51
|
Sadaf A, Sinha R, Khare SK. Proteomic profiling of Sporotrichum thermophile under the effect of ionic liquids: manifestation of an oxidative stress response. 3 Biotech 2019; 9:240. [PMID: 31168433 PMCID: PMC6542886 DOI: 10.1007/s13205-019-1771-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/18/2019] [Indexed: 01/24/2023] Open
Abstract
Sporotrichum thermophile, a known producer of industrial enzymes exhibited stability in the presence of ionic liquids (ILs).The study reports, for the first time, the stress response of S. thermophile upon exposure to ILs. In vitro assay showed increased anti-oxidative enzyme levels indicating ROS-mediated oxidative stress by ILs. The proteomic profile and identification of differential proteins confirmed the fungal adaptations by (i) increased expression of glycolytic enzymes and ATP synthases (ii) downregulation of TCA cycle and protein synthesis machinery components (iii) expression of HSP70 and catalase/peroxidase. These changes are indicative of metabolic regulation of many important pathways and how ILs can be used to manipulate protein behavior.
Collapse
Affiliation(s)
- Ayesha Sadaf
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, 110016 India
| | - Rajeshwari Sinha
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, 110016 India
| | - Sunil K. Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, 110016 India
| |
Collapse
|
52
|
Di X, Zhang Y, Fu J, Yu Q, Wang Z, Yuan Z. Biocatalytic upgrading of levulinic acid to methyl levulinate in green solvents. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
53
|
Fotiadou R, Patila M, Hammami MA, Enotiadis A, Moschovas D, Tsirka K, Spyrou K, Giannelis EP, Avgeropoulos A, Paipetis A, Gournis D, Stamatis H. Development of Effective Lipase-Hybrid Nanoflowers Enriched with Carbon and Magnetic Nanomaterials for Biocatalytic Transformations. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E808. [PMID: 31142000 PMCID: PMC6632025 DOI: 10.3390/nano9060808] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 01/10/2023]
Abstract
In the present study, hybrid nanoflowers (HNFs) based on copper (II) or manganese (II) ions were prepared by a simple method and used as nanosupports for the development of effective nanobiocatalysts through the immobilization of lipase B from Pseudozyma antarctica. The hybrid nanobiocatalysts were characterized by various techniques including scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). The effect of the addition of carbon-based nanomaterials, namely graphene oxide and carbon nanotubes, as well as magnetic nanoparticles such as maghemite, on the structure, catalytic activity, and operational stability of the hybrid nanobiocatalysts was also investigated. In all cases, the addition of nanomaterials during the preparation of HNFs increased the catalytic activity and the operational stability of the immobilized biocatalyst. Lipase-based magnetic nanoflowers were effectively applied for the synthesis of tyrosol esters in non-aqueous media, such as organic solvents, ionic liquids, and environmental friendly deep eutectic solvents. In such media, the immobilized lipase preserved almost 100% of its initial activity after eight successive catalytic cycles, indicating that these hybrid magnetic nanoflowers can be applied for the development of efficient nanobiocatalytic systems.
Collapse
Affiliation(s)
- Renia Fotiadou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece.
| | - Michaela Patila
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece.
| | - Mohamed Amen Hammami
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Apostolos Enotiadis
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Dimitrios Moschovas
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece.
| | - Kyriaki Tsirka
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece.
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece.
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Apostolos Avgeropoulos
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece.
| | - Alkiviadis Paipetis
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece.
| | - Dimitrios Gournis
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece.
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
54
|
Abstract
Biocatalysis has emerged in the last decade as a pre-eminent technology for enabling the envisaged transition to a more sustainable bio-based economy. For industrial viability it is essential that enzymes can be readily recovered and recycled by immobilization as solid, recyclable catalysts. One method to achieve this is via carrier-free immobilization as cross-linked enzyme aggregates (CLEAs). This methodology proved to be very effective with a broad selection of enzymes, in particular carbohydrate-converting enzymes. Methods for optimizing CLEA preparations by, for example, adding proteic feeders to promote cross-linking, and strategies for making the pores accessible for macromolecular substrates are critically reviewed and compared. Co-immobilization of two or more enzymes in combi-CLEAs enables the cost-effective use of multiple enzymes in biocatalytic cascade processes and the use of “smart” magnetic CLEAs to separate the immobilized enzyme from other solids has raised the CLEA technology to a new level of industrial and environmental relevance. Magnetic-CLEAs of polysaccharide-converting enzymes, for example, are eminently suitable for use in the conversion of first and second generation biomass.
Collapse
|
55
|
Guajardo N, Schrebler RA, Domínguez de María P. From batch to fed-batch and to continuous packed-bed reactors: Lipase-catalyzed esterifications in low viscous deep-eutectic-solvents with buffer as cosolvent. BIORESOURCE TECHNOLOGY 2019; 273:320-325. [PMID: 30448684 DOI: 10.1016/j.biortech.2018.11.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
This work explores for the first time the use of Deep Eutectic Solvents (DES) with phosphate buffer 100 mM pH 7 as cosolvent (10% v/v) in biocatalytic reactions in fed-batch and packed-bed bioreactors. The lipase-catalyzed esterification of glycerol and benzoic acid is studied, as it involves two substrates with different polarities (for which DES are needed). In the fed-batch bioreactor, the highest conversion (90%) was obtained at a substrate flow rate of 0.01 mL/min. The fed-batch operation increased the conversion by 59% compared to the batch mode. Regarding productivity, semi-continuous and continuous bioreactors showed analogous results. Upon recirculation of the reaction media in the continuous bioreactor, a conversion of 67% was achieved in 7 cycles of operation. The stability of the biocatalyst in the packed-bed bioreactor decreased only 2% in 10 days, demonstrating the attractiveness that low viscous DES-water mixtures with continuous processes may have.
