51
|
Garriga A, Mastore M, Morton A, Garcia del Pino F, Brivio MF. Immune Response of Drosophila suzukii Larvae to Infection with the Nematobacterial Complex Steinernema carpocapsae-Xenorhabdus nematophila. INSECTS 2020; 11:insects11040210. [PMID: 32231138 PMCID: PMC7240654 DOI: 10.3390/insects11040210] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 01/06/2023]
Abstract
Entomopathogenic nematodes have been proposed as biological agents for the control of Drosophila suzukii, an invasive pest of small-stone and soft-skinned fruits. Larvae of the fly are susceptible to Steinernema carpocapsae infection but the reaction of immune defenses of the host are unknown. To determine the immune response, larvae were infected with S. carpocapsae and Xenorhabdus nematophila to evaluate the effector mechanisms of both humoral and cellular processes. The symbiont bacteria presented an inhibitory effect on the phenoloxidase cascade with a low level of melanization. Besides, X. nematophila activated the synthesis of putative antimicrobial peptides on the hemolymph of infected larvae. However, those peptides presented a lower antimicrobial activity compared to hemolymph from larvae infected with non-symbiont bacteria. Xenorhabdus nematophila avoided also the phagocytosis response of hemocytes. During in vitro and in vivo assays, S. carpocapsae was not encapsulated by cells, unless the cuticle was damaged with a lipase-treatment. Hemocyte counts confirmed differentiation of lamellocytes in the early phase of infection despite the unrecognition of the nematodes. Both X. nematophila and S. carpocapsae avoided the cellular defenses of D. suzukii larvae and depressed the humoral response. These results confirmed the potential of entomopathogenic nematodes to control D. suzukii.
Collapse
Affiliation(s)
- Anna Garriga
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.G.); (A.M.)
| | - Maristella Mastore
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy;
| | - Ana Morton
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.G.); (A.M.)
| | - Fernando Garcia del Pino
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.G.); (A.M.)
- Correspondence: (F.G.d.P.); (M.F.B.); Tel.: +39-0332-421404 (M.F.B.)
| | - Maurizio Francesco Brivio
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy;
- Correspondence: (F.G.d.P.); (M.F.B.); Tel.: +39-0332-421404 (M.F.B.)
| |
Collapse
|
52
|
Sanchez Bosch P, Makhijani K, Herboso L, Gold KS, Baginsky R, Woodcock KJ, Alexander B, Kukar K, Corcoran S, Jacobs T, Ouyang D, Wong C, Ramond EJV, Rhiner C, Moreno E, Lemaitre B, Geissmann F, Brückner K. Adult Drosophila Lack Hematopoiesis but Rely on a Blood Cell Reservoir at the Respiratory Epithelia to Relay Infection Signals to Surrounding Tissues. Dev Cell 2019; 51:787-803.e5. [PMID: 31735669 PMCID: PMC7263735 DOI: 10.1016/j.devcel.2019.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/08/2019] [Accepted: 10/17/2019] [Indexed: 12/23/2022]
Abstract
The use of adult Drosophila melanogaster as a model for hematopoiesis or organismal immunity has been debated. Addressing this question, we identify an extensive reservoir of blood cells (hemocytes) at the respiratory epithelia (tracheal air sacs) of the thorax and head. Lineage tracing and functional analyses demonstrate that the majority of adult hemocytes are phagocytic macrophages (plasmatocytes) from the embryonic lineage that parallels vertebrate tissue macrophages. Surprisingly, we find no sign of adult hemocyte expansion. Instead, hemocytes play a role in relaying an innate immune response to the blood cell reservoir: through Imd signaling and the Jak/Stat pathway ligand Upd3, hemocytes act as sentinels of bacterial infection, inducing expression of the antimicrobial peptide Drosocin in respiratory epithelia and colocalizing fat body domains. Drosocin expression in turn promotes animal survival after infection. Our work identifies a multi-signal relay of organismal humoral immunity, establishing adult Drosophila as model for inter-organ immunity.
