51
|
Fliegans L, Troughton J, Divay V, Blayac S, Ramuz M. Design, Fabrication and Characterisation of Multi-Parameter Optical Sensors Dedicated to E-Skin Applications. SENSORS (BASEL, SWITZERLAND) 2022; 23:114. [PMID: 36616712 PMCID: PMC9824189 DOI: 10.3390/s23010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
For many years there has been a strong research interest in soft electronics for artificial skin applications. However, one challenge with stretchable devices is the limited availability of high performance, stretchable, electrical conductors and semiconductors that remain stable under strain. Examples of such electronic skin require excessive amounts of wires to address each sensing element-compression force and strain-in a conventional matrix structure. Here, we present a new process for fabricating artificial skin consisting of an optical waveguide architecture, enabling wide ranging sensitivity to external mechanical compression and strain. The manufacturing process allows design of a fully stretchable polydimethylsiloxane elastomer waveguide with embedded gratings, replicated from low cost DVD-Rs. This optical artificial skin allows the detection of compression forces from 0 to 3.8 N with controllable sensitivity. It also permits monitoring of elongation deformations up to 135%. This type of stretchable optical sensor is highly robust, transparent, and presents a large sensing area while limiting the amount of wires connecting to the sensor. Thus, this optical artificial skin presents far superior mechanical properties compared to current electronic skin.
Collapse
Affiliation(s)
| | | | | | | | - Marc Ramuz
- Correspondence: ; Tel.: +33-4-42-61-68-93
| |
Collapse
|
52
|
Cennamo N, Arcadio F, Capasso F, Maniglio D, Zeni L, Bossi AM. Non-Specific Responsive Nanogels and Plasmonics to Design MathMaterial Sensing Interfaces: The Case of a Solvent Sensor. SENSORS (BASEL, SWITZERLAND) 2022; 22:s222410006. [PMID: 36560375 PMCID: PMC9787685 DOI: 10.3390/s222410006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 06/01/2023]
Abstract
The combination of non-specific deformable nanogels and plasmonic optical probes provides an innovative solution for specific sensing using a generalistic recognition layer. Soft polyacrylamide nanogels that lack specific selectivity but are characterized by responsive behavior, i.e., shrinking and swelling dependent on the surrounding environment, were grafted to a gold plasmonic D-shaped plastic optical fiber (POF) probe. The nanogel-POF cyclically challenged with water or alcoholic solutions optically reported the reversible solvent-to-phase transitions of the nanomaterial, embodying a primary optical switch. Additionally, the non-specific nanogel-POF interface exhibited more degrees of freedom through which specific sensing was enabled. The real-time monitoring of the refractive index variations due to the time-related volume-to-phase transition effects of the nanogels enabled us to determine the environment's characteristics and broadly classify solvents. Hence the nanogel-POF interface was a descriptor of mathematical functions for substance identification and classification processes. These results epitomize the concept of responsive non-specific nanomaterials to perform a multiparametric description of the environment, offering a specific set of features for the processing stage and particularly suitable for machine and deep learning. Thus, soft MathMaterial interfaces provide the ground to devise devices suitable for the next generation of smart intelligent sensing processes.
Collapse
Affiliation(s)
- Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Francesco Arcadio
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Fiore Capasso
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Devid Maniglio
- Department of Industrial Engineering, BIOtech Research Center, University of Trento, Via delle Regole 101, Mattarello, 38123 Trento, Italy
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
53
|
Pons C, Galindo JM, Martín JC, Torres-Moya I, Merino S, Herrero MA, Vázquez E, Prieto P, Vallés JA. Propagation Losses Estimation in a Cationic-Network-Based Hydrogel Waveguide. MICROMACHINES 2022; 13:2253. [PMID: 36557552 PMCID: PMC9787014 DOI: 10.3390/mi13122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
A method based on the photographic recording of the power distribution laterally diffused by cationic-network (CN) hydrogel waveguides is first checked against the well-established cut-back method and then used to determine the different contributions to optical power attenuation along the hydrogel-based waveguide. Absorption and scattering loss coefficients are determined for 450 nm, 532 nm and 633 nm excitation. The excellent optical loss values obtained (0.32-1.95 dB/cm), similar to others previously described, indicate their potential application as waveguides in different fields, including soft robotic and light-based therapies.
Collapse
Affiliation(s)
- Carolina Pons
- Departamento de Física Aplicada-I3A, Facultad de Ciencias, Universidad de Zaragoza, C/P. Cerbuna 12, 50009 Zaragoza, Spain
| | - Josué M. Galindo
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), UCLM, 13071 Ciudad Real, Spain
| | - Juan C. Martín
- Departamento de Física Aplicada-I3A, Facultad de Ciencias, Universidad de Zaragoza, C/P. Cerbuna 12, 50009 Zaragoza, Spain
| | - Iván Torres-Moya
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Sonia Merino
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), UCLM, 13071 Ciudad Real, Spain
| | - M. Antonia Herrero
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), UCLM, 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), UCLM, 13071 Ciudad Real, Spain
| | - Pilar Prieto
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Juan A. Vallés
- Departamento de Física Aplicada-I3A, Facultad de Ciencias, Universidad de Zaragoza, C/P. Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
54
|
Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine. Nat Commun 2022; 13:7789. [PMID: 36526631 PMCID: PMC9758120 DOI: 10.1038/s41467-022-35440-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Photomedicine has gained great attention due to its nontoxicity, good selectivity and small trauma. However, owing to the limited penetration of light and difficult monitoring of the photo-media therapies, it is challenging to apply photomedical treatment in deep tissue as they may damage normal tissues. Herein, a thermal regulated interventional photomedicine based on a temperature-adaptive hydrogel fiber-based optical waveguide (THFOW) is proposed, capable of eliminating deeply seated tumor cells while lowering risks of overtemperature (causes the death of healthy cells around the tumor). The THFOW is fabricated by an integrated homogeneous-dynamic-crosslinking-spinning method, and shows a remarkable soft tissue-affinity (low cytotoxicity, swelling stability, and soft tissue-like Young's modulus). Moreover, the THFOW shows an excellent light propagation property with different wavenumbers (especially -0.32 dB cm-1 with 915 nm laser light), and temperature-gated light propagation effect. The THFOW and relevant therapeutic strategy offer a promising application for intelligent photomedicine in deep issue.
Collapse
|
55
|
Liu T, Ding H, Huang J, Zhan C, Wang S. Liquid-Core Hydrogel Optical Fiber Fluorescence Probes. ACS Sens 2022; 7:3298-3307. [PMID: 36283762 DOI: 10.1021/acssensors.2c00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This paper first reports a liquid-core hydrogel optical fiber fluorescence probe. It is composed of a liquid core, a high-refractive-index hydrogel fiber core, and a low-refractive-index hydrogel fiber cladding, which is completely different from many existing optical fiber fluorescence probes. The sensing solution with sensitive materials is sealed as a liquid core, and it can sufficiently react with small-molecule targets penetrating through the hydrogel fiber cladding and core, thus inducing variations in the fluorescence signals. These fluorescence signals can be localized and transmitted within the probe and finally collected and quantified for target detection. This proposed probe can be simply and rapidly fabricated and reused, and it was proven to have high sensitivity, accuracy, and selectivity in practical applications. Therefore, this liquid-core hydrogel optical fiber fluorescence probe will enable a novel sensing platform for small-molecule analyte detection that faces on-site detection challenges.
Collapse
Affiliation(s)
- Ting Liu
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | - He Ding
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | - Jianwei Huang
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | - Chengsen Zhan
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | - Shouyu Wang
- OptiX+ Laboratory, Wuxi, Jiangsu 214122, China
| |
Collapse
|
56
|
Yan X, Wang T, Li H, Zhang L, Xin H, Lu G. Flexible Aggregation-Induced Emission-Active Hydrogel for On-Site Monitoring of Pesticide Degradation. ACS NANO 2022; 16:18421-18429. [PMID: 36282203 DOI: 10.1021/acsnano.2c06544] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Benefiting from the stimuli-responsive property and powerful loading capacity, functionalized hydrogels are favorable for the fabrication of sensing devices. Herein, we design aggregation-induced emission (AIE)-active hydrogel discs by embedding gold nanoclusters@zeolite-like imidazole framework (AuNCs@ZIF) composites in double-network hydrogels to build a sensitive pesticide biosensor. The hydrogel discs integrate an AIE effect of AuNCs, a stimuli-responsive property of ZIF, and a porous network structure of the hydrogel, which enhances the sensing sensitivity via boosting the stable fluorescent signal and antifouling performance. In conjunction with a homemade device, the fluorescence images of hydrogel discs could be transduced into data information for accurate quantification of chlorpyrifos pesticide with a detection limit of 0.2 ng/mL. The dynamic degradation of chlorpyrifos in Chinese cabbage is demonstrated to confirm the practical application of hydrogel discs. Such AIE-active hydrogel discs could be a plant health sensor for the on-site quantification of pesticide residues on crops, holding great promise for precision agriculture.
