51
|
Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP, Looi CY. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells 2019; 8:E1118. [PMID: 31547193 PMCID: PMC6830116 DOI: 10.3390/cells8101118] [Citation(s) in RCA: 829] [Impact Index Per Article: 138.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
Abstract
Epithelial-to-Mesenchymal Transition (EMT) has been shown to be crucial in tumorigenesis where the EMT program enhances metastasis, chemoresistance and tumor stemness. Due to its emerging role as a pivotal driver of tumorigenesis, targeting EMT is of great therapeutic interest in counteracting metastasis and chemoresistance in cancer patients. The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin, and this process is regulated by a complex network of signaling pathways and transcription factors. In this review, we summarized the recent understanding of the roles of E- and N-cadherins in cancer invasion and metastasis as well as the crosstalk with other signaling pathways involved in EMT. We also highlighted a few natural compounds with potential anti-EMT property and outlined the future directions in the development of novel intervention in human cancer treatments. We have reviewed 287 published papers related to this topic and identified some of the challenges faced in translating the discovery work from bench to bedside.
Collapse
Affiliation(s)
- Chin-Yap Loh
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Jian Yi Chai
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Muthu Kumaraswamy Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| |
Collapse
|
52
|
Shang W, Adzika GK, Li Y, Huang Q, Ding N, Chinembiri B, Rashid MSI, Machuki JO. Molecular mechanisms of circular RNAs, transforming growth factor-β, and long noncoding RNAs in hepatocellular carcinoma. Cancer Med 2019; 8:6684-6699. [PMID: 31523930 PMCID: PMC6826001 DOI: 10.1002/cam4.2553] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
At the heart of hepatocellular carcinoma (HCC) lies disruption of signaling pathways at the level of molecules, genes, and cells. Non‐coding RNAs (ncRNAs) have been implicated in the disease progression of HCC. For instance, dysregulated expression of circular RNAs (circRNAs) has been observed in patients with HCC. As such, these RNAs are potential therapeutic targets and diagnostic markers for HCC. Long non‐coding RNAs (lncRNAs), a type of ncRNA, have also been recognized to participate in the initiation and progression of HCC. Transforming growth factor‐beta (TGF‐β) is another element which is now recognized to play crucial roles in HCC. It has been implicated in many biological processes such as survival, immune surveillance, and cell proliferation. In HCC, TGF‐β promotes disease progression by two mechanisms: an intrinsic signaling pathway and the extrinsic pathway. Through these pathways, it modulates various microenvironment factors such as inflammatory mediators and fibroblasts. An interesting yet‐to‐be resolved concept is whether the HCC‐promoting role of TGF‐β pathways is limited to a subset of HCC patients or it is involved in the whole process of HCC development. This review summarizes recent advancements to highlight the roles of circRNAs, lncRNAs, and TGF‐β in HCC.
Collapse
Affiliation(s)
- Wenkang Shang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | | | - Yujie Li
- Department of Clinical Laboratory, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Qike Huang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ningding Ding
- Department of Neurophysiology and Location Diagnosis, Guangdong 39 Brain Hospital, Guangzhou, Guangdong, China
| | - Bianca Chinembiri
- Physiology Department, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | | |
Collapse
|
53
|
The wonders of BMP9: From mesenchymal stem cell differentiation, angiogenesis, neurogenesis, tumorigenesis, and metabolism to regenerative medicine. Genes Dis 2019; 6:201-223. [PMID: 32042861 PMCID: PMC6997590 DOI: 10.1016/j.gendis.2019.07.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Although bone morphogenetic proteins (BMPs) initially showed effective induction of ectopic bone growth in muscle, it has since been determined that these proteins, as members of the TGF-β superfamily, play a diverse and critical array of biological roles. These roles include regulating skeletal and bone formation, angiogenesis, and development and homeostasis of multiple organ systems. Disruptions of the members of the TGF-β/BMP superfamily result in severe skeletal and extra-skeletal irregularities, suggesting high therapeutic potential from understanding this family of BMP proteins. Although it was once one of the least characterized BMPs, BMP9 has revealed itself to have the highest osteogenic potential across numerous experiments both in vitro and in vivo, with recent studies suggesting that the exceptional potency of BMP9 may result from unique signaling pathways that differentiate it from other BMPs. The effectiveness of BMP9 in inducing bone formation was recently revealed in promising experiments that demonstrated efficacy in the repair of critical sized cranial defects as well as compatibility with bone-inducing bio-implants, revealing the great translational promise of BMP9. Furthermore, emerging evidence indicates that, besides its osteogenic activity, BMP9 exerts a broad range of biological functions, including stem cell differentiation, angiogenesis, neurogenesis, tumorigenesis, and metabolism. This review aims to summarize our current understanding of BMP9 across biology and the body.
Collapse
|
54
|
Erstad DJ, Tanabe KK. Prognostic and Therapeutic Implications of Microvascular Invasion in Hepatocellular Carcinoma. Ann Surg Oncol 2019; 26:1474-1493. [PMID: 30788629 DOI: 10.1245/s10434-019-07227-9] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a morbid condition for which surgical and ablative therapy are the only options for cure. Nonetheless, over half of patients treated with an R0 resection will develop recurrence. Early recurrences within 2 years after resection are thought to be due to the presence of residual microscopic disease, while late recurrences > 2 years after resection are thought to be de novo metachronous HCCs arising in chronically injured liver tissue. Microvascular invasion (MVI) is defined as the presence of micrometastatic HCC emboli within the vessels of the liver, and is a critical determinant of early recurrence and survival. In this review, we summarize the pathogenesis and clinical relevance of MVI, which correlates with adverse biological features, including high grade, large tumor size, and epithelial-mesenchymal transition. Multiple classification schemas have been proposed to capture the heterogeneous features of MVI that are associated with prognosis. However, currently, MVI can only be determined based on surgical specimens, limiting its clinical applicability. Going forward, advances in axial imaging technologies, molecular characterization of biopsy tissue, and novel serum biomarkers hold promise as future methods for non-invasive MVI detection. Ultimately, MVI status may be used to help clinicians determine treatment plans, particularly with respect to surgical intervention, and to provide more accurate prognostication.
