51
|
Kwon S, Bosmans F, Kaas Q, Cheneval O, Conibear AC, Rosengren KJ, Wang CK, Schroeder CI, Craik DJ. Efficient enzymatic cyclization of an inhibitory cystine knot-containing peptide. Biotechnol Bioeng 2016; 113:2202-12. [PMID: 27093300 DOI: 10.1002/bit.25993] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/04/2016] [Accepted: 04/11/2016] [Indexed: 01/01/2023]
Abstract
Disulfide-rich peptides isolated from cone snails are of great interest as drug leads due to their high specificity and potency toward therapeutically relevant ion channels and receptors. They commonly contain the inhibitor cystine knot (ICK) motif comprising three disulfide bonds forming a knotted core. Here we report the successful enzymatic backbone cyclization of an ICK-containing peptide κ-PVIIA, a 27-amino acid conopeptide from Conus purpurascens, using a mutated version of the bacterial transpeptidase, sortase A. Although a slight loss of activity was observed compared to native κ-PVIIA, cyclic κ-PVIIA is a functional peptide that inhibits the Shaker voltage-gated potassium (Kv) channel. Molecular modeling suggests that the decrease in potency may be related to the loss of crucial, but previously unidentified electrostatic interactions between the N-terminus of the peptide and the Shaker channel. This hypothesis was confirmed by testing an N-terminally acetylated κ-PVIIA, which shows a similar decrease in activity. We also investigated the conformational dynamics and hydrogen bond network of cyc-PVIIA, both of which are important factors to be considered for successful cyclization of peptides. We found that cyc-PVIIA has the same conformational dynamics, but different hydrogen bond network compared to those of κ-PVIIA. The ability to efficiently cyclize ICK peptides using sortase A will enable future protein engineering for this class of peptides and may help in the development of novel therapeutic molecules. Biotechnol. Bioeng. 2016;113: 2202-2212. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soohyun Kwon
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Qld, 4072, Australia
| | - Frank Bosmans
- Department of Physiology and Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Quentin Kaas
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Qld, 4072, Australia
| | - Olivier Cheneval
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Qld, 4072, Australia
| | - Anne C Conibear
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Qld, 4072, Australia
| | - K Johan Rosengren
- The University of Queensland, School of Biomedical Sciences, Brisbane, Qld, Australia
| | - Conan K Wang
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Qld, 4072, Australia
| | - Christina I Schroeder
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Qld, 4072, Australia.
| | - David J Craik
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Qld, 4072, Australia.
| |
Collapse
|
52
|
Pang Y, Liu J, Qi Y, Li X, Chilkoti A. A Modular Method for the High-Yield Synthesis of Site-Specific Protein-Polymer Therapeutics. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yan Pang
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| | - Jinyao Liu
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| | - Yizhi Qi
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| | - Xinghai Li
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| |
Collapse
|
53
|
Baranova N, Loose M. Single-molecule measurements to study polymerization dynamics of FtsZ-FtsA copolymers. Methods Cell Biol 2016; 137:355-370. [PMID: 28065316 DOI: 10.1016/bs.mcb.2016.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bacterial cytokinesis is commonly initiated by the Z-ring, a dynamic cytoskeletal structure that assembles at the site of division. Its primary component is FtsZ, a tubulin-like GTPase, that like its eukaryotic relative forms protein filaments in the presence of GTP. Since the discovery of the Z-ring 25years ago, various models for the role of FtsZ have been suggested. However, important information about the architecture and dynamics of FtsZ filaments during cytokinesis is still missing. One reason for this lack of knowledge has been the small size of bacteria, which has made it difficult to resolve the orientation and dynamics of individual FtsZ filaments in the Z-ring. While superresolution microscopy experiments have helped to gain more information about the organization of the Z-ring in the dividing cell, they were not yet able to elucidate a mechanism of how FtsZ filaments reorganize during assembly and disassembly of the Z-ring. In this chapter, we explain how to use an in vitro reconstitution approach to investigate the self-organization of FtsZ filaments recruited to a biomimetic lipid bilayer by its membrane anchor FtsA. We show how to perform single-molecule experiments to study the behavior of individual FtsZ monomers during the constant reorganization of the FtsZ-FtsA filament network. We describe how to analyze the dynamics of single molecules and explain why this information can help to shed light onto possible mechanism of Z-ring constriction. We believe that similar experimental approaches will be useful to study the mechanism of membrane-based polymerization of other cytoskeletal systems, not only from prokaryotic but also eukaryotic origin.
Collapse
Affiliation(s)
- N Baranova
- Institute for Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - M Loose
- Institute for Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| |
Collapse
|
54
|
Hansenová Maňásková S, Nazmi K, van ‘t Hof W, van Belkum A, Martin NI, Bikker FJ, van Wamel WJB, Veerman ECI. Staphylococcus aureus Sortase A-Mediated Incorporation of Peptides: Effect of Peptide Modification on Incorporation. PLoS One 2016; 11:e0147401. [PMID: 26799839 PMCID: PMC4723074 DOI: 10.1371/journal.pone.0147401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/04/2016] [Indexed: 11/18/2022] Open
Abstract
The endogenous Staphylococcus aureus sortase A (SrtA) transpeptidase covalently anchors cell wall-anchored (CWA) proteins equipped with a specific recognition motif (LPXTG) into the peptidoglycan layer of the staphylococcal cell wall. Previous in situ experiments have shown that SrtA is also able to incorporate exogenous, fluorescently labelled, synthetic substrates equipped with the LPXTG motif (K(FITC)LPETG-amide) into the bacterial cell wall, albeit at high concentrations of 500 μM to 1 mM. In the present study, we have evaluated the effect of substrate modification on the incorporation efficiency. This revealed that (i) by elongation of LPETG-amide with a sequence of positively charged amino acids, derived from the C-terminal domain of physiological SrtA substrates, the incorporation efficiency was increased by 20-fold at 10 μM, 100 μM and 250 μM; (ii) Substituting aspartic acid (E) for methionine increased the incorporation of the resulting K(FITC)LPMTG-amide approximately three times at all concentrations tested; (iii) conjugation of the lipid II binding antibiotic vancomycin to K(FITC)LPMTG-amide resulted in the same incorporation levels as K(FITC)LPETG-amide, but much more efficient at an impressive 500-fold lower substrate concentration. These newly developed synthetic substrates can potentially find broad applications in for example the in situ imaging of bacteria; the incorporation of antibody recruiting moieties; the targeted delivery and covalent incorporation of antimicrobial compounds into the bacterial cell wall.
