51
|
Melland H, Carr EM, Gordon SL. Disorders of synaptic vesicle fusion machinery. J Neurochem 2020; 157:130-164. [PMID: 32916768 DOI: 10.1111/jnc.15181] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The revolution in genetic technology has ushered in a new age for our understanding of the underlying causes of neurodevelopmental, neuromuscular and neurodegenerative disorders, revealing that the presynaptic machinery governing synaptic vesicle fusion is compromised in many of these neurological disorders. This builds upon decades of research showing that disturbance to neurotransmitter release via toxins can cause acute neurological dysfunction. In this review, we focus on disorders of synaptic vesicle fusion caused either by toxic insult to the presynapse or alterations to genes encoding the key proteins that control and regulate fusion: the SNARE proteins (synaptobrevin, syntaxin-1 and SNAP-25), Munc18, Munc13, synaptotagmin, complexin, CSPα, α-synuclein, PRRT2 and tomosyn. We discuss the roles of these proteins and the cellular and molecular mechanisms underpinning neurological deficits in these disorders.
Collapse
Affiliation(s)
- Holly Melland
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Elysa M Carr
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Sarah L Gordon
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
52
|
Watanabe Y, Taguchi K, Tanaka M. Ubiquitin, Autophagy and Neurodegenerative Diseases. Cells 2020; 9:cells9092022. [PMID: 32887381 PMCID: PMC7563958 DOI: 10.3390/cells9092022] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Ubiquitin signals play various roles in proteolytic and non-proteolytic functions. Ubiquitin signals are recognized as targets of the ubiquitin–proteasome system and the autophagy–lysosome pathway. In autophagy, ubiquitin signals are required for selective incorporation of cargoes, such as proteins, organelles, and microbial invaders, into autophagosomes. Autophagy receptors possessing an LC3-binding domain and a ubiquitin binding domain are involved in this process. Autophagy activity can decline as a result of genetic variation, aging, or lifestyle, resulting in the onset of various neurodegenerative diseases. This review summarizes the selective autophagy of neurodegenerative disease-associated protein aggregates via autophagy receptors and discusses its therapeutic application for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoshihisa Watanabe
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Correspondence: (Y.W.); (M.T.)
| | - Katsutoshi Taguchi
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
- Correspondence: (Y.W.); (M.T.)
| |
Collapse
|
53
|
Kuhlmann N, Milnerwood AJ. A Critical LRRK at the Synapse? The Neurobiological Function and Pathophysiological Dysfunction of LRRK2. Front Mol Neurosci 2020; 13:153. [PMID: 32973447 PMCID: PMC7482583 DOI: 10.3389/fnmol.2020.00153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Since the discovery of LRRK2 mutations causal to Parkinson's disease (PD) in the early 2000s, the LRRK2 protein has been implicated in a plethora of cellular processes in which pathogenesis could occur, yet its physiological function remains elusive. The development of genetic models of LRRK2 PD has helped identify the etiological and pathophysiological underpinnings of the disease, and may identify early points of intervention. An important role for LRRK2 in synaptic function has emerged in recent years, which links LRRK2 to other genetic forms of PD, most notably those caused by mutations in the synaptic protein α-synuclein. This point of convergence may provide useful clues as to what drives dysfunction in the basal ganglia circuitry and eventual death of substantia nigra (SN) neurons. Here, we discuss the evolution and current state of the literature placing LRRK2 at the synapse, through the lens of knock-out, overexpression, and knock-in animal models. We hope that a deeper understanding of LRRK2 neurobiology, at the synapse and beyond, will aid the eventual development of neuroprotective interventions for PD, and the advancement of useful treatments in the interim.
Collapse
Affiliation(s)
- Naila Kuhlmann
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Austen J Milnerwood
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
54
|
Snca-GFP Knock-In Mice Reflect Patterns of Endogenous Expression and Pathological Seeding. eNeuro 2020; 7:ENEURO.0007-20.2020. [PMID: 32788297 PMCID: PMC7470929 DOI: 10.1523/eneuro.0007-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 12/21/2022] Open
Abstract
α-Synuclein (aSyn) participates in synaptic vesicle trafficking and synaptic transmission but its misfolding is also strongly implicated in Parkinson’s disease (PD) and other neurodegenerative synucleinopathies in which misfolded aSyn accumulates in different regions of the central and peripheral nervous systems. Although increased aSyn expression levels or altered aggregation propensities likely underlie familial PD with SNCA amplification or mutations, the majority of synucleinopathies arise sporadically, indicating that disease can develop under normal levels of wild-type (wt) aSyn. We report here the development and characterization of a mouse line expressing an aSyn-green fluorescence protein (GFP) fusion protein under the control of native Snca regulatory elements. Regional and subcellular localization of the aSyn-GFP fusion protein in brains and peripheral tissues of knock-in (KI) mice are indistinguishable from that of wt littermates. Importantly, similar to wt aSyn, aSyn-GFP disperses from synaptic vesicles on membrane depolarization, indicating that the tag does not alter normal aSyn dynamics at synapses. In addition, intracerebral injection of aSyn pre-formed fibrils into KI mice induced the formation of aSyn-GFP inclusions with a distribution pattern similar to that observed in wt mice, albeit with attenuated kinetics because of the GFP-tag. We anticipate that this new mouse model will facilitate in vitro and in vivo studies requiring in situ detection of endogenous aSyn, thereby providing new insights into aSyn function in health and disease.
Collapse
|
55
|
Söderbom G, Zeng BY. The NLRP3 inflammasome as a bridge between neuro-inflammation in metabolic and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:345-391. [PMID: 32739011 DOI: 10.1016/bs.irn.2020.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Evidence increasingly suggests that type 2 diabetes mellitus (T2DM) is a risk factor for neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD). These diseases share many pathological processes, including oxidative stress, local inflammation/neuroinflammation and chronic, low-grade (systemic) inflammation, which are exacerbated by aging, a common risk factor for T2DM and NDDs. Here, we focus on the link between chronic inflammation driven by peripheral metabolic disease and how this may impact neurodegeneration in AD and PD. We review the relationship between these common pathological processes in AD and PD from the perspective of the "pro-inflammatory" signaling of the nucleotide-binding oligomerization domain (NOD)-, leucine-rich repeat- (LRR)-, and pyrin domain-containing protein 3 (NLRP3) inflammasome complex. Since the need for effective disease-modifying therapies in T2DM, AD and PD is significant, the relationship between these diseases is important as a positive clinical impact on one may benefit the others. We briefly consider how novel strategies may target neuro-inflammation and provide potential therapies for AD and PD.
Collapse
Affiliation(s)
| | - Bai-Yun Zeng
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
56
|
Qu S, Meng X, Liu Y, Zhang X, Zhang Y. Ginsenoside Rb1 prevents MPTP-induced changes in hippocampal memory via regulation of the α-synuclein/PSD-95 pathway. Aging (Albany NY) 2020; 11:1934-1964. [PMID: 30958793 PMCID: PMC6503885 DOI: 10.18632/aging.101884] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
Memory deficiency is a common non-motor symptom of Parkinson’s disease (PD), and conventionally, α-synuclein is considered to be an important biomarker for both motor and cognitive characteristics attributed to PD. However, the role of physiological α-synuclein in cognitive impairment remains undetermined. Ginsenoside Rb1 has been shown to protect dopaminergic neurons (DA) from death and inhibit α-synuclein fibrillation and toxicity in vitro. Our recent study also revealed that ginsenoside Rb1 ameliorates motor deficits and prevents DA neuron death via upregulating glutamate transporter GLT-1 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Whether Rb1 can improve memory deficiency and the underlying mechanism is still unknown. In this study, we found that Rb1 can prevent the spatial learning and memory deficits, increase long-term potentiation (LTP) and hippocampal glutamatergic transmission in the MPTP mouse model. The underlying neuroprotective mechanism of Rb1-improved synaptic plasticity involves Rb1 promoting hippocampal CA3 α-synuclein expression, restoring the glutamate in the CA3-schaffer collateral-CA1 pathway, and sequentially increasing postsynaptic density-95 (PSD-95) expression. Thus, we provide evidence that Rb1 modulates memory function, synaptic plasticity, and excitatory transmission via the trans-synaptic α-synuclein/PSD-95 pathway. Our findings suggest that Rb1 may serve as a functional drug in treating the memory deficiency in PD.