Collapse
Affiliation(s)
- Pablo Sanchez Bosch
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Kalpana Makhijani
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Leire Herboso
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Katrina S Gold
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Rowan Baginsky
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Brandy Alexander
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Katelyn Kukar
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Sean Corcoran
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Thea Jacobs
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Debra Ouyang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Corinna Wong
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Frederic Geissmann
- King's College London, London, UK; Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katja Brückner
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
53
|
Balistreri CR, Garagnani P, Madonna R, Vaiserman A, Melino G. Developmental programming of adult haematopoiesis system. Ageing Res Rev 2019; 54:100918. [PMID: 31226498 DOI: 10.1016/j.arr.2019.100918] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/15/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022]
Abstract
The Barker hypothesis of 'foetal origin of adult diseases' has led to emphasize the concept of 'developmental programming', based on the crucial role of epigenetic factors. Accordingly, it has been demonstrated that parental adversity (before conception and during pregnancy) and foetal factors (i.e., hypoxia, malnutrition and placental insufficiency) permanently modify the physiological systems of the progeny, predisposing them to premature ageing and chronic disease during adulthood. Thus, an altered functionality of the endocrine, immune, nervous and cardiovascular systems is observed in the progeny. However, it remains to be understood whether the haematopoietic system itself also represents a portrait of foetal programming. Here, we provide evidence, reporting and discussing related theories, and results of studies described in the literature. In addition, we have outlined our opinions and suggest how it is possible to intervene to correct foetal mal-programming. Some pro-health interventions and recommendations are proposed, with the hope of guarantee the health of future generations and trying to combat the continuous increase in age-related diseases in human populations.
Collapse
|
54
|
Pericardin, a Drosophila collagen, facilitates accumulation of hemocytes at the heart. Dev Biol 2019; 454:52-65. [PMID: 31228417 DOI: 10.1016/j.ydbio.2019.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/29/2019] [Accepted: 06/11/2019] [Indexed: 02/05/2023]
Abstract
Hematopoietic cell lineages support organismal needs by responding to positional and systemic signals that balance proliferative and differentiation events. Drosophila provides an excellent genetic model to dissect these signals, where the activity of cues in the hemolymph or substrate can be traced to determination and differentiation events of well characterized hemocyte types. Plasmatocytes in third instar larvae increase in number in response to infection and in anticipation of metamorphosis. Here we characterize hemocyte clustering, proliferation and transdifferentiation on the heart or dorsal vessel. Hemocytes accumulate on the inner foldings of the heart basement membrane, where they move with heart contraction, and are in proximity to the heart ostia and pericardial nephrocytes. The numbers of hemocytes vary, but increase transiently before pupariation, and decrease by 4 h before pupa formation. During their accumulation at the heart, plasmatocytes can proliferate and can transdifferentiate into crystal cells. Serrate expressing cells as well as lamellocyte-like, Atilla expressing ensheathing cells are associated with some, but not all hemocyte clusters. Hemocyte aggregation is enhanced by the presence of a heart specific Collagen, Pericardin, but not the associated pericardial cells. The varied and transient number of hemocytes in the pericardial compartment suggests that this is not a hematopoietic hub, but a niche supporting differentiation and rapid dispersal in response to systemic signals.
Collapse
|
55
|
Bailetti AA, Negrón-Piñeiro LJ, Dhruva V, Harsh S, Lu S, Bosula A, Bach EA. Enhancer of Polycomb and the Tip60 complex repress hematological tumor initiation by negatively regulating JAK/STAT pathway activity. Dis Model Mech 2019; 12:dmm.038679. [PMID: 31072879 PMCID: PMC6550037 DOI: 10.1242/dmm.038679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic disorders that cause excessive production of myeloid cells. Most MPN patients have a point mutation in JAK2 (JAK2V617F), which encodes a dominant-active kinase that constitutively triggers JAK/STAT signaling. In Drosophila, this pathway is simplified, with a single JAK, Hopscotch (Hop), and a single STAT transcription factor, Stat92E. The hopTumorous-lethal [hopTum] allele encodes a dominant-active kinase that induces sustained Stat92E activation. Like MPN patients, hopTum mutants have significantly more myeloid cells, which form invasive tumors. Through an unbiased genetic screen, we found that heterozygosity for Enhancer of Polycomb [E(Pc)], a component of the Tip60 lysine acetyltransferase complex (also known as KAT5 in humans), significantly increased tumor burden in hopTum animals. Hematopoietic depletion of E(Pc) or other Tip60 components in an otherwise wild-type background also induced blood cell tumors. The E(Pc) tumor phenotype was dependent on JAK/STAT activity, as concomitant depletion of hop or Stat92E inhibited tumor formation. Stat92E target genes were significantly upregulated in E(Pc)-mutant myeloid cells, indicating that loss of E(Pc) activates JAK/STAT signaling. Neither the hop nor Stat92E gene was upregulated upon hematopoietic E(Pc) depletion, suggesting that the regulation of the JAK/STAT pathway by E(Pc) is dependent on substrates other than histones. Indeed, E(Pc) depletion significantly increased expression of Hop protein in myeloid cells. This study indicates that E(Pc) works as a tumor suppressor by attenuating Hop protein expression and ultimately JAK/STAT signaling. Since loss-of-function mutations in the human homologs of E(Pc) and Tip60 are frequently observed in cancer, our work could lead to new treatments for MPN patients. This article has an associated First Person interview with the first author of the paper. Editor's choice: Using Drosophila as a low-complexity model for human myeloproliferative neoplasms, the authors identified a conserved mechanism by which the Tip60 lysine acetyltransferase acts as a tumor suppressor by repressing JAK protein expression in a histone-independent manner.