Collapse
Affiliation(s)
- Silvie Hansenová Maňásková
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
- * E-mail:
| | - Kamran Nazmi
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Wim van ‘t Hof
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Alex van Belkum
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Nathaniel I. Martin
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Floris J. Bikker
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Willem J. B. van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Enno C. I. Veerman
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
55
|
Ismail NF, Lim TS. Site-specific scFv labelling with invertase via Sortase A mechanism as a platform for antibody-antigen detection using the personal glucose meter. Sci Rep 2016; 6:19338. [PMID: 26782912 PMCID: PMC4726117 DOI: 10.1038/srep19338] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022] Open
Abstract
Antibody labelling to reporter molecules is gaining popularity due to its many potential applications for diagnostics and therapeutics. However, non-directional bioconjugation methods which are commonly used often results in the loss of target binding capabilities. Therefore, a site-specific enzymatic based bioconjugation such as sortase-mediated transpeptidation allows for a more rapid and efficient method of antibody conjugation for diagnostic applications. Here we describe the utilization of sortase A bioconjugation to conjugate a single chain fragment variable (scFv) to the extracellular invertase (invB) from Zymomonas mobilis with the aim of developing an invertase based immunoassay. In addition, conjugation to enhanced green fluorescent protein (eGFP) was also validated to show the flexibility of the method. The invertase conjugated complex was successfully applied for the detection of antibody-antigen interaction using a personal glucose meter (PGM) for assay readout. The setup was used in both a direct and competitive assay highlighting the robustness of the conjugate for assay development. The method provides an alternative conjugation process to allow easy exchange of antibodies to facilitate rapid development of diagnostic assays for various diseases on the PGM platform.
Collapse
Affiliation(s)
- Nur Faezee Ismail
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
56
|
Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 2015. [PMID: 25798939 DOI: 10.1038/nbt.3190.inhibition] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Methods to introduce targeted double-strand breaks (DSBs) into DNA enable precise genome editing by increasing the rate at which externally supplied DNA fragments are incorporated into the genome through homologous recombination. The efficiency of these methods is limited by nonhomologous end joining (NHEJ), an alternative DNA repair pathway that competes with homology-directed repair (HDR). To promote HDR at the expense of NHEJ, we targeted DNA ligase IV, a key enzyme in the NHEJ pathway, using the inhibitor Scr7. Scr7 treatment increased the efficiency of HDR-mediated genome editing, using Cas9 in mammalian cell lines and in mice for all four genes examined, up to 19-fold. This approach should be applicable to other customizable endonucleases, such as zinc finger nucleases and transcription activator-like effector nucleases, and to nonmammalian cells with sufficiently conserved mechanisms of NHEJ and HDR.
Collapse
Affiliation(s)
- Takeshi Maruyama
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Stephanie K Dougan
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | | | - Angelina M Bilate
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Jessica R Ingram
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Hidde L Ploegh
- 1] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA. [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
57
|
Nguyen PA, Field CM, Groen AC, Mitchison TJ, Loose M. Using supported bilayers to study the spatiotemporal organization of membrane-bound proteins. Methods Cell Biol 2015; 128:223-241. [PMID: 25997350 PMCID: PMC4578691 DOI: 10.1016/bs.mcb.2015.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell division in prokaryotes and eukaryotes is commonly initiated by the well-controlled binding of proteins to the cytoplasmic side of the cell membrane. However, a precise characterization of the spatiotemporal dynamics of membrane-bound proteins is often difficult to achieve in vivo. Here, we present protocols for the use of supported lipid bilayers to rebuild the cytokinetic machineries of cells with greatly different dimensions: the bacterium Escherichia coli and eggs of the vertebrate Xenopus laevis. Combined with total internal reflection fluorescence microscopy, these experimental setups allow for precise quantitative analyses of membrane-bound proteins. The protocols described to obtain glass-supported membranes from bacterial and vertebrate lipids can be used as starting points for other reconstitution experiments. We believe that similar biochemical assays will be instrumental to study the biochemistry and biophysics underlying a variety of complex cellular tasks, such as signaling, vesicle trafficking, and cell motility.
Collapse
Affiliation(s)
- Phuong A Nguyen
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Christine M Field
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Aaron C Groen
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Martin Loose
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
58
|
Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 2015; 33:538-42. [PMID: 25798939 PMCID: PMC4618510 DOI: 10.1038/nbt.3190] [Citation(s) in RCA: 813] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 03/09/2015] [Indexed: 01/12/2023]
Abstract
Methods to introduce targeted double-strand breaks (DSBs) into DNA enable precise genome editing by increasing the rate at which externally supplied DNA fragments are incorporated into the genome through homologous recombination. The efficiency of these methods is limited by non-homologous end joining (NHEJ), an alternative DNA repair pathway that competes with homology-directed repair (HDR). To promote HDR at the expense of NHEJ, we targeted DNA ligase IV, a key enzyme in the NHEJ pathway, using the inhibitor Scr7. Scr7 treatment increased the efficiency of HDR-mediated genome editing using Cas9 in mammalian cell lines and in mice for all four genes examined up to 19-fold. This approach should be applicable to other customizable endonucleases, such as zinc finger nucleases and transcription activator like effector nucleases, and to non-mammalian cells with sufficiently conserved mechanisms of NHEJ and HDR.
Collapse
Affiliation(s)
- Takeshi Maruyama
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Stephanie K Dougan
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | | | - Angelina M Bilate
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Jessica R Ingram
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Hidde L Ploegh
- 1] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA. [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
59
|
Witte MD, Wu T, Guimaraes CP, Theile CS, Blom AEM, Ingram JR, Li Z, Kundrat L, Goldberg SD, Ploegh HL. Site-specific protein modification using immobilized sortase in batch and continuous-flow systems. Nat Protoc 2015; 10:508-16. [PMID: 25719269 DOI: 10.1038/nprot.2015.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transpeptidation catalyzed by sortase A allows the preparation of proteins that are site-specifically and homogeneously modified with a wide variety of functional groups, such as fluorophores, PEG moieties, lipids, glycans, bio-orthogonal reactive groups and affinity handles. This protocol describes immobilization of sortase A on a solid support (Sepharose beads). Immobilization of sortase A simplifies downstream purification of a protein of interest after labeling of its N or C terminus. Smaller batch and larger-scale continuous-flow reactions require only a limited amount of enzyme. The immobilized enzyme can be reused for multiple cycles of protein modification reactions. The described protocol also works with a Ca(2+)-independent variant of sortase A with increased catalytic activity. This heptamutant variant of sortase A (7M) was generated by combining previously published mutations, and this immobilized enzyme can be used for the modification of calcium-senstive substrates or in instances in which low temperatures are needed. Preparation of immobilized sortase A takes 1-2 d. Batch reactions take 3-12 h and flow reactions proceed at 0.5 ml h(-1), depending on the geometry of the reactor used.
