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ratko Lasica
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinic of Cardiology, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Drasko Gostiljac
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Slobodan Klasnja
- Department for Cardiology, University Hospital Medical Center Bežanijska kosa, 11000 Belgrade, Serbia
| | | | - Marija Zdravkovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Department for Cardiology, University Hospital Medical Center Bežanijska kosa, 11000 Belgrade, Serbia
| |
Collapse
|
62
|
Kaidar E, Turgambayeva A, Zhussupov B, Stukas R, Sultangaziyev T, Yessenbayev B. The effects of COVID-19 severity on health status in Kazakhstan: A prospective cohort study. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2024; 29:101761. [DOI: 10.1016/j.cegh.2024.101761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
63
|
Devera JL, Wee CP, Sohn J. Strain imaging as a prognostic indicator for complications in COVID-19 patients. Int J Cardiovasc Imaging 2024; 40:1835-1846. [PMID: 39012400 PMCID: PMC11473545 DOI: 10.1007/s10554-024-03170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024]
Abstract
The goal of this study was to determine the potential for right ventricular (RV) and left ventricular (LV) strain to predict cardiopulmonary complications of COVID-19. We identified 276 patients with COVID-19 who underwent transthoracic echocardiography within 30 days of COVID-19 diagnosis at our institution. Patients were excluded if they had a history of any primary outcomes before COVID-19 diagnosis or insufficient imaging. LV global longitudinal strain (GLS) and RV GLS were obtained using 2-dimensional speckle-tracking echocardiography. Primary outcomes were death, pulmonary embolism, congestive heart failure (CHF), cardiomyopathy, pulmonary fibrosis, pulmonary hypertension, acute respiratory distress syndrome (ARDS), and myocardial infarction (MI) occurring after COVID-19 diagnosis. In the final analysis of 163 patients, mean RV GLS and LV GLS were reduced, and 43.6% developed at least one primary outcome. There were significant differences in LV GLS distribution in terms of CHF, cardiomyopathy, and MI in bivariate analysis. However, LV GLS was not significantly associated with CHF after adjusting for LV ejection fraction and RV fractional area change, nor with MI after adjusting for troponin T. RV GLS was significantly associated with ARDS after adjusting for other variables. In the risk stratification of patients with COVID-19, strain imaging can provide incremental prognostic information, as worsened RV GLS is associated with the development of ARDS.
Collapse
Affiliation(s)
- Justin L Devera
- Division of Cardiovascular Medicine, University of California Davis, Sacramento, CA, USA.
| | - Choo P Wee
- Division of Biostatistics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Jina Sohn
- Division of Cardiovascular Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
64
|
Tomar D, Kapoor A, Hashim Z, Raut K, Katheria A, Khare H, Sahu A, Khanna R, Kumar S, Garg N, Tewari S. Use of strain imaging to detect subtle myocardial involvement in post COVID-19 patients: An Indian perspective. Indian Heart J 2024; 76:309-314. [PMID: 39362598 PMCID: PMC11584371 DOI: 10.1016/j.ihj.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND The study assessed Global longitudinal strain imaging (GLS) to detect subtle myocardial dysfunction among patients clinically recovered from COVID-19. METHODS All patients (n = 101 76 % males, mean age 55.45 ± 11.14 years), and controls (n = 30), underwent clinical assessment and echocardiography, including GLS assessment. RESULTS The prevalence of diabetes mellitus, hypertension and dyslipidemia was comparable amongst patients and controls. The average GLS was significantly lesser in post COVID patients (-16.21 ± 1.96 vs -18.49 ± 1.64 respectively, p = 0.004) and significantly higher proportion of post COVID patients had GLS > -18 % (43 % vs 22.58 % respectively, p = 0.001) as compared to controls. The RV free wall longitudinal strain (RVFLS) was also lower in the patient group (22.35 ± 4.69 vs 24.19 ± 4.11, p = 0.004) and 21.7 % post COVID-19 patients had pathological RV FWLS (> -20 %) vs controls (6.6 %). Average GLS was significantly lesser in severe post COVID patients (viz -14.25 ± 1.92 vs -16.63 ± 1.61 vs -17.63 ± 1.91, p < 0.0001, respectively among severe, moderate and mild COVID-19 patients. On performing regression analysis, severity of COVID-19 (OR 7.762) was a significant predictor of impaired GLS. CONCLUSION Despite normal global LVEF, post COVID-19 recovered patients had significantly lower LV GLS and RV FWLS with severe COVID-19 infection, regardless of having a clinical recovery. This study reiterates the importance of speckle tracking echocardiography as an important imaging modality for detection of subclinical myocardial dysfunction in the post COVID-19 recovered patients.
Collapse
Affiliation(s)
- Deepak Tomar
- Dept of Cardiology, Sanjay Gandhi PGIMS, Lucknow, India
| | - Aditya Kapoor
- Dept of Cardiology, Sanjay Gandhi PGIMS, Lucknow, India.
| | - Zia Hashim
- Dept of Pulmonary Medicine, Sanjay Gandhi PGIMS, Lucknow, India
| | - Kamlesh Raut
- Dept of Cardiology, Sanjay Gandhi PGIMS, Lucknow, India
| | | | - Harshit Khare
- Dept of Cardiology, Sanjay Gandhi PGIMS, Lucknow, India
| | - Ankit Sahu
- Dept of Cardiology, Sanjay Gandhi PGIMS, Lucknow, India
| | | | - Sudeep Kumar
- Dept of Cardiology, Sanjay Gandhi PGIMS, Lucknow, India
| | - Naveen Garg
- Dept of Cardiology, Sanjay Gandhi PGIMS, Lucknow, India
| | | |
Collapse
|
65
|
Kesmen E, Nezih Kök A, Ateş O, Şenol O. Investigating the pathogenesis of vitreous in postmortem COVID patients via untargeted metabolomics based bioinformatics model. Leg Med (Tokyo) 2024; 70:102461. [PMID: 38815416 DOI: 10.1016/j.legalmed.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
SARS-CoV-2 virus has become a worldwide pandemic causing millions of death. This severe disaster lead to a immense panic and stress all over the world. Several studies were dedicated to understand its mechanism, pathogenesis and spreading characteristics. By this way, scientists try to develop different therapy and diagnose strategies. For these reasons, several metabolomics, proteomics and genomics studies were also carried out to improve knowledge in this newly identified virus. In this study, we are aimed to explain the pathogenesis of SARS-CoV-2 exposure on postmortem COVID (+) patients via untargeted metabolomics analysis. To carry out this study, a Data Independent Acquisition SWATH method is optimized and performed. Vitreous samples were analyzed in both MS1 and MS2 ESI(+) mode. An orthogonal Partial Least Square Discriminant Analysis were performed for classification. It was observed that lipid metabolism, several amino acids and oxidative stress biomarkers were strongly affected due to high inflammation and possible cytokine storm.
Collapse
Affiliation(s)
- Elif Kesmen
- Erzurum Branch Office, The Ministry of Justice Council of Forensic Medicine, Erzurum, Turkey
| | - Ahmet Nezih Kök
- Atatürk University, Faculty of Medicine, Department of Forensic Science, 25240 Erzurum, Turkey
| | - Orhan Ateş
- Atatürk University, Faculty of Medicine, Department of Ophtalmology, 25240 Erzurum, Turkey
| | - Onur Şenol
- Atatürk University, Faculty of Pharmacy, Department of Analytical Chemistry, 25240 Erzurum, Turkey.
| |
Collapse
|
66
|
Koutsiaris AG. A Blood Supply Pathophysiological Microcirculatory Mechanism for Long COVID. Life (Basel) 2024; 14:1076. [PMID: 39337860 PMCID: PMC11433432 DOI: 10.3390/life14091076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The term "Long COVID" is commonly used to describe persisting symptoms after acute COVID-19. Until now, proposed mechanisms for the explanation of Long COVID have not related quantitative measurements to basic laws. In this work, a common framework for the Long COVID pathophysiological mechanism is presented, based on the blood supply deprivation and the flow diffusion equation. METHODS Case-control studies with statistically significant differences between cases (post-COVID patients) and controls, from multiple tissues and geographical areas, were gathered and tabulated. Microvascular loss (ML) was quantified by vessel density reduction (VDR), foveal avascular zone enlargement (FAZE), capillary density reduction (CDR), and percentage of perfused vessel reduction (PPVR). Both ML and hemodynamic decrease (HD) were incorporated in the tissue blood supply reduction (SR) estimation. RESULTS ML data were found from 763 post-COVID patients with an average VDR, FAZE, CDR, and PPVR of 16%, 31%, 14%, and 21%, respectively. The average HD from 72 post-COVID patients was 37%. The estimated SR for multiple tissues with data from 634 post-COVID patients reached a sizeable 47%. This large SR creates conditions of lower mass diffusion rates, hypoxia, and undernutrition, which at a multi-tissue level, for a long time, can explain the wide variety of the Long COVID symptoms. CONCLUSIONS Disruption of peripheral tissue blood supply by the contribution of both ML and HD is proposed here to be the principal cause of the mechanism leading to Long COVID symptoms.
Collapse
Affiliation(s)
- Aristotle G Koutsiaris
- Medical Informatics and Biomedical Imaging (MIBI) Laboratory, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis Campus, 41500 Larissa, Greece
| |
Collapse
|
67
|
Kato S, Kitai T, Utsunomiya D, Azuma M, Fukui K, Hagiwara E, Ogura T, Ishibashi Y, Okada T, Kitakata H, Shiraishi Y, Torii S, Ohashi K, Takamatsu K, Yokoyama A, Hirata KI, Matsue Y, Node K. Myocardial Injury by COVID-19 Infection Assessed by Cardiovascular Magnetic Resonance Imaging - A Prospective Multicenter Study. Circ J 2024; 88:1450-1458. [PMID: 38556299 DOI: 10.1253/circj.cj-23-0729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
BACKGROUND This prospective multicenter study assessed the prevalence of myocardial injury in patients with COVID-19 using cardiac magnetic resonance imaging (CMR). METHODS AND RESULTS We prospectively screened 505 patients with moderate to severe COVID-19 disease from 7 hospitals in Japan. Of these patients, 31 (mean [±SD] age 63.5±10.4 years, 23 [74%] male) suspected of myocardial injury, based on elevated serum troponin or B-type natriuretic peptide concentrations either upon admission or 3 months after discharge, underwent CMR 3 months after discharge. The primary endpoint was the presence of myocardial injury, defined by any of the following: (1) contrast enhancement in the left or right ventricle myocardium on late gadolinium enhancement CMR; (2) left or right ventricular dysfunction (defined as <50% and <45%, respectively); and (3) pericardial thickening on contrast enhancement. The mean (±SD) duration between diagnosis and CMR was 117±16 days. The primary endpoint was observed in 13 of 31 individuals (42%), with 8 (26%) satisfying the modified Lake Louise Criteria for the diagnosis of acute myocarditis. CONCLUSIONS This study revealed a high incidence of myocardial injury identified by CMR in patients with moderate to severe COVID-19 and abnormal findings for cardiac biomarkers.