Collapse
Affiliation(s)
- Derek J Erstad
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Kenneth K Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
55
|
Cui X, Shang S, Lv X, Zhao J, Qi Y, Liu Z. Perspectives of small molecule inhibitors of activin receptor‑like kinase in anti‑tumor treatment and stem cell differentiation (Review). Mol Med Rep 2019; 19:5053-5062. [PMID: 31059090 PMCID: PMC6522871 DOI: 10.3892/mmr.2019.10209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/21/2019] [Indexed: 01/03/2023] Open
Abstract
Activin receptor‑like kinases (ALKs), members of the type I activin receptor family, belong to the serine/threonine kinase receptors of the transforming growth factor‑β (TGF‑β) superfamily. ALKs mediate the roles of activin/TGF‑β in a wide variety of physiological and pathological processes, ranging from cell differentiation and proliferation to apoptosis. For example, the activities of ALKs are associated with an advanced tumor stage in prostate cancer and the chondrogenic differentiation of mesenchymal stem cells. Therefore, potent and selective small molecule inhibitors of ALKs would not only aid in investigating the function of activin/TGF‑β, but also in developing treatments for these diseases via the disruption of activin/TGF‑β. In recent studies, several ALK inhibitors, including LY‑2157299, SB‑431542 and A‑83‑01, have been identified and have been confirmed to affect stem cell differentiation and tumor progression in animal models. This review discusses the therapeutic perspective of small molecule inhibitors of ALKs as drug targets in tumor and stem cells.
Collapse
Affiliation(s)
- Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shumi Shang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xinran Lv
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Zhao
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
56
|
Tai Y, Zhang LH, Gao JH, Zhao C, Tong H, Ye C, Huang ZY, Liu R, Tang CW. Suppressing growth and invasion of human hepatocellular carcinoma cells by celecoxib through inhibition of cyclooxygenase-2. Cancer Manag Res 2019; 11:2831-2848. [PMID: 31114336 PMCID: PMC6497485 DOI: 10.2147/cmar.s183376] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/23/2019] [Indexed: 02/05/2023] Open
Abstract
Purpose: Biomarkers are lacking in hepatocellular carcinoma (HCC). Cyclooxygenase-2 (COX-2) and its metabolites play crucial roles in the process of inflammation-tumor transformation. This study was aimed to detect COX-2 expression in HCC tissues and evaluate the effects of a COX-2 inhibitor, celecoxib, on biological behaviors of HCC cell lines in vitro. Methods: COX-2 expression was detected by immunohistochemistry on a human HCC tissue microarray. The correlations of COX-2 expression with tumor clinicopathological variables and overall survival were analyzed. The proliferation, apoptosis, cell cycle distribution, invasion capacity, and related signaling molecules of HCC cells after incubated with COX-2 inhibitor celecoxib were evaluated in vitro. Results: Expression levels of COX-2 in HCC tissues were significantly higher than those in paracancerous tissues. The TNM stage III-IV, tumor size >5 cm, lymphovascular invasion and distant metastasis was higher in high COX-2 expression group compared with that in low COX-2 expression group. Patients with low COX-2 expression achieved better 5-year overall survival than those with high COX-2 expression. Treatment with celecoxib was sufficient to inhibit cell proliferation, promote apoptosis, and induce G0/G1 cell cycle arrest in HCC cells with concentration- and time-dependent manners. Celecoxib up-regulated E-cadherin protein through inhibiting COX-2-prostaglandin E2 (PGE2)-PGE2 receptor 2 (EP2)-p-Akt/p-ERK signaling pathway to suppress HCC cells migration and invasion. Conclusion: High COX-2 expression was associated with advanced TNM stage, larger tumor size, increased lymphovascular invasion and short survival. Targeting inhibition of COX-2 by celecoxib exhibited anti-tumor activities by suppressing proliferation, promoting apoptosis, and inhibiting the aggressive properties of HCC cells.
Collapse
Affiliation(s)
- Yang Tai
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Lin-Hao Zhang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Jin-Hang Gao
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Chong Zhao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Huan Tong
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Cheng Ye
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Zhi-Yin Huang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Rui Liu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Cheng-Wei Tang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| |
Collapse
|
57
|
Recent Insight into the Role of Fibrosis in Nonalcoholic Steatohepatitis-Related Hepatocellular Carcinoma. Int J Mol Sci 2019; 20:ijms20071745. [PMID: 30970564 PMCID: PMC6480228 DOI: 10.3390/ijms20071745] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most widespread tumors in the world and its prognosis is poor because of lack of effective treatments. Epidemiological studies show that non-alcoholic steatohepatitis (NASH) and advanced fibrosis represent a relevant risk factors to the HCC development. However little is known of pathophysiological mechanisms linking liver fibrogenesis to HCC in NASH. Recent advances in scientific research allowed to discover some mechanisms that may represent potential therapeutic targets. These include the integrin signaling, hepatic stellate cells (HSCs) activation, Hedgehog signaling and alteration of immune system. In the near future, knowledge of fibrosis-dependent carcinogenic mechanisms, will help optimize antifibrotic therapies as an approach to prevent and treat HCC in patients with NASH and advanced fibrosis.