Collapse
Affiliation(s)
- Martin D Witte
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Tongfei Wu
- 1] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA. [2] Oncology Medicinal Chemistry, Janssen Research and Development, Beerse, Belgium
| | - Carla P Guimaraes
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | | | - Annet E M Blom
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Jessica R Ingram
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Zeyang Li
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Lenka Kundrat
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Shalom D Goldberg
- Centyrex, Janssen Research and Development, LLC, Spring House, Pennsylvania, USA
| | - Hidde L Ploegh
- 1] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA. [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
60
|
A nucleotide-driven switch regulates flanking DNA length sensing by a dimeric chromatin remodeler. Mol Cell 2015; 57:850-859. [PMID: 25684208 DOI: 10.1016/j.molcel.2015.01.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 11/24/2014] [Accepted: 01/05/2015] [Indexed: 11/20/2022]
Abstract
The ATP-dependent chromatin assembly factor (ACF) spaces nucleosomes to promote formation of silent chromatin. Two copies of its ATPase subunit SNF2h bind opposite sides of a nucleosome, but how these protomers avoid competition is unknown. SNF2h senses the length of DNA flanking a nucleosome via its HAND-SANT-SLIDE (HSS) domain, yet it is unclear how this interaction enhances remodeling. Using covalently connected SNF2h dimers we show that dimerization accelerates remodeling and that the HSS contributes to communication between protomers. We further identify a nucleotide-dependent conformational change in SNF2h. In one conformation the HSS binds flanking DNA, and in another conformation the HSS engages the nucleosome core. Based on these results, we propose a model in which DNA length sensing and translocation are performed by two distinct conformational states of SNF2h. Such separation of function suggests that these activities could be independently regulated to affect remodeling outcomes.
Collapse
|
61
|
Intracellular expression of camelid single-domain antibodies specific for influenza virus nucleoprotein uncovers distinct features of its nuclear localization. J Virol 2014; 89:2792-800. [PMID: 25540369 DOI: 10.1128/jvi.02693-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Perturbation of protein-protein interactions relies mostly on genetic approaches or on chemical inhibition. Small RNA viruses, such as influenza A virus, do not easily lend themselves to the former approach, while chemical inhibition requires that the target protein be druggable. A lack of tools thus constrains the functional analysis of influenza virus-encoded proteins. We generated a panel of camelid-derived single-domain antibody fragments (VHHs) against influenza virus nucleoprotein (NP), a viral protein essential for nuclear trafficking and packaging of the influenza virus genome. We show that these VHHs can target NP in living cells and perturb NP's function during infection. Cytosolic expression of NP-specific VHHs (αNP-VHHs) disrupts virus replication at an early stage of the life cycle. Based on their specificity, these VHHs fall into two distinct groups. Both prevent nuclear import of the viral ribonucleoprotein (vRNP) complex without disrupting nuclear import of NP alone. Different stages of the virus life cycle thus rely on distinct nuclear localization motifs of NP. Their molecular characterization may afford new means of intervention in the virus life cycle. IMPORTANCE Many proteins encoded by RNA viruses are refractory to manipulation due to their essential role in replication. Thus, studying their function and determining how to disrupt said function through pharmaceutical intervention are difficult. We present a novel method based on single-domain-antibody technology that permits specific targeting and disruption of an essential influenza virus protein in the absence of genetic manipulation of influenza virus itself. Characterization of such interactions may help identify new targets for pharmaceutical intervention. This approach can be extended to study proteins encoded by other viral pathogens.
Collapse
|
62
|
Particle generation, functionalization and sortase A–mediated modification with targeting of single-chain antibodies for diagnostic and therapeutic use. Nat Protoc 2014; 10:90-105. [DOI: 10.1038/nprot.2014.177] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
63
|
Baer S, Nigro J, Madej MP, Nisbet RM, Suryadinata R, Coia G, Hong LPT, Adams TE, Williams CC, Nuttall SD. Comparison of alternative nucleophiles for Sortase A-mediated bioconjugation and application in neuronal cell labelling. Org Biomol Chem 2014; 12:2675-85. [PMID: 24643508 DOI: 10.1039/c3ob42325e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Sortase A (SrtA) enzyme from Staphylococcus aureus catalyses covalent attachment of protein substrates to pentaglycine cross-bridges in the Gram positive bacterial cell wall. In vitro SrtA-mediated protein ligation is now an important protein engineering tool for conjugation of substrates containing the LPXTGX peptide recognition sequence to oligo-glycine nucleophiles. In order to explore the use of alternative nucleophiles in this system, five different rhodamine-labelled compounds, with N-terminal nucleophilic amino acids, triglycine, glycine, and lysine, or N-terminal non-amino acid nucleophiles ethylenediamine and cadaverine, were synthesized. These compounds were tested for their relative abilities to function as nucleophiles in SrtA-mediated bioconjugation reactions. N-Terminal triglycine, glycine and ethylenediamine were all efficient in labelling a range of LPETGG containing recombinant antibody and scaffold proteins and peptides, while reduced activity was observed for the other nucleophiles across the range of proteins and peptides studied. Expansion of the range of available nucleophiles which can be utilised in SrtA-mediated bioconjugation expands the range of potential applications for this technology. As a demonstration of the utility of this system, SrtA coupling was used to conjugate the triglycine rhodamine-labelled nucleophile to the C-terminus of an Im7 scaffold protein displaying Aβ, a neurologically important peptide implicated in Alzheimer's disease. Purified, labelled protein showed Aβ-specific targeting to mammalian neuronal cells. Demonstration of targeting neuronal cells with a chimeric protein illustrates the power of this system, and suggests that SrtA-mediated direct cell-surface labelling and visualisation is an achievable goal.
Collapse
Affiliation(s)
- Samuel Baer
- CSIRO Materials Science and Engineering, 343 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Key steps in ERAD of luminal ER proteins reconstituted with purified components. Cell 2014; 158:1375-1388. [PMID: 25215493 PMCID: PMC4163015 DOI: 10.1016/j.cell.2014.07.050] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/06/2014] [Accepted: 07/02/2014] [Indexed: 11/20/2022]
Abstract
Misfolded proteins of the endoplasmic reticulum (ER) are retrotranslocated into the cytosol, polyubiquitinated, and degraded by the proteasome, a process called ER-associated protein degradation (ERAD). Here, we use purified components from Saccharomyces cerevisiae to analyze the mechanism of retrotranslocation of luminal substrates (ERAD-L), recapitulating key steps in a basic process in which the ubiquitin ligase Hrd1p is the only required membrane protein. We show that Hrd1p interacts with substrate through its membrane-spanning domain and discriminates misfolded from folded polypeptides. Both Hrd1p and substrate are polyubiquitinated, resulting in the binding of Cdc48p ATPase complex. Subsequently, ATP hydrolysis by Cdc48p releases substrate from Hrd1p. Finally, ubiquitin chains are trimmed by the deubiquitinating enzyme Otu1p, which is recruited and activated by the Cdc48p complex. Cdc48p-dependent membrane extraction of polyubiquitinated proteins can be reproduced with reconstituted proteoliposomes. Our results suggest a model for retrotranslocation in which Hrd1p forms a membrane conduit for misfolded proteins.