Collapse
Affiliation(s)
- Alessandro A Bailetti
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Lenny J Negrón-Piñeiro
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Vishal Dhruva
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Sneh Harsh
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Sean Lu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Aisha Bosula
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Erika A Bach
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA .,Helen L. and Martin S. Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
56
|
Cell Adhesion-Mediated Actomyosin Assembly Regulates the Activity of Cubitus Interruptus for Hematopoietic Progenitor Maintenance in Drosophila. Genetics 2019; 212:1279-1300. [PMID: 31138608 PMCID: PMC6707476 DOI: 10.1534/genetics.119.302209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
The actomyosin network is involved in crucial cellular processes including morphogenesis, cell adhesion, apoptosis, proliferation, differentiation, and collective cell migration in Drosophila, Caenorhabditiselegans, and mammals. Here, we demonstrate that Drosophila larval blood stem-like progenitors require actomyosin activity for their maintenance. Genetic loss of the actomyosin network from progenitors caused a decline in their number. Likewise, the progenitor population increased upon sustained actomyosin activation via phosphorylation by Rho-associated kinase. We show that actomyosin positively regulates larval blood progenitors by controlling the maintenance factor Cubitus interruptus (Ci). Overexpression of the maintenance signal via a constitutively activated construct (ci.HA) failed to sustain Ci-155 in the absence of actomyosin components like Zipper (zip) and Squash (sqh), thus favoring protein kinase A (PKA)-independent regulation of Ci activity. Furthermore, we demonstrate that a change in cortical actomyosin assembly mediated by DE-cadherin modulates Ci activity, thereby determining progenitor status. Thus, loss of cell adhesion and downstream actomyosin activity results in desensitization of the progenitors to Hh signaling, leading to their differentiation. Our data reveal how cell adhesion and the actomyosin network cooperate to influence patterning, morphogenesis, and maintenance of the hematopoietic stem-like progenitor pool in the developing Drosophila hematopoietic organ.
Collapse
|
57
|
Kim-Jo C, Gatti JL, Poirié M. Drosophila Cellular Immunity Against Parasitoid Wasps: A Complex and Time-Dependent Process. Front Physiol 2019; 10:603. [PMID: 31156469 PMCID: PMC6529592 DOI: 10.3389/fphys.2019.00603] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
Host-parasitoid interactions are among the most studied interactions between invertebrates because of their fundamental interest - the evolution of original traits in parasitoids - and applied, parasitoids being widely used in biological control. Immunity, and in particular cellular immunity, is central in these interactions, the host encapsulation response being specific for large foreign bodies such as parasitoid eggs. Although already well studied in this species, recent data on Drosophila melanogaster have unquestionably improved knowledge of invertebrate cellular immunity. At the same time, the venomics of parasitoids has expanded, notably those of Drosophila. Here, we summarize and discuss these advances, with a focus on an emerging "time-dependent" view of interactions outcome at the intra- and interspecific level. We also present issues still in debate and prospects for study. Data on the Drosophila-parasitoid model paves the way to new concepts in insect immunity as well as parasitoid wasp strategies to overcome it.
Collapse
Affiliation(s)
| | | | - Marylène Poirié
- INRA, CNRS, Institut Sophia Agrobiotech, Université Côte d’Azur, Sophia Antipolis, France
| |
Collapse
|
58
|
Mihajlovic Z, Tanasic D, Bajgar A, Perez-Gomez R, Steffal P, Krejci A. Lime is a new protein linking immunity and metabolism in Drosophila. Dev Biol 2019; 452:83-94. [PMID: 31085193 DOI: 10.1016/j.ydbio.2019.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 01/09/2023]
Abstract
The proliferation, differentiation and function of immune cells in vertebrates, as well as in the invertebrates, is regulated by distinct signalling pathways and crosstalk with systemic and cellular metabolism. We have identified the Lime gene (Linking Immunity and Metabolism, CG18446) as one such connecting factor, linking hemocyte development with systemic metabolism in Drosophila. Lime is expressed in larval plasmatocytes and the fat body and regulates immune cell type and number by influencing the size of hemocyte progenitor populations in the lymph gland and in circulation. Lime mutant larvae exhibit low levels of glycogen and trehalose energy reserves and they develop low number of hemocytes. The low number of hemocytes in Lime mutants can be rescued by Lime overexpression in the fat body. It is well known that immune cell metabolism is tightly regulated with the progress of infection and it must be supported by systemic metabolic changes. Here we demonstrate that Lime mutants fails to induce such systemic metabolic changes essential for the larval immune response. Indeed, Lime mutants are not able to sustain high numbers of circulating hemocytes and are compromised in the number of lamellocytes produced during immune system challenge, using a parasitic wasp infection model. We therefore propose the Lime gene as a novel functional link between systemic metabolism and Drosophila immunity.