Collapse
Affiliation(s)
- Xu Yan
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Tuhui Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- Department of Thoracic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, P. R. China
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Lening Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, P. R. China
| | - Hua Xin
- Department of Thoracic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, P. R. China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
57
|
Okutan M, Coşkun R, Yalçın O, Babuçoğlu A, Demir A. Investigation of the Dielectric and Optic Properties of Rosehip Seed Extract Loaded Hydrogels. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
58
|
Sun Z, Lyu F, Wu S, Lu Z, Cheng H. Ultrafast construction of partially hydrogen-bonded metal-hyaluronan networks with multiple biotissue-related features. Carbohydr Polym 2022; 295:119852. [DOI: 10.1016/j.carbpol.2022.119852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
|
59
|
Pei M, Zhu D, Yang J, Yang K, Yang H, Gu S, Li W, Xu W, Xiao P, Zhou Y. Multi-crosslinked Flexible Nanocomposite Hydrogel Fibers with Excellent Strength and Knittability. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
60
|
Uzabakiriho PC, Wang M, Wang K, Ma C, Zhao G. High-Strength and Extensible Electrospun Yarn for Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46068-46076. [PMID: 36169212 DOI: 10.1021/acsami.2c13182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Stretchable conductive yarns have received significant consideration in the direction of wearable and flexible electronics. Wearable electronic structures need strong materials to assure stability, durability, and an extensive range of strain to develop their applications. Therefore, manufacturing high-performance yarn-based devices with ultrarobustness and great stretchability with a simple, cost-effective, and scalable method remains a great challenge for wearable electronics. Here, a highly stretchable yarn with high performance is fabricated, which comprises a core TPU nanoyarn, successively decorated with a liquid metal (LM) layer, and a protective outer nanofiber layer. The ultrarobust (40 MPa) and high-strain (548%) conducting yarn presents potential applications in assembling strain sensors. Moreover, such a unique conductive yarn can be used as a highly deformable, stretchable conductor to charge a mobile phone or for data transfer, a sensor to monitor human activities, and as an effective control for a hand robot as well as for smart thermal management textile application. This research gives promising applications in the field of flexible and wearable electronics.
Collapse
Affiliation(s)
- Pierre Claver Uzabakiriho
- Department of Electronic Science and Technology, University of Science and Technology of China, Road JinZhai 96, Hefei 230027, P. R. China
| | - Meng Wang
- Department of Electronic Science and Technology, University of Science and Technology of China, Road JinZhai 96, Hefei 230027, P. R. China
| | - Kai Wang
- Department of Electronic Science and Technology, University of Science and Technology of China, Road JinZhai 96, Hefei 230027, P. R. China
| | - Chao Ma
- Department of Electronic Science and Technology, University of Science and Technology of China, Road JinZhai 96, Hefei 230027, P. R. China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Road JinZhai 96, Hefei 230027, P. R. China
| |
Collapse
|
61
|
Ye W, Guo M, Li Q, Wang L, Zhao C, Xiang D, Lai J, Li H, Li Z, Wu Y. High strength, anti‐freezing, and conductive poly(vinyl alcohol)/urea ionic hydrogels as soft sensor. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenhao Ye
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
| | - Meiling Guo
- The Collaborative Innovation Center of Functional Materials and Devices, School of Materials and Environmental Engineering Chengdu Technological University Chengdu China
| | - Qing Li
- School of New Energy and Materials Southwest Petroleum University Chengdu China
| | - Li Wang
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Chuanxia Zhao
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Dong Xiang
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Jingjuan Lai
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Hui Li
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Zhenyu Li
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Yuanpeng Wu
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| |
Collapse
|
62
|
Tan S, Wang C, Yang B, Luo J, Wu Y. Unbreakable Hydrogels with Self-Recoverable 10 200% Stretchability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206904. [PMID: 36000832 DOI: 10.1002/adma.202206904] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Design of tough hydrogels maintaining structural integrity under multivariable mechanical loads remains hugely challenging because the anticipated characteristics such as stretchability, strength, toughness, and fracture resistance can hardly be compatible. Herein, a simple but robust hydrogel network formed by copolymerization of divinyl benzene with acrylamide in micellar solutions for ultra-high fracture resistance and self-recoverable stretchability is proposed. The network provides dynamic association of hydrophobic domains and homogeneous crosslinking of hydrophilic chains, which shows step-by-step deformation process. The dynamic associations allow recoverable small deformations, then the homogeneous crosslinking ensures reversible unfolding and alignment of polymer chains to self-strengthen for ultra-large deformations without crack propagations. The resultant hydrogels exhibit comprehensive unbreakable feature with self-recoverable ultra-high stretchability (100% recovery from 10 200% strain), superior fracture resistance (toughness > 26 kJ m-2 ), and anticrack propagation and fatigue (fatigue threshold: ≈2.5 kJ m-2 ). Even the prenotched hydrogels can undergo tens cyclic loads at 10 200% strain and thousands cyclic loads at 200% strain without noticeable changes in mechanical performance. The robust network prepared from homogeneous hydrophobic crosslinking provides a facile approach and a new mechanism to explore tough hydrogels with superior antifracture and extreme self-recoverable deformability for diverse applications.
Collapse
Affiliation(s)
- Shuai Tan
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Caihong Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Baibin Yang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Jie Luo
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Yong Wu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| |
Collapse
|
63
|
Zhuo X, Zhou L, Bian Y, Shen H. Efficient taper optical hydrogel fiber coupler drawn from suspended photocuring 3D printing. OPTICS LETTERS 2022; 47:4853-4856. [PMID: 36181134 DOI: 10.1364/ol.470543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
Integrating bio-friendly optical hydrogel fibers (HFs) with solid-state fibers (SFs) could expand the horizons of fiber-optic technology for bio-photonics. However, methods for coupling HF and SF-based systems are inefficient due to the mode field mismatch. Here, a hydrogel fiber coupler with a taper core-cladding structure is demonstrated for efficiently coupling HF to SF and fabricated through suspended photocuring 3D printing. Coupling efficiencies of 8.3 and 9.4 dB are obtained at 632 and 473 nm, respectively, which are 22% better than those of conventional couplers. The working bandwidth covers visible wavelengths, satisfying bioengineering requirements. This research removes obstacles to optical fiber applications in bioscience.
Collapse
|
64
|
Liu Z, Lyu J, Ding Y, Bao Y, Sheng Z, Shi N, Zhang X. Nanoscale Kevlar Liquid Crystal Aerogel Fibers. ACS NANO 2022; 16:15237-15248. [PMID: 36053080 PMCID: PMC9527790 DOI: 10.1021/acsnano.2c06591] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Aerogel fibers, the simultaneous embodiment of aerogel porous network and fiber slender geometry, have shown critical advantages over natural and synthetic fibers in thermal insulation. However, how to control the building block orientation degree of the resulting aerogel fibers during the dynamic sol-gel transition process to expand their functions for emerging applications is a great challenge. Herein, nanoscale Kevlar liquid crystal (NKLC) aerogel fibers with different building block orientation degrees have been fabricated from Kevlar nanofibers via liquid crystal spinning, dynamic sol-gel transition, freeze-drying, and cold plasma hydrophobilization in sequence. The resulting NKLC aerogel fibers demonstrate extremely high mechanical strength (41.0 MPa), excellent thermal insulation (0.037 W·m-1·K-1), and self-cleaning performance (with a water contact angle of 154°). The superhydrophobic NKLC aerogel fibers can cyclically transform between aerogel and gel states, while gel fibers involving different building block orientation degrees display distinguishable brightness under polarized light. Based on these performances, digital textiles woven or embroidered with high- and low-orientated NKLC aerogel fibers enable up to 6.0 Gb information encryption in one square meter and on-demand decryption. Therefore, it can be envisioned that the tuning of the building blocks' orientation degree will be an appropriate strategy to endow performance to the liquid crystal aerogel fibers for potential applications beyond thermal insulation.
Collapse
Affiliation(s)
- Zengwei Liu
- School
of Nano-Tech and Nano-Bionics, University
of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou
Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Jing Lyu
- Suzhou
Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Yi Ding
- Suzhou
Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Yaqian Bao
- School
of Nano-Tech and Nano-Bionics, University
of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou
Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Zhizhi Sheng
- Suzhou
Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Nan Shi
- Suzhou
Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Xuetong Zhang
- Suzhou
Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- Division
of Surgery and Interventional Science, University
College London, London NW3 2PF, United Kingdom
| |
Collapse
|
65
|
Lim J, Lee S. Influence of Light-Intensity-Dependent Droplet Directionality on Dimensions of Structures Constructed Using an In Situ Light-Guided 3D Printing Method. Polymers (Basel) 2022; 14:3839. [PMID: 36145989 PMCID: PMC9502263 DOI: 10.3390/polym14183839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
As an alternative to conventional 3D printing methods that require supports, a new 3D printing strategy that utilizes guided light in situ has been developed for fabricating freestanding overhanging structures without supports. Light intensity has been found to be a crucial factor in modifying the dimensions of structures printed using this method; however, the underlying mechanism has not been clearly identified. Therefore, the light-intensity-dependent changes in the structure dimensions were analyzed in this study to elucidate the associated mechanism. Essentially, the entire process of deposition was monitored by assessing the behavior of photocurable droplets prior to their collision with the structure using imaging analysis tools such as a high-speed camera and MATLAB®. With increasing light intensity, the instability of the ejected falling droplets increased, and the droplet directionality deteriorated. This increased the dispersion of the droplet midpoints, which caused the average midpoints of the deposited single layers to shift further away from the center of the structure. Consequently, the diameter of the structure formed by successive stacking of single layers increased, and the layer thickness per droplet decreased. These led to light-intensity-dependent differences in the diameter and height of structures that were created from the same number of droplets.