Collapse
Affiliation(s)
- Shaogang Qu
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Xingjun Meng
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Yan Liu
- Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunlong Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Shenzhen Research Institute of Xiamen University, Shenzhen, China
| |
Collapse
|
57
|
Griesser E, Wyatt H, Ten Have S, Stierstorfer B, Lenter M, Lamond AI. Quantitative Profiling of the Human Substantia Nigra Proteome from Laser-capture Microdissected FFPE Tissue. Mol Cell Proteomics 2020; 19:839-851. [PMID: 32132230 PMCID: PMC7196589 DOI: 10.1074/mcp.ra119.001889] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/19/2020] [Indexed: 11/10/2022] Open
Abstract
Laser-capture microdissection (LCM) allows the visualization and isolation of morphologically distinct subpopulations of cells from heterogeneous tissue specimens. In combination with formalin-fixed and paraffin-embedded (FFPE) tissue it provides a powerful tool for retrospective and clinically relevant studies of tissue proteins in a healthy and diseased context. We first optimized the protocol for efficient LCM analysis of FFPE tissue specimens. The use of SDS containing extraction buffer in combination with the single-pot solid-phase-enhanced sample preparation (SP3) digest method gave the best results regarding protein yield and protein/peptide identifications. Microdissected FFPE human substantia nigra tissue samples (∼3,000 cells) were then analyzed, using tandem mass tag (TMT) labeling and LC-MS/MS, resulting in the quantification of >5,600 protein groups. Nigral proteins were classified and analyzed by abundance, showing an enrichment of extracellular exosome and neuron-specific gene ontology (GO) terms among the higher abundance proteins. Comparison of microdissected samples with intact tissue sections, using a label-free shotgun approach, revealed an enrichment of neuronal cell type markers, such as tyrosine hydroxylase and alpha-synuclein, as well as proteins annotated with neuron-specific GO terms. Overall, this study provides a detailed protocol for laser-capture proteomics using FFPE tissue and demonstrates the efficiency of LCM analysis of distinct cell subpopulations for proteomic analysis using low sample amounts.
Collapse
Affiliation(s)
- Eva Griesser
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom; Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Hannah Wyatt
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Sara Ten Have
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Birgit Stierstorfer
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Martin Lenter
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom.
| |
Collapse
|
58
|
Ujcikova H, Cechova K, Jagr M, Roubalova L, Vosahlikova M, Svoboda P. Proteomic analysis of protein composition of rat hippocampus exposed to morphine for 10 days; comparison with animals after 20 days of morphine withdrawal. PLoS One 2020; 15:e0231721. [PMID: 32294144 PMCID: PMC7159219 DOI: 10.1371/journal.pone.0231721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/30/2020] [Indexed: 01/08/2023] Open
Abstract
Opioid addiction is recognized as a chronic relapsing brain disease resulting from repeated exposure to opioid drugs. Cellular and molecular mechanisms underlying the ability of organism to return back to the physiological norm after cessation of drug supply are not fully understood. The aim of this work was to extend our previous studies of morphine-induced alteration of rat forebrain cortex protein composition to the hippocampus. Rats were exposed to morphine for 10 days and sacrificed 24 h (groups +M10 and −M10) or 20 days after the last dose of morphine (groups +M10/−M20 and −M10/−M20). The six altered proteins (≥2-fold) were identified in group (+M10) when compared with group (−M10) by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). The number of differentially expressed proteins was increased to thirteen after 20 days of the drug withdrawal. Noticeably, the altered level of α-synuclein, β-synuclein, α-enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was also determined in both (±M10) and (±M10/−M20) samples of hippocampus. Immunoblot analysis of 2D gels by specific antibodies oriented against α/β-synucleins and GAPDH confirmed the data obtained by 2D-DIGE analysis. Label-free quantification identified nineteen differentially expressed proteins in group (+M10) when compared with group (−M10). After 20 days of morphine withdrawal (±M10/−M20), the number of altered proteins was increased to twenty. We conclude that the morphine-induced alteration of protein composition in rat hippocampus after cessation of drug supply proceeds in a different manner when compared with the forebrain cortex. In forebrain cortex, the total number of altered proteins was decreased after 20 days without morphine, whilst in hippocampus, it was increased.
Collapse
Affiliation(s)
- Hana Ujcikova
- Laboratory of Membrane Receptors, Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
- * E-mail:
| | - Kristina Cechova
- Laboratory of Membrane Receptors, Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Michal Jagr
- Laboratory of Analysis of Biologically Important Compounds, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Lenka Roubalova
- Laboratory of Membrane Receptors, Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Miroslava Vosahlikova
- Laboratory of Membrane Receptors, Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Petr Svoboda
- Laboratory of Membrane Receptors, Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| |
Collapse
|
59
|
The expression level of alpha-synuclein in different neuronal populations is the primary determinant of its prion-like seeding. Sci Rep 2020; 10:4895. [PMID: 32184415 PMCID: PMC7078319 DOI: 10.1038/s41598-020-61757-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/25/2020] [Indexed: 11/08/2022] Open
Abstract
Alpha-synuclein (aSyn)-rich aggregates propagate in neuronal networks and compromise cellular homeostasis leading to synucleinopathies such as Parkinson's disease. Aggregated aSyn spread follows a conserved spatio-temporal pattern that is not solely dependent on connectivity. Hence, the differential tropism of aSyn-rich aggregates to distinct brain regions, or their ability to amplify within those regions, must contribute to this process. To better understand what underlies aSyn-rich aggregates distribution within the brain, we generated primary neuronal cultures from various brain regions of wild-type mice and mice expressing a reduced level of aSyn, and exposed them to fibrillar aSyn. We then assessed exogenous fibrillar aSyn uptake, endogenous aSyn seeding, and endogenous aSyn physiological expression levels. Despite a similar uptake of exogenous fibrils by neuronal cells from distinct brain regions, the seeded aggregation of endogenous aSyn differed greatly from one neuronal population to another. The different susceptibility of neuronal populations was linked to their aSyn expression level. Our data establish that endogenous aSyn expression level plays a key role in fibrillar aSyn prion-like seeding, supporting that endogenous aSyn expression level participates in selective regional brain vulnerability.
