51
|
Chen J, Lu L, Shi S, Stanley P. Expression of Notch signaling pathway genes in mouse embryos lacking beta4galactosyltransferase-1. Gene Expr Patterns 2006; 6:376-82. [PMID: 16412699 DOI: 10.1016/j.modgep.2005.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 09/20/2005] [Indexed: 01/26/2023]
Abstract
A requirement for beta4galactosyltransferase-1 (beta4GalT-1) activity in the modulation of Notch signaling by the glycosyltransferase Fringe was previously identified in a mammalian co-culture assay. Notch signaling is necessary for the formation of somites in mammals. We therefore investigated the expression of eleven Notch pathway and somitogenic genes in E9.5 mouse embryos lacking beta4GalT-1. Four of these genes were altered in expression pattern or expression level. The Notch target genes Hes5 and Mesp2 were affected to some degree in all mutant embryos. The Notch ligand genes Dll1 and Dll3 were reduced or altered in expression in a significant proportion of mutants. While there were no differences in the number or morphology of somites in E9.5 B4galt1 null embryos, the number of lumbar vertebrae in mutant embryos differed from control littermates (P < or = 0.01). The subtlety of the in vivo phenotype may be due to redundancy since several B4galt genes related to B4galt1 are expressed during embryogenesis.
Collapse
Affiliation(s)
- Jihua Chen
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA
| | | | | | | |
Collapse
|
52
|
Sparrow DB, Chapman G, Wouters MA, Whittock NV, Ellard S, Fatkin D, Turnpenny PD, Kusumi K, Sillence D, Dunwoodie SL. Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet 2006; 78:28-37. [PMID: 16385447 PMCID: PMC1380221 DOI: 10.1086/498879] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 10/05/2005] [Indexed: 01/15/2023] Open
Abstract
The spondylocostal dysostoses (SCDs) are a heterogeneous group of vertebral malsegmentation disorders that arise during embryonic development by a disruption of somitogenesis. Previously, we had identified two genes that cause a subset of autosomal recessive forms of this disease: DLL3 (SCD1) and MESP2 (SCD2). These genes are important components of the Notch signaling pathway, which has multiple roles in development and disease. Here, we have used a candidate-gene approach to identify a mutation in a third Notch pathway gene, LUNATIC FRINGE (LFNG), in a family with autosomal recessive SCD. LFNG encodes a glycosyltransferase that modifies the Notch family of cell-surface receptors, a key step in the regulation of this signaling pathway. A missense mutation was identified in a highly conserved phenylalanine close to the active site of the enzyme. Functional analysis revealed that the mutant LFNG was not localized to the correct compartment of the cell, was unable to modulate Notch signaling in a cell-based assay, and was enzymatically inactive. This represents the first known mutation in the human LFNG gene and reinforces the hypothesis that proper regulation of the Notch signaling pathway is an absolute requirement for the correct patterning of the axial skeleton.
Collapse
Affiliation(s)
- D. B. Sparrow
- Developmental Biology Program, Computational Biology and Bioinformatics Program, and Sr. Bernice Research Program in Inherited Heart Diseases, Victor Chang Cardiac Research Institute, Cardiology Department, St. Vincent’s Hospital, Faculties of Medicine and Science, University of New South Wales, and Department of Medical Genetics, The Children’s Hospital at Westmead, Sydney; Institute of Biomedical and Clinical Science, Peninsular Medical School, United Kingdom; Clinical Genetics Department, Royal Devon & Exeter Hospital, Exeter, United Kingdom; and Divisions of Human Genetics and Orthopedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia
| | - G. Chapman
- Developmental Biology Program, Computational Biology and Bioinformatics Program, and Sr. Bernice Research Program in Inherited Heart Diseases, Victor Chang Cardiac Research Institute, Cardiology Department, St. Vincent’s Hospital, Faculties of Medicine and Science, University of New South Wales, and Department of Medical Genetics, The Children’s Hospital at Westmead, Sydney; Institute of Biomedical and Clinical Science, Peninsular Medical School, United Kingdom; Clinical Genetics Department, Royal Devon & Exeter Hospital, Exeter, United Kingdom; and Divisions of Human Genetics and Orthopedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia
| | - M. A. Wouters
- Developmental Biology Program, Computational Biology and Bioinformatics Program, and Sr. Bernice Research Program in Inherited Heart Diseases, Victor Chang Cardiac Research Institute, Cardiology Department, St. Vincent’s Hospital, Faculties of Medicine and Science, University of New South Wales, and Department of Medical Genetics, The Children’s Hospital at Westmead, Sydney; Institute of Biomedical and Clinical Science, Peninsular Medical School, United Kingdom; Clinical Genetics Department, Royal Devon & Exeter Hospital, Exeter, United Kingdom; and Divisions of Human Genetics and Orthopedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia
| | - N. V. Whittock
- Developmental Biology Program, Computational Biology and Bioinformatics Program, and Sr. Bernice Research Program in Inherited Heart Diseases, Victor Chang Cardiac Research Institute, Cardiology Department, St. Vincent’s Hospital, Faculties of Medicine and Science, University of New South Wales, and Department of Medical Genetics, The Children’s Hospital at Westmead, Sydney; Institute of Biomedical and Clinical Science, Peninsular Medical School, United Kingdom; Clinical Genetics Department, Royal Devon & Exeter Hospital, Exeter, United Kingdom; and Divisions of Human Genetics and Orthopedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia
| | - S. Ellard
- Developmental Biology Program, Computational Biology and Bioinformatics Program, and Sr. Bernice Research Program in Inherited Heart Diseases, Victor Chang Cardiac Research Institute, Cardiology Department, St. Vincent’s Hospital, Faculties of Medicine and Science, University of New South Wales, and Department of Medical Genetics, The Children’s Hospital at Westmead, Sydney; Institute of Biomedical and Clinical Science, Peninsular Medical School, United Kingdom; Clinical Genetics Department, Royal Devon & Exeter Hospital, Exeter, United Kingdom; and Divisions of Human Genetics and Orthopedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia
| | - D. Fatkin
- Developmental Biology Program, Computational Biology and Bioinformatics Program, and Sr. Bernice Research Program in Inherited Heart Diseases, Victor Chang Cardiac Research Institute, Cardiology Department, St. Vincent’s Hospital, Faculties of Medicine and Science, University of New South Wales, and Department of Medical Genetics, The Children’s Hospital at Westmead, Sydney; Institute of Biomedical and Clinical Science, Peninsular Medical School, United Kingdom; Clinical Genetics Department, Royal Devon & Exeter Hospital, Exeter, United Kingdom; and Divisions of Human Genetics and Orthopedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia
| | - P. D. Turnpenny
- Developmental Biology Program, Computational Biology and Bioinformatics Program, and Sr. Bernice Research Program in Inherited Heart Diseases, Victor Chang Cardiac Research Institute, Cardiology Department, St. Vincent’s Hospital, Faculties of Medicine and Science, University of New South Wales, and Department of Medical Genetics, The Children’s Hospital at Westmead, Sydney; Institute of Biomedical and Clinical Science, Peninsular Medical School, United Kingdom; Clinical Genetics Department, Royal Devon & Exeter Hospital, Exeter, United Kingdom; and Divisions of Human Genetics and Orthopedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia
| | - K. Kusumi
- Developmental Biology Program, Computational Biology and Bioinformatics Program, and Sr. Bernice Research Program in Inherited Heart Diseases, Victor Chang Cardiac Research Institute, Cardiology Department, St. Vincent’s Hospital, Faculties of Medicine and Science, University of New South Wales, and Department of Medical Genetics, The Children’s Hospital at Westmead, Sydney; Institute of Biomedical and Clinical Science, Peninsular Medical School, United Kingdom; Clinical Genetics Department, Royal Devon & Exeter Hospital, Exeter, United Kingdom; and Divisions of Human Genetics and Orthopedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia
| | - D. Sillence