Collapse
Affiliation(s)
- Jongkyeong Lim
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| | - Sangmin Lee
- Division of Mechanical, Automotive and Robot Component Engineering, Dong-Eui University, Busan 47340, Korea
| |
Collapse
|
66
|
Sun Z, Zhu M, Shan X, Lee C. Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat Commun 2022; 13:5224. [PMID: 36064838 PMCID: PMC9445040 DOI: 10.1038/s41467-022-32745-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022] Open
Abstract
Advancements of virtual reality technology pave the way for developing wearable devices to enable somatosensory sensation, which can bring more comprehensive perception and feedback in the metaverse-based virtual society. Here, we propose augmented tactile-perception and haptic-feedback rings with multimodal sensing and feedback capabilities. This highly integrated ring consists of triboelectric and pyroelectric sensors for tactile and temperature perception, and vibrators and nichrome heaters for vibro- and thermo-haptic feedback. All these components integrated on the ring can be directly driven by a custom wireless platform of low power consumption for wearable/portable scenarios. With voltage integration processing, high-resolution continuous finger motion tracking is achieved via the triboelectric tactile sensor, which also contributes to superior performance in gesture/object recognition with artificial intelligence analysis. By fusing the multimodal sensing and feedback functions, an interactive metaverse platform with cross-space perception capability is successfully achieved, giving people a face-to-face like immersive virtual social experience. Current wearable solutions for Virtual Reality (VR) have limitations of complicated structures and large driven power. Here, the authors report a highly integrated ring consisting of multimodal sensing and feedback units for augmented interactions in metaverse.
Collapse
Affiliation(s)
- Zhongda Sun
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.,Singapore Institute of Manufacturing Technology and National University of Singapore (SIMTech-NUS) Joint Lab on Large-area Flexible Hybrid Electronics, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.,National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou, 215123, China
| | - Minglu Zhu
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.,National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou, 215123, China
| | - Xuechuan Shan
- Singapore Institute of Manufacturing Technology and National University of Singapore (SIMTech-NUS) Joint Lab on Large-area Flexible Hybrid Electronics, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.,Printed Intelligent Device Group, Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), Singapore, 637662, Singapore
| | - Chengkuo Lee
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore. .,Center for Intelligent Sensors and MEMS, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore. .,Singapore Institute of Manufacturing Technology and National University of Singapore (SIMTech-NUS) Joint Lab on Large-area Flexible Hybrid Electronics, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore. .,National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou, 215123, China. .,NUS Graduate School-Integrative Sciences and Engineering Program (ISEP), National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
67
|
Prominski A, Shi J, Li P, Yue J, Lin Y, Park J, Tian B, Rotenberg MY. Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues. NATURE MATERIALS 2022; 21:647-655. [PMID: 35618824 DOI: 10.1038/s41563-022-01249-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Homo- and heterojunctions play essential roles in semiconductor-based devices such as field-effect transistors, solar cells, photodetectors and light-emitting diodes. Semiconductor junctions have been recently used to optically trigger biological modulation via photovoltaic or photoelectrochemical mechanisms. The creation of heterojunctions typically involves materials with different doping or composition, which leads to high cost, complex fabrications and potential side effects at biointerfaces. Here we show that a porosity-based heterojunction, a largely overlooked system in materials science, can yield an efficient photoelectrochemical response from the semiconductor surface. Using self-limiting stain etching, we create a nanoporous/non-porous, soft-hard heterojunction in p-type silicon within seconds under ambient conditions. Upon surface oxidation, the heterojunction yields a strong photoelectrochemical response in saline. Without any interconnects or metal modifications, the heterojunction enables efficient non-genetic optoelectronic stimulation of isolated rat hearts ex vivo and sciatic nerves in vivo with optical power comparable to optogenetics, and with near-infrared capabilities.
Collapse
Affiliation(s)
- Aleksander Prominski
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Jiuyun Shi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Pengju Li
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jiping Yue
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Yiliang Lin
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Jihun Park
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- The James Franck Institute, The University of Chicago, Chicago, IL, USA.
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| | - Menahem Y Rotenberg
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
68
|
Babu VJ, Anusha M, Sireesha M, Sundarrajan S, Abdul Haroon Rashid SSA, Kumar AS, Ramakrishna S. Intelligent Nanomaterials for Wearable and Stretchable Strain Sensor Applications: The Science behind Diverse Mechanisms, Fabrication Methods, and Real-Time Healthcare. Polymers (Basel) 2022; 14:2219. [PMID: 35683893 PMCID: PMC9182624 DOI: 10.3390/polym14112219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
It has become a scientific obligation to unveil the underlying mechanisms and the fabrication methods behind wearable/stretchable strain sensors based on intelligent nanomaterials in order to explore their possible potential in the field of biomedical and healthcare applications. This report is based on an extensive literature survey of fabrication of stretchable strain sensors (SSS) based on nanomaterials in the fields of healthcare, sports, and entertainment. Although the evolution of wearable strain sensors (WSS) is rapidly progressing, it is still at a prototype phase and various challenges need to be addressed in the future in special regard to their fabrication protocols. The biocalamity of COVID-19 has brought a drastic change in humans' lifestyles and has negatively affected nations in all capacities. Social distancing has become a mandatory rule to practice in common places where humans interact with each other as a basic need. As social distancing cannot be ruled out as a measure to stop the spread of COVID-19 virus, wearable sensors could play a significant role in technologically impacting people's consciousness. This review article meticulously describes the role of wearable and strain sensors in achieving such objectives.
Collapse
Affiliation(s)
- Veluru Jagadeesh Babu
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Merum Anusha
- Department of Pharmacology, S V Medical College, Dr NTR University of Health Sciences, Vijayawada 517501, India;
| | - Merum Sireesha
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Subramanian Sundarrajan
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Syed Sulthan Alaudeen Abdul Haroon Rashid
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - A. Senthil Kumar
- Advanced Manufacturing Laboratory, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Seeram Ramakrishna
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| |
Collapse
|
69
|
Li T, Su Y, Chen F, Zheng H, Meng W, Liu Z, Ai Q, Liu Q, Tan Y, Zhou Z. Bioinspired Stretchable Fiber-Based Sensor toward Intelligent Human-Machine Interactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22666-22677. [PMID: 35533008 DOI: 10.1021/acsami.2c05823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wearable integrated sensing devices with flexible electronic elements exhibit enormous potential in human-machine interfaces (HMI), but they have limitations such as complex structures, poor waterproofness, and electromagnetic interference. Herein, inspired by the profile of Lindernia nummularifolia (LN), a bionic stretchable optical strain (BSOS) sensor composed of an LN-shaped optical fiber incorporated with a stretchable substrate is developed for intelligent HMI. Such a sensor enables large strain and bending angle measurements with temperature self-compensation by the intensity difference of two fiber Bragg gratings' (FBGs') center wavelength. Such configurations enable an excellent tensile strain range of up to 80%, moreover, leading to ultrasensitivity, durability (≥20,000 cycles), and waterproofness. The sensor is also capable of measuring different human activities and achieving HMI control, including immersive virtual reality, robot remote interactive control, and personal hands-free communication. Combined with the machine learning technique, gesture classification can be achieved using muscle activity signals captured from the BSOS sensor, which can be employed to obtain the motion intention of the prosthetic. These merits effectively indicate its potential as a solution for medical care HMI and show promise in smart medical and rehabilitation medicine.