Collapse
|
60
|
Initiation and propagation of α-synuclein aggregation in the nervous system. Mol Neurodegener 2020; 15:19. [PMID: 32143659 PMCID: PMC7060612 DOI: 10.1186/s13024-020-00368-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
The two main pathological hallmarks of Parkinson’s disease are loss of dopamine neurons in the substantia nigra pars compacta and proteinaceous amyloid fibrils composed mostly of α-synuclein, called Lewy pathology. Levodopa to enhance dopaminergic transmission remains one of the most effective treatment for alleviating the motor symptoms of Parkinson’s disease (Olanow, Mov Disord 34:812–815, 2019). In addition, deep brain stimulation (Bronstein et al., Arch Neurol 68:165, 2011) to modulate basal ganglia circuit activity successfully alleviates some motor symptoms. MRI guided focused ultrasound in the subthalamic nucleus is a promising therapeutic strategy as well (Martinez-Fernandez et al., Lancet Neurol 17:54–63, 2018). However, to date, there exists no treatment that stops the progression of this disease. The findings that α-synuclein can be released from neurons and inherited through interconnected neural networks opened the door for discovering novel treatment strategies to prevent the formation and spread of Lewy pathology with the goal of halting PD in its tracks. This hypothesis is based on discoveries that pathologic aggregates of α-synuclein induce the endogenous α-synuclein protein to adopt a similar pathologic conformation, and is thus self-propagating. Phase I clinical trials are currently ongoing to test treatments such as immunotherapy to prevent the neuron to neuron spread of extracellular aggregates. Although tremendous progress has been made in understanding how Lewy pathology forms and spreads throughout the brain, cell intrinsic factors also play a critical role in the formation of pathologic α-synuclein, such as mechanisms that increase endogenous α-synuclein levels, selective expression profiles in distinct neuron subtypes, mutations and altered function of proteins involved in α-synuclein synthesis and degradation, and oxidative stress. Strategies that prevent the formation of pathologic α-synuclein should consider extracellular release and propagation, as well as neuron intrinsic mechanisms.
Collapse
|
61
|
Zhang W, Zhou M, Lu W, Gong J, Gao F, Li Y, Xu X, Lin Y, Zhang X, Ding L, Zhang Z, Li G, Chen X, Sun X, Zhu X, Xu P, Zhang Y. CNTNAP4 deficiency in dopaminergic neurons initiates parkinsonian phenotypes. Am J Cancer Res 2020; 10:3000-3021. [PMID: 32194851 PMCID: PMC7053186 DOI: 10.7150/thno.40798] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Contactin-associated protein-like 4 (CNTNAP4) belongs to the neurexin superfamily and has critical functions in neurological development and synaptic function. Loss of CNTNAP4 in interneurons has been linked to autism, schizophrenia, and epilepsy. CNTNAP4 is also highly enriched in dopaminergic (DA) neurons in the substantia nigra (SN), however, few studies have investigated the role of CNTNAP4 in DA neurons, and whether CNTNAP4 deficiency in DA neurons contributes to Parkinson's disease (PD) remains unclear. Methods: Effects of CNTNAP4 knockdown or overexpression on the DA MN9D cell line were assessed via Western blotting, immunocytochemistry, and RNA sequencing. An in vivo animal model, including CNTNAP4 knockout mice and stereotaxic injections of adeno-associated viral short-hairpin RNA with the tyrosine-hydroxylase promotor to silence CNTNAP4 in the SN, as well as the resulting physiological/behavioral effects, were evaluated via behavioral tests, Western blotting, immunohistochemistry, and transmission electron microscopy. Enzyme-linked immunosorbent assays (ELISAs) were performed to examine the cerebrospinal fluid (CSF) and plasma CNTNAP4 concentrations in PD patients. Results: We demonstrated that CNTNAP4 knockdown induced mitophagy and increased α-synuclein expression in MN9D cells. CNTNAP4 knockdown in the SN induced PD-like increases in SN-specific α-synuclein expression, DA neuronal degeneration, and motor dysfunction in mice. In addition, CNTNAP4 knockdown in SN-DA neurons increased autophagosomes and reduced synaptic vesicles in the SN. Furthermore, CNTNAP4 knockout mice showed movement deficits, nigral DA degeneration, and increased autophagy, which were consistent with the SN-specific knockdown model. We also found that CSF and plasma CNTNAP4 expression was increased in PD patients; in particular, plasma CNTNAP4 was increased in male PD patients compared with controls or female PD patients. Conclusion: Our findings suggest that CNTNAP4 deficiency may initiate phenotypes relevant to PD, of which we elucidated some of the underlying mechanisms.
Collapse
|
62
|
MacIsaac S, Quevedo Melo T, Zhang Y, Volta M, Farrer MJ, Milnerwood AJ. Neuron-autonomous susceptibility to induced synuclein aggregation is exacerbated by endogenous Lrrk2 mutations and ameliorated by Lrrk2 genetic knock-out. Brain Commun 2020; 2:fcz052. [PMID: 32510053 PMCID: PMC7273240 DOI: 10.1093/braincomms/fcz052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022] Open
Abstract
Neuronal aggregates containing α-synuclein are a pathological hallmark of several degenerative diseases; including Parkinson’s disease, Parkinson’s disease with dementia and dementia with Lewy bodies. Understanding the process of α-synuclein aggregation, and discovering means of preventing it, may help guide therapeutic strategy and drug design. Recent advances provide tools to induce α-synuclein aggregation in neuronal cultures. Application of exogenous pre-formed fibrillar α-synuclein induces pathological phosphorylation and accumulation of endogenous α-synuclein, typical of that seen in disease. Genomic variability and mutations in α-synuclein and leucine-rich repeat kinase 2 proteins are the major genetic risk factors for Parkinson’s disease. Reports demonstrate fibril-induced α-synuclein aggregation is increased in cells from leucine-rich repeat kinase 2 pathogenic mutant (G2019S) overexpressing mice, and variously decreased by leucine-rich repeat kinase 2 inhibitors. Elsewhere in vivo antisense knock-down of leucine-rich repeat kinase 2 protein has been shown to protect mice from fibril-induced α-synuclein aggregation, whereas kinase inhibition did not. To help bring clarity to this issue, we took a purely genetic approach in a standardized neuron-enriched culture, lacking glia. We compared fibril treatment of leucine-rich repeat kinase 2 germ-line knock-out, and G2019S germ-line knock-in, mouse cortical neuron cultures with those from littermates. We found leucine-rich repeat kinase 2 knock-out neurons are resistant to α-synuclein aggregation, which predominantly forms within axons, and may cause axonal fragmentation. Conversely, leucine-rich repeat kinase 2 knock-in neurons are more vulnerable to fibril-induced α-synuclein accumulation. Protection and resistance correlated with basal increases in a lysosome marker in knock-out, and an autophagy marker in knock-in cultures. The data add to a growing number of studies that argue leucine-rich repeat kinase 2 silencing, and potentially kinase inhibition, may be a useful therapeutic strategy against synucleinopathy.