Collapse
Affiliation(s)
- Zorana Mihajlovic
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.
| | - Dajana Tanasic
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| | - Adam Bajgar
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.
| | - Raquel Perez-Gomez
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.
| | - Pavel Steffal
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| | - Alena Krejci
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.
| |
Collapse
|
59
|
Headcase is a Repressor of Lamellocyte Fate in Drosophila melanogaster. Genes (Basel) 2019; 10:genes10030173. [PMID: 30841641 PMCID: PMC6470581 DOI: 10.3390/genes10030173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/12/2023] Open
Abstract
Due to the evolutionary conservation of the regulation of hematopoiesis, Drosophila provides an excellent model organism to study blood cell differentiation and hematopoietic stem cell (HSC) maintenance. The larvae of Drosophila melanogaster respond to immune induction with the production of special effector blood cells, the lamellocytes, which encapsulate and subsequently kill the invader. Lamellocytes differentiate as a result of a concerted action of all three hematopoietic compartments of the larva: the lymph gland, the circulating hemocytes, and the sessile tissue. Within the lymph gland, the communication of the functional zones, the maintenance of HSC fate, and the differentiation of effector blood cells are regulated by a complex network of signaling pathways. Applying gene conversion, mutational analysis, and a candidate based genetic interaction screen, we investigated the role of Headcase (Hdc), the homolog of the tumor suppressor HECA in the hematopoiesis of Drosophila. We found that naive loss-of-function hdc mutant larvae produce lamellocytes, showing that Hdc has a repressive role in effector blood cell differentiation. We demonstrate that hdc genetically interacts with the Hedgehog and the Decapentaplegic pathways in the hematopoietic niche of the lymph gland. By adding further details to the model of blood cell fate regulation in the lymph gland of the larva, our findings contribute to the better understanding of HSC maintenance.
Collapse
|
60
|
Banerjee U, Girard JR, Goins LM, Spratford CM. Drosophila as a Genetic Model for Hematopoiesis. Genetics 2019; 211:367-417. [PMID: 30733377 PMCID: PMC6366919 DOI: 10.1534/genetics.118.300223] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
In this FlyBook chapter, we present a survey of the current literature on the development of the hematopoietic system in Drosophila The Drosophila blood system consists entirely of cells that function in innate immunity, tissue integrity, wound healing, and various forms of stress response, and are therefore functionally similar to myeloid cells in mammals. The primary cell types are specialized for phagocytic, melanization, and encapsulation functions. As in mammalian systems, multiple sites of hematopoiesis are evident in Drosophila and the mechanisms involved in this process employ many of the same molecular strategies that exemplify blood development in humans. Drosophila blood progenitors respond to internal and external stress by coopting developmental pathways that involve both local and systemic signals. An important goal of these Drosophila studies is to develop the tools and mechanisms critical to further our understanding of human hematopoiesis during homeostasis and dysfunction.
Collapse
Affiliation(s)
- Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Molecular Biology Institute, University of California, Los Angeles, California 90095
- Department of Biological Chemistry, University of California, Los Angeles, California 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California 90095
| | - Juliet R Girard
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Lauren M Goins
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Carrie M Spratford
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
61
|
Abstract
Humoral regulation by ligand/receptor interactions is a fundamental feature of vertebrate hematopoiesis. Zebrafish are an established vertebrate animal model of hematopoiesis, sharing with mammals conserved genetic, molecular and cell biological regulatory mechanisms. This comprehensive review considers zebrafish hematopoiesis from the perspective of the hematopoietic growth factors (HGFs), their receptors and their actions. Zebrafish possess multiple HGFs: CSF1 (M-CSF) and CSF3 (G-CSF), kit ligand (KL, SCF), erythropoietin (EPO), thrombopoietin (THPO/TPO), and the interleukins IL6, IL11, and IL34. Some ligands and/or receptor components have been duplicated by various mechanisms including the teleost whole genome duplication, adding complexity to the ligand/receptor interactions possible, but also providing examples of several different outcomes of ligand and receptor subfunctionalization or neofunctionalization. CSF2 (GM-CSF), IL3 and IL5 and their receptors are absent from zebrafish. Overall the humoral regulation of hematopoiesis in zebrafish displays considerable similarity with mammals, which can be applied in biological and disease modelling research.