Collapse
Affiliation(s)
- Tianliang Li
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yifei Su
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Fayin Chen
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Han Zheng
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Wei Meng
- School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zemin Liu
- School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Qingsong Ai
- School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Quan Liu
- School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yuegang Tan
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zude Zhou
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
70
|
Patterning meets gels: Advances in engineering functional gels at micro/nanoscales for soft devices. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
71
|
Chen Y, Hao Y, Mensah A, Lv P, Wei Q. Bio-inspired hydrogels with fibrous structure: A review on design and biomedical applications. BIOMATERIALS ADVANCES 2022; 136:212799. [PMID: 35929334 DOI: 10.1016/j.bioadv.2022.212799] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Numerous tissues in the human body have fibrous structures, including the extracellular matrix, muscles, and heart, which perform critical biological functions and have exceptional mechanical strength. Due to their high-water content, softness, biocompatibility and elastic nature, hydrogels resemble biological tissues. Traditional hydrogels, on the other hand, have weak mechanical properties and lack tissue-like fibrous structures, limiting their potential applications. Thus, bio-inspired hydrogels with fibrous architectures have piqued the curiosity of biomedical researchers. Here, we review fabrication strategies for fibrous hydrogels and their recent progress in the biomedical fields of wound dressings, drug delivery, tissue engineering scaffolds and bioadhesives. Challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Yajun Chen
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Yi Hao
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Alfred Mensah
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Pengfei Lv
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China.
| |
Collapse
|
72
|
Wang Z, Cui H, Liu M, Grage SL, Hoffmann M, Sedghamiz E, Wenzel W, Levkin PA. Tough, Transparent, 3D-Printable, and Self-Healing Poly(ethylene glycol)-Gel (PEGgel). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107791. [PMID: 34854140 DOI: 10.1002/adma.202107791] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Polymer gels, such as hydrogels, have been widely used in biomedical applications, flexible electronics, and soft machines. Polymer network design and its contribution to the performance of gels has been extensively studied. In this study, the critical influence of the solvent nature on the mechanical properties and performance of soft polymer gels is demonstrated. A polymer gel platform based on poly(ethylene glycol) (PEG) as solvent is reported (PEGgel). Compared to the corresponding hydrogel or ethylene glycol gel, the PEGgel with physically cross-linked poly(hydroxyethyl methacrylate-co-acrylic acid) demonstrates high stretchability and toughness, rapid self-healing, and long-term stability. Depending on the molecular weight and fraction of PEG, the tensile strength of the PEGgels varies from 0.22 to 41.3 MPa, fracture strain from 12% to 4336%, modulus from 0.08 to 352 MPa, and toughness from 2.89 to 56.23 MJ m-3 . Finally, rapid self-healing of the PEGgel is demonstrated and a self-healing pneumatic actuator is fabricated by 3D-printing. The enhanced mechanical properties of the PEGgel system may be extended to other polymer networks (both chemically and physically cross-linked). Such a simple 3D-printable, self-healing, and tough soft material holds promise for broad applications in wearable electronics, soft actuators and robotics.
Collapse
Affiliation(s)
- Zhenwu Wang
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Haijun Cui
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Modan Liu
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Stephan L Grage
- Karlsruhe Institute of Technology, Institute for Biological Interfaces IBG-2, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Maxi Hoffmann
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), Engesserstraße 18, Karlsruhe, 76131, Germany
| | - Elaheh Sedghamiz
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Wolfgang Wenzel
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Kaiserstraße 12, Karlsruhe, 76131, Germany
| |
Collapse
|
73
|
Hua J, Liu C, Fei B, Liu Z. Self-Healable and Super-Tough Double-Network Hydrogel Fibers from Dynamic Acylhydrazone Bonding and Supramolecular Interactions. Gels 2022; 8:gels8020101. [PMID: 35200482 PMCID: PMC8871786 DOI: 10.3390/gels8020101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023] Open
Abstract
Macroscopic hydrogel fibers are highly desirable for smart textiles, but the fabrication of self-healable and super-tough covalent/physical double-network hydrogels is rarely reported. Herein, copolymers containing ketone groups were synthesized and prepared into a dynamic covalent hydrogel via acylhydrazone chemistry. Double-network hydrogels were constructed via the dynamic covalent crosslinking of copolymers and the supramolecular interactions of iota-carrageenan. Tensile tests on double-network and parental hydrogels revealed the successful construction of strong and tough hydrogels. The double-network hydrogel precursor was wet spun to obtain macroscopic fibers with controlled drawing ratios. The resultant fibers reached a high strength of 1.35 MPa or a large toughness of 1.22 MJ/m3. Highly efficient self-healing performances were observed in hydrogel fibers and their bulk specimens. Through the simultaneous healing of covalent and supramolecular networks under acidic and heated conditions, fibers achieved rapid and near-complete healing with 96% efficiency. Such self-healable and super-tough hydrogel fibers were applied as shape memory fibers for repetitive actuating in response to water, indicating their potential in intelligent fabrics.
Collapse
Affiliation(s)
- Jiachuan Hua
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China; (J.H.); (C.L.)
| | - Chang Liu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China; (J.H.); (C.L.)
| | - Bin Fei
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China; (J.H.); (C.L.)
- Correspondence:
| | - Zunfeng Liu
- Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China;
| |
Collapse
|
74
|
Sun H, He Y, Wang Z, Liang Q. An Insight into Skeletal Networks Analysis for Smart Hydrogels. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202108489] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 01/06/2025]
Abstract
AbstractHydrogels are 3D cross‐linked polymer networks. Benefiting from the flexible designs and reasonable constructions of these networks, a large number of smart hydrogels with response characteristics to specific stimuli have received widespread attention and developed rapidly. The skeletal networks composed of the skeletal polymer chains and effectual cross‐links are the soul of such soft materials, and the response behaviors fundamentally depend on the dynamic characteristics of skeletal networks. Herein, the novel concepts of skeletal networks analysis to describe, understand, and guide the advanced designs and applications of smart hydrogels are proposed. Representative glucose‐sensitive hydrogels and DNA‐based smart hydrogels are reviewed to demonstrate the principle of skeletal networks analysis and clarify its practical guidance. Summarizing and classifying the characterizations and conversions of skeletal networks dynamics based on different response mechanisms provides a realistic solution. On this basis, advanced applications of smart hydrogels guided by skeletal networks dynamics including biochemical detection, cell mechanics sensing, drug delivery systems, and dynamic complex soft materials are typically reviewed. The skeletal networks analysis for smart hydrogels is of great significance for understanding the microstructures of hydrogels and guiding the designs of soft materials and their smart applications in the fields of analytical science and advanced materials.
Collapse
Affiliation(s)
- Hua Sun
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Beijing Key Lab of Microanalytical Methods and Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| | - Yan He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Beijing Key Lab of Microanalytical Methods and Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering Shandong Sino‐Japanese Center for Collaborative Research of Carbon Nanomaterials Qingdao University Qingdao 266071 China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Beijing Key Lab of Microanalytical Methods and Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
75
|
Nazempour R, Zhang B, Ye Z, Yin L, Lv X, Sheng X. Emerging Applications of Optical Fiber-Based Devices for Brain Research. ADVANCED FIBER MATERIALS 2022; 4:24-42. [DOI: 10.1007/s42765-021-00092-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
|
76
|
Microfluidic-Driven Biofabrication and the Engineering of Cancer-Like Microenvironments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:205-230. [DOI: 10.1007/978-3-031-04039-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
77
|
Mirjalali S, Peng S, Fang Z, Wang C, Wu S. Wearable Sensors for Remote Health Monitoring: Potential Applications for Early Diagnosis of Covid-19. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2100545. [PMID: 34901382 PMCID: PMC8646515 DOI: 10.1002/admt.202100545] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/22/2021] [Indexed: 05/11/2023]
Abstract
Wearable sensors are emerging as a new technology to detect physiological and biochemical markers for remote health monitoring. By measuring vital signs such as respiratory rate, body temperature, and blood oxygen level, wearable sensors offer tremendous potential for the noninvasive and early diagnosis of numerous diseases such as Covid-19. Over the past decade, significant progress has been made to develop wearable sensors with high sensitivity, accuracy, flexibility, and stretchability, bringing to reality a new paradigm of remote health monitoring. In this review paper, the latest advances in wearable sensor systems that can measure vital signs at an accuracy level matching those of point-of-care tests are presented. In particular, the focus of this review is placed on wearable sensors for measuring respiratory behavior, body temperature, and blood oxygen level, which are identified as the critical signals for diagnosing and monitoring Covid-19. Various designs based on different materials and working mechanisms are summarized. This review is concluded by identifying the remaining challenges and future opportunities for this emerging field.
Collapse
Affiliation(s)
- Sheyda Mirjalali
- School of EngineeringMacquarie University SydneySydneyNSW2109Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | | | - Chun‐Hui Wang
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Shuying Wu
- School of EngineeringMacquarie University SydneySydneyNSW2109Australia
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
78
|
Wang Y, Zheng X, Zhong W, Ye Z, Wang X, Dong Z, Zhang Z. Multicomponent chiral hydrogel fibers with block configurations based on the chiral liquid crystals of cellulose nanocrystals and M13 bacteriophages. Polym Chem 2022. [DOI: 10.1039/d2py00965j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Integrating the advantages unique to CNCs and the M13 virus into blockwise chiral hydrogel fibers, which have block dependent chiral fingerprints, birefringence, (de)swelling behaviors, mechanical strength and stretchability.