Collapse
Affiliation(s)
- Sarah MacIsaac
- Department of Human Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada
| | - Thaiany Quevedo Melo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yuting Zhang
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mattia Volta
- Department of Human Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada.,EURAC Research, Institute for Biomedicine, Bolzano, Italy
| | - Matthew J Farrer
- Department of Human Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Austen J Milnerwood
- Department of Human Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
63
|
Behavioral defects associated with amygdala and cortical dysfunction in mice with seeded α-synuclein inclusions. Neurobiol Dis 2019; 134:104708. [PMID: 31837424 PMCID: PMC7206936 DOI: 10.1016/j.nbd.2019.104708] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/20/2019] [Accepted: 12/08/2019] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is defined by motor symptoms such as tremor at rest, bradykinesia, postural instability, and stiffness. In addition to the classical motor defects that define PD, up to 80% of patients experience cognitive changes and psychiatric disturbances, referred to as PD dementia (PDD). Pathologically, PD is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and intracellular inclusions, called Lewy bodies and Lewy neurites, composed mostly of α-synuclein. Much of PD research has focused on the role of α-synuclein aggregates in degeneration of SNpc dopamine neurons because of the impact of loss of striatal dopamine on the classical motor phenotypes. However, abundant Lewy pathology is also found in other brain regions including the cortex and limbic brain regions such as the amygdala, which may contribute to non-motor phenotypes. Little is known about the consequences of α-synuclein inclusions in these brain regions, or in neuronal subtypes other than dopamine neurons. This project expands knowledge on how α-synuclein inclusions disrupt behavior, specifically non-motor symptoms of synucleinopathies. We show that bilateral injections of fibrils into the striatum results in robust bilateral α-synuclein inclusion formation in the cortex and amygdala. Inclusions in the amygdala and prefrontal cortex primarily localize to excitatory neurons, but unbiased stereology shows no significant loss of neurons in the amygdala or cortex. Fibril injected mice show defects in a social dominance behavioral task and fear conditioning, tasks that are associated with prefrontal cortex and amygdala function. Together, these observations suggest that seeded α-synuclein inclusion formation impairs behaviors associated with cortical and amygdala function, without causing cell loss, in brain areas that may play important roles in the complex cognitive features of PDD
Collapse
|
64
|
Alpha-Synuclein Preserves Mitochondrial Fusion and Function in Neuronal Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4246350. [PMID: 31871549 PMCID: PMC6907050 DOI: 10.1155/2019/4246350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/12/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
Dysregulations of mitochondria with alterations in trafficking and morphology of these organelles have been related to Parkinson's disease (PD), a neurodegenerative disorder characterized by brain accumulation of Lewy bodies (LB), intraneuronal inclusions mainly composed of α-synuclein (α-syn) fibrils. Experimental evidence supports that α-syn pathological aggregation can negatively impinge on mitochondrial functions suggesting that this protein may be crucially involved in the control of mitochondrial homeostasis. The aim of this study was to assay this hypothesis by analyzing mitochondrial function and morphology in primary cortical neurons from C57BL/6JOlaHsd α-syn null and C57BL/6J wild-type (wt) mice. Primary cortical neurons from mice lacking α-syn showed decreased respiration capacity measured with a Seahorse XFe24 Extracellular Flux Analyzer. In addition, morphological Airyscan superresolution microscopy showed the presence of fragmented mitochondria while real-time PCR and western blot confirmed altered expression of proteins involved in mitochondrial shape modifications in the primary cortical neurons of α-syn null mice. Transmission electron microscopy (TEM) studies showed that α-syn null neurons exhibited impaired mitochondria-endoplasmic reticulum (ER) physical interaction. Specifically, we identified a decreased number of mitochondria-ER contacts (MERCs) paralleled by a significant increase in ER-mitochondria distance (i.e., MERC length). These findings support that α-syn physiologically preserves mitochondrial functions and homeostasis. Studying α-syn/mitochondria interplay in health and disease is thus pivotal for understanding their involvement in PD and other LB disorders.
Collapse
|
65
|
Taguchi K, Watanabe Y, Tsujimura A, Tanaka M. α-Synuclein Promotes Maturation of Immature Juxtaglomerular Neurons in the Mouse Olfactory Bulb. Mol Neurobiol 2019; 57:1291-1304. [PMID: 31722091 DOI: 10.1007/s12035-019-01814-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/11/2019] [Indexed: 01/02/2023]
Abstract
α-Synuclein (αSyn), the major constituent of Lewy bodies and Lewy neurites, is generally expressed in presynapses and is involved in synaptic function. However, we previously demonstrated that some neurons, including those in the olfactory bulb, show high αSyn expression levels in the cell body under normal conditions. αSyn is also known to be important for adult neurogenesis. Thus, in present study, we examined the role of αSyn in juxtaglomerular neurons (JGNs) with high αSyn expression in the mouse olfactory bulb. Most αSyn-enriched JGNs expressed sex-determining region Y-box 2 (Sox2), which functions to maintain neural immature identity. Interestingly, in αSyn homozygous (-/-) knockout (KO) mice, Sox2-positive JGNs were significantly increased compared with heterozygous (+/-) KO mice. Following global brain ischemia using wild-type mice, there was also a significant decrease in Sox2-positive JGNs, and in the co-expression ratio of Sox2 in αSyn-enriched JGNs. By contrast, the co-expression ratio of neuronal nuclei (NeuN, mature neuronal marker) was significantly increased in αSyn-enriched JGNs. However, this ischemia-induced decrease of Sox2-positive JGNs was not observed in αSyn homozygous KO mice. Overall, these data suggest that αSyn functions to promote the maturation of immature JGNs in the mouse olfactory bulb.
Collapse
Affiliation(s)
- Katsutoshi Taguchi
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto, 602-8566, Japan
| | - Yoshihisa Watanabe
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto, 602-8566, Japan
| | - Atsushi Tsujimura
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto, 602-8566, Japan
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
66
|
Wong Y, Luk K, Purtell K, Nanni SB, Stoessl AJ, Trudeau LE, Yue Z, Krainc D, Oertel W, Obeso JA, Volpicelli-Daley L. Neuronal vulnerability in Parkinson disease: Should the focus be on axons and synaptic terminals? Mov Disord 2019; 34:1406-1422. [PMID: 31483900 PMCID: PMC6879792 DOI: 10.1002/mds.27823] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/03/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
While current effective therapies are available for the symptomatic control of PD, treatments to halt the progressive neurodegeneration still do not exist. Loss of dopamine neurons in the SNc and dopamine terminals in the striatum drive the motor features of PD. Multiple lines of research point to several pathways which may contribute to dopaminergic neurodegeneration. These pathways include extensive axonal arborization, mitochondrial dysfunction, dopamine's biochemical properties, abnormal protein accumulation of α-synuclein, defective autophagy and lysosomal degradation, and synaptic impairment. Thus, understanding the essential features and mechanisms of dopaminergic neuronal vulnerability is a major scientific challenge and highlights an outstanding need for fostering effective therapies against neurodegeneration in PD. This article, which arose from the Movement Disorders 2018 Conference, discusses and reviews the possible mechanisms underlying neuronal vulnerability and potential therapeutic approaches in PD. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yvette Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Philadelphia, PA, 19104-4283, USA
| | - Kerry Purtell
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Hess Research Center 9th Floor, New York, NY 10029, USA
| | - Samuel Burke Nanni
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - A. Jon Stoessl
- University of British Columbia and Vancouver Coastal Health, Pacific Parkinson’s Research Centre & National Parkinson Foundation Centre of Excellence, 2221 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Louis-Eric Trudeau
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Hess Research Center 9th Floor, New York, NY 10029, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Wolfgang Oertel
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany
| | - Jose A. Obeso
- HM CINAC, HM Puerta del Sur, Hospitales de Madrid, Mostoles Medical School, CEU-San Pablo University, and CIBERNED, Instituto Carlos III, Madrid, Spain
| | - Laura Volpicelli-Daley
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
67
|
Guix FX. The interplay between aging‐associated loss of protein homeostasis and extracellular vesicles in neurodegeneration. J Neurosci Res 2019; 98:262-283. [DOI: 10.1002/jnr.24526] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/11/2022]
|
68
|
Foffani G, Obeso JA. A Cortical Pathogenic Theory of Parkinson's Disease. Neuron 2019; 99:1116-1128. [PMID: 30236282 DOI: 10.1016/j.neuron.2018.07.028] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/14/2018] [Accepted: 07/17/2018] [Indexed: 01/17/2023]
Abstract
In Parkinson's disease, the progressive neurodegeneration of nigrostriatal dopaminergic neurons in the substantia nigra pars compacta (SNc) is associated with classic motor features, which typically have a focal onset. Since a defined somatotopic arrangement in the SNc has not been recognized, this focal motor onset is unexplained and hardly justified by current pathogenic theories of bottom-up disease progression (Braak's hypothesis, prionopathy). Here we propose that corticostriatal activity may represent a critical somatotopic "stressor" for nigrostriatal terminals, ultimately driving retrograde nigrostriatal degeneration and leading to focal motor onset and progression of Parkinson's disease. As a pathogenic mechanism, corticostriatal activity may promote secretion of striatal extracellular alpha-synuclein, favoring its pathological aggregation at vulnerable dopaminergic synapses. A similar pathogenic process may occur at corticofugal projections to the medulla oblongata and other vulnerable structures, thereby contributing to the bottom-up progression of Lewy pathology. This cortical pathogenesis may co-exist with bottom-up mechanisms, adding an integrative top-down perspective to the quest for the factors that impinge upon the vulnerability of dopaminergic cells in the onset and progression of Parkinson's disease.