Collapse
Affiliation(s)
- Vahid Pazhakh
- a Australian Regenerative Medicine Institute, Monash University , Clayton , Australia
| | - Graham J Lieschke
- a Australian Regenerative Medicine Institute, Monash University , Clayton , Australia
| |
Collapse
|
62
|
Baldeosingh R, Gao H, Wu X, Fossett N. Hedgehog signaling from the Posterior Signaling Center maintains U-shaped expression and a prohemocyte population in Drosophila. Dev Biol 2018; 441:132-145. [PMID: 29966604 PMCID: PMC6064674 DOI: 10.1016/j.ydbio.2018.06.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022]
Abstract
Hematopoietic progenitor choice between multipotency and differentiation is tightly regulated by intrinsic factors and extrinsic signals from the surrounding microenvironment. The Drosophila melanogaster hematopoietic lymph gland has emerged as a powerful tool to investigate mechanisms that regulate hematopoietic progenitor choice in vivo. The lymph gland contains progenitor cells, which share key characteristics with mammalian hematopoietic progenitors such as quiescence, multipotency and niche-dependence. The lymph gland is zonally arranged, with progenitors located in medullary zone, differentiating cells in the cortical zone, and the stem cell niche or Posterior Signaling Center (PSC) residing at the base of the medullary zone (MZ). This arrangement facilitates investigations into how signaling from the microenvironment controls progenitor choice. The Drosophila Friend of GATA transcriptional regulator, U-shaped, is a conserved hematopoietic regulator. To identify additional novel intrinsic and extrinsic regulators that interface with U-shaped to control hematopoiesis, we conducted an in vivo screen for factors that genetically interact with u-shaped. Smoothened, a downstream effector of Hedgehog signaling, was one of the factors identified in the screen. Here we report our studies that characterized the relationship between Smoothened and U-shaped. We showed that the PSC and Hedgehog signaling are required for U-shaped expression and that U-shaped is an important intrinsic progenitor regulator. These observations identify a potential link between the progenitor regulatory machinery and extrinsic signals from the PSC. Furthermore, we showed that both Hedgehog signaling and the PSC are required to maintain a subpopulation of progenitors. This led to a delineation of PSC-dependent versus PSC-independent progenitors and provided further evidence that the MZ progenitor population is heterogeneous. Overall, we have identified a connection between a conserved hematopoietic master regulator and a putative stem cell niche, which adds to our understanding of how signals from the microenvironment regulate progenitor multipotency.
Collapse
Affiliation(s)
- Rajkumar Baldeosingh
- Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hongjuan Gao
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiaorong Wu
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nancy Fossett
- Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
63
|
Bazzi W, Cattenoz PB, Delaporte C, Dasari V, Sakr R, Yuasa Y, Giangrande A. Embryonic hematopoiesis modulates the inflammatory response and larval hematopoiesis in Drosophila. eLife 2018; 7:e34890. [PMID: 29992900 PMCID: PMC6040882 DOI: 10.7554/elife.34890] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/18/2018] [Indexed: 11/25/2022] Open
Abstract
Recent lineage tracing analyses have significantly improved our understanding of immune system development and highlighted the importance of the different hematopoietic waves. The current challenge is to understand whether these waves interact and whether this affects the function of the immune system. Here we report a molecular pathway regulating the immune response and involving the communication between embryonic and larval hematopoietic waves in Drosophila. Down-regulating the transcription factor Gcm specific to embryonic hematopoiesis enhances the larval phenotypes induced by over-expressing the pro-inflammatory Jak/Stat pathway or by wasp infestation. Gcm works by modulating the transduction of the Upd cytokines to the site of larval hematopoiesis and hence the response to chronic (Jak/Stat over-expression) and acute (wasp infestation) immune challenges. Thus, homeostatic interactions control the function of the immune system in physiology and pathology. Our data also indicate that a transiently expressed developmental pathway has a long-lasting effect on the immune response.