Collapse
|
65
|
Wuethrich I, Peeters JGC, Blom AEM, Theile CS, Li Z, Spooner E, Ploegh HL, Guimaraes CP. Site-specific chemoenzymatic labeling of aerolysin enables the identification of new aerolysin receptors. PLoS One 2014; 9:e109883. [PMID: 25275512 PMCID: PMC4183550 DOI: 10.1371/journal.pone.0109883] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 09/04/2014] [Indexed: 11/29/2022] Open
Abstract
Aerolysin is a secreted bacterial toxin that perforates the plasma membrane of a target cell with lethal consequences. Previously explored native and epitope-tagged forms of the toxin do not allow site-specific modification of the mature toxin with a probe of choice. We explore sortase-mediated transpeptidation reactions (sortagging) to install fluorophores and biotin at three distinct sites in aerolysin, without impairing binding of the toxin to the cell membrane and with minimal impact on toxicity. Using a version of aerolysin labeled with different fluorophores at two distinct sites we followed the fate of the C-terminal peptide independently from the N-terminal part of the toxin, and show its loss in the course of intoxication. Making use of the biotinylated version of aerolysin, we identify mesothelin, urokinase plasminogen activator surface receptor (uPAR, CD87), glypican-1, and CD59 glycoprotein as aerolysin receptors, all predicted or known to be modified with a glycosylphosphatidylinositol anchor. The sortase-mediated reactions reported here can be readily extended to other pore forming proteins.
Collapse
Affiliation(s)
- Irene Wuethrich
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Janneke G. C. Peeters
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Annet E. M. Blom
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Christopher S. Theile
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Zeyang Li
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Eric Spooner
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Carla P. Guimaraes
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
66
|
Tafesse FG, Guimaraes CP, Maruyama T, Carette JE, Lory S, Brummelkamp TR, Ploegh HL. GPR107, a G-protein-coupled receptor essential for intoxication by Pseudomonas aeruginosa exotoxin A, localizes to the Golgi and is cleaved by furin. J Biol Chem 2014; 289:24005-18. [PMID: 25031321 PMCID: PMC4148833 DOI: 10.1074/jbc.m114.589275] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/08/2014] [Indexed: 12/25/2022] Open
Abstract
A number of toxins, including exotoxin A (PE) of Pseudomonas aeruginosa, kill cells by inhibiting protein synthesis. PE kills by ADP-ribosylation of the translation elongation factor 2, but many of the host factors required for entry, membrane translocation, and intracellular transport remain to be elucidated. A genome-wide genetic screen in human KBM7 cells was performed to uncover host factors used by PE, several of which were confirmed by CRISPR/Cas9-gene editing in a different cell type. Several proteins not previously implicated in the PE intoxication pathway were identified, including GPR107, an orphan G-protein-coupled receptor. GPR107 localizes to the trans-Golgi network and is essential for retrograde transport. It is cleaved by the endoprotease furin, and a disulfide bond connects the two cleaved fragments. Compromising this association affects the function of GPR107. The N-terminal region of GPR107 is critical for its biological function. GPR107 might be one of the long-sought receptors that associates with G-proteins to regulate intracellular vesicular transport.
Collapse
Affiliation(s)
- Fikadu G Tafesse
- From the Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Carla P Guimaraes
- From the Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Takeshi Maruyama
- From the Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Jan E Carette
- the Stanford School of Medicine, Stanford, California 94305
| | - Stephen Lory
- the Harvard Medical School, Boston, Massachusetts 02115, and
| | - Thijn R Brummelkamp
- the Netherlands Cancer Institute, Postbus 90203, 1006 BE Amsterdam, The Netherlands
| | - Hidde L Ploegh
- From the Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142,
| |
Collapse
|
67
|
Heck T, Pham PH, Hammes F, Thöny-Meyer L, Richter M. Continuous Monitoring of Enzymatic Reactions on Surfaces by Real-Time Flow Cytometry: Sortase A Catalyzed Protein Immobilization as a Case Study. Bioconjug Chem 2014; 25:1492-500. [DOI: 10.1021/bc500230r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Tobias Heck
- Laboratory
for Bioactive Materials, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Phu-Huy Pham
- Laboratory
for Bioactive Materials, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Frederik Hammes
- Department
of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Linda Thöny-Meyer
- Laboratory
for Bioactive Materials, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Michael Richter
- Laboratory
for Bioactive Materials, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
68
|
Type I interferon imposes a TSG101/ISG15 checkpoint at the Golgi for glycoprotein trafficking during influenza virus infection. Cell Host Microbe 2014; 14:510-21. [PMID: 24237697 DOI: 10.1016/j.chom.2013.10.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/13/2013] [Accepted: 10/07/2013] [Indexed: 11/20/2022]
Abstract
Several enveloped viruses exploit host pathways, such as the cellular endosomal sorting complex required for transport (ESCRT) machinery, for their assembly and release. The influenza A virus (IAV) matrix protein binds to the ESCRT-I complex, although the involvement of early ESCRT proteins such as Tsg101 in IAV trafficking remain to be established. We find that Tsg101 can facilitate IAV trafficking, but this is effectively restricted by the interferon (IFN)-stimulated protein ISG15. Cytosol from type I IFN-treated cells abolished IAV hemagglutinin (HA) transport to the cell surface in infected semi-intact cells. This inhibition required Tsg101 and could be relieved with deISGylases. Tsg101 is itself ISGylated in IFN-treated cells. Upon infection, intact Tsg101-deficient cells obtained by CRISPR-Cas9 genome editing were defective in the surface display of HA and for infectious virion release. These data support the IFN-induced generation of a Tsg101- and ISG15-dependent checkpoint in the secretory pathway that compromises influenza virus release.
Collapse
|
69
|
Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes. Proc Natl Acad Sci U S A 2014; 111:10131-6. [PMID: 24982154 DOI: 10.1073/pnas.1409861111] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We developed modified RBCs to serve as carriers for systemic delivery of a wide array of payloads. These RBCs contain modified proteins on their plasma membrane, which can be labeled in a sortase-catalyzed reaction under native conditions without inflicting damage to the target membrane or cell. Sortase accommodates a wide range of natural and synthetic payloads that allow modification of RBCs with substituents that cannot be encoded genetically. As proof of principle, we demonstrate site-specific conjugation of biotin to in vitro-differentiated mouse erythroblasts as well as to mature mouse RBCs. Thus modified, RBCs remain in the bloodstream for up to 28 d. A single domain antibody attached enzymatically to RBCs enables them to bind specifically to target cells that express the antibody target. We extend these experiments to human RBCs and demonstrate efficient sortase-mediated labeling of in vitro-differentiated human reticulocytes.