Collapse
Affiliation(s)
- Shingo Kato
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine
| | - Takeshi Kitai
- Department of Cardiology, National Cerebral and Cardiovascular Center
| | - Daisuke Utsunomiya
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine
| | - Mai Azuma
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center
| | - Kazuki Fukui
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center
| | - Eri Hagiwara
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center
| | - Takashi Ogura
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center
| | - Yuki Ishibashi
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine
| | - Taiji Okada
- Department of Cardiovascular Medicine, Kobe City Medical Center General Hospital
| | - Hiroki Kitakata
- Department of Cardiology, Keio University School of Medicine
| | | | - Shunsuke Torii
- Department of Cardiology, National Center for Global Health and Medicine
| | - Koichi Ohashi
- Department of Cardiology, Tokyo Metropolitan Bokutoh Hospital
| | - Kazufumi Takamatsu
- Department of Respiratory Medicine and Allergology, Kochi Medical School, Kochi University
| | - Akihito Yokoyama
- Department of Respiratory Medicine and Allergology, Kochi Medical School, Kochi University
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Yuya Matsue
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| |
Collapse
|
68
|
El-Toukhy S, Hegeman P, Zuckerman G, Das AR, Moses N, Troendle J, Powell-Wiley TM. Study of Postacute Sequelae of COVID-19 Using Digital Wearables: Protocol for a Prospective Longitudinal Observational Study. JMIR Res Protoc 2024; 13:e57382. [PMID: 39150750 PMCID: PMC11364950 DOI: 10.2196/57382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/03/2024] [Accepted: 06/14/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Postacute sequelae of COVID-19 (PASC) remain understudied in nonhospitalized patients. Digital wearables allow for a continuous collection of physiological parameters such as respiratory rate and oxygen saturation that have been predictive of disease trajectories in hospitalized patients. OBJECTIVE This protocol outlines the design and procedures of a prospective, longitudinal, observational study of PASC that aims to identify wearables-collected physiological parameters that are associated with PASC in patients with a positive diagnosis. METHODS This is a single-arm, prospective, observational study of a cohort of 550 patients, aged 18 to 65 years, male or female, who own a smartphone or a tablet that meets predetermined Bluetooth version and operating system requirements, speak English, and provide documentation of a positive COVID-19 test issued by a health care professional within 5 days before enrollment. The primary end point is long COVID-19, defined as ≥1 symptom at 3 weeks beyond the first symptom onset or positive diagnosis, whichever comes first. The secondary end point is chronic COVID-19, defined as ≥1 symptom at 12 weeks beyond the first symptom onset or positive diagnosis. Participants must be willing and able to consent to participate in the study and adhere to study procedures for 6 months. RESULTS The first patient was enrolled in October 2021. The estimated year for publishing the study results is 2025. CONCLUSIONS This is a fully decentralized study investigating PASC using wearable devices to collect physiological parameters and patient-reported outcomes. The study will shed light on the duration and symptom manifestation of PASC in nonhospitalized patient subgroups and is an exemplar of the use of wearables as population-level monitoring health tools for communicable diseases. TRIAL REGISTRATION ClinicalTrials.gov NCT04927442; https://clinicaltrials.gov/study/NCT04927442. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/57382.
Collapse
Affiliation(s)
- Sherine El-Toukhy
- Division of Intramural Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, Rockville, MD, United States
| | - Phillip Hegeman
- Division of Intramural Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, Rockville, MD, United States
| | - Gabrielle Zuckerman
- Division of Intramural Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, Rockville, MD, United States
| | | | - Nia Moses
- Division of Intramural Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, Rockville, MD, United States
| | - James Troendle
- Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tiffany M Powell-Wiley
- Division of Intramural Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, Rockville, MD, United States
- Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
69
|
Cozma A, Sitar-Tăuț AV, Orășan OH, Briciu V, Leucuța D, Sporiș ND, Lazăr AL, Mălinescu TV, Ganea AM, Sporiș BM, Vlad CV, Lupșe M, Țâru MG, Procopciuc LM. VEGF Polymorphisms ( VEGF-936 C/T, VEGF-634 G/C and VEGF-2578 C/A) and Cardiovascular Implications in Long COVID Patients. Int J Mol Sci 2024; 25:8667. [PMID: 39201353 PMCID: PMC11354396 DOI: 10.3390/ijms25168667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The COVID-19 pandemic has raised awareness of the virus's long-term non-pulmonary consequences. This study examined the relationship between genetic polymorphisms of VEGF and cardiac dysfunction and subclinical atherosclerosis in patients recovering from COVID-19. This study included 67 patients previously diagnosed with COVID-19. VEGF-936C/T, VEGF-634G/C, and VEGF-2578C/A statuses were determined. Conventional echocardiography and arterial parameters assessments were performed at inclusion and at six months after the first assessment. For VEGF-936C/T, dominant and over-dominant models showed a significant increase in ejection fraction at six months after COVID (p = 0.044 and 0.048) and was also a predictive independent factor for the augmentation index (β = 3.07; p = 0.024). The dominant model showed a rise in RV-RA gradient (3.702 mmHg) (p = 0.028 95% CI: 0.040-7.363), with the over-dominant model indicating a greater difference (4.254 mmHg) (p = 0.025 95% CI: 0.624-7.884). The findings for VEGF-634G/C were not statistically significant, except for a difference in TAPSE during initial evaluation, using the codominant model. For VEGF-2578C/A, a difference in ventricular filling pressure (E/E'ratio) was best described under the recessive model. Our research suggests that the VEG-936C/T genotype may impact the baseline level and subsequent changes in cardiac function and subclinical atherosclerosis. These findings offer valuable insights into the complex correlation between genetic polymorphisms and cardiovascular disfunction in long COVID patients.
Collapse
Affiliation(s)
- Angela Cozma
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adela Viviana Sitar-Tăuț
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Olga Hilda Orășan
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Violeta Briciu
- Department of Infectious Diseases and Epidemiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400348 Cluj-Napoca, Romania
| | - Daniel Leucuța
- Department of Medical Informatics and Biostatistics, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Nicolae-Dan Sporiș
- Department of Medical Oncology, Prof. Dr. I. Chiricuța Oncology Institute, 400015 Cluj-Napoca, Romania
| | - Andrada-Luciana Lazăr
- Department of Dermatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Toma-Vlad Mălinescu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea-Maria Ganea
- Department of Cardiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Bianca Mihaela Sporiș
- Department of Gastroenterology, Regional Institute of Gastroenterology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania
| | - Călin Vasile Vlad
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Mihaela Lupșe
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Mădălina-Gabriela Țâru
- Department of Gastroenterology, Regional Institute of Gastroenterology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania
| | - Lucia Maria Procopciuc
- Department of Medical Biochemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
70
|
Silvestri C, Stasi C, Profili F, Bartolacci S, Sessa E, Tacconi D, Villari L, Carrozzi L, Dotta F, Bargagli E, Donnini S, Masotti L, Rasero L, Lavorini F, Pistelli F, Chimera D, Sorano A, Pacifici M, Milli C, Voller F, Group SPRINTS. Retrospective Study on the Features and Outcomes of a Tuscany COVID-19 Hospitalized Patients Cohort: Preliminary Results. J Clin Med 2024; 13:4626. [PMID: 39200770 PMCID: PMC11354555 DOI: 10.3390/jcm13164626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Background: A few months after the COVID-19 pandemic onset, knowledge of SARS-CoV-2 infection and outcomes and treatments blew up. This paper aimed to evaluate the features of a Tuscany COVID-19 hospitalized cohort and to identify risk factors for COVID-19 severity. Methods: This retrospective observational COVID-19 cohort study (1 March 2020-1 March 2021) was conducted on patients ≥ 18 years old, admitted to Tuscany Hospital, and subjected to follow-up within 12 months after discharge. Patients were enrolled at Pisana, Senese and Careggi University Hospitals, and South East, North West, and Center Local Hospitals. Results: 2888 patients (M = 58.5%, mean age = 66.2 years) were enrolled, of whom 14.3% (N = 413) were admitted to an intensive care unit. Smokers were 25%, and overweight and obese 65%. The most used drugs were corticosteroids, antacids, antibiotics, and antithrombotics, all antiviral drugs, with slight differences between 2020 and 2021. A strong association was found between outcomes of evolution towards critical COVID-19 (non-invasive mechanical ventilation (NIV) and/or admission to intensive care) and smoking (RR = 4.91), ex-smoking (RR = 3.48), overweight (RR = 1.30), obese subjects (RR = 1.62), comorbidities (aRR = 1.38). The alteration of liver enzymes (aspartate aminotransferase, alanine aminotransferase, or gamma-glutamyl transpeptidase) was associated with NIV (aOR = 2.28). Conclusions: Our cohort, characterized by patients with a mean age of 66.2 years, showed 65% of patients were overweight and obese. Smoking/ex-smoking, overweight/obesity, and other comorbidities were associated with COVID-19 adverse outcomes. The findings also demonstrated that alterations in liver enzymes were associated with worse outcomes.
Collapse
Affiliation(s)
- Caterina Silvestri
- Epidemiology Unit, Regional Health Agency of Tuscany, 50141 Florence, Italy
| | - Cristina Stasi
- Epidemiology Unit, Regional Health Agency of Tuscany, 50141 Florence, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Francesco Profili
- Epidemiology Unit, Regional Health Agency of Tuscany, 50141 Florence, Italy
| | - Simone Bartolacci
- Epidemiology Unit, Regional Health Agency of Tuscany, 50141 Florence, Italy
| | - Emiliano Sessa
- Epidemiology Unit, Regional Health Agency of Tuscany, 50141 Florence, Italy
| | - Danilo Tacconi
- Infectious Diseases Unit, PO San Donato, 52100 Arezzo, Italy
| | - Liliana Villari
- Division of Pneumology, AUSL Toscana Nord-Ovest, Apuane Hospital, 54100 Massa, Italy;
| | - Laura Carrozzi
- Pneumology Unit, Pisa University Hospital, 56124 Pisa, Italy
| | - Francesco Dotta
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
- Diabetes and Metabolic Diseases Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Elena Bargagli
- Respiratory Diseases Unit, Department Medical Sciences, Surgery and Neurological Sciences, Siena University, 53100 Siena, Italy
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Luca Masotti
- Internal Medicine II and Stroke Unit, San Giuseppe Hospital, 20123 Empoli, Italy
| | - Laura Rasero
- Department of Health Sciences, Clinical Innovations and Research Unit, Careggi University Hospital, University of Florence, 50121 Florence, Italy
| | - Federico Lavorini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (F.L.)
| | | | - Davide Chimera
- Pneumology Unit, Pisa University Hospital, 56124 Pisa, Italy
| | - Alessandra Sorano
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (F.L.)
| | - Martina Pacifici
- Epidemiology Unit, Regional Health Agency of Tuscany, 50141 Florence, Italy
| | - Caterina Milli
- Epidemiology Unit, Regional Health Agency of Tuscany, 50141 Florence, Italy
| | - Fabio Voller
- Epidemiology Unit, Regional Health Agency of Tuscany, 50141 Florence, Italy
| | | |
Collapse
|
71
|
da Silva R, Vallinoto ACR, dos Santos EJM. The Silent Syndrome of Long COVID and Gaps in Scientific Knowledge: A Narrative Review. Viruses 2024; 16:1256. [PMID: 39205230 PMCID: PMC11359800 DOI: 10.3390/v16081256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
COVID-19 is still a major public health concern, mainly due to the persistence of symptoms or the appearance of new symptoms. To date, more than 200 symptoms of long COVID (LC) have been described. The present review describes and maps its relevant clinical characteristics, pathophysiology, epidemiology, and genetic and nongenetic risk factors. Given the currently available evidence on LC, we demonstrate that there are still gaps and controversies in the diagnosis, pathophysiology, epidemiology, and detection of prognostic and predictive factors, as well as the role of the viral strain and vaccination.
Collapse
Affiliation(s)
- Rosilene da Silva
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil;
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Brazil;
| | - Antonio Carlos Rosário Vallinoto
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Brazil;
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Eduardo José Melo dos Santos
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil;
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Brazil;
| |
Collapse
|
72
|
Poyatos P, Luque N, Sabater G, Eizaguirre S, Bonnin M, Orriols R, Tura-Ceide O. Endothelial dysfunction and cardiovascular risk in post-COVID-19 patients after 6- and 12-months SARS-CoV-2 infection. Infection 2024; 52:1269-1285. [PMID: 38324145 PMCID: PMC11289012 DOI: 10.1007/s15010-024-02173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/01/2024] [Indexed: 02/08/2024]
Abstract
INTRODUCTION SARS-CoV-2 infection causes severe endothelial damage, an essential step for cardiovascular complications. Endothelial-colony forming cells (ECFCs) act as a biomarker of vascular damage but their role in SARS-CoV-2 remain unclear. The aim of this study was to assess whether the number of ECFCs and angiogenic biomarkers remained altered after 6 and 12-months post-infection and whether this imbalance correlated with the presence of long-COVID syndrome and other biological parameters measured. METHODS Seventy-two patients were recruited at different time-points after overcoming COVID-19 and thirty-one healthy controls. All subjects were matched for age, gender, BMI, and comorbidities. ECFCs were obtained from peripheral blood and cultured with specific conditions. RESULTS The results confirm the presence of a long-term sequela in post-COVID-19 patients, with an abnormal increase in ECFC production compared to controls (82.8% vs. 48.4%, P < 0.01) that is maintained up to 6-months (87.0% vs. 48.4%, P < 0.01) and 12-months post-infection (85.0% vs. 48.4%, P < 0.01). Interestingly, post-COVID-19 patients showed a significant downregulation of angiogenesis-related proteins compared to controls indicating a clear endothelial injury. Troponin, NT-proBNP and ferritin levels, markers of cardiovascular risk and inflammation, remained elevated up to 12-months post-infection. Patients with lower numbers of ECFC exhibited higher levels of inflammatory markers, such as ferritin, suggesting that ECFCs may play a protective role. Additionally, long-COVID syndrome was associated with higher ferritin levels and with female gender. CONCLUSIONS These findings highlight the presence of vascular sequela that last up to 6- and 12-months post-infection and point out the need for preventive measures and patient follow-up.