- Developmental Biology Program, Computational Biology and Bioinformatics Program, and Sr. Bernice Research Program in Inherited Heart Diseases, Victor Chang Cardiac Research Institute, Cardiology Department, St. Vincent’s Hospital, Faculties of Medicine and Science, University of New South Wales, and Department of Medical Genetics, The Children’s Hospital at Westmead, Sydney; Institute of Biomedical and Clinical Science, Peninsular Medical School, United Kingdom; Clinical Genetics Department, Royal Devon & Exeter Hospital, Exeter, United Kingdom; and Divisions of Human Genetics and Orthopedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia
| | - S. L. Dunwoodie
- Developmental Biology Program, Computational Biology and Bioinformatics Program, and Sr. Bernice Research Program in Inherited Heart Diseases, Victor Chang Cardiac Research Institute, Cardiology Department, St. Vincent’s Hospital, Faculties of Medicine and Science, University of New South Wales, and Department of Medical Genetics, The Children’s Hospital at Westmead, Sydney; Institute of Biomedical and Clinical Science, Peninsular Medical School, United Kingdom; Clinical Genetics Department, Royal Devon & Exeter Hospital, Exeter, United Kingdom; and Divisions of Human Genetics and Orthopedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia
| |
Collapse
|
53
|
Abstract
Notch receptor signaling is important for many developmental processes in the metazoa. Insights into how Notch receptor signaling is regulated have been obtained from the characterization of mutants of model organisms in which Notch signaling is perturbed. Here we describe the effects of mutations that alter the glycosylation of Notch receptors and Notch ligands in the mouse. The extracellular domain of Notch receptors and Notch ligands carries N-glycans and O-glycans, including O-fucose and O-glucose glycans. Mutations in several genes that inhibit the synthesis of O-fucose glycans, and one that also affects the maturation of N-glycans, cause Notch signaling defects and disrupt development.
Collapse
Affiliation(s)
- Linchao Lu
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
54
|
Schachter H. The search for glycan function: fucosylation of the TGF-beta1 receptor is required for receptor activation. Proc Natl Acad Sci U S A 2005; 102:15721-2. [PMID: 16249330 PMCID: PMC1276088 DOI: 10.1073/pnas.0507659102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Harry Schachter
- Program in Structural Biology and Biochemistry, Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON, Canada M5G 1X8.
| |
Collapse
|
55
|
Rampal R, Li ASY, Moloney DJ, Georgiou SA, Luther KB, Nita-Lazar A, Haltiwanger RS. Lunatic fringe, manic fringe, and radical fringe recognize similar specificity determinants in O-fucosylated epidermal growth factor-like repeats. J Biol Chem 2005; 280:42454-63. [PMID: 16221665 DOI: 10.1074/jbc.m509552200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Notch signaling is a component of a wide variety of developmental processes in many organisms. Notch activity can be modulated by O-fucosylation (mediated by protein O-fucosyltransferase-1) and Fringe, a beta1,3-N-acetylglucosaminyltransferase that modifies O-fucose in the context of epidermal growth factor-like (EGF) repeats. Fringe was initially described in Drosophila, and three mammalian homologues have been identified, Manic fringe, Lunatic fringe, and Radical fringe. Here for the first time we have demonstrated that, similar to Manic and Lunatic, Radical fringe is also a fucose-specific beta1,3-N-acetylglucosaminyltransferase. The fact that three Fringe homologues exist in mammals raises the question of whether and how these enzymes differ. Although Notch contains numerous EGF repeats that are predicted to be modified by O-fucose, previous studies in our laboratory have demonstrated that not all O-fucosylated EGF repeats of Notch are further modified by Fringe, suggesting that the Fringe enzymes can differentiate between them. In this work, we have sought to identify specificity determinants for the recognition of an individual O-fucosylated EGF repeat by the Fringe enzymes. We have also sought to determine differences in the biochemical behavior of the Fringes with regard to their in vitro enzymatic activities. Using both in vivo and in vitro experiments, we have found two amino acids that appear to be important for the recognition of an O-fucosylated EGF repeat by all three mammalian Fringes. These amino acids provide an initial step toward defining sequences that will allow us to predict which O-fucosylated EGF repeats are modified by the Fringes.