Collapse
|
70
|
Hansenová Maňásková S, Nazmi K, van Belkum A, Bikker FJ, van Wamel WJB, Veerman ECI. Synthetic LPETG-containing peptide incorporation in the Staphylococcus aureus cell-wall in a sortase A- and growth phase-dependent manner. PLoS One 2014; 9:e89260. [PMID: 24586638 PMCID: PMC3929722 DOI: 10.1371/journal.pone.0089260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/16/2014] [Indexed: 11/18/2022] Open
Abstract
The majority of Staphylococcus aureus virulence- and colonization-associated surface proteins contain a pentapeptide recognition motif (LPXTG). This motif can be recognized and cleaved by sortase A (SrtA) which is a membrane-bound transpeptidase. After cleavage these proteins are covalently incorporated into the peptidoglycan. Therefore, SrtA plays a key role in S. aureus virulence. We aimed to generate a substrate mimicking this SrtA recognition motif for several purposes: to incorporate this substrate into the S. aureus cell-wall in a SrtA-dependent manner, to characterize this incorporation and to determine the effect of substrate incorporation on the incorporation of native SrtA-dependent cell-surface-associated proteins. We synthesized substrate containing the specific LPXTG motif, LPETG. As a negative control we used a scrambled version of this substrate, EGTLP and a S. aureus srtA knockout strain. Both substrates contained a fluorescence label for detection by FACScan and fluorescence microscope. A spreading assay and a competitive Luminex assay were used to determine the effect of substrate treatment on native LPXTG containing proteins deposition in the bacterial cell-wall. We demonstrate a SrtA-dependent covalent incorporation of the LPETG-containing substrate in wild type S. aureus strains and several other Gram-positive bacterial species. LPETG-containing substrate incorporation in S. aureus was growth phase-dependent and peaked at the stationary phase. This incorporation negatively correlated with srtA mRNA expression. Exogenous addition of the artificial substrate did not result in a decreased expression of native SrtA substrates (e.g. clumping factor A/B and protein A) nor induced a srtA knockout phenotype.
Collapse
Affiliation(s)
- Silvie Hansenová Maňásková
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
- * E-mail:
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Alex van Belkum
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Willem J. B. van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Enno C. I. Veerman
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
71
|
Jia X, Kwon S, Wang CIA, Huang YH, Chan LY, Tan CC, Rosengren KJ, Mulvenna JP, Schroeder CI, Craik DJ. Semienzymatic cyclization of disulfide-rich peptides using Sortase A. J Biol Chem 2014; 289:6627-6638. [PMID: 24425873 DOI: 10.1074/jbc.m113.539262] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Disulfide-rich cyclic peptides have generated great interest in the development of peptide-based therapeutics due to their exceptional stability toward chemical, enzymatic, or thermal attack. In particular, they have been used as scaffolds onto which bioactive epitopes can be grafted to take advantage of the favorable biophysical properties of disulfide-rich cyclic peptides. To date, the most commonly used method for the head-to-tail cyclization of peptides has been native chemical ligation. In recent years, however, enzyme-mediated cyclization has become a promising new technology due to its efficiency, safety, and cost-effectiveness. Sortase A (SrtA) is a bacterial enzyme with transpeptidase activity. It recognizes a C-terminal penta-amino acid motif, LPXTG, and cleaves the amide bond between Thr and Gly to form a thioacyl-linked intermediate. This intermediate undergoes nucleophilic attack by an N-terminal poly-Gly sequence to form an amide bond between the Thr and N-terminal Gly. Here, we demonstrate that sortase A can successfully be used to cyclize a variety of small disulfide-rich peptides, including the cyclotide kalata B1, α-conotoxin Vc1.1, and sunflower trypsin inhibitor 1. These peptides range in size from 14 to 29 amino acids and contain three, two, or one disulfide bond, respectively, within their head-to-tail cyclic backbones. Our findings provide proof of concept for the potential broad applicability of enzymatic cyclization of disulfide-rich peptides with therapeutic potential.
Collapse
Affiliation(s)
- Xinying Jia
- From QIMR Berghofer Medical Research, Brisbane 4000, Queensland, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia
| | - Soohyun Kwon
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia
| | - Ching-I Anderson Wang
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia
| | - Lai Y Chan
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia
| | - Chia Chia Tan
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia
| | - K Johan Rosengren
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Queensland, Australia
| | - Jason P Mulvenna
- From QIMR Berghofer Medical Research, Brisbane 4000, Queensland, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia.
| | - David J Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia.
| |
Collapse
|
72
|
Zhulenkovs D, Jaudzems K, Zajakina A, Leonchiks A. Enzymatic activity of circular sortase A under denaturing conditions: An advanced tool for protein ligation. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2013.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
73
|
Loose M, Mitchison TJ. The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat Cell Biol 2014; 16:38-46. [PMID: 24316672 PMCID: PMC4019675 DOI: 10.1038/ncb2885] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/28/2013] [Indexed: 12/16/2022]
Abstract
Bacterial cytokinesis is commonly initiated by the Z-ring, a cytoskeletal structure that assembles at the site of division. Its primary component is FtsZ, a tubulin superfamily GTPase, which is recruited to the membrane by the actin-related protein FtsA. Both proteins are required for the formation of the Z-ring, but if and how they influence each other's assembly dynamics is not known. Here, we reconstituted FtsA-dependent recruitment of FtsZ polymers to supported membranes, where both proteins self-organize into complex patterns, such as fast-moving filament bundles and chirally rotating rings. Using fluorescence microscopy and biochemical perturbations, we found that these large-scale rearrangements of FtsZ emerge from its polymerization dynamics and a dual, antagonistic role of FtsA: recruitment of FtsZ filaments to the membrane and negative regulation of FtsZ organization. Our findings provide a model for the initial steps of bacterial cell division and illustrate how dynamic polymers can self-organize into large-scale structures.
Collapse
Affiliation(s)
- Martin Loose
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Timothy J. Mitchison
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
74
|
Qi Y, Chilkoti A. Growing polymers from peptides and proteins: a biomedical perspective. Polym Chem 2014. [DOI: 10.1039/c3py01089a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
75
|
Hartley MD, Schneggenburger PE, Imperiali B. Lipid bilayer nanodisc platform for investigating polyprenol-dependent enzyme interactions and activities. Proc Natl Acad Sci U S A 2013; 110:20863-70. [PMID: 24302767 PMCID: PMC3876266 DOI: 10.1073/pnas.1320852110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane-bound polyprenol-dependent pathways are important for the assembly of essential glycoconjugates in all domains of life. However, despite their prevalence, the functional significance of the extended linear polyprenyl groups in the interactions of the glycan substrates, the biosynthetic enzymes that act upon them, and the membrane bilayer in which they are embedded remains a mystery. These interactions are investigated simultaneously and uniquely through application of the nanodisc membrane technology. The Campylobacter jejuni N-linked glycosylation pathway has been chosen as a model pathway in which all of the enzymes and substrates are biochemically accessible. We present the functional reconstitution of two enzymes responsible for the early membrane-committed steps in glycan assembly. Protein stoichiometry analysis, fluorescence-based approaches, and biochemical activity assays are used to demonstrate the colocalization of the two enzymes in nanodiscs. Isotopic labeling of the substrates reveals that undecaprenyl-phosphate is coincorporated into discs with the two enzymes, and furthermore, that both enzymes are functionally reconstituted and can sequentially convert the coembedded undecaprenyl-phosphate into undecaprenyl-diphosphate-linked disaccharide. These studies provide a proof-of-concept demonstrating that the nanodisc model membrane system represents a promising experimental platform for analyzing the multifaceted interactions among the enzymes involved in polyprenol-dependent glycan assembly pathways, the membrane-associated substrates, and the lipid bilayer. The stage is now set for exploration of the roles of the conserved polyprenols in promoting protein-protein interactions among pathway enzymes and processing of substrates through sequential steps in membrane-associated glycan assembly.