Collapse
Affiliation(s)
- Guglielmo Foffani
- CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU-San Pablo, Madrid, Spain; Hospital Nacional de Parapléjicos, Toledo, Spain.
| | - José A Obeso
- CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU-San Pablo, Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
69
|
Castillo X, Castro-Obregón S, Gutiérrez-Becker B, Gutiérrez-Ospina G, Karalis N, Khalil AA, Lopez-Noguerola JS, Rodríguez LL, Martínez-Martínez E, Perez-Cruz C, Pérez-Velázquez J, Piña AL, Rubio K, García HPS, Syeda T, Vanoye-Carlo A, Villringer A, Winek K, Zille M. Re-thinking the Etiological Framework of Neurodegeneration. Front Neurosci 2019; 13:728. [PMID: 31396030 PMCID: PMC6667555 DOI: 10.3389/fnins.2019.00728] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are among the leading causes of disability and death worldwide. The disease-related socioeconomic burden is expected to increase with the steadily increasing life expectancy. In spite of decades of clinical and basic research, most strategies designed to manage degenerative brain diseases are palliative. This is not surprising as neurodegeneration progresses "silently" for decades before symptoms are noticed. Importantly, conceptual models with heuristic value used to study neurodegeneration have been constructed retrospectively, based on signs and symptoms already present in affected patients; a circumstance that may confound causes and consequences. Hence, innovative, paradigm-shifting views of the etiology of these diseases are necessary to enable their timely prevention and treatment. Here, we outline four alternative views, not mutually exclusive, on different etiological paths toward neurodegeneration. First, we propose neurodegeneration as being a secondary outcome of a primary cardiovascular cause with vascular pathology disrupting the vital homeostatic interactions between the vasculature and the brain, resulting in cognitive impairment, dementia, and cerebrovascular events such as stroke. Second, we suggest that the persistence of senescent cells in neuronal circuits may favor, together with systemic metabolic diseases, neurodegeneration to occur. Third, we argue that neurodegeneration may start in response to altered body and brain trophic interactions established via the hardwire that connects peripheral targets with central neuronal structures or by means of extracellular vesicle (EV)-mediated communication. Lastly, we elaborate on how lifespan body dysbiosis may be linked to the origin of neurodegeneration. We highlight the existence of bacterial products that modulate the gut-brain axis causing neuroinflammation and neuronal dysfunction. As a concluding section, we end by recommending research avenues to investigate these etiological paths in the future. We think that this requires an integrated, interdisciplinary conceptual research approach based on the investigation of the multimodal aspects of physiology and pathophysiology. It involves utilizing proper conceptual models, experimental animal units, and identifying currently unused opportunities derived from human data. Overall, the proposed etiological paths and experimental recommendations will be important guidelines for future cross-discipline research to overcome the translational roadblock and to develop causative treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ximena Castillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR, United States
| | - Susana Castro-Obregón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Benjamin Gutiérrez-Becker
- Artificial Intelligence in Medical Imaging KJP, Ludwig Maximilian University of Munich, Munich, Germany
| | - Gabriel Gutiérrez-Ospina
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas y Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nikolaos Karalis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ahmed A. Khalil
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Liliana Lozano Rodríguez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eduardo Martínez-Martínez
- Cell Communication & Extracellular Vesicles Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Claudia Perez-Cruz
- National Polytechnic Institute, Center of Research in Advanced Studies, Mexico City, Mexico
| | - Judith Pérez-Velázquez
- Departamento de Matemáticas y Mecánica, Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Mathematische Modellierung Biologischer Systeme, Fakultät für Mathematik, Technische Universität München, Munich, Germany
| | - Ana Luisa Piña
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karla Rubio
- Lung Cancer Epigenetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Tauqeerunnisa Syeda
- National Polytechnic Institute, Center of Research in Advanced Studies, Mexico City, Mexico
| | - America Vanoye-Carlo
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Arno Villringer
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Katarzyna Winek
- The Shimon Peres Postdoctoral Fellow at the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marietta Zille
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
| |
Collapse
|
70
|
Franco R, Navarro G, Martínez-Pinilla E. Lessons on Differential Neuronal-Death-Vulnerability from Familial Cases of Parkinson's and Alzheimer's Diseases. Int J Mol Sci 2019; 20:ijms20133297. [PMID: 31277513 PMCID: PMC6651599 DOI: 10.3390/ijms20133297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022] Open
Abstract
The main risk of Alzheimer’s disease (AD) and Parkinson’s disease (PD), the two most common neurodegenerative pathologies, is aging. In contrast to sporadic cases, whose symptoms appear at >60 years of age, familial PD or familial AD affects younger individuals. Finding early biological markers of these diseases as well as efficacious treatments for both symptom relief and delaying disease progression are of paramount relevance. Familial early-onset PD/AD are due to genetic factors, sometimes a single mutation in a given gene. Both diseases have neuronal loss and abnormal accumulations of specific proteins in common, but in different brain regions. Despite shared features, the mechanisms underlying the pathophysiological processes are not known. This review aims at finding, among the genetic-associated cases of PD and AD, common trends that could be of interest to discover reliable biomarkers and efficacious therapies, especially those aimed at affording neuroprotection, i.e., the prevention of neuronal death.
Collapse
Affiliation(s)
- Rafael Franco
- Chemistry School, University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, 28031 Madrid, Spain.
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy, University of Barcelona, 02028 Barcelona, Spain
| | - Eva Martínez-Pinilla
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain.
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Asturias, Spain.
- Instituto de Salud del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain.
| |
Collapse
|
71
|
Vargas JY, Grudina C, Zurzolo C. The prion-like spreading of α-synuclein: From in vitro to in vivo models of Parkinson's disease. Ageing Res Rev 2019; 50:89-101. [PMID: 30690184 DOI: 10.1016/j.arr.2019.01.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/06/2019] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. PD is characterized by the loss of dopaminergic neurons, primarily in brain regions that control motor functions, thereby leading to motor impairments in the patients. Pathological aggregated forms of the synaptic protein, α-synuclein (α-syn), are involved in the generation and progression of PD. In PD brains, α-syn accumulates inside neurons and propagates from cell-to-cell in a prion-like manner. In this review, we discuss the in vitro and in vivo models used to study the prion-like properties of α-syn and related findings. In particular, we focus on the different mechanisms of α-syn spreading, which could be relevant for the development of alternative therapeutic approaches for PD treatment.