Collapse
Affiliation(s)
- Raajit Rampal
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Pan Y, Liu Z, Shen J, Kopan R. Notch1 and 2 cooperate in limb ectoderm to receive an early Jagged2 signal regulating interdigital apoptosis. Dev Biol 2005; 286:472-82. [PMID: 16169548 DOI: 10.1016/j.ydbio.2005.08.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 08/11/2005] [Accepted: 08/11/2005] [Indexed: 11/23/2022]
Abstract
Spontaneous and engineered mutations in the Notch ligand Jagged2 produced the Syndactylism phenotype (Jiang, R.L., Lan, Y., Chapman, H.D., Shawber, C., Norton, C.R., Serreze, D.V., Weinmaster, G., Gridley, T., 1998. Defects in limb, craniofacial, and thymic Development in Jagged2 mutant mice. Genes Dev. 12, 1046-1057; Sidow, A., Bulotsky, M.S., Kerrebrock, A.W., Bronson, R.T., Daly, M.J., Reeve, M.P., Hawkins, T.L., Birren, B.W., Jaenisch, R., Lander, E.S., 1997. Serrate2 is disrupted in the mouse limb-development mutant syndactylism. Nature 389, 722-725). Given that additional ligands may be expressed in the developing limb bud, it was possible that loss of Jagged2 disabled only part of Notch function in the limb. In addition, it is not clear from the expression pattern of Jagged2 in the apical ectodermal ridge (AER) whether the ectodermal or mesenchymal compartment of the limb bud receives the Jagged2 signal. To elucidate the requirement for the Notch pathway in limb development, we have analyzed single and compound Notch receptor mutants as well as gamma-secretase-deficient limbs. Floxed alleles were removed either from the developing limb bud ectoderm (using Msx2-Cre) or from the mesenchyme (using Prx1-Cre). Our results confirm that Jagged2 loss describes the contribution of the entire Notch pathway to the mouse limb development and revealed that both Notch1 and 2 are required in the ectoderm to receive the Jagged2 signal. Interestingly, our allelic series allowed us to determine that Notch receives this signal at an early stage in the developmental process and that memory of this event is retained by the mesenchyme, where Notch signaling appears to be dispensable. Thus, Notch signaling plays a non-autonomous role in digit septation.
Collapse
Affiliation(s)
- Yonghua Pan
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
57
|
Ladi E, Nichols JT, Ge W, Miyamoto A, Yao C, Yang LT, Boulter J, Sun YE, Kintner C, Weinmaster G. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. ACTA ACUST UNITED AC 2005; 170:983-92. [PMID: 16144902 PMCID: PMC2171428 DOI: 10.1083/jcb.200503113] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in the DSL (Delta, Serrate, Lag2) Notch (N) ligand Delta-like (Dll) 3 cause skeletal abnormalities in spondylocostal dysostosis, which is consistent with a critical role for N signaling during somitogenesis. Understanding how Dll3 functions is complicated by reports that DSL ligands both activate and inhibit N signaling. In contrast to other DSL ligands, we show that Dll3 does not activate N signaling in multiple assays. Consistent with these findings, Dll3 does not bind to cells expressing any of the four N receptors, and N1 does not bind Dll3-expressing cells. However, in a cell-autonomous manner, Dll3 suppressed N signaling, as was found for other DSL ligands. Therefore, Dll3 functions not as an activator as previously reported but rather as a dedicated inhibitor of N signaling. As an N antagonist, Dll3 promoted Xenopus laevis neurogenesis and inhibited glial differentiation of mouse neural progenitors. Finally, together with the modulator lunatic fringe, Dll3 altered N signaling levels that were induced by other DSL ligands.
Collapse
Affiliation(s)
- Ena Ladi
- Department of Biological Chemistry, Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Yoon K, Gaiano N. Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 2005; 8:709-15. [PMID: 15917835 DOI: 10.1038/nn1475] [Citation(s) in RCA: 449] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Notch pathway, although originally identified in fruit flies, is now among the most heavily studied in mammalian biology. In mice, loss-of-function and gain-of-function work has demonstrated that Notch signaling is essential both during development and in the adult in a multitude of tissues. Prominent among these is the CNS, where Notch has been implicated in processes ranging from neural stem cell regulation to learning and memory. Here we review the role of Notch in the mammalian CNS by focusing specifically on mutations generated in mice. These mutations have provided critical insight into Notch function in the CNS and have led to the identification of promising new directions that are likely to generate important discoveries in the future.