Collapse
Affiliation(s)
| | | | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
76
|
Antigen-specific B-cell receptor sensitizes B cells to infection by influenza virus. Nature 2013; 503:406-9. [PMID: 24141948 PMCID: PMC3863936 DOI: 10.1038/nature12637] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/04/2013] [Indexed: 02/07/2023]
Abstract
Influenza A virus-specific B lymphocytes and the antibodies they produce protect against infection. However, the outcome of interactions between an influenza haemagglutinin-specific B cell via its receptor (BCR) and virus is unclear. Through somatic cell nuclear transfer we generated mice that harbour B cells with a BCR specific for the haemagglutinin of influenza A/WSN/33 virus (FluBI mice). Their B cells secrete an immunoglobulin gamma 2b that neutralizes infectious virus. Whereas B cells from FluBI and control mice bind equivalent amounts of virus through interaction of haemagglutinin with surface-disposed sialic acids, the A/WSN/33 virus infects only the haemagglutinin-specific B cells. Mere binding of virus is not sufficient for infection of B cells: this requires interactions of the BCR with haemagglutinin, causing both disruption of antibody secretion and FluBI B-cell death within 18 h. In mice infected with A/WSN/33, lung-resident FluBI B cells are infected by the virus, thus delaying the onset of protective antibody release into the lungs, whereas FluBI cells in the draining lymph node are not infected and proliferate. We propose that influenza targets and kills influenza-specific B cells in the lung, thus allowing the virus to gain purchase before the initiation of an effective adaptive response.
Collapse
|
77
|
Wang Y, Pascoe HG, Brautigam CA, He H, Zhang X. Structural basis for activation and non-canonical catalysis of the Rap GTPase activating protein domain of plexin. eLife 2013; 2:e01279. [PMID: 24137545 PMCID: PMC3787391 DOI: 10.7554/elife.01279] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/22/2013] [Indexed: 12/14/2022] Open
Abstract
Plexins are cell surface receptors that bind semaphorins and transduce signals for regulating neuronal axon guidance and other processes. Plexin signaling depends on their cytoplasmic GTPase activating protein (GAP) domain, which specifically inactivates the Ras homolog Rap through an ill-defined non-canonical catalytic mechanism. The plexin GAP is activated by semaphorin-induced dimerization, the structural basis for which remained unknown. Here we present the crystal structures of the active dimer of zebrafish PlexinC1 cytoplasmic region in the apo state and in complex with Rap. The structures show that the dimerization induces a large-scale conformational change in plexin, which opens the GAP active site to allow Rap binding. Plexin stabilizes the switch II region of Rap in an unprecedented conformation, bringing Gln63 in Rap into the active site for catalyzing GTP hydrolysis. The structures also explain the unique Rap-specificity of plexins. Mutational analyses support that these mechanisms underlie plexin activation and signaling. DOI:http://dx.doi.org/10.7554/eLife.01279.001.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Heath G Pascoe
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chad A Brautigam
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Huawei He
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
78
|
Theile CS, Witte MD, Blom AEM, Kundrat L, Ploegh HL, Guimaraes CP. Site-specific N-terminal labeling of proteins using sortase-mediated reactions. Nat Protoc 2013; 8:1800-7. [PMID: 23989674 DOI: 10.1038/nprot.2013.102] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This protocol describes the use of sortase-mediated reactions to label the N terminus of any given protein of interest. The sortase recognition sequence, LPXTG (for Streptococcus aureus sortase A) or LPXTA (for Staphylococcus pyogenes sortase A), can be appended to a variety of probes such as fluorophores, biotin or even to other proteins. The protein to be labeled acts as a nucleophile by attacking the intermediate formed between the probe containing the LPXTG/A motif and the sortase enzyme. If sortase, the protein of interest and a suitably functionalized label are available, the reactions usually require less than 3 h.
Collapse
|
79
|
Witte MD, Theile CS, Wu T, Guimaraes CP, Blom AEM, Ploegh HL. Production of unnaturally linked chimeric proteins using a combination of sortase-catalyzed transpeptidation and click chemistry. Nat Protoc 2013; 8:1808-19. [PMID: 23989675 DOI: 10.1038/nprot.2013.103] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chimeric proteins, including bispecific antibodies, are biological tools with therapeutic applications. Genetic fusion and ligation methods allow the creation of N-to-C and C-to-N fused recombinant proteins, but not unnaturally linked N-to-N and C-to-C fusion proteins. This protocol describes a simple procedure for the production of such chimeric proteins, starting from correctly folded proteins and readily available peptides. By equipping the N terminus or C terminus of the proteins of interest with a set of click handles using sortase A, followed by a strain-promoted click reaction, unnatural N-to-N and C-to-C linked (hetero) fusion proteins are established. Examples of proteins that have been conjugated via this method include interleukin-2, interferon-α, ubiquitin, antibodies and several single-domain antibodies. If the peptides, sortase A and the proteins of interest are in hand, the unnaturally N-to-N and C-to-C fused proteins can be obtained in 3-4 d.
Collapse
Affiliation(s)
- Martin D Witte
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
80
|
Qi Y, Amiram M, Gao W, McCafferty DG, Chilkoti A. Sortase-catalyzed initiator attachment enables high yield growth of a stealth polymer from the C terminus of a protein. Macromol Rapid Commun 2013; 34:1256-60. [PMID: 23836349 PMCID: PMC3754797 DOI: 10.1002/marc.201300460] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 06/12/2013] [Indexed: 11/09/2022]
Abstract
Conventional methods for synthesizing protein/peptide-polymer conjugates, as a means to improve the pharmacological properties of therapeutic biomolecules, typically have drawbacks including low yield, non-trivial separation of conjugates from reactants, and lack of site- specificity, which results in heterogeneous products with significantly compromised bioactivity. To address these limitations, the use of sortase A from Staphylococcus aureus is demonstrated to site-specifically attach an initiator solely at the C-terminus of green fluorescent protein (GFP), followed by in situ growth of a stealth polymer, poly(oligo(ethylene glycol) methyl ether methacrylate) by atom transfer radical polymerization (ATRP). Sortase-catalyzed initiator attachment proceeds with high specificity and near-complete (≈95%) product conversion. Subsequent in situ ATRP in aqueous buffer produces 1:1 stoichiometric conjugates with >90% yield, low dispersity, and no denaturation of the protein. This approach introduces a simple and useful method for high yield synthesis of protein/peptide-polymer conjugates.