Collapse
|
72
|
Negrete-Díaz JV, Shumilov K, Real MÁ, Medina-Luque J, Valderrama-Carvajal A, Flores G, Rodríguez-Moreno A, Rivera A. Pharmacological activation of dopamine D 4 receptor modulates morphine-induced changes in the expression of GAD 65/67 and GABA B receptors in the basal ganglia. Neuropharmacology 2019; 152:22-29. [PMID: 30682345 DOI: 10.1016/j.neuropharm.2019.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 11/27/2022]
Abstract
Dopamine D4 receptor (D4R) stimulation, in a putative D4R/μ opioid heteroreceptor (MOR) complex, counteracts the molecular, cellular and behavioural actions of morphine which are associated with morphine addiction, without any effect on its analgesic properties. In the present work, we have evaluated the role of D4R in modulating the effects of a continuous treatment with morphine on the GABAergic system in the basal ganglia. It has been demonstrated that the co-administration of a D4R agonist together with morphine leads to a restoration of GABA signaling by preventing drug-induced changes in GAD65/67 expression in the caudate putamen, globus palidus and substantia nigra. Results from GABABR1 and GABABR2 expression suggest a role of D4R in modulation of the GABAB heteroreceptor complexes along the basal ganglia, especially in the functional divisions of the caudate putamen. These results provide a new proof of the functional interaction between D4R and MOR and we postulate this putative heteroreceptor complex as a key target for the development of a new strategy to prevent the addictive effects of morphine in the treatment of pain. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- José Vicente Negrete-Díaz
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain; División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Guanajuato, Mexico (permanent address)
| | - Kirill Shumilov
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain
| | - M Ángeles Real
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain
| | - José Medina-Luque
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain; German Center for Neurodegenerative Diseases (DZNE) Munich, German (permanent address)
| | | | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Alicia Rivera
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain.
| |
Collapse
|
73
|
Wells C, Brennan SE, Keon M, Saksena NK. Prionoid Proteins in the Pathogenesis of Neurodegenerative Diseases. Front Mol Neurosci 2019; 12:271. [PMID: 31780895 PMCID: PMC6861308 DOI: 10.3389/fnmol.2019.00271] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
There is a growing body of evidence that prionoid protein behaviors are a core element of neurodegenerative diseases (NDs) that afflict humans. Common elements in pathogenesis, pathological effects and protein-level behaviors exist between Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). These extend beyond the affected neurons to glial cells and processes. This results in a complicated system of disease progression, which often takes advantage of protective processes to promote the propagation of pathological protein aggregates. This review article provides a current snapshot of knowledge on these proteins and their intrinsic role in the pathogenesis and disease progression seen across NDs.
Collapse
|
74
|
Jęśko H, Lenkiewicz AM, Wilkaniec A, Adamczyk A. The interplay between parkin and alpha-synuclein; possible implications for the pathogenesis of Parkinson’s disease. Acta Neurobiol Exp (Wars) 2019. [DOI: 10.21307/ane-2019-026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
75
|
Ijomone OM, Olatunji SY, Owolabi JO, Naicker T, Aschner M. Nickel-induced neurodegeneration in the hippocampus, striatum and cortex; an ultrastructural insight, and the role of caspase-3 and α-synuclein. J Trace Elem Med Biol 2018; 50:16-23. [PMID: 30262274 DOI: 10.1016/j.jtemb.2018.05.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 11/21/2022]
Abstract
Human overexposure to nickel (Ni) emanating from the increasing application of Ni compounds in modern technology is a major public health concern. Nickel has been shown to be teratogenic, immunotoxic, genotoxic and carcinogenic. The current knowledge on Ni neurotoxicity is still relatively limited. We have previously demonstrated that Ni treatment alters cognitive and locomotor behaviors, induces oxidative stress and neurodegeneration in brains of rats. In this study, we examine the ultrastructural changes to neurons in the hippocampus, striatum and cortex of the brain following Ni treatment, as well as attempt to delineate the roles for caspase-3 and α-synuclein in Ni-induced neurodegeneration. Rats were treated with either saline, 10 or 20 mg/kg of nickel chloride for 4 weeks via oral gavage. Electron microscopy analysis revealed ultrastructural alterations in neurons of the hippocampus, striatum and cortex following Ni treatment. Mitochondria structural integrity within neurons were markedly compromised. We also detected elevated caspase-3 activity in hippocampus and striatum, as well as overexpression of α-synuclein in the cortex following Ni treatment. Our study demonstrates that mitochondria are a key target in Ni-induced neurodegeneration. Additionally, we implicate apoptotic pathway via caspase-3 action as the executioner and perturbation of α-synuclein expression in Ni-induced neurodegeneration.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, USA; Department of Anatomical Sciences, School of Health and Health Technology, Federal University of Technology Akure, Nigeria.
| | - Sunday Y Olatunji
- Department of Anatomy, Ben Carson School of Medicine, Babcock University, Ilishan Remo, Nigeria
| | - Joshua O Owolabi
- Department of Anatomy, Ben Carson School of Medicine, Babcock University, Ilishan Remo, Nigeria
| | - Thajasvarie Naicker
- Optics and Imaging Centre, University of KwaZulu-Natal, Durban, South Africa
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, USA.
| |
Collapse
|
76
|
Taguchi K, Watanabe Y, Tsujimura A, Tanaka M. Expression of α-synuclein is regulated in a neuronal cell type-dependent manner. Anat Sci Int 2018; 94:11-22. [PMID: 30362073 PMCID: PMC6315015 DOI: 10.1007/s12565-018-0464-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/14/2018] [Indexed: 12/15/2022]
Abstract
α-Synuclein, the major component of Lewy bodies (LBs) and Lewy neurites (LNs), is expressed in presynapses under physiologically normal conditions and is involved in synaptic function. Abnormal intracellular aggregates of misfolded α-synuclein such as LBs and LNs are pathological hallmarks of synucleinopathies, including Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). According to previous studies using pathological models overexpressing α-synuclein, high expression of this protein in neurons is a critical risk factor for neurodegeneration. Therefore, it is important to know the endogenous expression levels of α-synuclein in each neuronal cell type. We previously reported differential expression profiles of α-synuclein in vitro and in vivo. In the wild-type mouse brain, particularly in vulnerable regions affected during the progression of idiopathic PD, α-synuclein is highly expressed in neuronal cell bodies of some early PD-affected regions, such as the olfactory bulb, the dorsal motor nucleus of the vagus, and the substantia nigra pars compacta. Synaptic expression of α-synuclein is mostly accompanied by expression of vesicular glutamate transporter-1, an excitatory synapse marker protein. In contrast, α-synuclein expression in inhibitory synapses differs among brain regions. Recently accumulated evidence indicates the close relationship between differential expression profiles of α-synuclein and selective vulnerability of certain neuronal populations. Further studies on the regulation of α-synuclein expression will help to understand the mechanism of LB pathology and provide an innovative therapeutic strategy to prevent PD and DLB onset.
Collapse
Affiliation(s)
- Katsutoshi Taguchi
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto, 602-8566, Japan
| | - Yoshihisa Watanabe
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto, 602-8566, Japan
| | - Atsushi Tsujimura
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto, 602-8566, Japan
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
77
|
Froula JM, Henderson BW, Gonzalez JC, Vaden JH, Mclean JW, Wu Y, Banumurthy G, Overstreet-Wadiche L, Herskowitz JH, Volpicelli-Daley LA. α-Synuclein fibril-induced paradoxical structural and functional defects in hippocampal neurons. Acta Neuropathol Commun 2018; 6:35. [PMID: 29716652 PMCID: PMC5928584 DOI: 10.1186/s40478-018-0537-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 11/10/2022] Open
Abstract
Neuronal inclusions composed of α-synuclein (α-syn) characterize Parkinson’s Disease (PD) and Dementia with Lewy bodies (DLB). Cognitive dysfunction defines DLB, and up to 80% of PD patients develop dementia. α-Syn inclusions are abundant in the hippocampus, yet functional consequences are unclear. To determine if pathologic α-syn causes neuronal defects, we induced endogenous α-syn to form inclusions resembling those found in diseased brains by treating hippocampal neurons with α-syn fibrils. At seven days after adding fibrils, α-syn inclusions are abundant in axons, but there is no cell death at this time point, allowing us to assess for potential alterations in neuronal function that are not caused by neuron death. We found that exposure of neurons to fibrils caused a significant reduction in mushroom spine densities, adding to the growing body of literature showing that altered spine morphology is a major pathologic phenotype in synucleinopathies. The reduction in spine densities occurred only in wild type neurons and not in neurons from α-syn knockout mice, suggesting that the changes in spine morphology result from fibril-induced corruption of endogenously expressed α-syn. Paradoxically, reduced postsynaptic spine density was accompanied by increased frequency of miniature excitatory postsynaptic currents (EPSCs) and presynaptic docked vesicles, suggesting enhanced presynaptic function. Action-potential dependent activity was unchanged, suggesting compensatory mechanisms responding to synaptic defects. Although activity at the level of the synapse was unchanged, neurons exposed to α-syn fibrils, showed reduced frequency and amplitudes of spontaneous Ca2+ transients. These findings open areas of research to determine the mechanisms that alter neuronal function in brain regions critical for cognition at time points before neuron death.