Collapse
Affiliation(s)
- Yuhan Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Xiaonan Zheng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Weiting Zhong
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Zihan Ye
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Xinzhi Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Ziyue Dong
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Zhenkun Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| |
Collapse
|
79
|
Li T, Su Y, Chen F, Liao X, Wu Q, Kang Y, Tan Y, Zhou Z. A Skin‐Like and Highly Stretchable Optical Fiber Sensor with the Hybrid Coding of Wavelength–Light Intensity. ADVANCED INTELLIGENT SYSTEMS 2021. [DOI: 10.1002/aisy.202100193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tianliang Li
- School of Mechanical and Electronic Engineering Wuhan University of Technology Wuhan 430070 China
| | - Yifei Su
- School of Mechanical and Electronic Engineering Wuhan University of Technology Wuhan 430070 China
| | - Fayin Chen
- School of Mechanical and Electronic Engineering Wuhan University of Technology Wuhan 430070 China
| | - Xinqin Liao
- School of Electronic Science and Engineering Xiamen University 422 Siming South Road Xiamen 361005 China
- School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Qin Wu
- Department of Critical Care Medicine, West China Hospital Sichuan University No. 37 Guo Xue Alley, Wuhou District Chengdu Sichuan 610041 China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital Sichuan University No. 37 Guo Xue Alley, Wuhou District Chengdu Sichuan 610041 China
| | - Yuegang Tan
- School of Mechanical and Electronic Engineering Wuhan University of Technology Wuhan 430070 China
| | - Zude Zhou
- School of Mechanical and Electronic Engineering Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
80
|
He X, Li Z, Li J, Mishra D, Ren Y, Gates I, Hu J, Lu Q. Ultrastretchable, Adhesive, and Antibacterial Hydrogel with Robust Spinnability for Manufacturing Strong Hydrogel Micro/Nanofibers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103521. [PMID: 34655150 DOI: 10.1002/smll.202103521] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The ultrastretchable (over 12 400%) hydrogel with long-lasting adhesion, strong antibacterial activity, and robust spinnability is developed based on the oxidative decarboxylation and quinone-catechol reversible redox reaction induced by Ag-lignin nanoparticles in a precursor solution containing citric acid (CA), acrylic acid (AA), and poly (acrylamide-co-acrylic acid) (P(AAm-co-AA)). With massive reversible interactions including hydrogen bonds and electrostatic forces, such hydrogel exhibits promising injectability and is facilely spun via manual drawing, draw-spinning, and electrospinning for manufacturing strong hydrogel micro/nanofibers. The resulting fibers exhibit excellent mechanical properties, including tensile stress of 422.0 MPa, strain of 86.5%, Young's modulus of 8.7 GPa, and toughness of 281.6 MJ m-3 . The hydrogel microfibers obtained from a house-built spinner are scaled-up fabricated while retaining promising mechanical properties, as evidenced by lifting a load (317.2 g) using the spun fibers of ≈33 000 times lighter weight (9.5 mg), indicating their great potentials in the applications such as net and safety cord which require robust mechanical properties. Moreover, assisted by a commercial electrospinning machine, nanosized hydrogel fibers are facilely spun on personal protective equipment such as a mask to offer an antiseptic coating with near 100% killing efficiency against airborne bacteria aerosols, demonstrating the capability of spun hydrogel fibers on disinfection-related applications.
Collapse
Affiliation(s)
- Xiao He
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AB, T2N 1N4, Canada
| | - Zhangkang Li
- Biomedical Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AB, T2N 1N4, Canada
| | - Jia Li
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AB, T2N 1N4, Canada
| | - Dinesh Mishra
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AB, T2N 1N4, Canada
| | - Yuxuan Ren
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AB, T2N 1N4, Canada
| | - Ian Gates
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AB, T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AB, T2N 1N4, Canada
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
81
|
Guimarães CF, Ahmed R, Mataji-Kojouri A, Soto F, Wang J, Liu S, Stoyanova T, Marques AP, Reis RL, Demirci U. Engineering Polysaccharide-Based Hydrogel Photonic Constructs: From Multiscale Detection to the Biofabrication of Living Optical Fibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105361. [PMID: 34617338 DOI: 10.1002/adma.202105361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Solid-state optics has been the pillar of modern digital age. Integrating soft hydrogel materials with micro/nanooptics could expand the horizons of photonics for bioengineering. Here, wet-spun multilayer hydrogel fibers are engineered through ionic-crosslinked natural polysaccharides that serve as multifunctional platforms. The resulting flexible hydrogel structure and reversible crosslinking provide tunable design properties such as adjustable refractive index and fusion splicing. Modulation of the optical readout via physical stimuli, including shape, compression, and multiple optical inputs/outputs is demonstrated. The unique permeability of the hydrogels is also combined with plasmonic nanoparticles for molecular detection of SARS-CoV-2 in fiber-coupled biomedical swabs. A tricoaxial 3D printing nozzle is then employed for the continuous fabrication of living optical fibers. Light interaction with living cells enables the quantification and digitalization of complex biological phenomena such as 3D cancer progression and drug susceptibility. These fibers pave the way for advances in biomaterial-based photonics and biosensing platforms.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Rajib Ahmed
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Amideddin Mataji-Kojouri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Fernando Soto
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Jie Wang
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Shiqin Liu
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Tanya Stoyanova
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Alexandra P Marques
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|
82
|
Cao Y, Pan S, Yan M, Sun C, Huang J, Zhong C, Wang L, Yi L. Flexible and stretchable polymer optical fibers for chronic brain and vagus nerve optogenetic stimulations in free-behaving animals. BMC Biol 2021; 19:252. [PMID: 34819062 PMCID: PMC8611887 DOI: 10.1186/s12915-021-01187-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Background Although electrical stimulation of the peripheral and central nervous systems has attracted much attention owing to its potential therapeutic effects on neuropsychiatric diseases, its non-cell-type-specific activation characteristics may hinder its wide clinical application. Unlike electrical methodologies, optogenetics has more recently been applied as a cell-specific approach for precise modulation of neural functions in vivo, for instance on the vagus nerve. The commonly used implantable optical waveguides are silica optical fibers, which for brain optogenetic stimulation (BOS) are usually fixed on the skull bone. However, due to the huge mismatch of mechanical properties between the stiff optical implants and deformable vagal tissues, vagus nerve optogenetic stimulation (VNOS) in free-behaving animals continues to be a great challenge. Results To resolve this issue, we developed a simplified method for the fabrication of flexible and stretchable polymer optical fibers (POFs), which show significantly improved characteristics for in vivo optogenetic applications, specifically a low Young’s modulus, high stretchability, improved biocompatibility, and long-term stability. We implanted the POFs into the primary motor cortex of C57 mice after the expression of CaMKIIα-ChR2-mCherry detected frequency-dependent neuronal activity and the behavioral changes during light delivery. The viability of POFs as implantable waveguides for VNOS was verified by the increased firing rate of the fast-spiking GABAergic interneurons recorded in the left vagus nerve of VGAT-ChR2 transgenic mice. Furthermore, VNOS was carried out in free-moving rodents via chronically implanted POFs, and an inhibitory influence on the cardiac system and an anxiolytic effect on behaviors was shown. Conclusion Our results demonstrate the feasibility and advantages of the use of POFs in chronic optogenetic modulations in both of the central and peripheral nervous systems, providing new information for the development of novel therapeutic strategies for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yi Cao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.,Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Suwan Pan
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.,Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Mengying Yan
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Chongyang Sun
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Jianyu Huang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Cheng Zhong
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Liping Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Lu Yi
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
83
|
Wang Y, Huang Y, Bai H, Wang G, Hu X, Kumar S, Min R. Biocompatible and Biodegradable Polymer Optical Fiber for Biomedical Application: A Review. BIOSENSORS 2021; 11:472. [PMID: 34940229 PMCID: PMC8699361 DOI: 10.3390/bios11120472] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 05/09/2023]
Abstract
This article discusses recent advances in biocompatible and biodegradable polymer optical fiber (POF) for medical applications. First, the POF material and its optical properties are summarized. Then, several common optical fiber fabrication methods are thoroughly discussed. Following that, clinical applications of biocompatible and biodegradable POFs are discussed, including optogenetics, biosensing, drug delivery, and neural recording. Following that, biomedical applications expanded the specific functionalization of the material or fiber design. Different research or clinical applications necessitate the use of different equipment to achieve the desired results. Finally, the difficulty of implanting flexible fiber varies with its flexibility. We present our article in a clear and logical manner that will be useful to researchers seeking a broad perspective on the proposed topic. Overall, the content provides a comprehensive overview of biocompatible and biodegradable POFs, including previous breakthroughs, as well as recent advancements. Biodegradable optical fibers have numerous applications, opening up new avenues in biomedicine.