Collapse
Affiliation(s)
- Nadia Guajardo
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile.
| | | | - Pablo Domínguez de María
- Sustainable Momentum, SL. Av. Ansite 3, 4-6, 35011, Las Palmas de Gran Canaria, Canary Is, Spain
| |
Collapse
|
56
|
Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 2019. [DOI: 10.1039/c9cy00415g] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes with its advantages and drawbacks.
Collapse
Affiliation(s)
- Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Redenção
- Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Alicante
- Spain
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- Buenos Aires
- Argentina
| | | |
Collapse
|
57
|
Miran MS, Hoque M, Yasuda T, Tsuzuki S, Ueno K, Watanabe M. Key factor governing the physicochemical properties and extent of proton transfer in protic ionic liquids: ΔpKa or chemical structure? Phys Chem Chem Phys 2019; 21:418-426. [DOI: 10.1039/c8cp06973e] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A series of protic ionic liquids (PILs) are prepared by neutralisation of bis(trifluoromethanesulfonyl)amide acid (H[NTf2]) with various amines, and the properties (especially thermal stability and ionicity) are compared with those of PILs from 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) and various acids.
Collapse
Affiliation(s)
- Muhammed Shah Miran
- Department of Chemistry and Biotechnology
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Mahfuzul Hoque
- Department of Chemistry and Biotechnology
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Tomohiro Yasuda
- Department of Chemistry and Biotechnology
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Seiji Tsuzuki
- Research Centre for Computational Design of Advanced Functional Materials (CD-FMat)
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - Kazuhide Ueno
- Department of Chemistry and Biotechnology
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Masayoshi Watanabe
- Department of Chemistry and Biotechnology
- Yokohama National University
- Yokohama 240-8501
- Japan
| |
Collapse
|
58
|
Xiong Z, Wang M, Guo H, Xu J, Ye J, Zhao J, Zhao L. Ultrasound-assisted deep eutectic solvent as green and efficient media for the extraction of flavonoids from Radix scutellariae. NEW J CHEM 2019. [DOI: 10.1039/c8nj05604h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The DES combined with UAE was first successfully applied in simultaneously extracting five bioactive flavonoids in Radix scutellariae.
Collapse
Affiliation(s)
- Zhili Xiong
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| | - Manman Wang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| | - Huiwen Guo
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| | - Jianfeng Xu
- Panjin Center for Inspection and Testing
- Panjin
- P. R. China
| | - Jing Ye
- Panjin Center for Inspection and Testing
- Panjin
- P. R. China
| | - Jing Zhao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| | - Longshan Zhao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| |
Collapse
|
59
|
|
60
|
Green asymmetric reduction of acetophenone derivatives: Saccharomyces cerevisiae and aqueous natural deep eutectic solvent. Biotechnol Lett 2018; 41:253-262. [DOI: 10.1007/s10529-018-2631-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/28/2018] [Indexed: 11/26/2022]
|
61
|
Boldrini CL, Manfredi N, Perna FM, Capriati V, Abbotto A. Designing Eco-Sustainable Dye-Sensitized Solar Cells by the Use of a Menthol-Based Hydrophobic Eutectic Solvent as an Effective Electrolyte Medium. Chemistry 2018; 24:17656-17659. [DOI: 10.1002/chem.201803668] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Chiara Liliana Boldrini
- Department of Materials Science and Solar Energy Research Center MIB-SOLAR; University of Milano - Bicocca, and INSTM Milano - Bicocca Research Unit; Via Cozzi 55 20125 Milano Italy
| | - Norberto Manfredi
- Department of Materials Science and Solar Energy Research Center MIB-SOLAR; University of Milano - Bicocca, and INSTM Milano - Bicocca Research Unit; Via Cozzi 55 20125 Milano Italy
| | - Filippo Maria Perna
- Dipartimento di Farmacia-Scienze del Farmaco; Università di Bari “Aldo Moro”, Consorzio C.I.N.M.P.I.S.; Via E. Orabona 4 70125 Bari Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco; Università di Bari “Aldo Moro”, Consorzio C.I.N.M.P.I.S.; Via E. Orabona 4 70125 Bari Italy
| | - Alessandro Abbotto
- Department of Materials Science and Solar Energy Research Center MIB-SOLAR; University of Milano - Bicocca, and INSTM Milano - Bicocca Research Unit; Via Cozzi 55 20125 Milano Italy
| |
Collapse
|
62
|
Hümmer M, Kara S, Liese A, Huth I, Schrader J, Holtmann D. Synthesis of (-)-menthol fatty acid esters in and from (-)-menthol and fatty acids – novel concept for lipase catalyzed esterification based on eutectic solvents. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
63
|
García-Álvarez J, Hevia E, Capriati V. The Future of Polar Organometallic Chemistry Written in Bio-Based Solvents and Water. Chemistry 2018; 24:14854-14863. [PMID: 29917274 DOI: 10.1002/chem.201802873] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 12/22/2022]
Abstract
There is a strong imperative to reduce the release of volatile organic compounds (VOCs) into the environment, and many efforts are currently being made to replace conventional hazardous VOCs in favour of safe, green and bio-renewable reaction media that are not based on crude petroleum. Recent ground-breaking studies from a few laboratories worldwide have shown that both Grignard and (functionalised) organolithium reagents, traditionally handled under strict exclusion of air and humidity and in anhydrous VOCs, can smoothly promote both nucleophilic additions to unsaturated substrates and nucleophilic substitutions in water and other bio-based solvents (glycerol, deep eutectic solvents), competitively with protonolysis, at room temperature and under air. The chemistry of polar organometallics in the above protic media is a complex phenomenon influenced by several factors, and understanding its foundational character is stimulating in the perspective of the development of a sustainable organometallic chemistry.