Collapse
|
78
|
Ahlemeyer B, Halupczok S, Rodenberg-Frank E, Valerius KP, Baumgart-Vogt E. Endogenous Murine Amyloid-β Peptide Assembles into Aggregates in the Aged C57BL/6J Mouse Suggesting These Animals as a Model to Study Pathogenesis of Amyloid-β Plaque Formation. J Alzheimers Dis 2018; 61:1425-1450. [DOI: 10.3233/jad-170923] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Barbara Ahlemeyer
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Sascha Halupczok
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Elke Rodenberg-Frank
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Klaus-Peter Valerius
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
79
|
Nouraei N, Mason DM, Miner KM, Carcella MA, Bhatia TN, Dumm BK, Soni D, Johnson DA, Luk KC, Leak RK. Critical appraisal of pathology transmission in the α-synuclein fibril model of Lewy body disorders. Exp Neurol 2018; 299:172-196. [PMID: 29056362 PMCID: PMC5736319 DOI: 10.1016/j.expneurol.2017.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
Lewy body disorders are characterized by the emergence of α-synucleinopathy in many parts of the central and peripheral nervous systems, including in the telencephalon. Dense α-synuclein+ pathology appears in regio inferior of the hippocampus in both Parkinson's disease and dementia with Lewy bodies and may disturb cognitive function. The preformed α-synuclein fibril model of Parkinson's disease is growing in use, given its potential for seeding the self-propagating spread of α-synucleinopathy throughout the mammalian brain. Although it is often assumed that the spread occurs through neuroanatomical connections, this is generally not examined vis-à-vis the uptake and transport of tract-tracers infused at precisely the same stereotaxic coordinates. As the neuronal connections of the hippocampus are historically well defined, we examined the first-order spread of α-synucleinopathy three months following fibril infusions centered in the mouse regio inferior (CA2+CA3), and contrasted this to retrograde and anterograde transport of the established tract-tracers FluoroGold and biotinylated dextran amines (BDA). Massive hippocampal α-synucleinopathy was insufficient to elicit memory deficits or loss of cells and synaptic markers in this model of early disease processes. However, dense α-synuclein+ inclusions in the fascia dentata were negatively correlated with memory capacity. A modest compensatory increase in synaptophysin was evident in the stratum radiatum of cornu Ammonis in fibril-infused animals, and synaptophysin expression correlated inversely with memory function in fibril but not PBS-infused mice. No changes in synapsin I/II expression were observed. The spread of α-synucleinopathy was somewhat, but not entirely consistent with FluoroGold and BDA axonal transport, suggesting that variables other than innervation density also contribute to the materialization of α-synucleinopathy. For example, layer II entorhinal neurons of the perforant pathway exhibited somal α-synuclein+ inclusions as well as retrogradely labeled FluoroGold+ somata. However, some afferent brain regions displayed dense retrograde FluoroGold label and no α-synuclein+ inclusions (e.g. medial septum/diagonal band), supporting the selective vulnerability hypothesis. The pattern of inclusions on the contralateral side was consistent with specific spread through commissural connections (e.g. stratum pyramidale of CA3), but again, not all commissural projections exhibited α-synucleinopathy (e.g. hilar mossy cells). The topographical extent of inclusions is displayed here in high-resolution images that afford viewers a rich opportunity to dissect the potential spread of pathology through neural circuitry. Finally, the results of this expository study were leveraged to highlight the challenges and limitations of working with preformed α-synuclein fibrils.
Collapse
Affiliation(s)
- Negin Nouraei
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Daniel M Mason
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Michael A Carcella
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Benjamin K Dumm
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Dishaben Soni
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - David A Johnson
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Kelvin C Luk
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19147, United States
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
80
|
Rey NL, Wesson DW, Brundin P. The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiol Dis 2018; 109:226-248. [PMID: 28011307 PMCID: PMC5972535 DOI: 10.1016/j.nbd.2016.12.013] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
Olfactory deficits are present in numerous neurodegenerative disorders and are accompanied by pathology in related brain regions. In several of these disorders, olfactory disturbances appear early and are considered as prodromal symptoms of the disease. In addition, pathological protein aggregates affect olfactory regions prior to other regions, suggesting that the olfactory system might be particularly vulnerable to neurodegenerative diseases. Exposed to the external environment, the olfactory epithelium and olfactory bulb allow pathogen and toxin penetration into the brain, a process that has been proposed to play a role in neurodegenerative diseases. Determining whether the olfactory bulb could be a starting point of pathology and of pathology spread is crucial to understanding how neurodegenerative diseases evolve. We argue that pathological changes following environmental insults contribute to the initiation of protein aggregation in the olfactory bulb, which then triggers the spread of the pathology within the brain by a templating mechanism in a prion-like manner. We review the evidence for the early involvement of olfactory structures in neurodegenerative diseases and the relationship between neuropathology and olfactory function. We discuss the vulnerability and putative underlying mechanisms by which pathology could be initiated in the olfactory bulb, from the entry of pathogens (promoted by increased permeability of the olfactory epithelium with aging or inflammation) to the sensitivity of the olfactory system to oxidative stress and inflammation. Finally, we review changes in protein expression and neural excitability triggered by pathogenic proteins that can promote pathogenesis in the olfactory bulb and beyond.
Collapse
Affiliation(s)
- Nolwen L Rey
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Daniel W Wesson
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
81
|
Regional levels of physiological α-synuclein are directly associated with Lewy body pathology. Acta Neuropathol 2018; 135:153-154. [PMID: 29134319 DOI: 10.1007/s00401-017-1787-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
|
82
|
Duce JA, Wong BX, Durham H, Devedjian JC, Smith DP, Devos D. Post translational changes to α-synuclein control iron and dopamine trafficking; a concept for neuron vulnerability in Parkinson's disease. Mol Neurodegener 2017; 12:45. [PMID: 28592304 PMCID: PMC5463308 DOI: 10.1186/s13024-017-0186-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/02/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is a multifactorial neurodegenerative disorder, the aetiology of which remains elusive. The primary clinical feature of progressively impaired motor control is caused by a loss of midbrain substantia nigra dopamine neurons that have a high α-synuclein (α-syn) and iron content. α-Syn is a neuronal protein that is highly modified post-translationally and central to the Lewy body neuropathology of the disease. This review provides an overview of findings on the role post translational modifications to α-syn have in membrane binding and intracellular vesicle trafficking. Furthermore, we propose a concept in which acetylation and phosphorylation of α-syn modulate endocytic import of iron and vesicle transport of dopamine during normal physiology. Disregulated phosphorylation and oxidation of α-syn mediate iron and dopamine dependent oxidative stress through impaired cellular location and increase propensity for α-syn aggregation. The proposition highlights a connection between α-syn, iron and dopamine, three pathological components associated with disease progression in sporadic Parkinson's disease.