Collapse
Affiliation(s)
- Keejung Yoon
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
59
|
Huppert SS, Ilagan MXG, De Strooper B, Kopan R. Analysis of Notch Function in Presomitic Mesoderm Suggests a γ-Secretase-Independent Role for Presenilins in Somite Differentiation. Dev Cell 2005; 8:677-88. [PMID: 15866159 DOI: 10.1016/j.devcel.2005.02.019] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 12/23/2004] [Accepted: 02/17/2005] [Indexed: 10/25/2022]
Abstract
The role of Notch signaling in general and presenilin in particular was analyzed during mouse somitogenesis. We visualize cyclical production of activated Notch (NICD) and establish that somitogenesis requires less NICD than any other tissue in early mouse embryos. Indeed, formation of cervical somites proceeds in Notch1; Notch2-deficient embryos. This is in contrast to mice lacking all presenilin alleles, which have no somites. Since Nicastrin-, Pen-2-, and APH-1a-deficient embryos have anterior somites without gamma-secretase, presenilin may have a gamma-secretase-independent role in somitogenesis. Embryos triple homozygous for both presenilin null alleles and a Notch allele that is a poor substrate for presenilin (N1(V-->G)) experience fortuitous cleavage of N1(V-->G) by another protease. This restores NICD, anterior segmentation, and bilateral symmetry but does not rescue rostral/caudal identities. These data clarify multiple roles for Notch signaling during segmentation and suggest that the earliest stages of somitogenesis are regulated by both Notch-dependent and Notch-independent functions of presenilin.
Collapse
MESH Headings
- Amyloid Precursor Protein Secretases
- Animals
- Aspartic Acid Endopeptidases
- Body Patterning/genetics
- Body Patterning/physiology
- Cell Differentiation
- Endopeptidases/metabolism
- In Situ Hybridization
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Microscopy, Electron, Scanning
- Phenotype
- Presenilin-1
- Presenilin-2
- Receptor, Notch1
- Receptor, Notch2
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Somites/cytology
- Somites/metabolism
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Stacey S Huppert
- Department of Molecular Biology and Pharmacology, Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
60
|
Hahn KL, Johnson J, Beres BJ, Howard S, Wilson-Rawls J. Lunatic fringe null female mice are infertile due to defects in meiotic maturation. Development 2005; 132:817-28. [PMID: 15659488 DOI: 10.1242/dev.01601] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have demonstrated that Notch genes are expressed in developing mammalian ovarian follicles. Lunatic fringe is an important regulator of Notch signaling. In this study, data are presented that demonstrate that radical fringe and lunatic fringe are expressed in the granulosa cells of developing follicles. Lunatic fringe null female mice were found to be infertile. Histological analysis of the lunatic fringe-deficient ovary demonstrated aberrant folliculogenesis. Furthermore, oocytes from these mutants did not complete meiotic maturation. This is a novel observation because this is the first report describing a meiotic defect that results from mutations in genes that are expressed in the somatic granulosa cells and not the oocytes. This represents a new role for the Notch signaling pathway and lunatic fringe in mammalian folliculogenesis.
Collapse
Affiliation(s)
- Katherine L Hahn
- Molecular and Cellular Graduate Program, Arizona State University, Tempe, AZ 85284-4501, USA
| | | | | | | | | |
Collapse
|
61
|
Yang LT, Nichols JT, Yao C, Manilay JO, Robey EA, Weinmaster G. Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol Biol Cell 2004; 16:927-42. [PMID: 15574878 PMCID: PMC545923 DOI: 10.1091/mbc.e04-07-0614] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Fringe O-fucose-beta1,3-N-acetylglucosaminyltransferases modulate Notch signaling by potentiating signaling induced by Delta-like ligands, while inhibiting signaling induced by Serrate/Jagged1 ligands. Based on binding studies, the differential effects of Drosophila fringe (DFng) on Notch signaling are thought to result from alterations in Notch glycosylation that enhance binding of Delta to Notch but reduce Serrate binding. Here, we report that expression of mammalian fringe proteins (Lunatic [LFng], Manic [MFng], or Radical [RFng] Fringe) increased Delta1 binding and activation of Notch1 signaling in 293T and NIH 3T3 cells. Although Jagged1-induced signaling was suppressed by LFng and MFng, RFng enhanced signaling induced by either Delta1 or Jagged1, underscoring the diversity of mammalian fringe glycosyltransferases in regulating signaling downstream of different ligand-receptor combinations. Interestingly, suppression of Jagged1-induced Notch1 signaling did not correlate with changes in Jagged1 binding as found for Delta1. Our data support the idea that fringe glycosylation increases Delta1 binding to potentiate signaling, but we propose that although fringe glycosylation does not reduce Jagged1 binding to Notch1, the resultant ligand-receptor interactions do not effectively promote Notch1 proteolysis required for activation of downstream signaling events.