Collapse
|
58
|
Jiang J, Chen Y, Dong T, Yue M, Zhang Y, An T, Zhang J, Liu P, Yang X. Polydatin inhibits hepatocellular carcinoma via the AKT/STAT3-FOXO1 signaling pathway. Oncol Lett 2019; 17:4505-4513. [PMID: 30944640 PMCID: PMC6444395 DOI: 10.3892/ol.2019.10123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
Polydatin, extracted from Polygonum cuspidatum, is known for its anti-platelet aggregation and anti-inflammatory effects. However, studies on the association of polydatin with cancer are limited, particularly with regards to epithelial-mesenchymal transition (EMT)-associated migration and invasion of cancer cells. The purpose of the present study was to reveal the potential anticancer effects of polydatin on hepatocellular carcinoma (HCC) cells, particularly its effects on EMT. MTT assay was used to determine cell viability. Migration and invasion were evaluated through wound healing and transwell assays. Colony formation efficiency assay was conducted to detect proliferation. Flow cytometric analyses of apoptosis and cell cycle progression were performed following cells staining with Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) and PI alone, respectively. Western blotting was used to investigate relevant molecular mechanisms. The results indicated that polydatin inhibited proliferation via G2/M arrest, suppressed migration and invasion of HCC cells, and promoted their apoptosis. In addition, phosphorylated (p)-protein kinase B (AKT), p-Janus kinase 1 and p-signal transducer and activator of transcription 3 (STAT3) levels were decreased as polydatin concentrations increased, and forkhead box protein O1 (FOXO1) expression was upregulated. Furthermore, the expression levels of various markers of EMT were reversed following treatment with polydatin. In conclusion, the present study validated that polydatin may inhibit proliferation via G2/M arrest, and suppressed EMT-associated migration and invasion of HCC cells. The results also suggested that polydatin may promote HCC cell apoptosis by blocking the AKT/STAT3-FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Jian Jiang
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yaodong Chen
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Tianxiu Dong
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Minlu Yue
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yu Zhang
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Tingting An
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jiuwei Zhang
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Pengfei Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiuhua Yang
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
59
|
Soule E, Lamsal S, Lall C, Matteo J. Eye Opener to EtOH Ablation for Juxta-Cardiac Hepatocellular Carcinoma. Gastrointest Tumors 2019; 5:109-116. [PMID: 30976582 DOI: 10.1159/000495135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is notoriously refractory to systemic chemotherapy, mandating an interventional approach. Mortality may be avoided by neutralizing rapidly growing tumors that approach the heart and major vessels. When the risk/benefit ratio of surgery is unacceptable, percutaneous ablation can achieve remarkable results. High volumes of flowing blood adjacent to the treatment area may impact the ability to reliably achieve an adequate ablation margin for modalities that rely on extreme temperatures to destroy malignant cells. Ethanol ablation is safe, efficacious, and unaffected by this "thermal sink" effect. This report describes a juxta-cardiac (JC) HCC in segment 4a measuring 35 × 26 mm, which exhibited rapid growth until it was abutting the pericardium and 7.5 mm from the chamber of the right ventricle (RV). Methods One 21-gauge needle was inserted using direct CT fluoroscopy into the center of the hepatic mass. In order to confirm the position of the needle, 0.5 mL of diluted Visipaque was injected. Then, under CT fluoroscopy guidance, a mixture of 1 mL of Ethiodol and 10 mL of 98% dehydrated alcohol was slowly injected into the mass. Results Repeat CT scan 1 month post-ablation demonstrated decreased arterial enhancement and dense Ethiodol throughout the tumor consistent with ablation. Tumor size decreased to 30 × 23 mm with a distance of 12.4 mm from the chamber of the RV. Conclusion Pericardial involvement or large vessels near the treatment area may limit the use of thermal ablation techniques for JC HCC. Percutaneous, intratumoral ethanol injection provides safe and effective alternative that is not subject to the "thermal sink" effect.
Collapse
Affiliation(s)
- Erik Soule
- Department of Interventional Radiology, University of Florida, UF Health Jacksonville, Jacksonville, Florida, USA
| | - Sanjay Lamsal
- Department of Interventional Radiology, University of Florida, UF Health Jacksonville, Jacksonville, Florida, USA
| | - Chandana Lall
- Department of Interventional Radiology, University of Florida, UF Health Jacksonville, Jacksonville, Florida, USA
| | - Jerry Matteo
- Department of Interventional Radiology, University of Florida, UF Health Jacksonville, Jacksonville, Florida, USA
| |
Collapse
|
60
|
Greten TF, Lai CW, Li G, Staveley-O'Carroll KF. Targeted and Immune-Based Therapies for Hepatocellular Carcinoma. Gastroenterology 2019; 156:510-524. [PMID: 30287171 PMCID: PMC6340758 DOI: 10.1053/j.gastro.2018.09.051] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023]
Abstract
Treatment options for patients with hepatocellular carcinoma are rapidly changing based on positive results from phase 3 trials of targeted and immune-based therapies. More agents designed to target specific pathways and immune checkpoints are in clinical development. Some agents have already been shown to improve outcomes of patients with hepatocellular carcinoma, as first- and second-line therapies, and are awaiting approval by the Food and Drug Administration or have been recently approved. We summarize the targeted and immune-based agents in trials of patients with advanced hepatocellular carcinoma and discuss the future of these strategies for liver cancer.