Collapse
Affiliation(s)
- James A Duce
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK. .,Oxidation Biology Unit, the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, VIC, Australia.
| | - Bruce X Wong
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK.,Oxidation Biology Unit, the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, VIC, Australia
| | - Hannah Durham
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK
| | | | - David P Smith
- Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield, UK
| | - David Devos
- Department of Medical Pharmacology, Lille University, INSERM U1171, CHU of Lille, Lille, France
| |
Collapse
|
83
|
Schildknecht S, Di Monte DA, Pape R, Tieu K, Leist M. Tipping Points and Endogenous Determinants of Nigrostriatal Degeneration by MPTP. Trends Pharmacol Sci 2017; 38:541-555. [DOI: 10.1016/j.tips.2017.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022]
|
84
|
Si X, Pu J, Zhang B. Structure, Distribution, and Genetic Profile of α-Synuclein and Their Potential Clinical Application in Parkinson's Disease. J Mov Disord 2017; 10:69-79. [PMID: 28479587 PMCID: PMC5435834 DOI: 10.14802/jmd.16061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/07/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disorder after Alzheimer’s disease, is characterized by the loss of nigral dopaminergic neurons. PD leads to a series of clinical symptoms, including motor and non-motor disturbances. α-synuclein, the major component of Lewy bodies, is a hallmark lesion in PD. In this review, we concentrate on presenting the latest research on the structure, distribution, and function of α-synuclein, and its interactions with PD. We also summarize the clinic applications of α-synuclein, which suggest its use as a biomarker, and the latest progress in α-synuclein therapy.
Collapse
Affiliation(s)
- Xiaoli Si
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
85
|
Leão AHFF, Meurer YSR, da Silva AF, Medeiros AM, Campêlo CLC, Abílio VC, Engelberth RCGK, Cavalcante JS, Izídio GS, Ribeiro AM, Silva RH. Spontaneously Hypertensive Rats (SHR) Are Resistant to a Reserpine-Induced Progressive Model of Parkinson's Disease: Differences in Motor Behavior, Tyrosine Hydroxylase and α-Synuclein Expression. Front Aging Neurosci 2017; 9:78. [PMID: 28396635 PMCID: PMC5366354 DOI: 10.3389/fnagi.2017.00078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 03/13/2017] [Indexed: 01/01/2023] Open
Abstract
Reserpine is an irreversible inhibitor of vesicular monoamine transporter-2 (VMAT2) used to study Parkinson’s disease (PD) and screening for antiparkinsonian treatments in rodents. Recently, the repeated treatment with a low-dose of reserpine was proposed as a progressive model of PD. Rats under this treatment show progressive catalepsy behavior, oral movements and spontaneous motor activity decrement. In parallel, compared to Wistar rats, spontaneously hypertensive rats (SHR) are resistant to acute reserpine-induced oral dyskinesia. We aimed to assess whether SHR would present differential susceptibility to repeated reserpine-induced deficits in the progressive model of PD. Male Wistar and SHR rats were administered 15 subcutaneously (s.c.) injections of reserpine (0.1 mg/kg) or vehicle, every other day and motor activity was assessed by the catalepsy, oral movements and open field tests. Only reserpine-treated Wistar rats presented increased latency to step down in the catalepsy test and impaired spontaneous activity in the open field. On the other hand, there was an increase in oral movements in both reserpine-treated strains, although with reduced magnitude and latency to instauration in SHR. After a 15-day withdrawn period, both strains recovered from motor impairment, but SHR animals expressed reduced latencies to reach control levels. Finally, we performed immunohistochemistry for tyrosine hydroxylase (TH) and α-synuclein (α-syn) 48 h after the last injection or 15 days after withdrawn. Reserpine-treated animals presented a reduction in TH and an increase in α-syn immunoreactivity in the substantia nigra and dorsal striatum (dSTR), which were both recovered after 15 days of withdraw. Furthermore, SHR rats were resistant to reserpine-induced TH decrement in the substantia nigra, and presented reduced immunoreactivity to α-syn in the dSTR relative to Wistar rats, irrespective of treatment. This effect was accompanied by increase of malondaldhyde (MDA) in the striatum of reserpine-treated Wistar rats, while SHR presented reduced MDA in both control and reserpine conditions relative to Wistar strain. In conclusion, the current results show that SHR are resilient to motor and neurochemical impairments induced by the repeated low-dose reserpine protocol. These findings indicate that the neurochemical, molecular and genetic differences in the SHR strain are potential relevant targets to the study of susceptibility to PD.
Collapse
Affiliation(s)
- Anderson H F F Leão
- Memory Studies Laboratory, Department of Physiology, Federal University of Rio Grande do NorteNatal, Brazil; Brain Institute, Federal University of Rio Grande do NorteNatal, Brazil; Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São PauloSão Paulo, Brazil
| | - Ywlliane S R Meurer
- Memory Studies Laboratory, Department of Physiology, Federal University of Rio Grande do Norte Natal, Brazil
| | | | - André M Medeiros
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo São Paulo, Brazil
| | - Clarissa L C Campêlo
- Memory Studies Laboratory, Department of Physiology, Federal University of Rio Grande do Norte Natal, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Federal University of São Paulo São Paulo, Brazil
| | - Rovena C G K Engelberth
- Neurochemical Studies Laboratory, Department of Physiology, Federal University of Rio Grande do Norte Natal, Brazil
| | - Jeferson S Cavalcante
- Neurochemical Studies Laboratory, Department of Physiology, Federal University of Rio Grande do Norte Natal, Brazil
| | - Geison S Izídio
- Laboratory of Behavioral Genetics, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina Florianopolis, Brazil
| | | | - Regina H Silva
- Memory Studies Laboratory, Department of Physiology, Federal University of Rio Grande do NorteNatal, Brazil; Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São PauloSão Paulo, Brazil
| |
Collapse
|
86
|
Schain M, Kreisl WC. Neuroinflammation in Neurodegenerative Disorders—a Review. Curr Neurol Neurosci Rep 2017; 17:25. [DOI: 10.1007/s11910-017-0733-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
87
|
Aoki M, Watanabe Y, Yoshimoto K, Tsujimura A, Yamamoto T, Kanamura N, Tanaka M. Involvement of serotonin 2C receptor RNA editing in accumbal neuropeptide Y expression and behavioural despair. Eur J Neurosci 2016; 43:1219-28. [PMID: 26950265 DOI: 10.1111/ejn.13233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 11/30/2022]
Abstract
Serotonin 2C receptors (5-HT2 C Rs) are widely expressed in the central nervous system, and are associated with various neurological disorders. 5-HT2 C R mRNA undergoes adenosine-to-inosine RNA editing at five sites within its coding sequence, resulting in expression of 24 different isoforms. Several edited isoforms show reduced activity, suggesting that RNA editing modulates serotonergic systems in the brain with causative relevance to neuropsychiatric disorders. Transgenic mice solely expressing the non-edited 5-HT2 C R INI-isoform (INI) or the fully edited VGV-isoform exhibit various phenotypes including metabolic abnormalities, aggressive behaviour, anxiety-like behaviour, and depression-like behaviour. Here, we examined the behavioural phenotype and molecular changes of INI mice on a C57BL/6J background. INI mice showed an enhanced behavioural despair in the forced swimming test, elevated sensitivity to the tricyclic antidepressant desipramine, and significantly decreased serotonin in the nucleus accumbens (NAc), amygdala, and striatum. They also showed reduced expression of neuropeptide Y (NPY) mRNA in the NAc. In addition, by stereotactic injection of adeno-associated virus encoding NPY into the NAc, we demonstrated that accumbal NPY overexpression relieved behavioural despair. Our results suggest that accumbal NPY expression may be regulated by 5-HT2 C R RNA editing, and its impairment may be linked to mood disorders.
Collapse
Affiliation(s)
- Miku Aoki
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshihisa Watanabe
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yoshimoto
- Department of Food Science and Biotechnology, Hiroshima Institute of Technology, Hiroshima, Japan
| | - Atsushi Tsujimura
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Tanaka
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|