Collapse
Affiliation(s)
- Liang-Tung Yang
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1737, USA
| | | | | | | | | | | |
Collapse
|
62
|
Abstract
Researchers have long predicted that complex carbohydrates on cell surfaces would play important roles in developmental processes because of the observation that specific carbohydrate structures appear in specific spatial and temporal patterns throughout development. The astounding number and complexity of carbohydrate structures on cell surfaces added support to the concept that glycoconjugates would function in cellular communication during development. Although the structural complexity inherent in glycoconjugates has slowed advances in our understanding of their functions, the complete sequencing of the genomes of organisms classically used in developmental studies (e.g., mice, Drosophila melanogaster, and Caenorhabditis elegans) has led to demonstration of essential functions for a number of glycoconjugates in developmental processes. Here we present a review of recent studies analyzing function of a variety of glycoconjugates (O-fucose, O-mannose, N-glycans, mucin-type O-glycans, proteoglycans, glycosphingolipids), focusing on lessons learned from human disease and genetic studies in mice, D. melanogaster, and C. elegans.
Collapse
Affiliation(s)
- Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, New York 11794-5215, USA.
| | | |
Collapse
|
63
|
Kusumi K, Mimoto MS, Covello KL, Beddington RSP, Krumlauf R, Dunwoodie SL. Dll3 pudgy mutation differentially disrupts dynamic expression of somite genes. Genesis 2004; 39:115-21. [PMID: 15170697 DOI: 10.1002/gene.20034] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations in the notch ligand delta-like 3 have been identified in both the pudgy mouse (Dll3(pu); Kusumi et al.: Nat Genet 19:274-278, 1998) and the human disorder spondylocostal dysostosis (SCD; Bulman et al.: Nat Genet 24:438-441, 2000), and a targeted mutation has been generated (Dll3(neo); Dunwoodie et al.: Development 129:1795-1806, 2002). Vertebral and rib malformations deriving from defects in somitic patterning are key features of these disorders. In the mouse, notch pathway genes such as Lfng, Hes1, Hes7, and Hey2 display dynamic patterns of expression in paraxial mesoderm, cycling in synchrony with somite formation (Aulehla and Johnson: Dev Biol 207:49-61, 1999; Forsberg et al.: Curr Biol 8:1027-1030, 1998; Jouve et al.: Development 127:1421-1429, 2000; McGrew et al.: Curr Biol 8:979-982, 1998; Nakagawa et al.: Dev Biol 216:72-84, 1999). We report here that the Dll3(pu) mutation has different effects on the expression of cycling (Lfng and Hes7) and stage-specific genes (Hey3 and Mesp2). This suggests a more complex situation than a single oscillatory mechanism in somitogenesis and provides an explanation for the unique radiological features of the human DLL3-type of SCD.
Collapse
Affiliation(s)
- Kenro Kusumi
- Divisions of Human Genetics and Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
64
|
Abstract
Notch receptors and ligands were first identified in flies and worms, where they were shown to regulate cell proliferation, cell differentiation, and, in particular, binary cell fate decisions in a variety of developmental contexts. The first mammalian Notch homolog was discovered to be a partner in a chromosomal translocation in a subset of human T-cell leukemias. Subsequent studies in mice and humans have shown that Notch signaling plays essential roles at multiple stages of hematopoiesis, and also regulates the development or homeostasis of cells in many tissues and organs. Thus, it is not surprising that mutations which disrupt Notch signaling cause a wide range of cancers and developmental disorders. Perhaps because it is so widely used, Notch signaling is subject to many unusual forms of regulation. In this review, we will first outline key aspects of Notch signaling and its regulation by endocytosis, glycosylation, and ubiquitination. We will then overview recent literature elucidating how Notch regulates cell-lineage decisions in a variety of developmental contexts. Finally, we will describe the roles of dysregulated Notch signaling in causing several types of cancer and other pathologies.