Collapse
Affiliation(s)
- Tim F Greten
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; National Cancer Institute CCR Liver Cancer Program, Bethesda, Maryland.
| | - Chunwei Walter Lai
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Liver Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, Maryland
| | - Guangfu Li
- Department of Surgery, University of Missouri-Columbia, Columbia, Missouri; Department of Molecular Microbiology & Immunology, University of Missouri-Columbia, Columbia, Missouri
| | | |
Collapse
|
61
|
Haider C, Hnat J, Wagner R, Huber H, Timelthaler G, Grubinger M, Coulouarn C, Schreiner W, Schlangen K, Sieghart W, Peck‐Radosavljevic M, Mikulits W. Transforming Growth Factor-β and Axl Induce CXCL5 and Neutrophil Recruitment in Hepatocellular Carcinoma. Hepatology 2019; 69:222-236. [PMID: 30014484 PMCID: PMC6590451 DOI: 10.1002/hep.30166] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/06/2018] [Indexed: 12/24/2022]
Abstract
Transforming growth factor (TGF)-β suppresses early hepatocellular carcinoma (HCC) development but triggers pro-oncogenic abilities at later stages. Recent data suggest that the receptor tyrosine kinase Axl causes a TGF-β switch toward dedifferentiation and invasion of HCC cells. Here, we analyzed two human cellular HCC models with opposing phenotypes in response to TGF-β. Both HCC models showed reduced proliferation and clonogenic growth behavior following TGF-β stimulation, although they exhibited differences in chemosensitivity and migratory abilities, suggesting that HCC cells evade traits of anti-oncogenic TGF-β. Transcriptome profiling revealed differential regulation of the chemokine CXCL5, which positively correlated with TGF-β expression in HCC patients. The expression and secretion of CXCL5 was dependent on Axl expression, suggesting that CXCL5 is a TGF-β target gene collaborating with Axl signaling. Loss of either TGF-β or Axl signaling abrogated CXCL5-dependent attraction of neutrophils. In mice, tumor formation of transplanted HCC cells relied on CXCL5 expression. In HCC patients, high levels of Axl and CXCL5 correlated with advanced tumor stages, recruitment of neutrophils into HCC tissue, and reduced survival. Conclusion: The synergy of TGF-β and Axl induces CXCL5 secretion, causing the infiltration of neutrophils into HCC tissue. Intervention with TGF-β/Axl/CXCL5 signaling may be an effective therapeutic strategy to combat HCC progression in TGF-β-positive patients.
Collapse
Affiliation(s)
- Christine Haider
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center ViennaMedical University of ViennaViennaAustria
| | - Julia Hnat
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center ViennaMedical University of ViennaViennaAustria
| | - Roland Wagner
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center ViennaMedical University of ViennaViennaAustria
| | - Heidemarie Huber
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center ViennaMedical University of ViennaViennaAustria
| | - Gerald Timelthaler
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center ViennaMedical University of ViennaViennaAustria
| | - Markus Grubinger
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center ViennaMedical University of ViennaViennaAustria
| | - Cédric Coulouarn
- INSERM, University of Rennes, INRA, Institute NUMECAN (Nutrition Metabolisms and Cancer)UMR_A 1341, UMR_S 1241RennesFrance
| | - Wolfgang Schreiner
- Division of Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS)Medical University of ViennaViennaAustria
| | - Karin Schlangen
- Division of Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS)Medical University of ViennaViennaAustria
| | - Wolfgang Sieghart
- Department of Internal Medicine III, Division of Gastroenterology and HepatologyMedical University of ViennaViennaAustria
| | - Markus Peck‐Radosavljevic
- Department of Internal Medicine III, Division of Gastroenterology and HepatologyMedical University of ViennaViennaAustria
| | - Wolfgang Mikulits
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center ViennaMedical University of ViennaViennaAustria
| |
Collapse
|
62
|
Han TS, Ban HS, Hur K, Cho HS. The Epigenetic Regulation of HCC Metastasis. Int J Mol Sci 2018; 19:ijms19123978. [PMID: 30544763 PMCID: PMC6321007 DOI: 10.3390/ijms19123978] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022] Open
Abstract
Epigenetic alterations, such as histone modification, DNA methylation, and miRNA-mediated processes, are critically associated with various mechanisms of proliferation and metastasis in several types of cancer. To overcome the side effects and limited effectiveness of drugs for cancer treatment, there is a continuous need for the identification of more effective drug targets and the execution of mechanism of action (MOA) studies. Recently, epigenetic modifiers have been recognized as important therapeutic targets for hepatocellular carcinoma (HCC) based on their reported abilities to suppress HCC metastasis and proliferation in both in vivo and in vitro studies. Therefore, here, we introduce epigenetic modifiers and alterations related to HCC metastasis and proliferation, and their molecular mechanisms in HCC metastasis. The existing data suggest that the study of epigenetic modifiers is important for the development of specific inhibitors and diagnostic targets for HCC treatment.
Collapse
Affiliation(s)
- Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Hyun Seung Ban
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Korea.