Collapse
Affiliation(s)
- Yizhi Qi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Miriam Amiram
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Weiping Gao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Biologically Inspired Materials and Materials Systems, Duke University, Durham, NC 27708, USA
| | | | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Biologically Inspired Materials and Materials Systems, Duke University, Durham, NC 27708, USA
| |
Collapse
|
81
|
Too PHM, Erales J, Simen JD, Marjanovic A, Coffino P. Slippery substrates impair function of a bacterial protease ATPase by unbalancing translocation versus exit. J Biol Chem 2013; 288:13243-57. [PMID: 23530043 DOI: 10.1074/jbc.m113.452524] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND ATP-dependent proteases translocate and unfold their substrates. RESULTS A human virus sequence with only Gly and Ala residues causes similar dysfunctions of eukaryotic and prokaryotic protease motors: unfolding failure. CONCLUSION Sequences with amino acids of simple shape and small size impair unfolding of contiguous stable domains. SIGNIFICANCE Compartmented ATP-dependent proteases of diverse origin share conserved principles of interaction between translocase/effector and substrate/recipient. ATP-dependent proteases engage, translocate, and unfold substrate proteins. A sequence with only Gly and Ala residues (glycine-alanine repeat; GAr) encoded by the Epstein-Barr virus of humans inhibits eukaryotic proteasome activity. It causes the ATPase translocase to slip on its protein track, stalling unfolding and interrupting degradation. The bacterial protease ClpXP is structurally simpler than the proteasome but has related elements: a regulatory ATPase complex (ClpX) and associated proteolytic chamber (ClpP). In this study, GAr sequences were found to impair ClpXP function much as in proteasomes. Stalling depended on interaction between a GAr and a suitably spaced and positioned folded domain resistant to mechanical unfolding. Persistent unfolding failure results in the interruption of degradation and the production of partial degradation products that include the resistant domain. The capacity of various sequences to cause unfolding failure was investigated. Among those tested, a GAr was most effective, implying that viral selection had optimized processivity failure. More generally, amino acids of simple shape and small size promoted unfolding failure. The ClpX ATPase is a homohexamer. Partial degradation products could exit the complex through transient gaps between the ClpX monomers or, alternatively, by backing out. Production of intermediates by diverse topological forms of the hexamer was shown to be similar, excluding lateral escape. In principle, a GAr could interrupt degradation because 1) the translocase thrusts forward less effectively or because 2) the translocase retains substrate less well when resetting between forward strokes. Kinetic analysis showed that the predominant effect was through the second of these mechanisms.
Collapse
Affiliation(s)
- Priscilla Hiu-Mei Too
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
82
|
Pierce NW, Lee JE, Liu X, Sweredoski MJ, Graham RLJ, Larimore EA, Rome M, Zheng N, Clurman BE, Hess S, Shan SO, Deshaies RJ. Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins. Cell 2013; 153:206-15. [PMID: 23453757 DOI: 10.1016/j.cell.2013.02.024] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/24/2013] [Accepted: 02/12/2013] [Indexed: 11/29/2022]
Abstract
The modular SCF (Skp1, cullin, and F box) ubiquitin ligases feature a large family of F box protein substrate receptors that enable recognition of diverse targets. However, how the repertoire of SCF complexes is sustained remains unclear. Real-time measurements of formation and disassembly indicate that SCF(Fbxw7) is extraordinarily stable, but, in the Nedd8-deconjugated state, the cullin-binding protein Cand1 augments its dissociation by one-million-fold. Binding and ubiquitylation assays show that Cand1 is a protein exchange factor that accelerates the rate at which Cul1-Rbx1 equilibrates with multiple F box protein-Skp1 modules. Depletion of Cand1 from cells impedes recruitment of new F box proteins to pre-existing Cul1 and profoundly alters the cellular landscape of SCF complexes. We suggest that catalyzed protein exchange may be a general feature of dynamic macromolecular machines and propose a hypothesis for how substrates, Nedd8, and Cand1 collaborate to regulate the cellular repertoire of SCF complexes.
Collapse
Affiliation(s)
- Nathan W Pierce
- Division of Biology, MC 156-29, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Sortase-mediated modification of αDEC205 affords optimization of antigen presentation and immunization against a set of viral epitopes. Proc Natl Acad Sci U S A 2013; 110:1428-33. [PMID: 23297227 DOI: 10.1073/pnas.1214994110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A monoclonal antibody against the C-type lectin DEC205 (αDEC205) is an effective vehicle for delivery of antigens to dendritic cells through creation of covalent αDEC205-antigen adducts. These adducts can induce antigen-specific T-cell immune responses or tolerance. We exploit the transpeptidase activity of sortase to install modified peptides and protein-sized antigens onto the heavy chain of αDEC205, including linkers that contain nonnatural amino acids. We demonstrate stoichiometric site-specific labeling on a scale not easily achievable by genetic fusions (49 distinct fusions in this report). We conjugated a biotinylated version of a class I MHC-restricted epitope to unlabeled αDEC205 and monitored epitope generation upon binding of the adduct to dendritic cells. Our results show transfer of αDEC205 heavy chain to the cytoplasm, followed by proteasomal degradation. Introduction of a labile dipeptide linker at the N terminus of a T-cell epitope improves proteasome-dependent class I MHC-restricted peptide cross-presentation when delivered by αDEC205 in vitro and in vivo. We also conjugated αDEC205 with a linker-optimized peptide library of known CD8 T-cell epitopes from the mouse γ-herpes virus 68. Animals immunized with such conjugates displayed a 10-fold reduction in viral load.
Collapse
|
84
|
Abstract
The process of protein crosslinking comprises the chemical, enzymatic, or chemoenzymatic formation of new covalent bonds between polypeptides. This allows (1) the site-directed coupling of proteins with distinct properties and (2) the de novo assembly of polymeric protein networks. Transferases, hydrolases, and oxidoreductases can be employed as catalysts for the synthesis of crosslinked proteins, thereby complementing chemical crosslinking strategies. Here, we review enzymatic approaches that are used for protein crosslinking at the industrial level or have shown promising potential in investigations on the lab-scale. We illustrate the underlying mechanisms of crosslink formation and point out the roles of the enzymes in their natural environments. Additionally, we discuss advantages and drawbacks of the enzyme-based crosslinking strategies and their potential for different applications.
Collapse
Affiliation(s)
- Tobias Heck
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomaterials, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | | | | | | |
Collapse
|
85
|
Hess GT, Cragnolini JJ, Popp MW, Allen MA, Dougan SK, Spooner E, Ploegh HL, Belcher AM, Guimaraes CP. M13 bacteriophage display framework that allows sortase-mediated modification of surface-accessible phage proteins. Bioconjug Chem 2012; 23:1478-87. [PMID: 22759232 DOI: 10.1021/bc300130z] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We exploit bacterial sortases to attach a variety of moieties to the capsid proteins of M13 bacteriophage. We show that pIII, pIX, and pVIII can be functionalized with entities ranging from small molecules (e.g., fluorophores, biotin) to correctly folded proteins (e.g., GFP, antibodies, streptavidin) in a site-specific manner, and with yields that surpass those of any reported using phage display technology. A case in point is modification of pVIII. While a phage vector limits the size of the insert into pVIII to a few amino acids, a phagemid system limits the number of copies actually displayed at the surface of M13. Using sortase-based reactions, a 100-fold increase in the efficiency of display of GFP onto pVIII is achieved. Taking advantage of orthogonal sortases, we can simultaneously target two distinct capsid proteins in the same phage particle and maintain excellent specificity of labeling. As demonstrated in this work, this is a simple and effective method for creating a variety of structures, thus expanding the use of M13 for materials science applications and as a biological tool.