Collapse
Affiliation(s)
- Joaquín García-Álvarez
- Laboratorio de Compuestos Organometálicos y Catálisis, Departamento de Química Orgánica e Inorganica (IUQOEM), Instituto, Universitario de Química Organometálica "Enrique Moles", Facultad de Química, Universidad de Oviedo, 33071, Oviedo, Spain
| | - Eva Hevia
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona, 4, 70125, Bari, Italy
| |
Collapse
|
64
|
Jablonský M, Škulcová A, Malvis A, Šima J. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J Biotechnol 2018; 282:46-66. [DOI: 10.1016/j.jbiotec.2018.06.349] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
|
65
|
Papadopoulou AA, Tzani A, Polydera AC, Katapodis P, Voutsas E, Detsi A, Stamatis H. Green biotransformations catalysed by enzyme-inorganic hybrid nanoflowers in environmentally friendly ionic solvents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26707-26714. [PMID: 28597383 DOI: 10.1007/s11356-017-9271-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Environmentally friendly ionic solvents such as (a) ionic liquids (ILs) formulated with hydroxyl ammonium cations and various carboxylic acid anions and (b) choline chloride or ethyl ammonium chloride-based deep eutectic solvents (DES) were tested as media for hydrolytic and synthetic reactions catalysed by lipase-inorganic hybrid nanoflowers. The nature of ionic solvents used has a significant effect on the hydrolytic and synthetic activity of the immobilized lipase, as well as on its stability and reusability. In choline chloride-based DES, the activity and especially the operational stability of the biocatalyst are significantly increased compared to those observed in buffer, indicating the potential application of these solvents as green media for various biocatalytic processes of industrial interest.
Collapse
Affiliation(s)
- Athena A Papadopoulou
- Department of Biological Applications & Technologies, Laboratory of Biotechnology, University of Ioannina, University Campus, 45110, Ioannina, Greece
| | - Andromachi Tzani
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780, Athens, Greece
| | - Angeliki C Polydera
- Department of Biological Applications & Technologies, Laboratory of Biotechnology, University of Ioannina, University Campus, 45110, Ioannina, Greece
| | - Petros Katapodis
- Department of Biological Applications & Technologies, Laboratory of Biotechnology, University of Ioannina, University Campus, 45110, Ioannina, Greece
| | - Epaminondas Voutsas
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780, Athens, Greece
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780, Athens, Greece
| | - Haralambos Stamatis
- Department of Biological Applications & Technologies, Laboratory of Biotechnology, University of Ioannina, University Campus, 45110, Ioannina, Greece.
| |
Collapse
|
66
|
Guajardo N, Ahumada K, Domínguez de María P, Schrebler RA. Remarkable stability of Candida antarctica lipase B immobilized via cross-linking aggregates (CLEA) in deep eutectic solvents. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1492567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nadia Guajardo
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
| | | | | | | |
Collapse
|
67
|
Paris J, Ríos‐Lombardía N, Morís F, Gröger H, González‐Sabín J. Novel Insights into the Combination of Metal‐ and Biocatalysis: Cascade One‐Pot Synthesis of Enantiomerically Pure Biaryl Alcohols in Deep Eutectic Solvents. ChemCatChem 2018. [DOI: 10.1002/cctc.201800768] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Juraj Paris
- Vivero Ciencias de la SaludSanto Domingo de Guzmán 33011 Oviedo Spain
- Chair of Organic Chemistry I Faculty of ChemistryBielefeld University Universitätsstr. 25 33615 Bielefeld Germany
| | | | - Francisco Morís
- Vivero Ciencias de la SaludSanto Domingo de Guzmán 33011 Oviedo Spain
| | - Harald Gröger
- Chair of Organic Chemistry I Faculty of ChemistryBielefeld University Universitätsstr. 25 33615 Bielefeld Germany
| | | |
Collapse
|
68
|
Alpers T, Muesmann TWT, Temme O, Christoffers J. Perfluorinated 1,2,3- and 1,2,4-Triazolium Ionic Liquids. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Torben Alpers
- Institut für Chemie; Carl von Ossietzky Universität Oldenburg; 26111 Oldenburg Germany
- Ferdinand Eimermacher GmbH & Co. KG; Westring 24 48356 Nordwalde Germany
| | | | - Oliver Temme
- Ferdinand Eimermacher GmbH & Co. KG; Westring 24 48356 Nordwalde Germany
| | - Jens Christoffers
- Institut für Chemie; Carl von Ossietzky Universität Oldenburg; 26111 Oldenburg Germany
| |
Collapse
|
69
|
Albalawi AH, El-Sayed WS, Aljuhani A, Almutairi SM, Rezki N, Aouad MR, Messali M. Microwave-Assisted Synthesis of Some Potential Bioactive Imidazolium-Based Room-Temperature Ionic Liquids. Molecules 2018; 23:molecules23071727. [PMID: 30011951 PMCID: PMC6099736 DOI: 10.3390/molecules23071727] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
An environmentally-friendly and easy synthesis of a series of novel functionalized imidazolium-based ionic liquids (ILs) is described under both the conventional procedure and microwave irradiation. The structures of newly synthesized room-temperature ionic liquids (RTILs) were established by different spectral analyses. All ILs (1–14) were screened for their in vitro antimicrobial activity against a panel of clinically isolated bacteria. The results of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) showed that some of the tested ILs are very promising anti-bacterial agents especially those containing an alkyl chain with a phenyl group (most notably 1, 2, 12, and 13).
Collapse
Affiliation(s)
- Ahmed H Albalawi
- Department of Chemistry, Taibah University, Al-Madina Al-Mounawara 30002, Saudi Arabia.
| | - Wael S El-Sayed
- Department of Biology Department, Taibah University, Al-Madina Al-Mounawara 30002, Saudi Arabia.