Collapse
Affiliation(s)
- Yue Wang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Yu Huang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Hongyi Bai
- College of Electronic Engineering, Heilongjiang University, Harbin 150080, China;
| | - Guoqing Wang
- College of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
| | - Xuehao Hu
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China;
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China;
| | - Rui Min
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| |
Collapse
|
84
|
Xiang S, You H, Miao X, Niu L, Yao C, Jiang Y, Zhou G. An Ultra-Sensitive Multi-Functional Optical Micro/Nanofiber Based on Stretchable Encapsulation. SENSORS (BASEL, SWITZERLAND) 2021; 21:7437. [PMID: 34833512 PMCID: PMC8618424 DOI: 10.3390/s21227437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 01/30/2023]
Abstract
Stretchable optical fiber sensors (SOFSs), which are promising and ultra-sensitive next-generation sensors, have achieved prominent success in applications including health monitoring, robotics, and biological-electronic interfaces. Here, we report an ultra-sensitive multi-functional optical micro/nanofiber embedded with a flexible polydimethylsiloxane (PDMS) membrane, which is compatible with wearable optical sensors. Based on the effect of a strong evanescent field, the as-fabricated SOFS is highly sensitive to strain, achieving high sensitivity with a peak gauge factor of 450. In addition, considering the large negative thermo-optic coefficient of PDMS, temperature measurements in the range of 30 to 60 °C were realized, resulting in a 0.02 dBm/°C response. In addition, wide-range detection of humidity was demonstrated by a peak sensitivity of 0.5 dB/% RH, with less than 10% variation at each humidity stage. The robust sensing performance, together with the flexibility, enables the real-time monitoring of pulse, body temperature, and respiration. This as-fabricated SOFS provides significant potential for the practical application of wearable healthcare sensors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guorui Zhou
- Department of Engineering Optics, Research Center of Laser Fusion CAEP, Mianyang 621900, China; (S.X.); (H.Y.); (X.M.); (L.N.); (C.Y.); (Y.J.)
| |
Collapse
|
85
|
Li M, Chen X, Li X, Dong J, Zhao X, Zhang Q. Wearable and Robust Polyimide Hydrogel Fiber Textiles for Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43323-43332. [PMID: 34469683 DOI: 10.1021/acsami.1c10055] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conductive ionic hydrogel fibers and textiles with excellent mechanical properties and chemical stability are requested for flexible and wearable electronic devices, strain sensors, and even artificial skin. However, most of the reported hydrogel fibers are not suitable in complex environments, especially in alkaline solutions and organic solvents due to their poor chemical stability. Herein, we report ionic polyimide hydrogel fibers derived from an organosoluble polyimide salt that can be continuously and rapidly prepared via a facile wet spinning method. Thanks to their ion-rich property and robust skeletal structure, the obtained ionic polyimide hydrogel fibers showed an excellent conductivity of ∼21 mS/cm and outstanding mechanical properties with a tensile strength of 2.5 MPa and breaking elongation of 215%. Furthermore, the as-prepared fibers could be easily woven to form integral textiles, endowing them with good wearable properties. Accordingly, facile strain sensors assembled by polyimide hydrogel fibers show a linear response with high sensitivity and good cycling stability, which have great potential for applications in wearable and flexible strain sensors under diverse complex environments.
Collapse
Affiliation(s)
- Mengmeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Xian Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiuting Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Jie Dong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Xin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Qinghua Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
86
|
Yu D, Liu Q, Liu H, Luo S, Wei M, Li L, Wang W. Characterizing spatial uniformity of tensile deformation with an elastic polymer based holographic sensor. OPTICS LETTERS 2021; 46:4438-4441. [PMID: 34525016 DOI: 10.1364/ol.428449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Tensile deformation uniformity of material has been studied with a stretchable polymer based holographic sensor. The diffraction spectrum distribution of a holographic grating with a large area as a main response parameter is scanned. A linear spatial distribution of peak wavelength provides an important foundation for exploring the tensile uniformity. The same ratio of wavelength to position confirms that the tensile deformation of the material is uniform in a small spot size. Over the entire length of the materials, gradually increasing deformation accumulation is the main uniformity feature of tensile deformation. The uniformity response is expected to apply in sensing the deformation and stress fluctuation distribution in the middle of the thin surface. The non-uniform distribution of stress can be expressed by the nonlinear distribution of the grating diffraction spectrum. The optical measurement of tensile deformation uniformity further validates the applicability of a stretchable polymer based holographic sensor.
Collapse
|
87
|
Puiggalí-Jou A, Babeli I, Roa JJ, Zoppe JO, Garcia-Amorós J, Ginebra MP, Alemán C, García-Torres J. Remote Spatiotemporal Control of a Magnetic and Electroconductive Hydrogel Network via Magnetic Fields for Soft Electronic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42486-42501. [PMID: 34469100 PMCID: PMC8594865 DOI: 10.1021/acsami.1c12458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Multifunctional hydrogels are a class of materials offering new opportunities for interfacing living organisms with machines due to their mechanical compliance, biocompatibility, and capacity to be triggered by external stimuli. Here, we report a dual magnetic- and electric-stimuli-responsive hydrogel with the capacity to be disassembled and reassembled up to three times through reversible cross-links. This allows its use as an electronic device (e.g., temperature sensor) in the cross-linked state and spatiotemporal control through narrow channels in the disassembled state via the application of magnetic fields, followed by reassembly. The hydrogel consists of an interpenetrated polymer network of alginate (Alg) and poly(3,4-ethylenedioxythiophene) (PEDOT), which imparts mechanical and electrical properties, respectively. In addition, the incorporation of magnetite nanoparticles (Fe3O4 NPs) endows the hydrogel with magnetic properties. After structural, (electro)chemical, and physical characterization, we successfully performed dynamic and continuous transport of the hydrogel through disassembly, transporting the polymer-Fe3O4 NP aggregates toward a target using magnetic fields and its final reassembly to recover the multifunctional hydrogel in the cross-linked state. We also successfully tested the PEDOT/Alg/Fe3O4 NP hydrogel for temperature sensing and magnetic hyperthermia after various disassembly/re-cross-linking cycles. The present methodology can pave the way to a new generation of soft electronic devices with the capacity to be remotely transported.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Ismael Babeli
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Joan Josep Roa
- CIEFMA
(Center for Research in Structural Integrity, Reliability and Micromechanics
of Materials)-Department of Materials Science and Engineering, EEBE, Universitat Politècnica de Catalunya-BarcelonaTech, 08019 Barcelona, Spain
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
| | - Justin O. Zoppe
- Department
of Materials Science and Engineering, Universitat
Politècnica de Catalunya (UPC), 08019 Barcelona, Spain
| | - Jaume Garcia-Amorós
- Grup
de Materials Orgànics, Departament de Química Inorgànica
i Orgànica (Secció de Química Orgànica), Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Spain
- Institut
de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Maria-Pau Ginebra
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
- Biomaterials,
Biomechanics and Tissue Engineering Group, Department of Materials
Science and Engineering, Universitat Politècnica
de Catalunya (UPC), 08019 Barcelona, Spain
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Carlos Alemán
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Jose García-Torres
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
- Biomaterials,
Biomechanics and Tissue Engineering Group, Department of Materials
Science and Engineering, Universitat Politècnica
de Catalunya (UPC), 08019 Barcelona, Spain
| |
Collapse
|
88
|
Bunea AC, Dediu V, Laszlo EA, Pistriţu F, Carp M, Iliescu FS, Ionescu ON, Iliescu C. E-Skin: The Dawn of a New Era of On-Body Monitoring Systems. MICROMACHINES 2021; 12:1091. [PMID: 34577734 PMCID: PMC8470991 DOI: 10.3390/mi12091091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Real-time "on-body" monitoring of human physiological signals through wearable systems developed on flexible substrates (e-skin) is the next target in human health control and prevention, while an alternative to bulky diagnostic devices routinely used in clinics. The present work summarizes the recent trends in the development of e-skin systems. Firstly, we revised the material development for e-skin systems. Secondly, aspects related to fabrication techniques were presented. Next, the main applications of e-skin systems in monitoring, such as temperature, pulse, and other bio-electric signals related to health status, were analyzed. Finally, aspects regarding the power supply and signal processing were discussed. The special features of e-skin as identified contribute clearly to the developing potential as in situ diagnostic tool for further implementation in clinical practice at patient personal levels.
Collapse
Affiliation(s)
- Alina-Cristina Bunea
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Violeta Dediu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Edwin Alexandru Laszlo
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Florian Pistriţu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Mihaela Carp
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Florina Silvia Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Octavian Narcis Ionescu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
- Faculty of Electrical and Mechanical Engineering, Petroleum-Gas University of Ploiesti, 100680 Ploiesti, Romania
| | - Ciprian Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
- Academy of Romanian Scientists, 010071 Bucharest, Romania
- Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| |
Collapse
|
89
|
Hynninen V, Patrakka J, Nonappa. Methylcellulose-Cellulose Nanocrystal Composites for Optomechanically Tunable Hydrogels and Fibers. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5137. [PMID: 34576360 PMCID: PMC8465715 DOI: 10.3390/ma14185137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022]
Abstract
Chemical modification of cellulose offers routes for structurally and functionally diverse biopolymer derivatives for numerous industrial applications. Among cellulose derivatives, cellulose ethers have found extensive use, such as emulsifiers, in food industries and biotechnology. Methylcellulose, one of the simplest cellulose derivatives, has been utilized for biomedical, construction materials and cell culture applications. Its improved water solubility, thermoresponsive gelation, and the ability to act as a matrix for various dopants also offer routes for cellulose-based functional materials. There has been a renewed interest in understanding the structural, mechanical, and optical properties of methylcellulose and its composites. This review focuses on the recent development in optically and mechanically tunable hydrogels derived from methylcellulose and methylcellulose-cellulose nanocrystal composites. We further discuss the application of the gels for preparing highly ductile and strong fibers. Finally, the emerging application of methylcellulose-based fibers as optical fibers and their application potentials are discussed.