Collapse
Affiliation(s)
- Paula Poyatos
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Neus Luque
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Gladis Sabater
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Saioa Eizaguirre
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Marc Bonnin
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Ramon Orriols
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain.
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain.
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain.
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain.
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain.
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain.
- Department of Pulmonary Medicine, Servei de Pneumologia, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Villarroel, 170, 08036, Barcelona, Spain.
| |
Collapse
|
73
|
Li M, Yang Y, Wang P, Que W, Zhong L, Cai Z, Liu Y, Yang L, Liu Y. Transcriptome dynamics of the BHK21 cell line in response to human coronavirus OC43 infection. Microbiol Res 2024; 285:127750. [PMID: 38761489 DOI: 10.1016/j.micres.2024.127750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
The progress of viral infection involves numerous transcriptional regulatory events. The identification of the newly synthesized transcripts helps us to understand the replication mechanisms and pathogenesis of the virus. Here, we utilized a time-resolved technique called metabolic RNA labeling approach called thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq) to differentially elucidate the levels of steady-state and newly synthesized RNAs of BHK21 cell line in response to human coronavirus OC43 (HCoV-OC43) infection. Our results showed that the Wnt/β-catenin signaling pathway was significantly enriched with the newly synthesized transcripts of BHK21 cell line in response to HCoV-OC43 infection. Moreover, inhibition of the Wnt pathway promoted viral replication in the early stage of infection, but inhibited it in the later stage of infection. Furthermore, remdesivir inhibits the upregulation of the Wnt/β-catenin signaling pathway induced by early infection with HCoV-OC43. Collectively, our study showed the diverse roles of Wnt/β-catenin pathway at different stages of HCoV-OC43 infection, suggesting a potential target for the antiviral treatment. In addition, although infection with HCoV-OC43 induces cytopathic effects in BHK21 cells, inhibiting apoptosis does not affect the intracellular replication of the virus. Monitoring newly synthesized RNA based on such time-resolved approach is a highly promising method for studying the mechanism of viral infections.
Collapse
Affiliation(s)
- Mianhuan Li
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China; Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, People's Republic of China
| | - Yang Yang
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, People's Republic of China
| | - Pusen Wang
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, People's Republic of China
| | - Weitao Que
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, People's Republic of China
| | - Lin Zhong
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, People's Republic of China
| | - Zhao Cai
- Shenzhen Mindray Bio-Medical Electronics Co.,Ltd, Shenzhen 518057, People's Republic of China
| | - Yang Liu
- Southern University of Science and Technology Hospital, Shenzhen 518055, People's Republic of China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China; Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, People's Republic of China.
| | - Yingxia Liu
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, People's Republic of China.
| |
Collapse
|
74
|
Rafiee MJ, Friedrich MG. MRI of cardiac involvement in COVID-19. Br J Radiol 2024; 97:1367-1377. [PMID: 38656976 PMCID: PMC11256941 DOI: 10.1093/bjr/tqae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/20/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to a diverse pattern of myocardial injuries, including myocarditis, which is linked to adverse outcomes in patients. Research indicates that myocardial injury is associated with higher mortality in hospitalized severe COVID-19 patients (75.8% vs 9.7%). Cardiovascular Magnetic Resonance (CMR) has emerged as a crucial tool in diagnosing both ischaemic and non-ischaemic myocardial injuries, providing detailed insights into the impact of COVID-19 on myocardial tissue and function. This review synthesizes existing studies on the histopathological findings and CMR imaging patterns of myocardial injuries in COVID-19 patients. CMR imaging has revealed a complex pattern of cardiac damage in these patients, including myocardial inflammation, oedema, fibrosis, and ischaemic injury, due to coronary microthrombi. This review also highlights the role of LLC criteria in diagnosis of COVID-related myocarditis and the importance of CMR in detecting cardiac complications of COVID-19 in specific groups, such as children, manifesting multisystem inflammatory syndrome in children (MIS-C) and athletes, as well as myocardial injuries post-COVID-19 infection or following COVID-19 vaccination. By summarizing existing studies on CMR in COVID-19 patients and highlighting ongoing research, this review contributes to a deeper understanding of the cardiac impacts of COVID-19. It emphasizes the effectiveness of CMR in assessing a broad spectrum of myocardial injuries, thereby enhancing the management and prognosis of patients with COVID-19 related cardiac complications.
Collapse
Affiliation(s)
- Moezedin Javad Rafiee
- Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A3J1, Canada
- Department of Diagnostic Radiology, McGill University Health Centre, Montreal, Quebec H4A3J1, Canada
| | - Matthias G Friedrich
- Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A3J1, Canada
- Department of Diagnostic Radiology, McGill University Health Centre, Montreal, Quebec H4A3J1, Canada
| |
Collapse
|
75
|
Podzolkov VI, Vetluzhskaya MV, Medvedev ID, Abramova AA, Kislenko GA. [Dyspnea in post-COVID-19 patients: A review]. TERAPEVT ARKH 2024; 96:706-712. [PMID: 39106515 DOI: 10.26442/00403660.2024.07.202785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/09/2024]
Abstract
New coronavirus infection may lead to long-term consequences, particularly to post-COVID syndrome, one of the most common manifestations of which is dyspnea. Post-COVID-19 shortness of breath may persist from one to several months and even years that results in low quality of life of patients. The review highlights possible risk factors and causes of dyspnea in post-COVID period such as lung damage, cardiovascular pathology, hyperventilation syndrome, dysfunction of the autonomic nervous system, detraining, anemia, etc. The authors present data about COVID-19-associated causes of dyspnea and severity of acute COVID-19. The review emphasizes the importance of a multidisciplinary approach to the diagnosis and treatment of patients with shortness of breath in post-COVID-19 period.
Collapse
Affiliation(s)
- V I Podzolkov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - M V Vetluzhskaya
- Sechenov First Moscow State Medical University (Sechenov University)
| | - I D Medvedev
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A A Abramova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - G A Kislenko
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
76
|
Cao X, Xie YL, Yi JY, Liu ZL, Zhang DD, Yue YY, Li TN, Zhou CL, Mu H. The clinical characteristics analysis of serum markers for the cardiovascular system in early-stage COVID-19 patients. Front Cardiovasc Med 2024; 11:1401586. [PMID: 39131705 PMCID: PMC11310024 DOI: 10.3389/fcvm.2024.1401586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Abstract
Background This study aimed to investigate alterations in serum markers [creatine kinase-MB (CKMB), cardiac troponin T (cTnT), myoglobin (Myo), B-type natriuretic peptide (BNP), D-dimer (DD), procalcitonin (PCT) and interleukin-6 (IL6)] in early Omicron variant infection and analyzed their correlation with clinical parameters. Methods Retrospective analysis of 1,138 mild/asymptomatic cases at Tianjin First Central Hospital, including age, gender, serum markers and nucleic acid test results. Statistical analysis used SPSS software, version 24.0. Results Elevated cTnT, BNP (125-400), and DD (0.55-1.10) levels were prevalent at 12.92%, 15.64%, and 14.50%, respectively. Females had significantly higher proportions with slightly elevated BNP (19.34%) and DD (19.69%) levels. Patients over 35 had a higher proportion of slight elevation in BNP (20.00%). Abnormal levels of serum markers were significantly associated with older age, increased PCT and IL6 levels, as well as delayed nucleic acid clearance. Additionally, levels of immunoglobulin G (IgG) were notably reduced in these cases. Patients with prolonged nucleic acid clearance (>14 days) had higher BNP and DD levels upon admission. Logistic regression identified PCT (OR = 237.95) as the most significant risk factor for abnormal serum markers for cardiovascular system injury. Conclusion Early Omicron infection might do subclinical damage to the cardiovascular system. Elevated cTnT, BNP and DD levels were correlated with age, gender, inflammatory factors, and IgG. Notably, high PCT level emerged as the most robust predictor of abnormal serum biomarkers.
Collapse
Affiliation(s)
- Xi Cao
- Department of Clinical Laboratory, Tianjin First Central Hospital, Tianjin, China
| | - Yong-Li Xie
- Department of Clinical Laboratory, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, Tianjin, China
| | - Jian-ying Yi
- Department of Clinical Laboratory, Tianjin First Central Hospital, Tianjin, China
| | - Zhi-li Liu
- Department of Clinical Laboratory, The Third Central Hospital, Tianjin, China
| | - Dong-dong Zhang
- Department of Clinical Laboratory, Tianjin First Central Hospital, Tianjin, China
| | - Ying-ying Yue
- Department of Clinical Laboratory, Tianjin First Central Hospital, Tianjin, China
| | - Tian-ning Li
- Department of Clinical Laboratory, Tianjin First Central Hospital, Tianjin, China
| | - Chun-lei Zhou
- Department of Clinical Laboratory, Tianjin First Central Hospital, Tianjin, China
| | - Hong Mu
- Department of Clinical Laboratory, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
77
|
Paterson DI, White JA, Beaulieu C, Sherrington R, Prado CM, Tandon P, Halloran K, Smith S, McCombe JA, Ritchie B, Pituskin E, Haykowsky MJ, Coulden R, Emery D, Tsui AK, Wu KY, Oudit GY, Ezekowitz JA, Thompson RB. Rationale and design of the multi organ inflammation with serial testing study: a comprehensive assessment of functional and structural abnormalities in patients with recovered COVID-19. Front Med (Lausanne) 2024; 11:1392169. [PMID: 39114821 PMCID: PMC11303169 DOI: 10.3389/fmed.2024.1392169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Short-term clinical outcomes from SARS-CoV-2 infection are generally favorable. However, 15-20% of patients report persistent symptoms of at least 12 weeks duration, often referred to as long COVID. Population studies have also demonstrated an increased risk of incident diabetes and cardiovascular disease at 12 months following infection. While imaging studies have identified multi-organ injury patterns in patients with recovered COVID-19, their respective contributions to the disability and morbidity of long COVID is unclear. Methods A multicenter, observational study of 215 vaccine-naïve patients with clinically recovered COVID-19, studied at 3-6 months following infection, and 133 healthy volunteers without prior SARS-CoV-2 infection. Patients with recovered COVID-19 were screened for long COVID related symptoms and their impact on daily living. Multi-organ, multi-parametric magnetic resonance imaging (MRI) and circulating biomarkers were acquired to document sub-clinical organ pathology. All participants underwent pulmonary function, aerobic endurance (6 min walk test), cognition testing and olfaction assessment. Clinical outcomes were collected up to 1 year from infection. The primary objective of this study is to identify associations between organ injury and disability in patients with long-COVID symptoms in comparison to controls. As a secondary objective, imaging and circulating biomarkers with the potential to exacerbate cardiovascular health were characterized. Discussion Long-term sequelae of COVID-19 are common and can result in significant disability and cardiometabolic disease. The overall goal of this project is to identify novel targets for the treatment of long COVID including mitigating the risk of incident cardiovascular disease. Study registration clinicaltrials.gov (MOIST late cross-sectional study; NCT04525404).