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| | - Ateyatallah Aljuhani
- Department of Chemistry, Taibah University, Al-Madina Al-Mounawara 30002, Saudi Arabia.
| | - Saud M Almutairi
- King Abdulaziz City for Science and Technology, Riyadh 11442, P.O. Box 6086, Saudi Arabia.
| | - Nadjet Rezki
- Department of Chemistry, Taibah University, Al-Madina Al-Mounawara 30002, Saudi Arabia.
- Laboratoire de Chimie & Electrochimie des Complexes Métalliques (LCECM) USTO-MB, University of Sciences and Technology Mohamed Boudiaf, BP 1505 Oran, El M nouar, Algeria.
| | - Mohamed R Aouad
- Department of Chemistry, Taibah University, Al-Madina Al-Mounawara 30002, Saudi Arabia.
| | - Mouslim Messali
- Department of Chemistry, Taibah University, Al-Madina Al-Mounawara 30002, Saudi Arabia.
| |
Collapse
|
70
|
Pomelli CS, Chiappe C. A computational study of the effect of ionic liquid anions on Reichardt’s dye solvatochromism. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
71
|
Non-aqueous homogenous biocatalytic conversion of polysaccharides in ionic liquids using chemically modified glucosidase. Nat Chem 2018; 10:859-865. [DOI: 10.1038/s41557-018-0088-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/23/2018] [Indexed: 11/08/2022]
|
72
|
Wan R, Xia X, Wang P, Huo W, Dong H, Chang Z. Toxicity of imidazoles ionic liquid [C 16mim]Cl to HepG2 cells. Toxicol In Vitro 2018; 52:1-7. [PMID: 29842889 DOI: 10.1016/j.tiv.2018.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/09/2023]
Abstract
Ionic liquids have garnered increasing attention due to their capacity for low vapor pressure, lack of flammability, designability, good stability, and as a asubstitute for conventional organic solvents. However, their toxicity to various organisms has caused growing concern in recent years. Our study aims to evaluate the toxicity of 1-hexadecyl-3-methylimidazolium chloride ([C16min]Cl) to human hepatocellular carcinoma (HepG2) cells, including cell viability, genotoxicity, oxidative stress, apoptosis, cell cycle, and apoptosis-related gene expression. Our results with HepG2 cells suggested that [C16min]Cl inhibited cellular growth, decreased cell viability, induced DNA damage and apoptosis, inhibited superoxide dismutase, decreased glutathione content, increased cellular malondialdehyde levels as well as altering the cell cycle. Moreover, the induction of [C16min]Cl altered the transcription of p53, Bax and Bcl-2, which are critical for controlling cell cycles progression and death, which suggests its involvement with cytotoxicity and apoptosis induced by [C16min]Cl in HepG2 cells. Taken together, these results revealed that [C16min]Cl exerted genotoxicity, oxidative stress and induced apoptosis in HepG2 cells; hence, it is not a healthy solvent.
Collapse
Affiliation(s)
- Ruyan Wan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Peijin Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Weiran Huo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Hui Dong
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| |
Collapse
|
73
|
Recent developments in biocatalysis in multiphasic ionic liquid reaction systems. Biophys Rev 2018; 10:901-910. [PMID: 29704212 DOI: 10.1007/s12551-018-0423-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/08/2018] [Indexed: 01/27/2023] Open
Abstract
Ionic liquids are well known and frequently used 'designer solvents' for biocatalytic reactions. This review highlights recent achievements in the field of multiphasic ionic liquid-based reaction concepts. It covers classical biphasic systems including supported ionic liquid phases, thermo-regulated multi-component solvent systems (TMS) and polymerized ionic liquids. These powerful concepts combine unique reaction conditions with a high potential for future applications on a laboratory and industrial scale. The presence of a multiphasic system simplifies downstream processing due to the distribution of the catalyst and reactants in different phases.
Collapse
|
74
|
Abstract
In this tutorial review we describe a holistic approach to the invention, development and optimisation of biotransformations utilising isolated enzymes. Increasing attention to applied biocatalysis is motivated by its numerous economic and environmental benefits. Biocatalysis engineering concerns the development of enzymatic systems as a whole, which entails engineering its different components: substrate engineering, medium engineering, protein (enzyme) engineering, biocatalyst (formulation) engineering, biocatalytic cascade engineering and reactor engineering.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | | |
Collapse
|
75
|
Klauke K, Zaitsau DH, Bülow M, He L, Klopotowski M, Knedel TO, Barthel J, Held C, Verevkin SP, Janiak C. Thermodynamic properties of selenoether-functionalized ionic liquids and their use for the synthesis of zinc selenide nanoparticles. Dalton Trans 2018; 47:5083-5097. [PMID: 29561056 DOI: 10.1039/c8dt00233a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Three selenoether-functionalized ionic liquids (ILs) of N-[(phenylseleno)methylene]pyridinium (1), N-(methyl)- (2) and N-(butyl)-N'-[(phenylseleno)methylene]imidazolium (3) with bis(trifluoromethanesulfonyl)imide anions ([NTf2]) were prepared from pyridine, N-methylimidazole and N-butylimidazole with in situ obtained phenylselenomethyl chloride, followed by ion exchange to give the desired compounds. The crystal structures of the bromide and tetraphenylborate salts of the above cations (1-Br, 2-BPh4 and 3-BPh4) confirm the formation of the desired cations and indicate a multitude of different supramolecular interactions besides the dominating Coulomb interactions between the cations and anions. The vaporization enthalpies of the synthesized [NTf2]-containing ILs were determined by means of a quartz-crystal microbalance method (QCM) and their densities were measured with an oscillating U-tube. These thermodynamic data have been used to develop a method for assessment of miscibility of conventional solvents in the selenium-containing ILs by using Hildebrandt solubility parameters, as well as for modeling with the electrolyte perturbed-chain statistical associating fluid theory (ePC-SAFT) method. Furthermore, structure-property relations between selenoether-functionalized and similarly shaped corresponding aryl-substituted imidazolium- and pyridinium-based ILs were analyzed and showed that the contribution of the selenium moiety to the enthalpy of vaporization of an IL is equal to the contribution of a methylene (CH2) group. An incremental approach to predict vaporization enthalpies of ILs by a group contribution method has been developed. The reaction of these ILs with zinc acetate dihydrate under microwave irradiation led to ZnSe nanoparticles of an average diameter between 4 and 10 nm, depending on the reaction conditions.