Collapse
Affiliation(s)
- Wael Bazzi
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Pierre B Cattenoz
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Claude Delaporte
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Vasanthi Dasari
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Rosy Sakr
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Yoshihiro Yuasa
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| |
Collapse
|
64
|
Yu S, Luo F, Jin LH. The Drosophila lymph gland is an ideal model for studying hematopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:60-69. [PMID: 29191551 DOI: 10.1016/j.dci.2017.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/30/2017] [Accepted: 11/26/2017] [Indexed: 06/07/2023]
Abstract
Hematopoiesis in Drosophila melanogaster occurs throughout the entire life cycle, from the embryo to adulthood. The healthy lymph gland, as a hematopoietic organ during the larval stage, can give rise to two mature types of hemocytes, plasmatocytes and crystal cells, which persist into the pupal and adult stages. Homeostasis of the lymph gland is tightly controlled by a series of conserved factors and signaling pathways, which also play key roles in mammalian hematopoiesis. Thus, revealing the hematopoietic mechanisms in Drosophila will advance our understanding of hematopoietic stem cells and their niche as well as leukemia in mammals. In addition, the lymph gland employs a battery of strategies to produce lamellocytes, another type of mature hemocyte, to fight against parasitic wasp eggs, making the lymph gland an important immunological organ. In this review, the developmental process of the lymph gland and the regulatory networks of hematopoiesis are summarized. Moreover, we outline the current knowledge and novel insight into homeostasis of the lymph gland.
Collapse
Affiliation(s)
- Shichao Yu
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Fangzhou Luo
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China.
| |
Collapse
|
65
|
From Drosophila Blood Cells to Human Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:195-214. [PMID: 29951821 DOI: 10.1007/978-981-13-0529-0_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The hematopoietic system plays a critical role in establishing the proper response against invading pathogens or in removing cancerous cells. Furthermore, deregulations of the hematopoietic differentiation program are at the origin of numerous diseases including leukemia. Importantly, many aspects of blood cell development have been conserved from human to Drosophila. Hence, Drosophila has emerged as a potent genetic model to study blood cell development and leukemia in vivo. In this chapter, we give a brief overview of the Drosophila hematopoietic system, and we provide a protocol for the dissection and the immunostaining of the larval lymph gland, the most studied hematopoietic organ in Drosophila. We then focus on the various paradigms that have been used in fly to investigate how conserved genes implicated in leukemogenesis control blood cell development. Specific examples of Drosophila models for leukemia are presented, with particular attention to the most translational ones. Finally, we discuss some limitations and potential improvements of Drosophila models for studying blood cell cancer.
Collapse
|
66
|
Yoon S, Cho B, Shin M, Koranteng F, Cha N, Shim J. Iron Homeostasis Controls Myeloid Blood Cell Differentiation in Drosophila. Mol Cells 2017; 40:976-985. [PMID: 29237257 PMCID: PMC5750716 DOI: 10.14348/molcells.2017.0287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/12/2017] [Indexed: 02/04/2023] Open
Abstract
Iron is an essential divalent ion for aerobic life. Life has evolved to maintain iron homeostasis for normal cellular and physiological functions and therefore imbalances in iron levels exert a wide range of consequences. Responses to iron dysregulation in blood development, however, remain elusive. Here, we found that iron homeostasis is critical for differentiation of Drosophila blood cells in the larval hematopoietic organ, called the lymph gland. Supplementation of an iron chelator, bathophenanthroline disulfate (BPS) results in an excessive differentiation of the crystal cell in the lymph gland. This phenotype is recapitulated by loss of Fer1HCH in the intestine, indicating that reduced levels of systemic iron enhances crystal cell differentiation. Detailed analysis of Fer1HCH-tagged-GFP revealed that Fer1HCH is also expressed in the hematopoietic systems. Lastly, blocking Fer1HCH expression in the mature blood cells showed marked increase in the blood differentiation of both crystal cells and plasmatocytes. Thus, our work suggests a relevance of systemic and local iron homeostasis in blood differentiation, prompting further investigation of molecular mechanisms underlying iron regulation and cell fate determination in the hematopoietic system.
Collapse
Affiliation(s)
- Sunggyu Yoon
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul 04763,
Korea
| | - Bumsik Cho
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul 04763,
Korea
| | - Mingyu Shin
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul 04763,
Korea
| | - Ferdinand Koranteng
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul 04763,
Korea
| | - Nuri Cha
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul 04763,
Korea
| | - Jiwon Shim
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul 04763,
Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763,
Korea
- Research Institute for Natural Science, Hanyang University, Seoul 04763,
Korea
| |
Collapse
|
67
|
Louradour I, Sharma A, Morin-Poulard I, Letourneau M, Vincent A, Crozatier M, Vanzo N. Reactive oxygen species-dependent Toll/NF-κB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism. eLife 2017; 6:25496. [PMID: 29091025 PMCID: PMC5681226 DOI: 10.7554/elife.25496] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 10/29/2017] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem/progenitor cells in the adult mammalian bone marrow ensure blood cell renewal. Their cellular microenvironment, called 'niche', regulates hematopoiesis both under homeostatic and immune stress conditions. In the Drosophila hematopoietic organ, the lymph gland, the posterior signaling center (PSC) acts as a niche to regulate the hematopoietic response to immune stress such as wasp parasitism. This response relies on the differentiation of lamellocytes, a cryptic cell type, dedicated to pathogen encapsulation and killing. Here, we establish that Toll/NF-κB pathway activation in the PSC in response to wasp parasitism non-cell autonomously induces the lymph gland immune response. Our data further establish a regulatory network where co-activation of Toll/NF-κB and EGFR signaling by ROS levels in the PSC/niche controls lymph gland hematopoiesis under parasitism. Whether a similar regulatory network operates in mammals to control emergency hematopoiesis is an open question.