Collapse
Affiliation(s)
- D. Ian Paterson
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | - James A. White
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Rachel Sherrington
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Carla M. Prado
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Puneeta Tandon
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kieran Halloran
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Stephanie Smith
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Bruce Ritchie
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Edith Pituskin
- College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Mark J. Haykowsky
- College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Richard Coulden
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Derek Emery
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Albert K. Tsui
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Kai Y. Wu
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Gavin Y. Oudit
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Justin A. Ezekowitz
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Richard B. Thompson
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
78
|
Suarez-Castillejo C, Calvo N, Preda L, Córdova Díaz R, Toledo-Pons N, Martínez J, Pons J, Vives-Borràs M, Pericàs P, Ramón L, Iglesias A, Cànaves-Gómez L, Valera Felices JL, Morell-García D, Núñez B, Sauleda J, Sala-Llinàs E, Alonso-Fernández A. Cardiopulmonary Complications after Pulmonary Embolism in COVID-19. Int J Mol Sci 2024; 25:7270. [PMID: 39000378 PMCID: PMC11242326 DOI: 10.3390/ijms25137270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/14/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Although pulmonary embolism (PE) is a frequent complication in COVID-19, its consequences remain unknown. We performed pulmonary function tests, echocardiography and computed tomography pulmonary angiography and identified blood biomarkers in a cohort of consecutive hospitalized COVID-19 patients with pneumonia to describe and compare medium-term outcomes according to the presence of PE, as well as to explore their potential predictors. A total of 141 patients (56 with PE) were followed up during a median of 6 months. Post-COVID-19 radiological lung abnormalities (PCRLA) and impaired diffusing capacity for carbon monoxide (DLCOc) were found in 55.2% and 67.6% cases, respectively. A total of 7.3% had PE, and 6.7% presented an intermediate-high probability of pulmonary hypertension. No significant difference was found between PE and non-PE patients. Univariate analysis showed that age > 65, some clinical severity factors, surfactant protein-D, baseline C-reactive protein, and both peak red cell distribution width and Interleukin (IL)-10 were associated with DLCOc < 80%. A score for PCRLA prediction including age > 65, minimum lymphocyte count, and IL-1β concentration on admission was constructed with excellent overall performance. In conclusion, reduced DLCOc and PCRLA were common in COVID-19 patients after hospital discharge, but PE did not increase the risk. A PCRLA predictive score was developed, which needs further validation.
Collapse
Affiliation(s)
- Carla Suarez-Castillejo
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Néstor Calvo
- Servicio de Radiodiagnóstico, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Luminita Preda
- Servicio de Radiodiagnóstico, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Rocío Córdova Díaz
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Nuria Toledo-Pons
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Joaquín Martínez
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Jaume Pons
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Servicio de Cardiología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Miquel Vives-Borràs
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Servicio de Cardiología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Facultad de Medicina, Universidad de las Islas Baleares, 07122 Palma, Spain
| | - Pere Pericàs
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Servicio de Cardiología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Luisa Ramón
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Amanda Iglesias
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Cànaves-Gómez
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Jose Luis Valera Felices
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Morell-García
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Servicio de Análisis Clínicos, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Belén Núñez
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Jaume Sauleda
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Facultad de Medicina, Universidad de las Islas Baleares, 07122 Palma, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ernest Sala-Llinàs
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Facultad de Medicina, Universidad de las Islas Baleares, 07122 Palma, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alberto Alonso-Fernández
- Servicio de Neumología, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Facultad de Medicina, Universidad de las Islas Baleares, 07122 Palma, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
79
|
Pan JA, Patel AR. The Role of Multimodality Imaging in Cardiomyopathy. Curr Cardiol Rep 2024; 26:689-703. [PMID: 38753290 PMCID: PMC11236518 DOI: 10.1007/s11886-024-02068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/25/2024]
Abstract
PURPOSE OF REVIEW There has been increasing use of multimodality imaging in the evaluation of cardiomyopathies. RECENT FINDINGS Echocardiography, cardiac magnetic resonance (CMR), cardiac nuclear imaging, and cardiac computed tomography (CCT) play an important role in the diagnosis, risk stratification, and management of patients with cardiomyopathies. Echocardiography is essential in the initial assessment of suspected cardiomyopathy, but a multimodality approach can improve diagnostics and management. CMR allows for accurate measurement of volumes and function, and can easily detect unique pathologic structures. In addition, contrast imaging and parametric mapping enable the characterization of tissue features such as scar, edema, infiltration, and deposition. In non-ischemic cardiomyopathies, metabolic and molecular nuclear imaging is used to diagnose rare but life-threatening conditions such amyloidosis and sarcoidosis. There is an expanding use of CCT for planning electrophysiology procedures such as cardioversion, ablations, and device placement. Furthermore, CCT can evaluate for complications associated with advanced heart failure therapies such as cardiac transplant and mechanical support devices. Innovations in multimodality cardiac imaging should lead to increased volumes and better outcomes.
Collapse
Affiliation(s)
- Jonathan A Pan
- Cardiovascular Division, Department of Medicine, University of Virginia Health System, 1215 Lee Street, Box 800158, Charlottesville, VA, 22908, USA
| | - Amit R Patel
- Cardiovascular Division, Department of Medicine, University of Virginia Health System, 1215 Lee Street, Box 800158, Charlottesville, VA, 22908, USA.
| |
Collapse
|
80
|
Silverstein ML, Shah JK, Cevallos P, Liu F, Sheckter C, Nazerali R. Associations between prior COVID-19 infection and venous thromboembolism following common plastic surgery operations. J Plast Reconstr Aesthet Surg 2024; 94:198-209. [PMID: 38810360 PMCID: PMC11491106 DOI: 10.1016/j.bjps.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION SARS-CoV-2 (COVID-19) infection has been described as a cause of systemic hypercoagulability and a risk factor for the development of venous thromboembolism (VTE). Whereas some multispecialty studies have proposed a link between COVID-19 and postoperative thrombosis, other single-specialty studies have found no such association. We utilized a large national database to determine whether prior COVID-19 infection was associated with the incidence of VTE following common plastic surgery operations. METHODS The Merative™ MarketScan® Research Databases were used to identify female patients who underwent index abdominal panniculectomy, breast reduction, autologous breast reconstruction, or implant-based breast reconstruction procedures between 2020 and 2021. International Classification of Disease, tenth edition (ICD-10) codes were used to identify patients diagnosed with COVID-19 preoperatively and those who experienced a VTE in the 90 days postoperatively. Propensity score matching and multivariable logistic regression were used to determine any independent association between COVID-19 and postoperative VTE. RESULTS Twenty-four thousand two hundred and twenty-eight patients met inclusion criteria. Mean age at time of surgery was 44 years. Six percent carried a preoperative COVID-19 diagnosis, and postoperative VTE occurred in 1.3%. In a propensity-score-matched analysis of 2754 patients, COVID-19 did not significantly correlate with incidence of postoperative VTE (P = 0.463). Compared with a matched prepandemic cohort (14,151 patients), the incidence of VTE did not increase following any of the four studied procedures during the COVID-19 pandemic. CONCLUSION This analysis of a national insurance claims database provides evidence against a link between resolved COVID-19 infection and VTE within 90 days of four common plastic surgery operations.
Collapse
Affiliation(s)
- Max L Silverstein
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer K Shah
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | - Farrah Liu
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Clifford Sheckter
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rahim Nazerali
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
81
|
Scolari FL, Rover MM, Trott G, da Silva MMD, de Souza D, de Carli Schardosim RF, da Rosa Minho dos Santos R, de Souza Roldão E, Mocellin D, de Souza JMB, Miozzo AP, Rech GS, Itaqui CR, de Mesquita J, Estivalete GPM, Freitas HJM, dos Santos CVP, da Luz LG, Kern M, Marcolino MS, Barreto BB, Schwartzman PR, Antonio ACP, Falavigna M, Robinson CC, Polanczy CA, Rosa RG. Impact on pulmonary, cardiac, and renal function and long-term quality of life after hospitalization for acute respiratory distress syndrome due to COVID-19: Protocol of the Post-COVID Brazil 3 study. CRITICAL CARE SCIENCE 2024; 36:e20240258en. [PMID: 38896723 PMCID: PMC11152444 DOI: 10.62675/2965-2774.20240258-en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 06/21/2024]
Abstract
RATIONALE Evidence about long-term sequelae after hospitalization for acute respiratory distress syndrome due to COVID-19 is still scarce. PURPOSE To evaluate changes in pulmonary, cardiac, and renal function and in quality of life after hospitalization for acute respiratory distress syndrome secondary to COVID-19. METHODS This will be a multicenter case-control study of 220 participants. Eligible are patients who are hospitalized for acute respiratory distress syndrome due to COVID-19. In the control group, individuals with no history of hospitalization in the last 12 months or long-term symptoms of COVID-19 will be selected. All individuals will be subjected to pulmonary spirometry with a carbon monoxide diffusion test, chest tomography, cardiac and renal magnetic resonance imaging with gadolinium, ergospirometry, serum and urinary creatinine, total protein, and urinary microalbuminuria, in addition to quality-of-life questionnaires. Patients will be evaluated 12 months after hospital discharge, and controls will be evaluated within 90 days of inclusion in the study. For all the statistical analyses, p < 0.05 is the threshold for significance. RESULTS The primary outcome of the study will be the pulmonary diffusing capacity for carbon monoxide measured after 12 months. The other parameters of pulmonary, cardiac, and renal function and quality of life are secondary outcomes. CONCLUSION This study aims to determine the long-term sequelae of pulmonary, cardiac, and renal function and the quality of life of patients hospitalized for acute respiratory distress syndrome due to COVID-19 in the Brazilian population.
Collapse
Affiliation(s)
- Fernando Luís Scolari
- Hospital Moinhos de VentoPorto AlegreRSBrazilProject Offices, Hospital Moinhos de Vento - Porto Alegre (RS), Brazil.
| | - Marciane Maria Rover
- Hospital Moinhos de VentoPorto AlegreRSBrazilProject Offices, Hospital Moinhos de Vento - Porto Alegre (RS), Brazil.
| | - Geraldine Trott
- Hospital Moinhos de VentoPorto AlegreRSBrazilProject Offices, Hospital Moinhos de Vento - Porto Alegre (RS), Brazil.
| | - Mariana Motta Dias da Silva
- Hospital Moinhos de VentoResearch InstitutePorto AlegreRSBrazilResearch Institute, Hospital Moinhos de Vento - Porto Alegre (RS), Brazil.
| | - Denise de Souza
- Hospital Moinhos de VentoPorto AlegreRSBrazilProject Offices, Hospital Moinhos de Vento - Porto Alegre (RS), Brazil.
| | | | - Rosa da Rosa Minho dos Santos
- Hospital Moinhos de VentoPorto AlegreRSBrazilProject Offices, Hospital Moinhos de Vento - Porto Alegre (RS), Brazil.
| | - Emelyn de Souza Roldão
- Hospital Moinhos de VentoPorto AlegreRSBrazilProject Offices, Hospital Moinhos de Vento - Porto Alegre (RS), Brazil.
| | - Duane Mocellin
- Hospital Moinhos de VentoPorto AlegreRSBrazilProject Offices, Hospital Moinhos de Vento - Porto Alegre (RS), Brazil.
| | | | - Aline Paula Miozzo
- Hospital Moinhos de VentoPorto AlegreRSBrazilProject Offices, Hospital Moinhos de Vento - Porto Alegre (RS), Brazil.
| | - Gabriela Soares Rech
- Hospital Moinhos de VentoPorto AlegreRSBrazilProject Offices, Hospital Moinhos de Vento - Porto Alegre (RS), Brazil.
| | - Carolina Rothmann Itaqui
- Hospital Moinhos de VentoPorto AlegreRSBrazilProject Offices, Hospital Moinhos de Vento - Porto Alegre (RS), Brazil.
| | - Juliana de Mesquita
- Hospital Moinhos de VentoPorto AlegreRSBrazilProject Offices, Hospital Moinhos de Vento - Porto Alegre (RS), Brazil.
| | | | - Hellen Jordan Martins Freitas
- Hospital Moinhos de VentoPorto AlegreRSBrazilProject Offices, Hospital Moinhos de Vento - Porto Alegre (RS), Brazil.
| | | | - Lucas Gobetti da Luz
- Hospital Moinhos de VentoDepartment of NephrologyPorto AlegreRSBrazilDepartment of Nephrology, Hospital Moinhos de Vento - Porto Alegre (RS), Brazil.
| | - Marcelo Kern
- Hospital Moinhos de VentoDepartment of Internal MedicinePorto AlegreRSBrazilDepartment of Internal Medicine, Hospital Moinhos de Vento - Porto Alegre (RS), Brazil.