Collapse
Affiliation(s)
- Karsten Klauke
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Dzmitry H Zaitsau
- Department of Physical Chemistry, Universität Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany.
| | - Mark Bülow
- Technische Universität Dortmund, Emil-Figge-Str. 70, 44227 Dortmund, Germany.
| | - Li He
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Maximilian Klopotowski
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Tim-Oliver Knedel
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Juri Barthel
- Gemeinschaftslabor für Elektronenmikroskopie RWTH-Aachen, Ernst-Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Christoph Held
- Technische Universität Dortmund, Emil-Figge-Str. 70, 44227 Dortmund, Germany.
| | - Sergey P Verevkin
- Department of Physical Chemistry, Universität Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany.
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
76
|
Rodrigues RDP, de Castro FC, Santiago-Aguiar RSD, Rocha MVP. Ultrasound-assisted extraction of phycobiliproteins from Spirulina (Arthrospira) platensis using protic ionic liquids as solvent. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
77
|
Panić M, Elenkov MM, Roje M, Bubalo MC, Redovniković IR. Plant-mediated stereoselective biotransformations in natural deep eutectic solvents. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
78
|
|
79
|
Reid JESJ, Bernardes CES, Agapito F, Martins F, Shimizu S, Minas da Piedade ME, Walker AJ. Structure-property relationships in protic ionic liquids: a study of solvent-solvent and solvent-solute interactions. Phys Chem Chem Phys 2018; 19:28133-28138. [PMID: 29022017 DOI: 10.1039/c7cp05076c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ionic nature of a functionalized protic ionic liquid cannot be rationalized simply through the differences in aqueous proton dissociation constants between the acid precursor and the conjugate acid of the base precursor. The extent of proton transfer, i.e. the equilibrium ionicity, of a tertiary ammonium acetate protic ionic liquid can be significantly increased by introducing an hydroxyl functional group on the cation, compared to the alkyl or amino-functionalized analogues. This increase in apparent ionic nature correlates well with variations in solvent-solute and solvent-solvent interaction parameters, as well as with physicochemical properties such as viscosity.
Collapse
Affiliation(s)
- Joshua E S J Reid
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | | | | | | | | | | | | |
Collapse
|
80
|
Hou XD, Li AL, Lin KP, Wang YY, Kuang ZY, Cao SL. Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment. BIORESOURCE TECHNOLOGY 2018; 249:261-267. [PMID: 29049985 DOI: 10.1016/j.biortech.2017.10.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 05/05/2023]
Abstract
Rice straw pretreatment mediated by choline chloride (ChCl) or lactic acid (Lac) sequences deep eutectic solvents (DESs) was investigated in this work. Hydrogen bond acceptors (HBAs) and hydrogen bond donors (HBDs) proved to be both important for DESs pretreatment efficiency. DESs containing lots of hydroxyl or amino groups with a high intermolecular hydrogen-bond (H-bond) strength exhibited weak biomass deconstruction abilities. The presence of strong electron-withdrawing groups in DESs was benefit for xylan removal, thus furnishing higher cellulose digestibility. The relationships between the properties of DESs, xylan removal and cellulose digestibility of pretreated biomass were established. It was found that xylan removal was negatively correlated with the pKa values of HBDs, and the enzymatic cellulose digestibility of the residues was linearly and positively related to xylan removal instead of delignification. These results provide a preliminary reference for rational design of novel DESs for biomass pretreatment.
Collapse
Affiliation(s)
- Xue-Dan Hou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Ao-Lin Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Kai-Peng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan-Yuan Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi-Yin Kuang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shi-Lin Cao
- Department of Food Science, Foshan University, Foshan 528231, China
| |
Collapse
|
81
|
Abstract
Biocatalytic processes are increasingly playing a key role in the development of sustainable asymmetric syntheses, which are central to pharmaceutical companies for the production of chiral enantiopure drugs. This work describes a simple and economically viable chemoenzymatic process for the production of (S)-rivastigmine, which is an important drug for the treatment of mild to moderate dementia of the Alzheimer’s type. The described protocol involves the R-regioselective bioreduction of an aromatic ketone by Lactobacillus reuteri DSM 20016 whole cells in phosphate buffered saline (PBS) (37 °C, 24 h) as a key step. Biocatalytic performance of baker’s yeast whole cells in water and in aqueous eutectic mixtures have been evaluated and discussed as well. The route is scalable, environmentally friendly, and the target drug is obtained via four steps in overall 78% yield and 98% ee.
Collapse
|
82
|
Messa F, Perrone S, Capua M, Tolomeo F, Troisi L, Capriati V, Salomone A. Towards a sustainable synthesis of amides: chemoselective palladium-catalysed aminocarbonylation of aryl iodides in deep eutectic solvents. Chem Commun (Camb) 2018; 54:8100-8103. [DOI: 10.1039/c8cc03858a] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Pd-catalysed aminocarbonylation of aryl iodides has been first achieved in environmentally responsible and recyclable deep eutectic solvents.