Collapse
Affiliation(s)
- J A Harper
- Program in Developmental Biology, Hospital for Sick Children Research Institute, Department of Immunology, University of Toronto, Rm 8104, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | |
Collapse
|
65
|
Abstract
The Notch signaling pathway is known to govern various aspects of tissue differentiation during embryonic development by mediating local cell-cell interactions that often control cell fate. The conserved components that underlie Notch signaling have been isolated in vertebrates, leading to a biochemical delineation of a core Notch signaling pathway and functional studies of this pathway during embryogenesis. Herein we highlight recent progress in determining how Notch signaling contributes to the development of the vertebrate embryo. We first discuss the role of Notch in the process of segmentation where rapid changes have been shown to occur in both the spatial and temporal aspects of Notch signaling, which are critical for segmental patterning. Indeed, the role of Notch in segmentation re-emphasizes a recurring question in Notch biology: how are the components involved in Notch signaling regulated to ensure their dynamic properties? Second, we address this question by discussing recent work on the biochemical mechanisms that potentially regulate Notch signaling during segmentation, including those that act on the receptors, ligands, and signal transduction apparatus.
Collapse
Affiliation(s)
- Gerry Weinmaster
- Department of Biological Chemistry and Molecular Biology Institute, UCLA School of Medicine, Los Angeles, California, 90095-1737, USA.
| | | |
Collapse
|
66
|
Krebs LT, Iwai N, Nonaka S, Welsh IC, Lan Y, Jiang R, Saijoh Y, O'Brien TP, Hamada H, Gridley T. Notch signaling regulates left-right asymmetry determination by inducing Nodal expression. Genes Dev 2003; 17:1207-12. [PMID: 12730124 PMCID: PMC196059 DOI: 10.1101/gad.1084703] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Generation of left-right asymmetry is an integral part of the establishment of the vertebrate body plan. Here we show that the Notch signaling pathway plays a primary role in the establishment of left-right asymmetry in mice by directly regulating expression of the Nodal gene. Embryos mutant for the Notch ligand Dll1 or doubly mutant for the Notch1 and Notch2 receptors exhibit multiple defects in left-right asymmetry. Analysis of the enhancer regulating node-specific Nodal expression revealed the presence of binding sites for the RBP-J protein, the primary transcriptional mediator of Notch signaling. Mutation of these sites destroyed the ability of this enhancer to direct node-specific gene expression in transgenic mice. Our results demonstrate that Dll1-mediated Notch signaling is essential for generation of left-right asymmetry, and that the Notch pathway acts upstream of Nodal expression during left-right asymmetry determination in mice.
Collapse
Affiliation(s)
- Luke T Krebs
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Shi S, Stanley P. Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proc Natl Acad Sci U S A 2003; 100:5234-9. [PMID: 12697902 PMCID: PMC154328 DOI: 10.1073/pnas.0831126100] [Citation(s) in RCA: 304] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Notch receptor signaling regulates cell growth and differentiation, and core components of Notch signaling pathways are conserved from Drosophila to humans. Fringe glycosyltransferases are crucial modulators of Notch signaling that act on epidermal growth factor (EGF)-like repeats in the Notch receptor extracellular domain. The substrate of Fringe is EGF-O-fucose and the transfer of fucose to Notch by protein O-fucosyltransferase 1 is necessary for Fringe to function. O-fucose also occurs on Cripto and on Notch ligands. Here we show that mouse embryos lacking protein O-fucosyltransferase 1 die at midgestation with severe defects in somitogenesis, vasculogenesis, cardiogenesis, and neurogenesis. The phenotype is similar to that of embryos lacking downstream effectors of all Notch signaling pathways such as presenilins or RBP-J kappa, and is different from Cripto, Notch receptor, Notch ligand, or Fringe null phenotypes. Protein O-fucosyltransferase 1 is therefore an essential core member of Notch signaling pathways in mammals.