| | - Milena Soriano Marcolino
- Universidade Federal de Minas GeraisFaculdade de MedicinaDepartment of Clinical MedicineBelo HorizonteMGBrazilDepartment of Clinical Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais - Belo Horizonte (MG), Brazil.
| | - Bruna Brandão Barreto
- Universidade Federal da BahiaFaculdade de Medicina da BahiaDepartment of Internal Medicine and Diagnostic SupportSalvadorBABrazilDepartment of Internal Medicine and Diagnostic Support, Faculdade de Medicina da Bahia, Universidade Federal da Bahia - Salvador (BA), Brazil.
| | - Paulo R. Schwartzman
- Hospital Moinhos de VentoDepartamento de CardiologiaPorto AlegreRSBrazilDepartamento de Cardiologia, Hospital Moinhos de Vento - Porto Alegre (RS), Brazil.
| | - Ana Carolina Peçanha Antonio
- Universidade Federal do Rio Grande do SulHospital de Clínicas de Porto AlegreIntensive Care UnitPorto AlegreRSBrazilIntensive Care Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul - Porto Alegre (RS), Brazil.
| | - Maicon Falavigna
- Research Unit, Inova MedicalPorto AlegreRSBrasilResearch Unit, Inova Medical - Porto Alegre (RS), Brasil
| | - Caroline Cabral Robinson
- Hospital Moinhos de VentoPorto AlegreRSBrazilProject Offices, Hospital Moinhos de Vento - Porto Alegre (RS), Brazil.
| | - Carisi Anne Polanczy
- Hospital Moinhos de VentoDepartamento de CardiologiaPorto AlegreRSBrazilDepartamento de Cardiologia, Hospital Moinhos de Vento - Porto Alegre (RS), Brazil.
| | - Regis Goulart Rosa
- Hospital Moinhos de VentoPorto AlegreRSBrazilProject Offices, Hospital Moinhos de Vento - Porto Alegre (RS), Brazil.
| |
Collapse
|
82
|
Filev R, Lyubomirova M, Bogov B, Kalinov K, Hristova J, Svinarov D, Garev A, Rostaing L. Post-Acute Sequelae of SARS-CoV-2 Infection (PASC) for Patients-3-Year Follow-Up of Patients with Chronic Kidney Disease. Biomedicines 2024; 12:1259. [PMID: 38927466 PMCID: PMC11201278 DOI: 10.3390/biomedicines12061259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Post-acute sequelae of SARS-CoV-2 (PASC) is a significant health concern, particularly for patients with chronic kidney disease (CKD). This study investigates the long-term outcomes of individuals with CKD who were infected with COVID-19, focusing on their health status over a three-year period post-infection. Data were collected from both CKD and non-CKD patients who survived SARS-CoV-2 infection and were followed for three years as part of a research study on the impact, prognosis, and consequences of COVID-19 infection in CKD patients. In this prospective cohort study, we analyzed clinical records, laboratory findings, and patient-reported outcomes assessed at intervals during follow-up. The results indicated no permanent changes in renal function in any of the groups analyzed, although patients without CKD exhibited faster recovery over time. Furthermore, we examined the effect of RAAS-blocker therapy over time, finding no influence on PASC symptoms or renal function recovery. Regarding PASC symptoms, most patients recovered within a short period, but some required prolonged follow-up and specialized post-recovery management. Following up with patients in the post-COVID-19 period is crucial, as there is still insufficient information and evidence regarding the long-term effects, particularly in relation to CKD.
Collapse
Affiliation(s)
- Rumen Filev
- Department of Nephrology, Internal Disease Clinic, University Hospital “Saint Anna”, 1750 Sofia, Bulgaria; (M.L.); (B.B.)
- Faculty of Medicine, Medical University Sofia, 1504 Sofia, Bulgaria; (J.H.); (D.S.); (A.G.)
| | - Mila Lyubomirova
- Department of Nephrology, Internal Disease Clinic, University Hospital “Saint Anna”, 1750 Sofia, Bulgaria; (M.L.); (B.B.)
- Faculty of Medicine, Medical University Sofia, 1504 Sofia, Bulgaria; (J.H.); (D.S.); (A.G.)
| | - Boris Bogov
- Department of Nephrology, Internal Disease Clinic, University Hospital “Saint Anna”, 1750 Sofia, Bulgaria; (M.L.); (B.B.)
- Faculty of Medicine, Medical University Sofia, 1504 Sofia, Bulgaria; (J.H.); (D.S.); (A.G.)
| | | | - Julieta Hristova
- Faculty of Medicine, Medical University Sofia, 1504 Sofia, Bulgaria; (J.H.); (D.S.); (A.G.)
- Department of Clinical Laboratory, University Hospital “Alexandrovska”, 1431 Sofia, Bulgaria
| | - Dobrin Svinarov
- Faculty of Medicine, Medical University Sofia, 1504 Sofia, Bulgaria; (J.H.); (D.S.); (A.G.)
- Department of Clinical Laboratory, University Hospital “Alexandrovska”, 1431 Sofia, Bulgaria
| | - Alexander Garev
- Faculty of Medicine, Medical University Sofia, 1504 Sofia, Bulgaria; (J.H.); (D.S.); (A.G.)
- Cardiology Department, University Hospital “Alexandrovska”, 1431 Sofia, Bulgaria
| | - Lionel Rostaing
- Nephrology, Hemodialysis, Apheresis and Kidney Transplantation Department, Grenoble University Hospital, 38043 Grenoble, France;
- Internal Disease Department, Grenoble Alpes University, 38043 Grenoble, France
| |
Collapse
|
83
|
Du H, Du Z, Wang L, Wang H, Jia M, Zhang C, Liu Y, Zhang C, Zhang Y, Zhang R, Zhang S, Zhang N, Ma Z, Chen C, Liu W, Zeng H, Gao GF, Hou X, Bi Y. Fulminant myocarditis induced by SARS-CoV-2 infection without severe lung involvement: insights into COVID-19 pathogenesis. J Genet Genomics 2024; 51:608-616. [PMID: 38447818 DOI: 10.1016/j.jgg.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection often leads to pulmonary complications. Cardiovascular sequelae, including myocarditis and heart failure, have also been reported. Here, the study presents two fulminant myocarditis cases infected by SARS-CoV-2 exhibiting remarkable elevation of cardiac biomarkers without significant pulmonary injury, as determined by imaging examinations. Immunohistochemical staining reveals the viral antigen within cardiomyocytes, indicating that SARS-CoV-2 could directly infect the myocardium. The full viral genomes from respiratory, anal, and myocardial specimens are obtained via next-generation sequencing. Phylogenetic analyses of the whole genome and spike gene indicate that viruses in the myocardium/pericardial effusion and anal swabs are closely related and cluster together yet diverge from those in the respiratory samples. In addition, unique mutations are found in the anal/myocardial strains compared to the respiratory strains, suggesting tissue-specific virus mutation and adaptation. These findings indicate genetically distinct SARS-CoV-2 variants have infiltrated and disseminated within myocardial tissues, independent of pulmonary injury, and point to different infection routes between the myocardium and respiratory tract, with myocardial infections potentially arising from intestinal infection. These findings highlight the potential for systemic SARS-CoV-2 infection and the importance of a thorough multi-organ assessment in patients for a comprehensive understanding of the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Han Du
- College of Life Science and Technology, Xinjiang University, Urumchi, Xinjiang 830046, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongtao Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Liang Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Mingjun Jia
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China; College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China
| | - Chunge Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China; College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China
| | - Cheng Zhang
- College of Life Science and Technology, Xinjiang University, Urumchi, Xinjiang 830046, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Ya Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Ruifeng Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenghai Ma
- College of Life Science and Technology, Xinjiang University, Urumchi, Xinjiang 830046, China
| | - Chen Chen
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zeng
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| | - George F Gao
- College of Life Science and Technology, Xinjiang University, Urumchi, Xinjiang 830046, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaotong Hou
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Yuhai Bi
- College of Life Science and Technology, Xinjiang University, Urumchi, Xinjiang 830046, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
84
|
Srivastava A, Nalroad Sundararaj S, Bhatia J, Singh Arya D. Understanding long COVID myocarditis: A comprehensive review. Cytokine 2024; 178:156584. [PMID: 38508059 DOI: 10.1016/j.cyto.2024.156584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/21/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Infectious diseases are a cause of major concern in this twenty-first century. There have been reports of various outbreaks like severe acute respiratory syndrome (SARS) in 2003, swine flu in 2009, Zika virus disease in 2015, and Middle East Respiratory Syndrome (MERS) in 2012, since the start of this millennium. In addition to these outbreaks, the latest infectious disease to result in an outbreak is the SARS-CoV-2 infection. A viral infection recognized as a respiratory illness at the time of emergence, SARS-CoV-2 has wreaked havoc worldwide because of its long-lasting implications like heart failure, sepsis, organ failure, etc., and its significant impact on the global economy. Besides the acute illness, it also leads to symptoms months later which is called long COVID or post-COVID-19 condition. Due to its ever-increasing prevalence, it has been a significant challenge to treat the affected individuals and manage the complications as well. Myocarditis, a long-term complication of coronavirus disease 2019 (COVID-19) is an inflammatory condition involving the myocardium of the heart, which could even be fatal in the long term in cases of progression to ventricular dysfunction and heart failure. Thus, it is imperative to diagnose early and treat this condition in the affected individuals. At present, there are numerous studies which are in progress, investigating patients with COVID-19-related myocarditis and the treatment strategies. This review focuses primarily on myocarditis, a life-threatening complication of COVID-19 illness, and endeavors to elucidate the pathogenesis, biomarkers, and management of long COVID myocarditis along with pipeline drugs in detail.
Collapse
Affiliation(s)
- Arti Srivastava
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Jagriti Bhatia
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
85
|
Kubrova E, Hallo-Carrasco AJ, Klasova J, Pagan Rosado RD, Prusinski CC, Trofymenko O, Schappell JB, Prokop LJ, Yuh CI, Gupta S, Hunt CL. Persistent chest pain following COVID-19 infection - A scoping review. PM R 2024; 16:605-625. [PMID: 37906499 DOI: 10.1002/pmrj.13098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Persistent chest pain (PCP) following acute COVID-19 infection is a commonly reported symptom with an unclear etiology, making its management challenging. This scoping review aims to address the knowledge gap surrounding the characteristics of PCP following COVID-19, its causes, and potential treatments. This is a scoping review of 64 studies, including observational (prospective, retrospective, cross-sectional, case series, and case-control) and one quasi-experimental study, from databases including Embase, PubMed/MEDLINE, Cochrane CENTRAL, Google Scholar, Cochrane Database of Systematic Reviews, and Scopus. Studies on patients with PCP following mild, moderate, and severe COVID-19 infection were included. Studies with patients of any age, with chest pain that persisted following acute COVID-19 disease, irrespective of etiology or duration were included. A total of 35 studies reported PCP symptoms following COVID-19 (0.24%-76.6%) at an average follow-up of 3 months or longer, 12 studies at 1-3 months and 17 studies at less than 1-month follow-up or not specified. PCP was common following mild-severe COVID-19 infection, and etiology was mostly not reported. Fourteen studies proposed potential etiologies including endothelial dysfunction, cardiac ischemia, vasospasm, myocarditis, cardiac arrhythmia, pneumonia, pulmonary embolism, postural tachycardia syndrome, or noted cardiac MRI (cMRI) changes. Evaluation methods included common cardiopulmonary tests, as well as less common tests such as flow-mediated dilatation, cMRI, single-photon emission computed tomography myocardial perfusion imaging, and cardiopulmonary exercise testing. Only one study reported a specific treatment (sulodexide). PCP is a prevalent symptom following COVID-19 infection, with various proposed etiologies. Further research is needed to establish a better understanding of the causes and to develop targeted treatments for PCP following COVID-19.