Collapse
Affiliation(s)
- Francesco Messa
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali
- Università del Salento
- Lecce
- Italy
| | - Serena Perrone
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali
- Università del Salento
- Lecce
- Italy
| | - Martina Capua
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali
- Università del Salento
- Lecce
- Italy
| | - Francesco Tolomeo
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali
- Università del Salento
- Lecce
- Italy
| | - Luigino Troisi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali
- Università del Salento
- Lecce
- Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco
- Università degli Studi di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Antonio Salomone
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali
- Università del Salento
- Lecce
- Italy
| |
Collapse
|
83
|
Activation of Lipase-Catalyzed Reactions Using Ionic Liquids for Organic Synthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 168:79-104. [PMID: 29744541 DOI: 10.1007/10_2018_62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of ionic liquids to replace organic or aqueous solvents in biocatalysis processes has recently received great attention, and much progress has been made in this area; the lipase-catalyzed reactions are the most successful. Recent developments in the application of ionic liquids as solvents in lipase-catalyzed reactions for organic synthesis are reviewed, focusing on the ionic liquid mediated activation method of lipase-catalyzed reactions.
Collapse
|
84
|
Prasad S, Roy I. Obtaining a high activity subtilisin preparation by controlled thermal stress in n-octane. Anal Biochem 2017; 534:86-90. [PMID: 28732585 DOI: 10.1016/j.ab.2017.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
The use of enzymes in organic solvents has considerably widened their repertoire of applications. Such low water containing media also offer the possibility of carrying out enzymatic reactions at higher temperatures and enhancing reaction yields. The utility of such preparations is limited by the damage caused to the protein structure during freeze-drying. This work investigates the result of exposing the proteolytic enzyme subtilisin to high temperature in low water containing n-octane on its activity in aqueous and non-aqueous media. Exposing subtilisin at 90 °C for 5 h led to 18-fold improvement in its transesterification activity even at the normal assay temperature (37 °C) when compared with the untreated enzyme. The use of n-octane as the reaction medium was important as it helped to retain the three-dimensional architecture of the enzyme and should be considered while designing strategies for obtaining high activity preparations of other enzymes. Structural analysis using differential scanning fluorimetry showed that the enzyme lost its structure after heating in aqueous medium but retained it when heated in organic solvent. The simplicity and general applicability of the strategy should make it useful for obtaining highly active preparations of other enzymes as well.
Collapse
Affiliation(s)
- Shivcharan Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
85
|
Affiliation(s)
- Roger A. Sheldon
- Molecular
Sciences Institute, School of Chemistry, University of Witwatersrand, Johannesburg, PO Wits 2050, South Africa
- Department
of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - John M. Woodley
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
86
|
García C, Hoyos P, Hernáiz MJ. Enzymatic synthesis of carbohydrates and glycoconjugates using lipases and glycosidases in green solvents. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1349760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Cecilia García
- Organic and Pharmaceutical Chemistry Department, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain
| | - Pilar Hoyos
- Organic and Pharmaceutical Chemistry Department, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain
| | - María J. Hernáiz
- Organic and Pharmaceutical Chemistry Department, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
87
|
Alpers T, Schmidtmann M, Muesmann TWT, Temme O, Christoffers J. Perfluorinated Pyridinium and Imidazolium Ionic Liquids. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Torben Alpers
- Institut für Chemie; Carl von Ossietzky Universität Oldenburg; 26111 Oldenburg Germany
- Ferdinand Eimermacher GmbH & Co. KG; Westring 24 48356 Nordwalde Germany
| | - Marc Schmidtmann
- Institut für Chemie; Carl von Ossietzky Universität Oldenburg; 26111 Oldenburg Germany
| | | | - Oliver Temme
- Ferdinand Eimermacher GmbH & Co. KG; Westring 24 48356 Nordwalde Germany
| | - Jens Christoffers
- Institut für Chemie; Carl von Ossietzky Universität Oldenburg; 26111 Oldenburg Germany
| |
Collapse
|
88
|
Hou XD, Feng GJ, Ye M, Huang CM, Zhang Y. Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment. BIORESOURCE TECHNOLOGY 2017; 238:139-146. [PMID: 28433901 DOI: 10.1016/j.biortech.2017.04.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
A two-stage deep eutectic solvents (DESs) treatment was shown to be an effective method for improving the utilization of certain DESs, and the specific order of pretreatment, such as malic acid/proline (MP) or choline chloride/oxalic acid (CO) during the first stage and choline chloride/urea (CU) during the second stage, resulted in better performance for enhancing the sugar yield due to the synergistic effect of the two DESs on biomass fractionation. Moreover, the presence of water during these processes could balance the loss of components by tuning the pretreatment severity, thus ensuring higher sugar yields. By eliminating the washing step after the first stage treatment, enhanced cellulose recovery and glucose yield were achieved for the CO-CU pretreatment in the presence of 5% water, and a simpler process was established with a glucose yield of 90.2% after a 3-h treatment at 100°C.
Collapse
Affiliation(s)
- Xue-Dan Hou
- College of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guo-Jian Feng
- College of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Mei Ye
- College of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao-Mei Huang
- College of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Zhang
- College of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
89
|
Affiliation(s)
- Toshiyuki Itoh
- Department
of Chemistry and Biotechnology, Graduate School of Engineering and ‡Center for Research
on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| |
Collapse
|
90
|
Xu P, Zheng GW, Zong MH, Li N, Lou WY. Recent progress on deep eutectic solvents in biocatalysis. BIORESOUR BIOPROCESS 2017; 4:34. [PMID: 28794956 PMCID: PMC5522511 DOI: 10.1186/s40643-017-0165-5] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/16/2017] [Indexed: 01/19/2023] Open
Abstract
Deep eutectic solvents (DESs) are eutectic mixtures of salts and hydrogen bond donors with melting points low enough to be used as solvents. DESs have proved to be a good alternative to traditional organic solvents and ionic liquids (ILs) in many biocatalytic processes. Apart from the benign characteristics similar to those of ILs (e.g., low volatility, low inflammability and low melting point), DESs have their unique merits of easy preparation and low cost owing to their renewable and available raw materials. To better apply such solvents in green and sustainable chemistry, this review firstly describes some basic properties, mainly the toxicity and biodegradability of DESs. Secondly, it presents several valuable applications of DES as solvent/co-solvent in biocatalytic reactions, such as lipase-catalyzed transesterification and ester hydrolysis reactions. The roles, serving as extractive reagent for an enzymatic product and pretreatment solvent of enzymatic biomass hydrolysis, are also discussed. Further understanding how DESs affect biocatalytic reaction will facilitate the design of novel solvents and contribute to the discovery of new reactions in these solvents.