Collapse
Affiliation(s)
- Isabelle Louradour
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anurag Sharma
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ismael Morin-Poulard
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Manon Letourneau
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alain Vincent
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Michèle Crozatier
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nathalie Vanzo
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
68
|
Khadilkar RJ, Vogl W, Goodwin K, Tanentzapf G. Modulation of occluding junctions alters the hematopoietic niche to trigger immune activation. eLife 2017; 6:28081. [PMID: 28841136 PMCID: PMC5597334 DOI: 10.7554/elife.28081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/24/2017] [Indexed: 12/04/2022] Open
Abstract
Stem cells are regulated by signals from their microenvironment, or niche. During Drosophila hematopoiesis, a niche regulates prohemocytes to control hemocyte production. Immune challenges activate cell-signalling to initiate the cellular and innate immune response. Specifically, certain immune challenges stimulate the niche to produce signals that induce prohemocyte differentiation. However, the mechanisms that promote prohemocyte differentiation subsequent to immune challenges are poorly understood. Here we show that bacterial infection induces the cellular immune response by modulating occluding-junctions at the hematopoietic niche. Occluding-junctions form a permeability barrier that regulates the accessibility of prohemocytes to niche derived signals. The immune response triggered by infection causes barrier breakdown, altering the prohemocyte microenvironment to induce immune cell production. Moreover, genetically induced barrier ablation provides protection against infection by activating the immune response. Our results reveal a novel role for occluding-junctions in regulating niche-hematopoietic progenitor signalling and link this mechanism to immune cell production following infection.
Collapse
Affiliation(s)
- Rohan J Khadilkar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Wayne Vogl
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Katharine Goodwin
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
69
|
Miller M, Chen A, Gobert V, Augé B, Beau M, Burlet-Schiltz O, Haenlin M, Waltzer L. Control of RUNX-induced repression of Notch signaling by MLF and its partner DnaJ-1 during Drosophila hematopoiesis. PLoS Genet 2017; 13:e1006932. [PMID: 28742844 PMCID: PMC5549762 DOI: 10.1371/journal.pgen.1006932] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/08/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
A tight regulation of transcription factor activity is critical for proper development. For instance, modifications of RUNX transcription factors dosage are associated with several diseases, including hematopoietic malignancies. In Drosophila, Myeloid Leukemia Factor (MLF) has been shown to control blood cell development by stabilizing the RUNX transcription factor Lozenge (Lz). However, the mechanism of action of this conserved family of proteins involved in leukemia remains largely unknown. Here we further characterized MLF's mode of action in Drosophila blood cells using proteomic, transcriptomic and genetic approaches. Our results show that MLF and the Hsp40 co-chaperone family member DnaJ-1 interact through conserved domains and we demonstrate that both proteins bind and stabilize Lz in cell culture, suggesting that MLF and DnaJ-1 form a chaperone complex that directly regulates Lz activity. Importantly, dnaj-1 loss causes an increase in Lz+ blood cell number and size similarly as in mlf mutant larvae. Moreover we find that dnaj-1 genetically interacts with mlf to control Lz level and Lz+ blood cell development in vivo. In addition, we show that mlf and dnaj-1 loss alters Lz+ cell differentiation and that the increase in Lz+ blood cell number and size observed in these mutants is caused by an overactivation of the Notch signaling pathway. Finally, using different conditions to manipulate Lz activity, we show that high levels of Lz are required to repress Notch transcription and signaling. All together, our data indicate that the MLF/DnaJ-1-dependent increase in Lz level allows the repression of Notch expression and signaling to prevent aberrant blood cell development. Thus our findings establish a functional link between MLF and the co-chaperone DnaJ-1 to control RUNX transcription factor activity and Notch signaling during blood cell development in vivo.