Collapse
Affiliation(s)
- Ville Hynninen
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33720 Tampere, Finland;
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 Espoo, Finland
| | - Jani Patrakka
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33720 Tampere, Finland;
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33720 Tampere, Finland;
| |
Collapse
|
90
|
Hynninen V, Chandra S, Das S, Amini M, Dai Y, Lepikko S, Mohammadi P, Hietala S, Ras RHA, Sun Z, Ikkala O. Luminescent Gold Nanocluster-Methylcellulose Composite Optical Fibers with Low Attenuation Coefficient and High Photostability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005205. [PMID: 33491913 DOI: 10.1002/smll.202005205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Because of their lightweight structure, flexibility, and immunity to electromagnetic interference, polymer optical fibers (POFs) are used in numerous short-distance applications. Notably, the incorporation of luminescent nanomaterials in POFs offers optical amplification and sensing for advanced nanophotonics. However, conventional POFs suffer from nonsustainable components and processes. Furthermore, the traditionally used luminescent nanomaterials undergo photobleaching, oxidation, and they can be cytotoxic. Therefore, biopolymer-based optical fibers containing nontoxic luminescent nanomaterials are needed, with efficient and environmentally acceptable extrusion methods. Here, such an approach for fibers wet-spun from aqueous methylcellulose (MC) dispersions under ambient conditions is demonstrated. Further, the addition of either luminescent gold nanoclusters, rod-like cellulose nanocrystals or gold nanocluster-cellulose nanocrystal hybrids into the MC matrix furnishes strong and ductile composite fibers. Using cutback attenuation measurement, it is shown that the resulting fibers can act as short-distance optical fibers with a propagation loss as low as 1.47 dB cm-1 . The optical performance is on par with or even better than some of the previously reported biopolymeric optical fibers. The combination of excellent mechanical properties (Young's modulus and maximum strain values up to 8.4 GPa and 52%, respectively), low attenuation coefficient, and high photostability makes the MC-based composite fibers excellent candidates for multifunctional optical fibers and sensors.
Collapse
Affiliation(s)
- Ville Hynninen
- Faculty of Engineering and Natural Sciences, Tampere University, P. O. Box 541, Tampere, FI-33101, Finland
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Sourov Chandra
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Susobhan Das
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Mohammad Amini
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Yunyun Dai
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Sakari Lepikko
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Pezhman Mohammadi
- VTT Technical Research Centre, P. O. Box 1000, Espoo, FI-02044, Finland
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, P. O. Box 55, Helsinki, FI-00014, Finland
| | - Robin H A Ras
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Olli Ikkala
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| |
Collapse
|
91
|
Guimarães CF, Ahmed R, Marques AP, Reis RL, Demirci U. Engineering Hydrogel-Based Biomedical Photonics: Design, Fabrication, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006582. [PMID: 33929771 PMCID: PMC8647870 DOI: 10.1002/adma.202006582] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/30/2020] [Indexed: 05/18/2023]
Abstract
Light guiding and manipulation in photonics have become ubiquitous in events ranging from everyday communications to complex robotics and nanomedicine. The speed and sensitivity of light-matter interactions offer unprecedented advantages in biomedical optics, data transmission, photomedicine, and detection of multi-scale phenomena. Recently, hydrogels have emerged as a promising candidate for interfacing photonics and bioengineering by combining their light-guiding properties with live tissue compatibility in optical, chemical, physiological, and mechanical dimensions. Herein, the latest progress over hydrogel photonics and its applications in guidance and manipulation of light is reviewed. Physics of guiding light through hydrogels and living tissues, and existing technical challenges in translating these tools into biomedical settings are discussed. A comprehensive and thorough overview of materials, fabrication protocols, and design architectures used in hydrogel photonics is provided. Finally, recent examples of applying structures such as hydrogel optical fibers, living photonic constructs, and their use as light-driven hydrogel robots, photomedicine tools, and organ-on-a-chip models are described. By providing a critical and selective evaluation of the field's status, this work sets a foundation for the next generation of hydrogel photonic research.
Collapse
Affiliation(s)
- Carlos F. Guimarães
- 3B’s Research Group — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – Portuguese Government Associate Laboratory, University of Minho, Braga and Guimarães, Portugal
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, USA
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, USA
| | - Alexandra P. Marques
- 3B’s Research Group — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – Portuguese Government Associate Laboratory, University of Minho, Braga and Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – Portuguese Government Associate Laboratory, University of Minho, Braga and Guimarães, Portugal
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
92
|
Kang M, Oderinde O, Han X, Fu G, Zhang Z. Development of oxidized hydroxyethyl cellulose-based hydrogel enabling unique mechanical, transparent and photochromic properties for contact lenses. Int J Biol Macromol 2021; 183:1162-1173. [PMID: 33971231 DOI: 10.1016/j.ijbiomac.2021.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 01/16/2023]
Abstract
With the development of smart devices, higher requirements are put forward for the stimuli-responsive materials. Stimuli-hydrogels as one kind of stimuli-responsive materials with hydrophilicity, demonstrate huge potential in developing intelligent devices for biomedical application. On this basis, we herein report that a sample method was devised to develop a novel composite hydrogel mainly based on oxidized hydroxyethyl cellulose and allyl co-polymer. Subsequently, a series of tests toward this oxidized hydroxyethyl cellulose-based hydrogel due to its structure and performance was applied. Here, the oxidized hydroxyethyl cellulose molecular chains were used as biomacromolecule templates to form Schiff base, borate and hydrogen bonds to obtain unique mechanical properties (fast recovery with almost no-hysteresis and remarkable compressive capacity), while a double bond functionalized spirooxazine (allyl spirooxazine derivative) was applied to endow photo- and pH sensitivity to the oxidized hydroxyethyl cellulose-based transparent hydrogel (T% = 93%) substrate. Furthermore, the oxidized hydroxyethyl cellulose-based hydrogel did exhibit good pH environment adaptability and noncytotoxicity in vitro test. Based on the advanced characteristics, the designed oxidized hydroxyethyl cellulose-based hydrogel has potential applications prospect in the development of safe, fashionable and pH- detectable contact lenses, thereby providing a new strategy for the development of smart, stylish contact lenses.
Collapse
Affiliation(s)
- Mengmeng Kang
- School of Materials Science and Engineering, Henan Normal University, No. 46, East of Construction Road, Xinxiang 453007, Henan Province, China
| | - Olayinka Oderinde
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, China
| | - Xuelian Han
- Hydron Contact Lens Co., Ltd, Danyang, Jiangsu 212331, China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, China.
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou, Henan Province 450002, China.
| |
Collapse
|
93
|
Wu C, Liu X, Ying Y. Soft and Stretchable Optical Waveguide: Light Delivery and Manipulation at Complex Biointerfaces Creating Unique Windows for On-Body Sensing. ACS Sens 2021; 6:1446-1460. [PMID: 33611914 DOI: 10.1021/acssensors.0c02566] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past few decades, optical waveguides have been increasingly used in wearable/implantable devices for on-body sensing. However, conventional optical waveguides are stiff, rigid, and brittle. A mismatch between conventional optical waveguides and complex biointerfaces makes wearable/implantable devices uncomfortable to wear and potentially unsafe. Soft and stretchable polymer optical waveguides not only inherit many advantages of conventional optical waveguides (e.g., immunity to electromagnetic interference and without electrical hazards) but also provide a new perspective for solving the mismatch between conventional optical waveguides and complex biointerfaces, which is essential for the development of light-based wearable/implantable sensors. In this review, polymer optical waveguides' unique properties, including flexibility, biocompatibility and biodegradability, porosity, and stimulus responsiveness, and their applications in the wearable/implantable field in recent years are summarized. Then, we briefly discuss the current challenges of high optical loss, unstable signal transmission, low manufacturing efficiency, and difficulty in deployment during implantation of flexible polymer optical waveguides, and propose some possible solutions to these problems.