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| |
Collapse
|
63
|
Sun JP, Ge QX, Ren Z, Sun XF, Xie SP. Down-regulation of HOXB5 inhibits TGF-β-induced migration and invasion in hepatocellular carcinoma cells via inactivation of the PI3K/Akt pathway. RSC Adv 2018; 8:41415-41421. [PMID: 35559288 PMCID: PMC9091567 DOI: 10.1039/c8ra06860g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/22/2018] [Indexed: 11/30/2022] Open
Abstract
HOXB5, a member of the HOX gene family, is a developmental gene which encodes homeoproteins and is known to be a crucial player in development of enteric nervous systems. Recently, HOXB5 was reported to be associated with cancer progression. However, the specific effect of HOXB5 in hepatocellular carcinoma (HCC) remains unclear. In this study, we demonstrated the important role of HOXB5 in HCC. We showed that HOXB5 was up-regulated in HCC tissues and cell lines. Furthermore, down-regulation of HOXB5 inhibited TGF-β-induced HCC cell migration and invasion in vitro and suppressed tumor metastasis in vivo. We also found that the PI3K/Akt pathway partly accounted for the mechanisms underlying the inhibitory effect of HOXB5 down-regulation on TGF-β-induced HCC progression. Taken together, these findings demonstrated that down-regulation of HOXB5 inhibits TGF-β-induced migration and invasion in HCC cells via inactivation of the PI3K/Akt pathway. Thus, HOXB5 may be a novel therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Jin-Ping Sun
- Department of Gastroenterology, Huaihe Hospital of Henan University No. 115 Ximen Street, Longting District Kaifeng 475000 China +86-371-23906892 +86-371-23906892
| | - Quan-Xing Ge
- Department of Gastroenterology, Huaihe Hospital of Henan University No. 115 Ximen Street, Longting District Kaifeng 475000 China +86-371-23906892 +86-371-23906892
| | - Zheng Ren
- Department of Gastroenterology, Huaihe Hospital of Henan University No. 115 Ximen Street, Longting District Kaifeng 475000 China +86-371-23906892 +86-371-23906892
| | - Xin-Fang Sun
- Department of Gastroenterology, Huaihe Hospital of Henan University No. 115 Ximen Street, Longting District Kaifeng 475000 China +86-371-23906892 +86-371-23906892
| | - Shu-Ping Xie
- Department of Gastroenterology, Huaihe Hospital of Henan University No. 115 Ximen Street, Longting District Kaifeng 475000 China +86-371-23906892 +86-371-23906892
| |
Collapse
|
64
|
Gjorgjieva M, Calderaro J, Monteillet L, Silva M, Raffin M, Brevet M, Romestaing C, Roussel D, Zucman-Rossi J, Mithieux G, Rajas F. Dietary exacerbation of metabolic stress leads to accelerated hepatic carcinogenesis in glycogen storage disease type Ia. J Hepatol 2018; 69:1074-1087. [PMID: 30193922 DOI: 10.1016/j.jhep.2018.07.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 06/11/2018] [Accepted: 07/08/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Glycogen storage disease type Ia (GSDIa) is a rare genetic disease associated with glycogen accumulation in hepatocytes and steatosis. With age, most adult patients with GSDIa develop hepatocellular adenomas (HCA), which can progress to hepatocellular carcinomas (HCC). In this study, we characterized metabolic reprogramming and cellular defense alterations during tumorigenesis in the liver of hepatocyte-specific G6pc deficient (L.G6pc-/-) mice, which develop all the hepatic hallmarks of GSDIa. METHODS Liver metabolism and cellular defenses were assessed at pretumoral (four months) and tumoral (nine months) stages in L.G6pc-/- mice fed a high fat/high sucrose (HF/HS) diet. RESULTS In response to HF/HS diet, hepatocarcinogenesis was highly accelerated since 85% of L.G6pc-/- mice developed multiple hepatic tumors after nine months, with 70% classified as HCA and 30% as HCC. Tumor development was associated with high expression of malignancy markers of HCC, i.e. alpha-fetoprotein, glypican 3 and β-catenin. In addition, L.G6pc-/- livers exhibited loss of tumor suppressors. Interestingly, L.G6pc-/- steatosis exhibited a low-inflammatory state and was less pronounced than in wild-type livers. This was associated with an absence of epithelial-mesenchymal transition and fibrosis, while HCA/HCC showed a partial epithelial-mesenchymal transition in the absence of TGF-β1 increase. In HCA/HCC, glycolysis was characterized by a marked expression of PK-M2, decreased mitochondrial OXPHOS and a decrease of pyruvate entry in the mitochondria, confirming a "Warburg-like" phenotype. These metabolic alterations led to a decrease in antioxidant defenses and autophagy and chronic endoplasmic reticulum stress in L.G6pc-/- livers and tumors. Interestingly, autophagy was reactivated in HCA/HCC. CONCLUSION The metabolic remodeling in L.G6pc-/- liver generates a preneoplastic status and leads to a loss of cellular defenses and tumor suppressors that facilitates tumor development in GSDI. LAY SUMMARY Glycogen storage disease type Ia (GSD1a) is a rare metabolic disease characterized by hypoglycemia, steatosis, excessive glycogen accumulation and tumor development in the liver. In this study, we have observed that GSDIa livers reprogram their metabolism in a similar way to cancer cells, which facilitates tumor formation and progression, in the absence of hepatic fibrosis. Moreover, hepatic burden due to overload of glycogen and lipids in the cells leads to a decrease in cellular defenses, such as autophagy, which could further promote tumorigenesis in the case of GSDI.