Collapse
Affiliation(s)
- Marion Miller
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Aichun Chen
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Vanessa Gobert
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Benoit Augé
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mathilde Beau
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marc Haenlin
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucas Waltzer
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
70
|
Mussabekova A, Daeffler L, Imler JL. Innate and intrinsic antiviral immunity in Drosophila. Cell Mol Life Sci 2017; 74:2039-2054. [PMID: 28102430 PMCID: PMC5419870 DOI: 10.1007/s00018-017-2453-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/11/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
The fruit fly Drosophila melanogaster has been a valuable model to investigate the genetic mechanisms of innate immunity. Initially focused on the resistance to bacteria and fungi, these studies have been extended to include antiviral immunity over the last decade. Like all living organisms, insects are continually exposed to viruses and have developed efficient defense mechanisms. We review here our current understanding on antiviral host defense in fruit flies. A major antiviral defense in Drosophila is RNA interference, in particular the small interfering (si) RNA pathway. In addition, complex inducible responses and restriction factors contribute to the control of infections. Some of the genes involved in these pathways have been conserved through evolution, highlighting loci that may account for susceptibility to viral infections in humans. Other genes are not conserved and represent species-specific innovations.
Collapse
Affiliation(s)
- Assel Mussabekova
- Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9022, Université de Strasbourg, 15 rue René Descartes, 67000, Strasbourg, France.
| | - Laurent Daeffler
- Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9022, Université de Strasbourg, 15 rue René Descartes, 67000, Strasbourg, France
| | - Jean-Luc Imler
- Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9022, Université de Strasbourg, 15 rue René Descartes, 67000, Strasbourg, France
- Faculté des Sciences de la Vie, Université de Strasbourg, 28 rue Goethe, 67000, Strasbourg, France
| |
Collapse
|
71
|
Zhang CU, Cadigan KM. The matrix protein Tiggrin regulates plasmatocyte maturation in Drosophila larva. Development 2017; 144:2415-2427. [PMID: 28526755 DOI: 10.1242/dev.149641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/11/2017] [Indexed: 01/24/2023]
Abstract
The lymph gland (LG) is a major source of hematopoiesis during Drosophila development. In this tissue, prohemocytes differentiate into multiple lineages, including macrophage-like plasmatocytes, which comprise the vast majority of mature hemocytes. Previous studies have uncovered genetic pathways that regulate prohemocyte maintenance and some cell fate choices between hemocyte lineages. However, less is known about how the plasmatocyte pool of the LG is established and matures. Here, we report that Tiggrin, a matrix protein expressed in the LG, is a specific regulator of plasmatocyte maturation. Tiggrin mutants exhibit precocious maturation of plasmatocytes, whereas Tiggrin overexpression blocks this process, resulting in a buildup of intermediate progenitors (IPs) expressing prohemocyte and hemocyte markers. These IPs likely represent a transitory state in prohemocyte to plasmatocyte differentiation. We also found that overexpression of Wee1 kinase, which slows G2/M progression, results in a phenotype similar to Tiggrin overexpression, whereas String/Cdc25 expression phenocopies Tiggrin mutants. Further analysis revealed that Wee1 inhibits plasmatocyte maturation through upregulation of Tiggrin transcription. Our results elucidate connections between the extracellular matrix and cell cycle regulators in the regulation of hematopoiesis.
Collapse
Affiliation(s)
- Chen U Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ken M Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
72
|
El Chamy L, Matt N, Reichhart JM. Advances in Myeloid-Like Cell Origins and Functions in the Model Organism Drosophila melanogaster. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mchd-0038-2016. [PMID: 28102122 PMCID: PMC11687447 DOI: 10.1128/microbiolspec.mchd-0038-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 12/22/2022] Open
Abstract
Drosophila has long served as a valuable model for deciphering many biological processes, including immune responses. Indeed, the genetic tractability of this organism is particularly suited for large-scale analyses. Studies performed during the last 3 decades have proven that the signaling pathways that regulate the innate immune response are conserved between Drosophila and mammals. This review summarizes the recent advances on Drosophila hematopoiesis and immune cellular responses, with a particular emphasis on phagocytosis.
Collapse
Affiliation(s)
- Laure El Chamy
- Laboratoire de Génétique de la drosophile et virulence microbienne, UR. EGFEM, Faculté des Sciences, Université Saint-Joseph de Beyrouth, B.P. 17-5208 Mar Mikhaël Beyrouth 1104 2020, Liban
| | - Nicolas Matt
- Université de Strasbourg, UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg Cedex 67084, France
| | - Jean-Marc Reichhart
- Université de Strasbourg, UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg Cedex 67084, France
| |
Collapse
|
73
|
Robin C, Lacaud G, Jaffredo T. Shedding light on hematopoietic stem cells: formation, regulation, and utilization. FEBS Lett 2016; 590:3963-3964. [PMID: 27891601 DOI: 10.1002/1873-3468.12481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Catherine Robin
- Hubrecht Institute-KNAW & University Medical Center, Utrecht, The Netherlands.,Department of Cell Biology, University Medical Center, Utrecht, The Netherlands
| | | | | |
Collapse
|