Collapse
Affiliation(s)
- Eva Kubrova
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | | | - Johana Klasova
- Department of Pain Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Robert D Pagan Rosado
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Rochester, Rochester, Minnesota, USA
- Department of Pain Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | | | - Larry J Prokop
- Library and Public Services, Mayo Clinic, Rochester, Minnesota, USA
| | - Clara I Yuh
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, California, USA
| | - Sahil Gupta
- Department of Pain Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Christine L Hunt
- Department of Pain Medicine, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
86
|
Greene SJ, Chambers R, Lerman JB, Harrington J, deFilippi CR, Wendell DC, Kim HW, Green CL, Butler J, Felker GM. Sacubitril/valsartan and cardiovascular biomarkers among patients with recent COVID-19 infection: The PARACOR-19 randomized clinical trial. Eur J Heart Fail 2024; 26:1393-1398. [PMID: 38733160 DOI: 10.1002/ejhf.3199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 05/13/2024] Open
Abstract
AIMS The PARACOR-19 randomized controlled trial (RCT) was designed to examine the effects of sacubitril/valsartan on markers of cardiac injury, inflammation, structure, and function among patients who have recovered from acute coronavirus disease 2019 (COVID-19) infection. METHODS AND RESULTS PARACOR-19 was a single-centre, double-blind RCT of patients with cardiovascular risk factors and a history of COVID-19 infection 4-16 weeks prior to enrolment. Patients were randomized to sacubitril/valsartan (titrated to the maximum dose of 97/103 mg twice daily) versus matching placebo. Co-primary endpoints were change from baseline to 12 weeks in high-sensitivity cardiac troponin T (hs-cTnT) and soluble ST2 (sST2). Exploratory endpoints included change from baseline to 12 weeks in additional circulating biomarkers. Overall, 42 patients were randomized between August 2021 and March 2023 (n = 20 sacubitril/valsartan, n = 22 placebo). Median (25th-75th) time from COVID-19 diagnosis to enrolment was 67 (48-80) days. Median age was 67 (62-71) years, 48% were female, and 91% were White. Compared with placebo, sacubitril/valsartan did not have a significant effect on the co-primary endpoints of change from baseline in hs-TnT and sST2 (all p ≥ 0.29). In exploratory analyses, sacubitril/valsartan led to a 46% greater reduction in N-terminal pro-B-type natriuretic peptide (NT-proBNP) and 51% greater reduction in C-terminal telopeptide of collagen type I (CITP). Permanent drug discontinuation occurred in four patients in the sacubitril/valsartan group and three patients in the placebo group. There were no deaths and one patient was hospitalized in each group. CONCLUSION In this pilot RCT of patients who recovered from acute COVID-19, sacubitril/valsartan did not lower hs-cTnT or sST2 compared with placebo. Exploratory analyses suggested potential benefits of sacubitril/valsartan on cardiac wall stress and collagen turnover as measured by NT-proBNP and CITP. Sacubitril/valsartan was well tolerated. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT04883528.
Collapse
Affiliation(s)
- Stephen J Greene
- Duke Clinical Research Institute, Durham, NC, USA
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Joseph B Lerman
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | | | | | - David C Wendell
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Han W Kim
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Cynthia L Green
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX, USA
- Department of Medicine, University of Mississippi, Jackson, MS, USA
| | - G Michael Felker
- Duke Clinical Research Institute, Durham, NC, USA
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
87
|
Malireddi RKS, Sharma BR, Kanneganti TD. Innate Immunity in Protection and Pathogenesis During Coronavirus Infections and COVID-19. Annu Rev Immunol 2024; 42:615-645. [PMID: 38941608 PMCID: PMC11373870 DOI: 10.1146/annurev-immunol-083122-043545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
The COVID-19 pandemic was caused by the recently emerged β-coronavirus SARS-CoV-2. SARS-CoV-2 has had a catastrophic impact, resulting in nearly 7 million fatalities worldwide to date. The innate immune system is the first line of defense against infections, including the detection and response to SARS-CoV-2. Here, we discuss the innate immune mechanisms that sense coronaviruses, with a focus on SARS-CoV-2 infection and how these protective responses can become detrimental in severe cases of COVID-19, contributing to cytokine storm, inflammation, long-COVID, and other complications. We also highlight the complex cross talk among cytokines and the cellular components of the innate immune system, which can aid in viral clearance but also contribute to inflammatory cell death, cytokine storm, and organ damage in severe COVID-19 pathogenesis. Furthermore, we discuss how SARS-CoV-2 evades key protective innate immune mechanisms to enhance its virulence and pathogenicity, as well as how innate immunity can be therapeutically targeted as part of the vaccination and treatment strategy. Overall, we highlight how a comprehensive understanding of innate immune mechanisms has been crucial in the fight against SARS-CoV-2 infections and the development of novel host-directed immunotherapeutic strategies for various diseases.
Collapse
Affiliation(s)
- R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | | |
Collapse
|
88
|
Eckstein J, Skeries V, Pöhler G, Babazade N, Kaireit T, Gutberlet M, Kornemann N, Hellms S, Pfeil A, Bucher AM, Hansmann G, Beerbaum P, Hansen G, Wacker F, Vogel-Claussen J, Wetzke M, Renz DM. Multiparametric Cardiovascular MRI Assessment of Post-COVID Syndrome in Children in Comparison to Matched Healthy Individuals. Invest Radiol 2024; 59:472-478. [PMID: 38117123 DOI: 10.1097/rli.0000000000001048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
BACKGROUND Post-COVID syndrome (PCS) can adversely affect the quality of life of patients and their families. In particular, the degree of cardiac impairment in children with PCS is unknown. OBJECTIVE The aim of this study was to identify potential cardiac inflammatory sequelae in children with PCS compared with healthy controls. METHODS This single-center, prospective, intraindividual, observational study assesses cardiac function, global and segment-based strains, and tissue characterization in 29 age- and sex-matched children with PCS and healthy children using a 3 T magnetic resonance imaging (MRI). RESULTS Cardiac MRI was carried out over 36.4 ± 24.9 weeks post-COVID infection. The study cohort has an average age of 14.0 ± 2.8 years, for which the majority of individuals experience from fatigue, concentration disorders, dyspnea, dizziness, and muscle ache. Children with PSC in contrast to the control group exhibited elevated heart rate (83.7 ± 18.1 beats per minute vs 75.2 ± 11.2 beats per minute, P = 0.019), increased indexed right ventricular end-diastolic volume (95.2 ± 19.2 mlm -2 vs 82.0 ± 21.5 mlm -2 , P = 0.018) and end-systolic volume (40.3 ± 7.9 mlm -2 vs 34.8 ± 6.2 mlm -2 , P = 0.005), and elevated basal and midventricular T1 and T2 relaxation times ( P < 0.001 to P = 0.013). Based on the updated Lake Louise Criteria, myocardial inflammation is present in 20 (69%) children with PCS. No statistically significant difference was observed for global strains. CONCLUSIONS Cardiac MRI revealed altered right ventricular volumetrics and elevated T1 and T2 mapping values in children with PCS, suggestive for a diffuse myocardial inflammation, which may be useful for the diagnostic workup of PCS in children.
Collapse
Affiliation(s)
- Jan Eckstein
- From the Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany (J.E., G.P., N.B., T.K., M.G., N.K., S.H., F.W., J.V.-C., D.M.R.); Clinic for Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany (V.S., G.H., M.W.); Department of Internal Medicine III, University Hospital Jena, Jena, Germany (A.P.); Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (A.M.B.); and Clinic for Pediatric Cardiology and Intensive Care, Hannover Medical School, Hannover, Germany (G.H., P.B.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Luo D, Bai M, Zhang W, Wang J. The possible mechanism and research progress of ACE2 involved in cardiovascular injury caused by COVID-19: a review. Front Cardiovasc Med 2024; 11:1409723. [PMID: 38863899 PMCID: PMC11165996 DOI: 10.3389/fcvm.2024.1409723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
ACE2 is the earliest receptor discovered to mediate the entry of SARS-CoV-2. In addition to the receptor, it also participates in complex pathological and physiological processes, including regulating the RAS system, apelin, KKS system, and immune system. In addition to affecting the respiratory system, viral infections also interact with cardiovascular diseases. SARS-CoV-2 can directly invade the cardiovascular system through ACE2; Similarly, cardiovascular diseases such as hypertension and coronary heart disease can affect ACE2 levels and exacerbate the disease, and ACE2 dysregulation may also be a potential mechanism for long-term acute sequelae of COVID-19. Since the SARS CoV-2 epidemic, many large population studies have tried to clarify the current focus of debate, that is, whether we should give COVID-19 patients ACEI and ARB drug treatment, but there is still no conclusive conclusion. We also discussed potential disease treatment options for ACE2 at present. Finally, we discussed the researchers' latest findings on ACE2 and their prospects for future research.
Collapse
Affiliation(s)
| | | | | | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
90
|
Zhang Y, Chen S, Tian Y, Fu X. Host factors of SARS-CoV-2 in infection, pathogenesis, and long-term effects. Front Cell Infect Microbiol 2024; 14:1407261. [PMID: 38846354 PMCID: PMC11155306 DOI: 10.3389/fcimb.2024.1407261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
SARS-CoV-2 is the causative virus of the devastating COVID-19 pandemic that results in an unparalleled global health and economic crisis. Despite unprecedented scientific efforts and therapeutic interventions, the fight against COVID-19 continues as the rapid emergence of different SARS-CoV-2 variants of concern and the increasing challenge of long COVID-19, raising a vast demand to understand the pathomechanisms of COVID-19 and its long-term sequelae and develop therapeutic strategies beyond the virus per se. Notably, in addition to the virus itself, the replication cycle of SARS-CoV-2 and clinical severity of COVID-19 is also governed by host factors. In this review, we therefore comprehensively overview the replication cycle and pathogenesis of SARS-CoV-2 from the perspective of host factors and host-virus interactions. We sequentially outline the pathological implications of molecular interactions between host factors and SARS-CoV-2 in multi-organ and multi-system long COVID-19, and summarize current therapeutic strategies and agents targeting host factors for treating these diseases. This knowledge would be key for the identification of new pathophysiological aspects and mechanisms, and the development of actionable therapeutic targets and strategies for tackling COVID-19 and its sequelae.
Collapse
Affiliation(s)
| | | | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, Chengdu, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, Chengdu, China
| |
Collapse
|
91
|
Chaichuum S, Tseng CL, Chang SC, Chan CL, Hsu CY, Chiang E, Daimon M, Chiang SJ, Chen HH. Assessment of cardiac adverse events following COVID-19 vaccination by speckle tracking echocardiography. Sci Rep 2024; 14:10849. [PMID: 38740940 DOI: 10.1038/s41598-024-61641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Cardiac discomfort has been reported periodically in COVID-19-vaccinated individuals. Thus, this study aimed to evaluate the role of myocardial strains in the early assessment of the clinical presentations after COVID-19 vaccination. Totally, 121 subjects who received at least one dose of vaccine within 6 weeks underwent laboratory tests, electrocardiogram (ECG), and echocardiogram. Two-dimensional speckle tracking echocardiography (2D-STE) was implemented to analyze changes in the left ventricular myocardium. After vaccination, 66 individuals (55.4 ± 17.4 years) developed cardiac discomforts, such as chest tightness, palpitations, dyspnea, and chest pain. The ECG readings exhibited both premature ventricular contractions and premature atrial contractions (n = 24, 36.4%), while none of the individuals in the control group manifested signs of cardiac arrhythmia. All had normal serum levels of creatine phosphokinase, creatine kinase myocardial band, troponin, N-terminal pro b-type natriuretic peptide, platelets, and D-dimer. Left ventricular ejection fraction in the symptomatic group (71.41% ± 7.12%) and the control group (72.18% ± 5.11%) (p = 0.492) were normal. Use of 2D-STE presented global longitudinal strain (GLS) and global circumferential strain (GCS) was reduced in the symptomatic group (17.86% ± 3.22% and 18.37% ± 5.22%) compared to the control group (19.54% ± 2.18% and 20.73% ± 4.09%) (p = 0.001 and p = 0.028). COVID-19 vaccine-related cardiac adverse effects can be assessed early by 2D-STE. The prognostic implications of GLS and GCS enable the evaluation of subtle changes in myocardial function after vaccination.
Collapse
Affiliation(s)
- Srisakul Chaichuum
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Su-Chen Chang
- Division of Cardiology, Department of Internal Medicine, Taipei City Hospital Yangming Branch, Taipei, Taiwan
| | - Chih-Lin Chan
- Division of Cardiology, Department of Internal Medicine, Taipei City Hospital Yangming Branch, Taipei, Taiwan
| | - Chu-Ying Hsu
- Division of Cardiology, Department of Internal Medicine, Taipei City Hospital Yangming Branch, Taipei, Taiwan
| | - Edward Chiang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Masao Daimon
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Shuo-Ju Chiang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan.