Collapse
Affiliation(s)
- Monika Gjorgjieva
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon F-69008, France; Université de Lyon, Lyon F-69008 France; Université Lyon I, Villeurbanne F-69622 France
| | - Julien Calderaro
- Inserm UMR-1162, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France; Université Paris Est Créteil, Créteil, France; APHP, Assistance-Publique Hôpitaux-de-Paris, Département de Pathologie, Hôpital Henri Mondor, Créteil F-94010, France
| | - Laure Monteillet
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon F-69008, France; Université de Lyon, Lyon F-69008 France; Université Lyon I, Villeurbanne F-69622 France
| | - Marine Silva
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon F-69008, France; Université de Lyon, Lyon F-69008 France; Université Lyon I, Villeurbanne F-69622 France
| | - Margaux Raffin
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon F-69008, France; Université de Lyon, Lyon F-69008 France; Université Lyon I, Villeurbanne F-69622 France
| | - Marie Brevet
- Université de Lyon, Lyon F-69008 France; Université Lyon I, Villeurbanne F-69622 France; Service de Pathologie Lyon Est, Centre hospitalier universitaire de Lyon, Lyon F-69437, France
| | - Caroline Romestaing
- Université de Lyon, Lyon F-69008 France; Université Lyon I, Villeurbanne F-69622 France; Centre National de la Recherche Scientifique, UMR 5023, Villeurbanne F-69622 France
| | - Damien Roussel
- Université de Lyon, Lyon F-69008 France; Université Lyon I, Villeurbanne F-69622 France; Centre National de la Recherche Scientifique, UMR 5023, Villeurbanne F-69622 France
| | - Jessica Zucman-Rossi
- Inserm UMR-1162, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Assistance Publique-Hôpitaux de Paris, Paris F-75015, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon F-69008, France; Université de Lyon, Lyon F-69008 France; Université Lyon I, Villeurbanne F-69622 France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon F-69008, France; Université de Lyon, Lyon F-69008 France; Université Lyon I, Villeurbanne F-69622 France.
| |
Collapse
|
65
|
Radke DI, Ling Q, Häsler R, Alp G, Ungefroren H, Trauzold A. Downregulation of TRAIL-Receptor 1 Increases TGFβ Type II Receptor Expression and TGFβ Signalling Via MicroRNA-370-3p in Pancreatic Cancer Cells. Cancers (Basel) 2018; 10:399. [PMID: 30366420 PMCID: PMC6267290 DOI: 10.3390/cancers10110399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022] Open
Abstract
The accumulation of perturbations in signalling pathways resulting in an apoptosis-insensitive phenotype is largely responsible for the desperate prognosis of patients with pancreatic ductal adenocarcinoma (PDAC). Accumulating evidence suggests that the death receptors TRAIL-R1 and TRAIL-R2 play important roles in PDAC biology by acting as either tumour suppressors through induction of cell death or tumour promoters through induction of pro-inflammatory signalling, invasion and metastasis. TRAIL-R2 can also associate with nuclear proteins and alter the maturation of micro RNAs (miRs). By genome-wide miR profiling and quantitative PCR analyses we now demonstrate that knockdown of TRAIL-R1 in PDAC cells decreased the level of mature miR-370 and led to an increased abundance of the type II receptor for transforming growth factor β (TGFβ). Transfection of cells with an artificial miR-370-3p decreased the levels of TGFβ-RII. We further show that transient expression of the miR-370 mimic decreased TGFβ1-induced expression of SERPINE1 encoding plasminogen activator-inhibitor 1 and partially relieved TGFβ1-induced growth inhibition. Moreover, stable TRAIL-R1 knockdown in Colo357 cells increased TGFβ1-induced SERPINE1 expression and this effect was partially reversed by transient expression of the miR-370 mimic. Finally, after transient knockdown of TRAIL-R1 in Panc1 cells there was a tendency towards enhanced activation of Smad2 and JNK1/2 signalling by exogenous TGFβ1. Taken together, our study reveals that TRAIL-R1 through regulation of miR-370 can decrease the sensitivity of PDAC cells to TGFβ and therefore represents a potential tumour suppressor in late-stage PDAC.
Collapse
Affiliation(s)
- David I Radke
- Institute for Experimental Cancer Research, University of Kiel, D-24105 Kiel, Germany.
| | - Qi Ling
- Institute for Experimental Cancer Research, University of Kiel, D-24105 Kiel, Germany.
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 31000, China.
| | - Robert Häsler
- Institute of Clinical Molecular Biology, University of Kiel, D-24105 Kiel, Germany.
| | - Gökhan Alp
- Institute for Experimental Cancer Research, University of Kiel, D-24105 Kiel, Germany.
| | - Hendrik Ungefroren
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany.
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany.
| | - Anna Trauzold
- Institute for Experimental Cancer Research, University of Kiel, D-24105 Kiel, Germany.
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany.
| |
Collapse
|
66
|
Tao S, Liu M, Shen D, Zhang W, Wang T, Bai Y. TGF-β/Smads Signaling Affects Radiation Response and Prolongs Survival by Regulating DNA Repair Genes in Malignant Glioma. DNA Cell Biol 2018; 37:909-916. [PMID: 30230914 DOI: 10.1089/dna.2018.4310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To understand the molecular mechanism underlying the causal relationship between aberrant upregulation of transforming growth factor beta (TGF-β) and radio-resistance in glioma. The mouse glioma cell GL261 was irradiated, and relative expression of TGF-β/Smad signaling genes was determined by real-time PCR and western blotting. The DNA repair response on exogenous TGF-β or LY2109761 was evaluated by quantification of diverse genes by real-time PCR and western blotting. Xenograft mice were employed for in vivo investigation to assess the response to irradiation and LY2109761 either alone or in combination. The expression of DNA repair genes was further determined in the xenograft tumor. The TGF-β/Smad signaling pathway was activated by radiation in the GL261 cell line. The exogenous complement of TGF-β significantly stimulated DNA repair response. Administration of LY2109761 suppressed DNA repair genes. Simultaneous treatment with LY2109761 abrogated the upregulation of DNA repair genes in GL261. In the xenograft tumor model, LY2109761 synergistically improved the therapeutic effect of radiation via improvement of sensitivity. Our data suggested that LY2109761 treatment re-sensitized glioma to radiation via antagonizing TGF-β/Smad-induced DNA repair.