Collapse
Affiliation(s)
- Pei Xu
- Laboratory of Applied Biocatalysis, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510640 China.,State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510640 China.,State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Ning Li
- Laboratory of Applied Biocatalysis, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510640 China.,State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 China
| |
Collapse
|
91
|
Krauss U, Jäger VD, Diener M, Pohl M, Jaeger KE. Catalytically-active inclusion bodies-Carrier-free protein immobilizates for application in biotechnology and biomedicine. J Biotechnol 2017; 258:136-147. [PMID: 28465211 DOI: 10.1016/j.jbiotec.2017.04.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 02/08/2023]
Abstract
Bacterial inclusion bodies (IBs) consist of unfolded protein aggregates and represent inactive waste products often accumulating during heterologous overexpression of recombinant genes in Escherichia coli. This general misconception has been challenged in recent years by the discovery that IBs, apart from misfolded polypeptides, can also contain substantial amounts of active and thus correctly or native-like folded protein. The corresponding catalytically-active inclusion bodies (CatIBs) can be regarded as a biologically-active sub-micrometer sized biomaterial or naturally-produced carrier-free protein immobilizate. Fusion of polypeptide (protein) tags can induce CatIB formation paving the way towards the wider application of CatIBs in synthetic chemistry, biocatalysis and biomedicine. In the present review we summarize the history of CatIBs, present the molecular-biological tools that are available to induce CatIB formation, and highlight potential lines of application. In the second part findings regarding the formation, architecture, and structure of (Cat)IBs are summarized. Finally, an overview is presented about the available bioinformatic tools that potentially allow for the prediction of aggregation and thus (Cat)IB formation. This review aims at demonstrating the potential of CatIBs for biotechnology and hopefully contributes to a wider acceptance of this promising, yet not widely utilized, protein preparation.
Collapse
Affiliation(s)
- Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Vera D Jäger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Martin Diener
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Martina Pohl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany; IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| |
Collapse
|
92
|
Toulouse JL, Abraham SMJ, Kadnikova N, Bastien D, Gauchot V, Schmitzer AR, Pelletier JN. Investigation of Classical Organic and Ionic Liquid Cosolvents for Early-Stage Screening in Fragment-Based Inhibitor Design with Unrelated Bacterial and Human Dihydrofolate Reductases. Assay Drug Dev Technol 2017; 15:141-153. [PMID: 28426233 DOI: 10.1089/adt.2016.768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Drug design by methods such as fragment screening requires effective solubilization of millimolar concentrations of small organic compounds while maintaining the properties of the biological target. We investigate four organic solvents and three 1-butyl-3-methylimidazolium (BMIm)-based ionic liquids (ILs) as cosolvents to establish conditions for screening two structurally unrelated dihydrofolate reductases (DHFRs) that are prime drug targets. Moderate concentrations (10%-15%) of cosolvents had little effect on inhibition of the microbial type II R67 DHFR and of human DHFR (hDHFR), while higher concentrations of organic cosolvents generally decreased activity of both DHFRs. In contrast, a specific IL conserved the activity of one DHFR, while severely reducing the activity of the other, and vice versa, illustrating the differing effect of ILs on distinct protein folds. Most of the cosolvents investigated preserved the fold of R67 DHFR and had little effect on binding of the cofactor NADPH, but reduced the productive affinity for its substrate. In contrast, cosolvents resulted in modest structural destabilization of hDHFR with little effect on productive affinity. We conclude that the organic cosolvents, methanol, dimethylformamide, and dimethylsulfoxide, offer the most balanced conditions for early-stage compound screening as they maintain sufficient biological activity of both DHFRs while allowing for compound dissolution in the millimolar range. However, IL cosolvents showed poor capacity to solubilize organic compounds at millimolar concentrations, mitigating their utility in early-stage screening. Nonetheless, ILs could provide an alternative to classical organic cosolvents when low concentrations of inhibitors are used, as when characterizing higher affinity inhibitors.