- Division of Cardiology, Department of Internal Medicine, Taipei City Hospital Yangming Branch, Taipei, Taiwan.
| | - Hsiang-Ho Chen
- Graduate Institute of Biomedical Engineering, Center for Biomedical Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan.
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
92
|
Bhatt N, Orbach A, Biswas L, Strauss BH, Connelly K, Ghugre NR, Wright GA, Roifman I. Evaluating a novel accelerated free-breathing late gadolinium enhancement imaging sequence for assessment of myocardial injury. Magn Reson Imaging 2024; 108:40-46. [PMID: 38309379 DOI: 10.1016/j.mri.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION Cardiac magnetic resonance imaging (MRI), including late gadolinium enhancement (LGE), plays an important role in the diagnosis and prognostication of ischemic and non-ischemic myocardial injury. Conventional LGE sequences require patients to perform multiple breath-holds and require long acquisition times. In this study, we compare image quality and assessment of myocardial LGE using an accelerated free-breathing sequence to the conventional standard-of-care sequence. METHODS In this prospective cohort study, a total of 41 patients post Coronavirus 2019 (COVID-19) infection were included. Studies were performed on a 1.5 Tesla scanner with LGE imaging acquired using a conventional inversion recovery rapid gradient echo (conventional LGE) sequence followed by the novel accelerated free-breathing (FB-LGE) sequence. Image quality was visually scored (ordinal scale from 1 to 5) and compared between conventional and free-breathing sequences using the Wilcoxon rank sum test. Presence of per-segment LGE was identified according to the American Heart Association 16-segment myocardial model and compared across both conventional LGE and FB-LGE sequences using a two-sided chi-square test. The perpatient LGE extent was also evaluated using both sequences and compared using the Wilcoxon rank sum test. Interobserver variability in detection of per-segment LGE and per-patient LGE extent was evaluated using Cohen's kappa statistic and interclass correlation (ICC), respectively. RESULTS The mean acquisition time for the FB-LGE sequence was 17 s compared to 413 s for the conventional LGE sequence (P < 0.001). Assessment of image quality was similar between both sequences (P = 0.19). There were no statistically significant differences in LGE assessed using the FB-LGE versus conventional LGE on a per-segment (P = 0.42) and per-patient (P = 0.06) basis. Interobserver variability in LGE assessment for FB-LGE was good for per-segment (= 0.71) and per-patient extent (ICC = 0.92) analyses. CONCLUSIONS The accelerated FB-LGE sequence performed comparably to the conventional standard-of-care LGE sequence in a cohort of patients post COVID-19 infection in a fraction of the time and without the need for breath-holding. Such a sequence could impact clinical practice by increasing cardiac MRI throughput and accessibility for frail or acutely ill patients unable to perform breath-holding.
Collapse
Affiliation(s)
- Nitish Bhatt
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ady Orbach
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Labonny Biswas
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Bradley H Strauss
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Kim Connelly
- Division of Cardiology, St. Michael's Hospital, Toronto, ON, Canada
| | - Nilesh R Ghugre
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Graham A Wright
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Idan Roifman
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|
93
|
Robotti C, Costantini G, Saggio G, Cesarini V, Calastri A, Maiorano E, Piloni D, Perrone T, Sabatini U, Ferretti VV, Cassaniti I, Baldanti F, Gravina A, Sakib A, Alessi E, Pietrantonio F, Pascucci M, Casali D, Zarezadeh Z, Zoppo VD, Pisani A, Benazzo M. Machine Learning-based Voice Assessment for the Detection of Positive and Recovered COVID-19 Patients. J Voice 2024; 38:796.e1-796.e13. [PMID: 34965907 PMCID: PMC8616736 DOI: 10.1016/j.jvoice.2021.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Many virological tests have been implemented during the Coronavirus Disease 2019 (COVID-19) pandemic for diagnostic purposes, but they appear unsuitable for screening purposes. Furthermore, current screening strategies are not accurate enough to effectively curb the spread of the disease. Therefore, the present study was conducted within a controlled clinical environment to determine eventual detectable variations in the voice of COVID-19 patients, recovered and healthy subjects, and also to determine whether machine learning-based voice assessment (MLVA) can accurately discriminate between them, thus potentially serving as a more effective mass-screening tool. Three different subpopulations were consecutively recruited: positive COVID-19 patients, recovered COVID-19 patients and healthy individuals as controls. Positive patients were recruited within 10 days from nasal swab positivity. Recovery from COVID-19 was established clinically, virologically and radiologically. Healthy individuals reported no COVID-19 symptoms and yielded negative results at serological testing. All study participants provided three trials for multiple vocal tasks (sustained vowel phonation, speech, cough). All recordings were initially divided into three different binary classifications with a feature selection, ranking and cross-validated RBF-SVM pipeline. This brough a mean accuracy of 90.24%, a mean sensitivity of 91.15%, a mean specificity of 89.13% and a mean AUC of 0.94 across all tasks and all comparisons, and outlined the sustained vowel as the most effective vocal task for COVID discrimination. Moreover, a three-way classification was carried out on an external test set comprised of 30 subjects, 10 per class, with a mean accuracy of 80% and an accuracy of 100% for the detection of positive subjects. Within this assessment, recovered individuals proved to be the most difficult class to identify, and all the misclassified subjects were declared positive; this might be related to mid and short-term vocal traces of COVID-19, even after the clinical resolution of the infection. In conclusion, MLVA may accurately discriminate between positive COVID-19 patients, recovered COVID-19 patients and healthy individuals. Further studies should test MLVA among larger populations and asymptomatic positive COVID-19 patients to validate this novel screening technology and test its potential application as a potentially more effective surveillance strategy for COVID-19.
Collapse
Affiliation(s)
- Carlo Robotti
- Department of Otolaryngology - Head and Neck Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Giovanni Costantini
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy.
| | - Giovanni Saggio
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy.
| | - Valerio Cesarini
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Anna Calastri
- Department of Otolaryngology - Head and Neck Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Eugenia Maiorano
- Department of Otolaryngology - Head and Neck Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Davide Piloni
- Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Tiziano Perrone
- Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Umberto Sabatini
- Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Virginia Valeria Ferretti
- Clinical Epidemiology and Biometry Unit, Fondazione IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Gravina
- Otorhinolaryngology Department, University of Rome Tor Vergata, Rome, Italy
| | - Ahmed Sakib
- Otorhinolaryngology Department, University of Rome Tor Vergata, Rome, Italy
| | - Elena Alessi
- Internal Medicine Unit, Ospedale dei Castelli ASL Roma 6, Ariccia, Italy
| | | | - Matteo Pascucci
- Internal Medicine Unit, Ospedale dei Castelli ASL Roma 6, Ariccia, Italy
| | - Daniele Casali
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Zakarya Zarezadeh
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Vincenzo Del Zoppo
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Marco Benazzo
- Department of Otolaryngology - Head and Neck Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
94
|
Lenz C, Slack MPE, Shea KM, Reinert RR, Taysi BN, Swerdlow DL. Long-Term effects of COVID-19: a review of current perspectives and mechanistic insights. Crit Rev Microbiol 2024; 50:315-328. [PMID: 37074754 DOI: 10.1080/1040841x.2023.2190405] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/25/2023] [Indexed: 04/20/2023]
Abstract
Although SARS-CoV-2, responsible for COVID-19, is primarily a respiratory infection, a broad spectrum of cardiac, pulmonary, neurologic, and metabolic complications can occur. More than 50 long-term symptoms of COVID-19 have been described, and as many as 80% of patients may develop ≥1 long-term symptom. To summarize current perspectives of long-term sequelae of COVID-19, we conducted a PubMed search describing the long-term cardiovascular, pulmonary, gastrointestinal, and neurologic effects post-SARS-CoV-2 infection and mechanistic insights and risk factors for the above-mentioned sequelae. Emerging risk factors of long-term sequelae include older age (≥65 years), female sex, Black or Asian race, Hispanic ethnicity, and presence of comorbidities. There is an urgent need to better understand ongoing effects of COVID-19. Prospective studies evaluating long-term effects of COVID-19 in all body systems and patient groups will facilitate appropriate management and assess burden of care. Clinicians should ensure patients are followed up and managed appropriately, especially those in at-risk groups. Healthcare systems worldwide need to develop approaches to follow-up and support patients recovering from COVID-19. Surveillance programs can enhance prevention and treatment efforts for those most vulnerable.
Collapse
Affiliation(s)
| | - Mary P E Slack
- Griffith University, School of Medicine and Dentistry, Griffith University Gold Coast campus, Queensland, Australia
| | | | | | | | | |
Collapse
|
95
|
Yu S, Xu J, Yu C, Zhang X, Cheng Y, Lin D, Yan C, Guo M, Li J, He P, Cheng W. Persistence of SARS-CoV-2 colonization and high expression of inflammatory factors in cardiac tissue 6 months after COVID-19 recovery: a prospective cohort study. Cardiovasc Diagn Ther 2024; 14:251-263. [PMID: 38716313 PMCID: PMC11070996 DOI: 10.21037/cdt-23-381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/02/2024] [Indexed: 07/09/2024]
Abstract
Background The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in myocardial autopsy tissues has been observed in certain individuals with coronavirus disease 2019 (COVID-19). However, the duration of cardiac involvement remains uncertain among recovered COVID-19 patients. Our study aims to evaluate the long-term persistence of SARS-CoV-2 within cardiac tissue. Methods We prospectively and consecutively evaluated the patients undergoing mitral valve replacement (MVR) and left atrial (LA) volume reduction surgery from May 25 to June 10, 2023 at our center, who had been approximately 6 months of recovery after Omicron wave. Patients tested positive for SARS-CoV-2 upon admission were excluded. The surgical LA tissue was collected in RNA preservation solution and stored at -80 ℃ immediately. Then SARS-CoV-2, interleukin-6 (IL-6) and interleukin-1β (IL-1β) RNA expression in LA tissues were assessed through thrice-repeated reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analyses. Categorical variables were assessed using the Chi-square or Fisher's exact tests, and continuous variables was analyzed using the Mann-Whitney U test. Results Nine of 41 patients were enrolled, all of whom tested negative for SARS-CoV-2 upon admission (two antigen and PCR tests). In four of nine patients, SARS-CoV-2 RNA was detected in their LA tissue, indicating viral colonization. Among the four positive cases, the IL-6 and IL-1β relative expression levels in the LA tissue of one patient were increased approximately 55- and 110-fold, respectively, compared to those of SARS-CoV-2 (-) patients. Increased expression of IL-6 and IL-1β were observed in the myocardium of this patient. Another patient demonstrated a remarkable 7-fold increase in both IL-6 and IL-1β expression, surpassing that of SARS-CoV-2 (-) patients. Additionally, no other cardiac inflammation-related diseases or conditions were presented in these two patients. The IL-6 and IL-1β expression levels of the remaining two patients were not significantly different from those of SARS-CoV-2 (-) patients. The relative expression levels of IL-6 and IL-1β in cardiac tissues of all SARS-CoV-2 (-) patients were relatively low. Interestingly, despite abnormally elevated levels of IL-6 and IL-1β within their cardiac tissue, two patients did not show a significant increase in serum IL-6 and IL-1β levels when compared to other patients. Conclusions Our research suggests that certain COVID-19-recovered patients have persistent colonization of SARS-CoV-2 in their cardiac tissue, accompanied by a local increase in inflammatory factors.