Collapse
Affiliation(s)
- Sichen Tao
- Neurosurgery Department, Yidu Central Hospital of Weifang , Qingzhou, Shandong Province, China
| | - Minli Liu
- Neurosurgery Department, Yidu Central Hospital of Weifang , Qingzhou, Shandong Province, China
| | - Dawei Shen
- Neurosurgery Department, Yidu Central Hospital of Weifang , Qingzhou, Shandong Province, China
| | - Wei Zhang
- Neurosurgery Department, Yidu Central Hospital of Weifang , Qingzhou, Shandong Province, China
| | - Tongxin Wang
- Neurosurgery Department, Yidu Central Hospital of Weifang , Qingzhou, Shandong Province, China
| | - Yunan Bai
- Neurosurgery Department, Yidu Central Hospital of Weifang , Qingzhou, Shandong Province, China
| |
Collapse
|
67
|
Preziosi M, Poddar M, Singh S, Monga SP. Hepatocyte Wnts Are Dispensable During Diethylnitrosamine and Carbon Tetrachloride-Induced Injury and Hepatocellular Cancer. Gene Expr 2018; 18:209-219. [PMID: 29519268 PMCID: PMC6190118 DOI: 10.3727/105221618x15205148413587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activation of the Wnt/β-catenin signaling is reported in large subsets of hepatocellular carcinoma (HCC). Upregulation of Wnt genes is one contributing mechanism. In the current study, we sought to address the role of hepatocyte-derived Wnts in a model of hepatic injury, fibrosis, and carcinogenesis. We subjected hepatocyte-specific Wntless knockout mice (HP-KO), unable to secrete Wnts from hepatocytes, and littermate controls (HP-CON) to diethylnitrosamine and carbon tetrachloride (DEN/CCl4) and harvested at 3, 5, and 6 months for histological and molecular analysis. Analysis at 5 months displayed increased hepatic expression of several Wnts and upregulation of some, but not all, β-catenin targets, without mutations in Ctnnb1. At 5 months, HP-CON and HP-KO had comparable tumor burden and injury; however, HP-KO uniquely showed small CK19+ foci within tumors. At 6 months, both groups were moribund with comparable tumor burden and CK19 positivity. While HCC histology was indistinguishable between the groups, HP-KO exhibited increased active β-catenin and decreased c-Myc, Brd4, E-cadherin, and others. Hepatic injury, inflammation, and fibrosis were also indistinguishable at 3 months between both groups. Thus, lack of Wnt secretion from hepatocytes did not affect overall injury, fibrosis, or HCC burden, although there were protein expression differences in the tumors occurring in the two groups.
Collapse
Affiliation(s)
- Morgan Preziosi
- *Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- †Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Minakshi Poddar
- *Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- †Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sucha Singh
- *Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- †Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Satdarshan P. Monga
- *Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- †Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- ‡Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
68
|
Vakili‐Ghartavol R, Mombeiny R, Salmaninejad A, Sorkhabadi SMR, Faridi‐Majidi R, Jaafari MR, Mirzaei H. Tumor‐associated macrophages and epithelial–mesenchymal transition in cancer: Nanotechnology comes into view. J Cell Physiol 2018; 233:9223-9236. [DOI: 10.1002/jcp.27027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Roghayyeh Vakili‐Ghartavol
- Department of Medical Nanotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Reza Mombeiny
- Cellular and Molecular Research Center, Iran University of Medical Sciences Tehran Iran
| | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science Tabriz Iran
- Department of Medical Genetics Faculty of Medicine, Student Research Committee, Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Mahdi Rezayat Sorkhabadi
- Department of Medical Nanotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences Tehran Iran
- Department of Toxicology–Pharmacology Faculty of Pharmacy, Pharmaceutical Science Branch, Islamic Azad University (IAUPS) Tehran Iran
| | - Reza Faridi‐Majidi
- Department of Medical Nanotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Nanotechnology School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | - Hamed Mirzaei
- Department of Biomaterials Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
69
|
Ji Y, Xiao Y, Xu L, He J, Qian C, Li W, Wu L, Chen R, Wang J, Hu R, Zhang X, Gu Z, Chen Z. Drug-Bearing Supramolecular MMP Inhibitor Nanofibers for Inhibition of Metastasis and Growth of Liver Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700867. [PMID: 30128224 PMCID: PMC6097146 DOI: 10.1002/advs.201700867] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/07/2018] [Indexed: 05/19/2023]
Abstract
Treatment of hepatocellular carcinoma (HCC) requires sustained suppression of tumor cell growth and metastasis for long-term efficacy. However, traditional intratumoral drug delivery system always exhibits burst release with less therapeutic outcomes. Here, a new self-assembling amphiphilic peptide drug conjugate (SAAPDC) is fabricated as a "two-in-one" nanofiber system comprising a hexapeptide as a matrix metalloproteinases (MMP) inhibitor and doxorubicin (DOX) for the treatment of HCC. The results indicate that doxorubicin-conjugated peptide (DOX-KGFRWR) self-assembles to form long nanofibers showing sustained release property for inhibiting the enzymatic activities of MMP-2 and MMP-9. This nanofiber not only inhibits tumor growth in situ but also effectively prevents pulmonary metastasis in an SMMC7721 cell line-based mouse model. In summary, this hexapeptide-based supermolecule system represents a promising nanoscale platform to sustain drug release with high loading capacity for intratumoral administration. Moreover, the delivery of chemotherapeutic drugs via drug-bearing supramolecular MMP inhibitor nanofibers simultaneously inhibits metastasis and tumor growth to achieve synergistic effects for metastatic HCC therapy.