Collapse
Affiliation(s)
- Jacynthe L Toulouse
- 1 Département de Biochimie, Université de Montréal , Québec, Canada .,2 CGCC, The Center in Green Chemistry and Catalysis , Montréal, Québec, Canada .,3 PROTEO , The Québec Network for Protein Function, Structure and Engineering, Québec, Canada
| | - Sarah M J Abraham
- 2 CGCC, The Center in Green Chemistry and Catalysis , Montréal, Québec, Canada .,3 PROTEO , The Québec Network for Protein Function, Structure and Engineering, Québec, Canada .,4 Département de Chimie, Université de Montréal , Québec, Canada
| | - Natalia Kadnikova
- 2 CGCC, The Center in Green Chemistry and Catalysis , Montréal, Québec, Canada .,3 PROTEO , The Québec Network for Protein Function, Structure and Engineering, Québec, Canada .,4 Département de Chimie, Université de Montréal , Québec, Canada
| | - Dominic Bastien
- 1 Département de Biochimie, Université de Montréal , Québec, Canada .,2 CGCC, The Center in Green Chemistry and Catalysis , Montréal, Québec, Canada .,3 PROTEO , The Québec Network for Protein Function, Structure and Engineering, Québec, Canada
| | - Vincent Gauchot
- 2 CGCC, The Center in Green Chemistry and Catalysis , Montréal, Québec, Canada .,4 Département de Chimie, Université de Montréal , Québec, Canada
| | - Andreea R Schmitzer
- 2 CGCC, The Center in Green Chemistry and Catalysis , Montréal, Québec, Canada .,4 Département de Chimie, Université de Montréal , Québec, Canada
| | - Joelle N Pelletier
- 1 Département de Biochimie, Université de Montréal , Québec, Canada .,2 CGCC, The Center in Green Chemistry and Catalysis , Montréal, Québec, Canada .,3 PROTEO , The Québec Network for Protein Function, Structure and Engineering, Québec, Canada .,4 Département de Chimie, Université de Montréal , Québec, Canada
| |
Collapse
|
93
|
Guajardo N, Domínguez de María P, Ahumada K, Schrebler RA, Ramírez-Tagle R, Crespo FA, Carlesi C. Water as Cosolvent: Nonviscous Deep Eutectic Solvents for Efficient Lipase-Catalyzed Esterifications. ChemCatChem 2017. [DOI: 10.1002/cctc.201601575] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nadia Guajardo
- Facultad de Ingeniería, Ciencia y Tecnología; Universidad Bernardo O'Higgins; Avda. Viel 1497 Santiago Chile
- IONCHEM Ltda; Avda. Diego Portales 925 301 Viña del Mar Chile
| | | | | | | | - Rodrigo Ramírez-Tagle
- Facultad de Ingeniería, Ciencia y Tecnología; Universidad Bernardo O'Higgins; Avda. Viel 1497 Santiago Chile
| | - Fernando A. Crespo
- Facultad de Ingeniería, Ciencia y Tecnología; Universidad Bernardo O'Higgins; Avda. Viel 1497 Santiago Chile
| | - Carlos Carlesi
- Escuela de Ingeniería Química; Pontificia Universidad Católica de Valparaíso; Avda. Brasil 2162 Valparaíso Chile
| |
Collapse
|
94
|
Reid JESJ, Agapito F, Bernardes CES, Martins F, Walker AJ, Shimizu S, Minas da Piedade ME. Structure–property relationships in protic ionic liquids: a thermochemical study. Phys Chem Chem Phys 2017; 19:19928-19936. [DOI: 10.1039/c7cp02230a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How does cation functionality influence the strength of intermolecular interactions in protic ionic liquids (PILs)? Quantifying the energetics of PILs can be an invaluable tool to answer this fundamental question.
Collapse
Affiliation(s)
- Joshua E. S. J. Reid
- York Structural Biology Laboratory
- Department of Chemistry
- University of York
- Heslington
- York
| | - Filipe Agapito
- Centro de Química e Bioquímica e Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | - Carlos E. S. Bernardes
- Centro de Química e Bioquímica e Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | - Filomena Martins
- Centro de Química e Bioquímica e Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | | | - Seishi Shimizu
- York Structural Biology Laboratory
- Department of Chemistry
- University of York
- Heslington
- York
| | - Manuel E. Minas da Piedade
- Centro de Química e Bioquímica e Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| |
Collapse
|
95
|
Sadaf A, Khare SK. Efficacy of ionic liquids on the growth and simultaneous xylanase production by Sporotrichum thermophile: membrane integrity, composition and morphological investigation. RSC Adv 2017. [DOI: 10.1039/c6ra27979a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ionic liquids (ILs) are emerging as promising solvent systems for carrying out various biochemical reactions.
Collapse
Affiliation(s)
- Ayesha Sadaf
- Enzyme and Microbial Biochemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology
- New Delhi 110016
- India
| | - S. K. Khare
- Enzyme and Microbial Biochemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology
- New Delhi 110016
- India
| |
Collapse
|
96
|
Vitale P, Abbinante VM, Perna FM, Salomone A, Cardellicchio C, Capriati V. Unveiling the Hidden Performance of Whole Cells in the Asymmetric Bioreduction of Aryl-containing Ketones in Aqueous Deep Eutectic Solvents. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201601064] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “Aldo Moro”, Consorzio C.I.N.M.P.I.S.; Via E. Orabona, 4, I- 70125 Bari Italy
| | - Vincenzo Mirco Abbinante
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “Aldo Moro”, Consorzio C.I.N.M.P.I.S.; Via E. Orabona, 4, I- 70125 Bari Italy
| | - Filippo Maria Perna
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “Aldo Moro”, Consorzio C.I.N.M.P.I.S.; Via E. Orabona, 4, I- 70125 Bari Italy
| | - Antonio Salomone
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; Università del Salento; Prov.le Lecce-Monteroni I-73100 Lecce Italy
| | | | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “Aldo Moro”, Consorzio C.I.N.M.P.I.S.; Via E. Orabona, 4, I- 70125 Bari Italy
| |
Collapse
|
97
|
|
98
|
Ma Y, Du Z, Xia F, Ma J, Gao J, Xu J. Mechanistic studies on the VO(acac)2-catalyzed oxidative cleavage of lignin model compounds in acetic acid. RSC Adv 2016. [DOI: 10.1039/c6ra23486k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Selective aerobic oxidation has provided a promising approach for breaking lignin into smaller aromatics. Here, the reaction pathway of VO(acac)2-catalyzed oxidation of lignin model 2-phenoxy-1-phenylethanol in acetic acid was studied.
Collapse
Affiliation(s)
- Yangyang Ma
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Zhongtian Du
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin 124221
- P. R. China
| | - Fei Xia
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Jiping Ma
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Jin Gao
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Jie Xu
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| |
Collapse
|