Collapse
Affiliation(s)
| | | | | | - Xianpu Zhang
- Department of Cardiac Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yongbo Cheng
- Department of Cardiac Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Deqing Lin
- Department of Cardiac Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chaojun Yan
- Department of Cardiac Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mei Guo
- Department of Cardiac Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | | | | | | |
Collapse
|
96
|
Golzardi M, Hromić-Jahjefendić A, Šutković J, Aydin O, Ünal-Aydın P, Bećirević T, Redwan EM, Rubio-Casillas A, Uversky VN. The Aftermath of COVID-19: Exploring the Long-Term Effects on Organ Systems. Biomedicines 2024; 12:913. [PMID: 38672267 PMCID: PMC11048001 DOI: 10.3390/biomedicines12040913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Post-acute sequelae of SARS-CoV-2 infection (PASC) is a complicated disease that affects millions of people all over the world. Previous studies have shown that PASC impacts 10% of SARS-CoV-2 infected patients of which 50-70% are hospitalised. It has also been shown that 10-12% of those vaccinated against COVID-19 were affected by PASC and its complications. The severity and the later development of PASC symptoms are positively associated with the early intensity of the infection. RESULTS The generated health complications caused by PASC involve a vast variety of organ systems. Patients affected by PASC have been diagnosed with neuropsychiatric and neurological symptoms. The cardiovascular system also has been involved and several diseases such as myocarditis, pericarditis, and coronary artery diseases were reported. Chronic hematological problems such as thrombotic endothelialitis and hypercoagulability were described as conditions that could increase the risk of clotting disorders and coagulopathy in PASC patients. Chest pain, breathlessness, and cough in PASC patients were associated with the respiratory system in long-COVID causing respiratory distress syndrome. The observed immune complications were notable, involving several diseases. The renal system also was impacted, which resulted in raising the risk of diseases such as thrombotic issues, fibrosis, and sepsis. Endocrine gland malfunction can lead to diabetes, thyroiditis, and male infertility. Symptoms such as diarrhea, nausea, loss of appetite, and taste were also among reported observations due to several gastrointestinal disorders. Skin abnormalities might be an indication of infection and long-term implications such as persistent cutaneous complaints linked to PASC. CONCLUSIONS Long-COVID is a multidimensional syndrome with considerable public health implications, affecting several physiological systems and demanding thorough medical therapy, and more study to address its underlying causes and long-term effects is needed.
Collapse
Affiliation(s)
- Maryam Golzardi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina; (M.G.); (J.Š.)
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina; (M.G.); (J.Š.)
| | - Jasmin Šutković
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina; (M.G.); (J.Š.)
| | - Orkun Aydin
- Department of Psychology, Faculty of Arts and Social Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina; (O.A.); (P.Ü.-A.)
| | - Pinar Ünal-Aydın
- Department of Psychology, Faculty of Arts and Social Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina; (O.A.); (P.Ü.-A.)
| | - Tea Bećirević
- Atrijum Polyclinic, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Elrashdy M. Redwan
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan 48900, Jalisco, Mexico;
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan 48900, Jalisco, Mexico
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
97
|
Øvrebotten T, Mecinaj A, Stavem K, Ghanima W, Brønstad E, Durheim MT, Lerum TV, Josefsen T, Grimsmo J, Heck SL, Omland T, Ingul CB, Einvik G, Myhre PL. Trajectory of cardiac troponin T following moderate-to-severe COVID-19 and the association with cardiac abnormalities. BMC Cardiovasc Disord 2024; 24:206. [PMID: 38614990 PMCID: PMC11015606 DOI: 10.1186/s12872-024-03854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/21/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND COVID-19 has been associated with cardiac troponin T (cTnT) elevations and changes in cardiac structure and function, but the link between cardiac dysfunction and high-sensitive cardiac troponin T (hs-cTnT) in the acute and convalescent phase is unclear. OBJECTIVE To assess whether hs-cTnT concentrations are associated with cardiac dysfunction and structural abnormalities after hospitalization for COVID-19, and to evaluate the performance of hs-cTnT to rule out cardiac pathology. METHODS Patients hospitalized with COVID-19 had hs-cTnT measured during the index hospitalization and after 3-and 12 months, when they also underwent an echocardiographic study. A subset also underwent cardiovascular magnetic resonance imaging (CMR) after 6 months. Cardiac abnormalities were defined as left ventricular hypertrophy or dysfunction, right ventricular dysfunction, or CMR late gadolinium. RESULTS We included 189 patients with hs-cTnT concentrations measured during hospitalization for COVID-19, and after 3-and 12 months: Geometric mean (95%CI) 13 (11-15) ng/L, 7 (6-8) ng/L and 7 (6-8) ng/L, respectively. Cardiac abnormalities after 3 months were present in 45 (30%) and 3 (8%) of patients with hs-cTnT ≥ and < 5 ng/L at 3 months, respectively (negative predictive value 92.3% [95%CI 88.5-96.1%]). The performance was similar in patients with and without dyspnea. Hs-cTnT decreased from hospitalization to 3 months (more pronounced in intensive care unit-treated patients) and remained unchanged from 3 to 12 months, regardless of the presence of cardiac abnormalities. CONCLUSION Higher hs-cTnT concentrations in the convalescent phase of COVID-19 are associated with the presence of cardiac pathology and low concentrations (< 5 ng/L) may support in ruling out cardiac pathology following the infection.
Collapse
Affiliation(s)
- Tarjei Øvrebotten
- Department of Cardiology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
- K.G. Jebsen Center for Cardiac Biomarkers, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Albulena Mecinaj
- Department of Cardiology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
- K.G. Jebsen Center for Cardiac Biomarkers, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Knut Stavem
- Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
- Department of Pulmonary Medicine, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Waleed Ghanima
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Hemato-oncology, Østfold Hospital Kalnes, Østfold, Norway
| | - Eivind Brønstad
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Thoracic Department, St. Olavs Hospital, Trondheim, Norway
| | - Michael T Durheim
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Respiratory Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tøri V Lerum
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål, Oslo, Norway
| | - Tony Josefsen
- Department of Cardiology, Østfold Hospital Kalnes, Østfold, Norway
| | - Jostein Grimsmo
- Department of cardiac and pulmonary rehabilitation, Cathinka Guldberg's Hospital, Lovisenberg Rehabilitation, Jessheim, Norway
| | - Siri L Heck
- K.G. Jebsen Center for Cardiac Biomarkers, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Diagnostic Imaging, Akershus University Hospital, Lørenskog, Norway
| | - Torbjørn Omland
- Department of Cardiology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
- K.G. Jebsen Center for Cardiac Biomarkers, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Charlotte B Ingul
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gunnar Einvik
- Department of Pulmonary Medicine, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Peder L Myhre
- Department of Cardiology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway.
- K.G. Jebsen Center for Cardiac Biomarkers, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
98
|
Jiao T, Huang Y, Sun H, Yang L. Research progress of post-acute sequelae after SARS-CoV-2 infection. Cell Death Dis 2024; 15:257. [PMID: 38605011 PMCID: PMC11009241 DOI: 10.1038/s41419-024-06642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
SARS-CoV-2 has spread rapidly worldwide and infected hundreds of millions of people worldwide. With the increasing number of COVID-19 patients discharged from hospitals, the emergence of its associated complications, sequelae, has become a new global health crisis secondary to acute infection. For the time being, such complications and sequelae are collectively called "Post-acute sequelae after SARS-CoV-2 infection (PASC)", also referred to as "long COVID" syndrome. Similar to the acute infection period of COVID-19, there is also heterogeneity in PASC. This article reviews the various long-term complications and sequelae observed in multiple organ systems caused by COVID-19, pathophysiological mechanisms, diagnosis, and treatment of PASC, aiming to raise awareness of PASC and optimize management strategies.
Collapse
Affiliation(s)
- Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Yuling Huang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning, 110001, P.R. China.
| | - Lina Yang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China.
- Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P.R. China.
| |
Collapse
|
99
|
Nedeljkovic-Arsenovic O, Ristić A, Đorđević N, Tomić M, Krljanac G, Maksimović R. Cardiac Magnetic Resonance Imaging as a Risk Stratification Tool in COVID-19 Myocarditis. Diagnostics (Basel) 2024; 14:790. [PMID: 38667436 PMCID: PMC11049213 DOI: 10.3390/diagnostics14080790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this retrospective study was to identify myocardial injury after COVID-19 inflammation and explore whether myocardial damage could be a possible cause of the persistent symptoms following COVID-19 infection in previously healthy individuals. This study included 139 patients who were enrolled between January and June 2021, with a mean age of 46.7 ± 15.2 years, of whom 68 were men and 71 were women without known cardiac or pulmonary diseases. All patients underwent clinical work-up, laboratory analysis, cardiac ultrasound, and CMR on a 1.5 T scanner using a recommended protocol for morphological and functional assessment before and after contrast media application with multi-parametric sequences. In 39% of patients, late gadolinium enhancement (LGE) was found as a sign of myocarditis. Fibrinogen was statistically significantly higher in patients with LGE than in those without LGE (4.3 ± 0.23 vs. 3.2 ± 0.14 g/L, p < 0.05, respectively), as well as D-dimer (1.8 ± 0.3 vs. 0.8 ± 0.1 mg/L FEU). Also, troponin was statistically significantly higher in patients with myocardial LGE (13.1 ± 0.4 ng/L) compared to those with normal myocardium (4.9 ± 0.3 ng/L, p < 0.001). We demonstrated chest pain, fatigue, and elevated troponin to be independent predictors for LGE. Septal LGE was shown to be a predictor for arrhythmias. The use of CMR is a potential risk stratification tool in evaluating outcomes following COVID-19 myocarditis.
Collapse
Affiliation(s)
- Olga Nedeljkovic-Arsenovic
- Department of Magnetic Resonance Imaging, Centre for Radiology, University Clinical Centre of Serbia, Pasterova 2, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
| | - Arsen Ristić
- Clinic for Cardiology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (A.R.); (N.Đ.); (M.T.)
| | - Nemanja Đorđević
- Clinic for Cardiology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (A.R.); (N.Đ.); (M.T.)
| | - Milenko Tomić
- Clinic for Cardiology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (A.R.); (N.Đ.); (M.T.)
| | - Gordana Krljanac
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
- Clinic for Cardiology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (A.R.); (N.Đ.); (M.T.)
| | - Ruzica Maksimović
- Department of Magnetic Resonance Imaging, Centre for Radiology, University Clinical Centre of Serbia, Pasterova 2, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
| |
Collapse
|
100
|
Pai V, Bileck A, Hommer N, Janku P, Lindner T, Kauer V, Rumpf B, Haslacher H, Hagn G, Meier-Menches SM, Schmetterer L, Schmidl D, Gerner C, Garhöfer G. Impaired retinal oxygen metabolism and perfusion are accompanied by plasma protein and lipid alterations in recovered COVID-19 patients. Sci Rep 2024; 14:8395. [PMID: 38600099 PMCID: PMC11006918 DOI: 10.1038/s41598-024-56834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
The aim of the present study was to investigate retinal microcirculatory and functional metabolic changes in patients after they had recovered from a moderate to severe acute COVID-19 infection. Retinal perfusion was quantified using laser speckle flowgraphy. Oxygen saturation and retinal calibers were assessed with a dynamic vessel analyzer. Arterio-venous ratio (AVR) was calculated based on retinal vessel diameter data. Blood plasma samples underwent mass spectrometry-based multi-omics profiling, including proteomics, metabolomics and eicosadomics. A total of 40 subjects were included in the present study, of which 29 had recovered from moderate to severe COVID-19 within 2 to 23 weeks before inclusion and 11 had never had COVID-19, as confirmed by antibody testing. Perfusion in retinal vessels was significantly lower in patients (60.6 ± 16.0 a.u.) than in control subjects (76.2 ± 12.1 a.u., p = 0.006). Arterio-venous (AV) difference in oxygen saturation and AVR was significantly lower in patients compared to healthy controls (p = 0.021 for AVR and p = 0.023 for AV difference in oxygen saturation). Molecular profiles demonstrated down-regulation of cell adhesion molecules, NOTCH3 and fatty acids, and suggested a bisphasic dysregulation of nitric oxide synthesis after COVID-19 infection. The results of this study imply that retinal perfusion and oxygen metabolism is still significantly altered in patients well beyond the acute phase of COVID-19. This is also reflected in the molecular profiling analysis of blood plasma, indicating a down-regulation of nitric oxide-related endothelial and immunological cell functions.Trial Registration: ClinicalTrials.gov ( https://clinicaltrials.gov ) NCT05650905.
Collapse
Affiliation(s)
- Viktoria Pai
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Vienna, Austria
| | - Nikolaus Hommer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Patrick Janku
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Theresa Lindner
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Victoria Kauer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Department of Medicine IV for Infectious Diseases and Tropical Medicine, Clinic Favoriten, Vienna, Austria
| | - Benedikt Rumpf
- Department of Medicine IV for Infectious Diseases and Tropical Medicine, Clinic Favoriten, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hagn
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Samuel M Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Leopold Schmetterer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria.
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Vienna, Austria.
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|