Collapse
Affiliation(s)
- Chenjian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiangjiang Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
94
|
Gierej A, Geernaert T, Van Vlierberghe S, Dubruel P, Thienpont H, Berghmans F. Challenges in the Fabrication of Biodegradable and Implantable Optical Fibers for Biomedical Applications. MATERIALS 2021; 14:ma14081972. [PMID: 33920842 PMCID: PMC8071099 DOI: 10.3390/ma14081972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
The limited penetration depth of visible light in biological tissues has encouraged researchers to develop novel implantable light-guiding devices. Optical fibers and waveguides that are made from biocompatible and biodegradable materials offer a straightforward but effective approach to overcome this issue. In the last decade, various optically transparent biomaterials, as well as different fabrication techniques, have been investigated for this purpose, and in view of obtaining fully fledged optical fibers. This article reviews the state-of-the-art in the development of biocompatible and biodegradable optical fibers. Whilst several reviews that focus on the chemical properties of the biomaterials from which these optical waveguides can be made have been published, a systematic review about the actual optical fibers made from these materials and the different fabrication processes is not available yet. This prompted us to investigate the essential properties of these biomaterials, in view of fabricating optical fibers, and in particular to look into the issues related to fabrication techniques, and also to discuss the challenges in the use and operation of these optical fibers. We close our review with a summary and an outline of the applications that may benefit from these novel optical waveguides.
Collapse
Affiliation(s)
- Agnieszka Gierej
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
- Correspondence:
| | - Thomas Geernaert
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| | - Sandra Van Vlierberghe
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium;
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium;
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| | - Francis Berghmans
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| |
Collapse
|
95
|
Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chem Rev 2021; 121:4309-4372. [PMID: 33844906 DOI: 10.1021/acs.chemrev.0c01088] [Citation(s) in RCA: 417] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?
Collapse
Affiliation(s)
- Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - German Parada
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
96
|
Optical Sensing Using Fiber-Optic Multimode Interference Devices: A Review of Nonconventional Sensing Schemes. SENSORS 2021; 21:s21051862. [PMID: 33800041 PMCID: PMC7962118 DOI: 10.3390/s21051862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022]
Abstract
We review fiber-based multimode interference (MMI) devices with a particular focus on optical fiber-based sensing applications. The present review complements a recently published, extensive review where the sensing of conventional physical variables such as refractive index, temperature, displacement, and strain was covered. This review focuses on MMI fiber sensors for nonconventional physical variables, including mechanical, electromagnetic, chemical, and optical, covering around fifteen years of work in the field. Finally, by the end of this paper, we also review some new trends of MMI-based schemes based on polymer fibers, for wavelength-locking applications, for retrieving the thermo-optic coefficient of liquid samples, and for measuring the dynamics of complex fluids.
Collapse
|
97
|
Wang Z, Ma Z, Sun J, Yan Y, Bu M, Huo Y, Li YF, Hu N. Recent Advances in Natural Functional Biopolymers and Their Applications of Electronic Skins and Flexible Strain Sensors. Polymers (Basel) 2021; 13:813. [PMID: 33800960 PMCID: PMC7961771 DOI: 10.3390/polym13050813] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022] Open
Abstract
In order to replace nonrenewable resources and decrease electronic waste disposal, there is a rapidly rising demand for the utilization of reproducible and degradable biopolymers in flexible electronics. Natural biopolymers have many remarkable characteristics, including light weight, excellent mechanical properties, biocompatibility, non-toxicity, low cost, etc. Thanks to these superior merits, natural functional biopolymers can be designed and optimized for the development of high-performance flexible electronic devices. Herein, we provide an insightful overview of the unique structures, properties and applications of biopolymers for electronic skins (e-skins) and flexible strain sensors. The relationships between properties and sensing performances of biopolymers-based sensors are also investigated. The functional design strategies and fabrication technologies for biopolymers-based flexible sensors are proposed. Furthermore, the research progresses of biopolymers-based sensors with various functions are described in detail. Finally, we provide some useful viewpoints and future prospects of developing biopolymers-based flexible sensors.
Collapse
Affiliation(s)
- Ziying Wang
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
| | - Zongtao Ma
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
| | - Jingyao Sun
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
| | - Yuhua Yan
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
| | - Miaomiao Bu
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
| | - Yanming Huo
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
| | - Yun-Fei Li
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
| | - Ning Hu
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
- National Engineering Research Center for Technological Innovation Method and Tool, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
98
|
Wang X, Chen G, Cai L, Li R, He M. Weavable Transparent Conductive Fibers with Harsh Environment Tolerance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8952-8959. [PMID: 33555183 DOI: 10.1021/acsami.0c21912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fiber and textile electronics provide a focus for a new generation of wearable electronics due to their unique lightness and flexibility. However, fabricating knittable fibers from conductive materials with high tensile and transparent properties remains a challenge, especially for applicability in harsh environments. Here, we report a simple photopolymerization approach for the rapid preparation of a new type of a transparent conductive polymer fiber, poly(polymerizable deep eutectic solvent (PDES)) fiber, which exhibits excellent stability at high/low temperature, in organic solvents, especially in dry environments, and overcomes the volatility and freezability of traditional gel materials. A poly(PDES) fiber possesses outstanding mechanical and sensing properties, including negligible hysteresis and creep, fast resilience after a long stretch (10 min), and signal stability during high-frequency cyclic stretching (1 Hz, 10 000 cycles). In addition, the poly(PDES) fibers are knitted into a plain-structured sensor on textile with breathability and high tolerance to damage, enabling stable and accurate monitoring of human stretching, bending, and rotation motions. Furthermore, its dry-cleaning resistance guarantees the feasibility of long-term monitoring, with the electrical signal remaining stable after five dry-cleaning cycles. These promising features of poly(PDES) fibers will promote potential applications in the fields of human movement monitoring, intelligent fibers, and soft robotics.
Collapse
Affiliation(s)
- Xiaochun Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guangxue Chen
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ling Cai
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ren'ai Li
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Minghui He
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
99
|
Wang Y, Li X, Fan S, Feng X, Cao K, Ge Q, Gao L, Lu Y. Three-Dimensional Stretchable Microelectronics by Projection Microstereolithography (PμSL). ACS APPLIED MATERIALS & INTERFACES 2021; 13:8901-8908. [PMID: 33587597 DOI: 10.1021/acsami.0c20162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Stretchable and flexible electronics conformal to human skin or implanted into biological tissues has attracted considerable interest for emerging applications in health monitoring and medical treatment. Although various stretchable materials and structures have been designed and manufactured, most are limited to two-dimensional (2D) layouts for interconnects and active components. Here, by using projection microstereolithography (PμSL)-based three-dimensional (3D) printing, we introduce a versatile microfabrication process to push the manufacturing limit and achieve previously inaccessible 3D geometries at a high resolution of 2 μm. After coating the printed microstructures with thin Au films, the 3D conductive structures offer exceptional stretchability (∼130%), conformability, and stable electrical conductivity (<5% resistance change at 100% tensile strain). This fabrication process can be further applied to directly create complicated 3D interconnect networks of sophisticated active components, as demonstrated with a stretchable capacitive pressure sensor array here. The proposed scheme allows a simple, facile, and scalable manufacturing route for complex, integrated 3D flexible electronic systems.
Collapse
Affiliation(s)
- Yuejiao Wang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Nanomanufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xiang Li
- Nanomanufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Shenzhen 518057, China
| | - Sufeng Fan
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Nanomanufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xiaobin Feng
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Nanomanufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Ke Cao
- School of Mechano-Electronic Engineering, Xidian University, Xian 710071, China
| | - Qi Ge
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Libo Gao
- School of Mechano-Electronic Engineering, Xidian University, Xian 710071, China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Nanomanufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Shenzhen 518057, China
| |
Collapse
|
100
|
Rezapour Sarabi M, Jiang N, Ozturk E, Yetisen AK, Tasoglu S. Biomedical optical fibers. LAB ON A CHIP 2021; 21:627-640. [PMID: 33449066 DOI: 10.1039/d0lc01155j] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Optical fibers with the ability to propagate and transfer data via optical signals have been used for decades in medicine. Biomaterials featuring the properties of softness, biocompatibility, and biodegradability enable the introduction of optical fibers' uses in biomedical engineering applications such as medical implants and health monitoring systems. Here, we review the emerging medical and health-field applications of optical fibers, illustrating the new wave for the fabrication of implantable devices, wearable sensors, and photodetection and therapy setups. A glimpse of fabrication methods is also provided, with the introduction of 3D printing as an emerging fabrication technology. The use of artificial intelligence for solving issues such as data analysis and outcome prediction is also discussed, paving the way for the new optical treatments for human health.
Collapse
Affiliation(s)
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ece Ozturk
- Koç University School of Medicine, Koç University, Sariyer, Istanbul, 34450 Turkey and Koç University Research Center for Translational Medicine, Koç University, Sariyer, Istanbul, 34450 Turkey
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul, 34450 Turkey. and Koç University Research Center for Translational Medicine, Koç University, Sariyer, Istanbul, 34450 Turkey and Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul, 34450 Turkey and Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul, 34684 Turkey
| |
Collapse
|