Collapse
Affiliation(s)
- Gaelen T Hess
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Sinisi A, Popp MWL, Antos JM, Pansegrau W, Savino S, Nissum M, Rappuoli R, Ploegh HL, Buti L. Development of an influenza virus protein array using Sortagging technology. Bioconjug Chem 2012; 23:1119-26. [PMID: 22594688 DOI: 10.1021/bc200577u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein array technology is an emerging tool that enables high-throughput screening of protein-protein or protein-lipid interactions and identification of immunodominant antigens during the course of a bacterial or viral infection. In this work, we developed an Influenza virus protein array using the sortase-mediated transpeptidation reaction known as "Sortagging". LPETG-tagged Influenza virus proteins from bacterial and eukaryotic cellular extracts were immobilized at their carboxyl-termini onto a preactivated amine-glass slide coated with a Gly3 linker. Immobilized proteins were revealed by specific antibodies, and the newly generated Sortag-protein chip can be used as a device for antigen and/or antibody screening. The specificity of the Sortase A (SrtA) reaction avoids purification steps in array building and allows immobilization of proteins in an oriented fashion. Previously, this versatile technology has been successfully employed for protein labeling and protein conjugation. Here, the tool is implemented to covalently link proteins of a viral genome onto a solid support. The system could readily be scaled up to proteins of larger genomes in order to develop protein arrays for high-throughput screening.
Collapse
Affiliation(s)
- Antonia Sinisi
- Whitehead Institute for Biomedical Research , 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Cholera toxin activates nonconventional adjuvant pathways that induce protective CD8 T-cell responses after epicutaneous vaccination. Proc Natl Acad Sci U S A 2012; 109:2072-7. [PMID: 22308317 DOI: 10.1073/pnas.1105771109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ability to induce humoral and cellular immunity via antigen delivery through the unbroken skin (epicutaneous immunization, EPI) has immediate relevance for vaccine development. However, it is unclear which adjuvants induce protective memory CD8 T-cell responses by this route, and the molecular and cellular requirements for priming through intact skin are not defined. We report that cholera toxin (CT) is superior to other adjuvants in its ability to prime memory CD8 T cells that control bacterial and viral challenges. Epicutaneous immunization with CT does not require engagement of classic toll-like receptor (TLR) and inflammasome pathways and, surprisingly, is independent of skin langerin-expressing cells (including Langerhans cells). However, CT adjuvanticity required type-I IFN sensitivity, participation of a Batf3-dependent dendritic cell (DC) population and engagement of CT with suitable gangliosides. Chemoenzymatic generation of CT-antigen fusion proteins led to efficient priming of the CD8 T-cell responses, paving the way for development of this immunization strategy as a therapeutic option.
Collapse
|
88
|
Abstract
Chimeric proteins boast widespread use in areas ranging from cell biology to drug delivery. Post-translational protein fusion using the bacterial transpeptidase sortase A provides an attractive alternative when traditional gene fusion fails. We describe use of this enzyme for in vitro protein ligation and report the successful fusion of 10 pairs of protein domains with preserved functionality — demonstrating the robust and facile nature of this reaction.
Collapse
|
89
|
Nelson JW, Chamessian AG, McEnaney PJ, Murelli RP, Kazmiercak BI, Spiegel DA, Spiegel DA. A biosynthetic strategy for re-engineering the Staphylococcus aureus cell wall with non-native small molecules. ACS Chem Biol 2010; 5:1147-55. [PMID: 20923200 DOI: 10.1021/cb100195d] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterial pathogen that has emerged as a major public health threat. Here we report that the cell wall of S. aureus can be covalently re-engineered to contain non-native small molecules. This process makes use of endogenous levels of the bacterial enzyme sortase A (SrtA), which ordinarily functions to incorporate proteins into the bacterial cell wall. Thus, incubation of wild-type bacteria with rationally designed SrtA substrates results in covalent incorporation of functional molecular handles (fluorescein, biotin, and azide) into cell wall peptidoglycan. These conclusions are supported by data obtained through a variety of experimental techniques (epifluorescence and electron microscopy, biochemical extraction, and mass spectrometry), and cell-wall-incorporated azide was exploited as a chemical handle to perform an azide-alkyne cycloaddition reaction on the bacterial cell surface. This report represents the first example of cell wall engineering of S. aureus or any other pathogenic Gram-positive bacteria and has the potential for widespread utility.
Collapse
Affiliation(s)
- James W. Nelson
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | | | | | - Ryan P. Murelli
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Barbara I. Kazmiercak
- Department of Medicine (Infectious Diseases), Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06520
| | - David A. Spiegel
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | | |
Collapse
|
90
|
Hinner MJ, Johnsson K. How to obtain labeled proteins and what to do with them. Curr Opin Biotechnol 2010; 21:766-76. [PMID: 21030243 DOI: 10.1016/j.copbio.2010.09.011] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/10/2010] [Accepted: 09/21/2010] [Indexed: 12/20/2022]
Abstract
We review new and established methods for the chemical modification of proteins in living cells and highlight recent applications. The review focuses on tag-mediated protein labeling methods, such as the tetracysteine tag and SNAP-tag, and new developments in this field such as intracellular labeling with lipoic acid ligase. Recent promising advances in the incorporation of unnatural amino acids into proteins are also briefly discussed. We describe new tools using tag-mediated labeling methods including the super-resolution microscopy of tagged proteins, the study of the interactions of proteins and protein domains, the subcellular targeting of synthetic ion sensors, and the generation of new semisynthetic metabolite sensors. We conclude with a view on necessary future developments, with one example being the selective labeling of non-tagged, native proteins in complex protein mixtures.
Collapse
Affiliation(s)
- Marlon J Hinner
- Institute of Chemical Sciences and Engineering, Laboratory of Protein Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
91
|
Clancy KW, Melvin JA, McCafferty DG. Sortase transpeptidases: insights into mechanism, substrate specificity, and inhibition. Biopolymers 2010; 94:385-96. [PMID: 20593474 PMCID: PMC4648256 DOI: 10.1002/bip.21472] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gram-positive bacteria pose a serious healthcare threat. The growing antibiotic resistance epidemic creates a dire need for new antibiotic targets. The sortase family of enzymes is a promising target for antimicrobial therapy. This review covers the current knowledge of the mechanism, substrate specificity, and inhibitory studies of the Gram-positive bacterial [corrected] enzyme sortase.
Collapse
Affiliation(s)
| | | | - Dewey G. McCafferty
- Department of Chemistry, Duke University, Durham, NC
- Department of Biochemistry, Duke University, Durham, NC
| |
Collapse
|