Collapse
Affiliation(s)
- Shaolin Shi
- Department of Cell Biology, Albert Einstein College Medicine, New York, NY 10461, USA
| | | |
Collapse
|
68
|
Serth K, Schuster-Gossler K, Cordes R, Gossler A. Transcriptional oscillation of lunatic fringe is essential for somitogenesis. Genes Dev 2003; 17:912-25. [PMID: 12670869 PMCID: PMC196028 DOI: 10.1101/gad.250603] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Accepted: 02/07/2003] [Indexed: 11/24/2022]
Abstract
A molecular oscillator that controls the expression of cyclic genes such as lunatic fringe (Lfng) in the presomitic mesoderm has been shown to be coupled with somite formation in vertebrate embryos. To address the functional significance of oscillating Lfng expression, we have generated transgenic mice expressing Lfng constitutively in the presomitic mesoderm in addition to the intrinsic cyclic Lfng activity. These transgenic lines displayed defects of somite patterning and vertebral organization that were very similar to those of Lfng null mutants. Furthermore, constitutive expression of exogenous Lfng did not compensate for the complete loss of cyclic endogenous Lfng activity. Noncyclic exogenous Lfng expression did not abolish cyclic expression of endogenous Lfng in the posterior presomitic mesoderm (psm) but affected its expression pattern in the anterior psm. Similarly, dynamic expression of Hes7 was not abolished but abnormal expression patterns were obtained. Our data are consistent with a model in which alternations of Lfng activity between ON and OFF states in the presomitic mesoderm prior to somite segmentation are critical for proper somite patterning, and suggest that Notch signaling might not be the only determinant of cyclic gene expression in the presomitic mesoderm of mouse embryos.
Collapse
Affiliation(s)
- Katrin Serth
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | | | | | | |
Collapse
|
69
|
Abstract
Recent studies have shown that disruption of Notch1 signaling in lymphocyte progenitors (LP) inhibits T cell development and promotes B cell development in the thymus. Conversely, inappropriate activation of Notch1 in LP inhibits B cell development and causes ectopic T cell development in the bone marrow. These observations imply that Notch1 activation must be spatially regulated to ensure that LP generate B cells in the bone marrow and T cells in the thymus. However, Notch ligands are expressed in both tissues. Studies in flies and worms have revealed that Notch activation is extremely sensitive to small changes in the amount of receptor or ligand expressed, and defined multiple mechanisms that limit Notch activation to discrete cells at specific times during development. Here, we describe how some of these mechanisms might regulate Notch activity in LP during the T/B lineage decision.
Collapse
Affiliation(s)
- Ute Koch
- Program in Developmental Biology, Department of Immunology, University of Toronto, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
70
|
Watabe-Rudolph M, Schlautmann N, Papaioannou VE, Gossler A. The mouse rib-vertebrae mutation is a hypomorphic Tbx6 allele. Mech Dev 2002; 119:251-6. [PMID: 12464437 DOI: 10.1016/s0925-4773(02)00394-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rib-vertebrae (rv) is an autosomal recessive mutation in mouse that affects somite formation, morphology, and patterning. Expression of Notch pathway components is affected in the paraxial mesoderm of rv mutant embryos, and rv and a null allele of the Notch ligand delta1 show non-allelic non-complementation. By fine genetic mapping and complementation testing we have identified Tbx6, a gene essential for paraxial mesoderm formation, as the gene mutated in rv. Compound heterozygotes carrying a Tbx6 null allele and rv show a phenotype that is milder than in homozygous Tbx6 null but more severe than in homozygous rv mutants. Tbx6 expression is down-regulated in rv mutant embryos. An insertion in the promoter region upstream of the transcriptional start is present in the genome of rv mutants but not in different strains of mice wild type for Tbx6. Our results indicate that rv is a regulatory mutation of Tbx6 causing a hypomorphic phenotype.
Collapse
Affiliation(s)
- Masami Watabe-Rudolph
- Institut für Molekularbiologie, Medizinische Hochschule, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | | | | | | |
Collapse
|