Collapse
Affiliation(s)
- Yujie Ji
- Department of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjing210023China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023China
| | - Yanyu Xiao
- Department of PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Liu Xu
- Department of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjing210023China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023China
| | - Jiayu He
- Department of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjing210023China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023China
| | - Chen Qian
- Department of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjing210023China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023China
| | - Weidong Li
- Department of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjing210023China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023China
| | - Li Wu
- Department of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjing210023China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023China
| | - Rui Chen
- Department of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjing210023China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023China
| | - Jingjing Wang
- Department of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjing210023China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023China
| | - Rongfeng Hu
- Key Laboratory of Xin'an MedicineMinistry of EducationAnhui Province Key Laboratory of R&D of Chinese MedicineAnhui University of Traditional Chinese MedicineHefeiAnhui230038China
| | - Xudong Zhang
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695USA
| | - Zhen Gu
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695USA
| | - Zhipeng Chen
- Department of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjing210023China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023China
| |
Collapse
|
70
|
Wei G, Xu Q, Liu L, Zhang H, Tan X, Zhang C, Han C, Guo Y, Han G, Zhang C. LY2109761 reduces TGF-β1-induced collagen production and contraction in hypertrophic scar fibroblasts. Arch Dermatol Res 2018; 310:615-623. [PMID: 30046895 DOI: 10.1007/s00403-018-1849-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/13/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Hypertrophic scars (HS) are fibro-hyperproliferative dermal lesions with effusive continuous accumulation of extracellular matrix components, particularly collagen. They usually occur after dermal injury in genetically susceptible individuals and cause both physical and psychological distress for the affected individuals. Transforming growth factor-β1 (TGF-β1) is known to mediate wound healing process by regulating cell differentiation, collagen production and extracellular matrix degradation. The sustained high expression of TGF-β1 is believed to result in the formation of hypertrophic scars. Inhibition of TGF-β1 signaling pathway may represent one of effective strategies for limiting excessive scarring. LY2109761, an orally active TβRI/II kinase dual inhibitor, has been previously reported that it had inhibitory effects on carcinomas and attenuates Radiation-induced pulmonary murine fibrosis. Our results revealed that LY2109761 reduced TGF-β1-induced collagen production and α-smooth muscle actin (α-SMA) expression, and attenuated TGF-β1-induced cell contraction in hypertrophic scar fibroblasts. The data from this study provide evidence supporting the potential use of LY2109761 as a novel treatment for hypertrophic scars.
Collapse
Affiliation(s)
- Guo Wei
- Department of Dermato-venereology, the Second Hospital of Shandong University, 247 Beiyuan Dajie Street, Jinan, 250033, Shandong, China
| | - Qingqing Xu
- Department of Dermato-venereology, the Second Hospital of Shandong University, 247 Beiyuan Dajie Street, Jinan, 250033, Shandong, China
| | - Lin Liu
- Department of Dermato-venereology, the Second Hospital of Shandong University, 247 Beiyuan Dajie Street, Jinan, 250033, Shandong, China
| | - Huanhuan Zhang
- Department of Dermato-venereology, the Second Hospital of Shandong University, 247 Beiyuan Dajie Street, Jinan, 250033, Shandong, China
| | - Xi Tan
- Department of Dermato-venereology, the Second Hospital of Shandong University, 247 Beiyuan Dajie Street, Jinan, 250033, Shandong, China
| | - Chunhong Zhang
- Department of Dermato-venereology, the Second Hospital of Shandong University, 247 Beiyuan Dajie Street, Jinan, 250033, Shandong, China
| | - Changyu Han
- Department of Dermato-venereology, the Second Hospital of Shandong University, 247 Beiyuan Dajie Street, Jinan, 250033, Shandong, China
| | - Yanxia Guo
- Institute of Medical Sciences, the Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Ganwen Han
- Department of Dermato-venereology, the Second Hospital of Shandong University, 247 Beiyuan Dajie Street, Jinan, 250033, Shandong, China.,Department of Dermatology, Peking University International Hospital, Beijing, 102206, China
| | - Chunmin Zhang
- Department of Dermato-venereology, the Second Hospital of Shandong University, 247 Beiyuan Dajie Street, Jinan, 250033, Shandong, China.
| |
Collapse
|
71
|
Liu Y, Cai Y, Liu L, Wu Y, Xiong X. Crucial biological functions of CCL7 in cancer. PeerJ 2018; 6:e4928. [PMID: 29915688 PMCID: PMC6004300 DOI: 10.7717/peerj.4928] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
Chemokine (C-C motif) ligand 7 (CCL7), a CC chemokine, is a chemotactic factor and attractant for various kinds of leukocytes, including monocytes and neutrophils. CCL7 is widely expressed in multiple cell types and can participate in anti-inflammatory responses through binding to its receptors to mediate the recruitment of immune cells. Abnormal CCL7 expression is associated with certain immune diseases. Furthermore, CCL7 plays a pivotal role in tumorigenesis. CCL7 promotes tumor progression by supporting the formation of the tumor microenvironment and facilitating tumor invasion and metastasis, although some studies have suggested that CCL7 has tumor suppressor effects. In this review, we summarize the currently available information regarding the influence of CCL7 on tumors.
Collapse
Affiliation(s)
- Yangyang Liu
- First Clinical Medical College, School of Medicine, Nanchang University, Nanchang, People's Republic of China
| | - Yadi Cai
- First Clinical Medical College, School of Medicine, Nanchang University, Nanchang, People's Republic of China
| | - Li Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, People's Republic of China
| | - Yudong Wu
- Department of Breast Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, People's Republic of China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
72
|
Amicone L, Marchetti A. Microenvironment and tumor cells: two targets for new molecular therapies of hepatocellular carcinoma. Transl Gastroenterol Hepatol 2018; 3:24. [PMID: 29971255 DOI: 10.21037/tgh.2018.04.05] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC), is one of the most frequent human cancer and is characterized by a high mortality rate. The aggressiveness appears strictly related to the liver pathological background on which cancer develops. Inflammation and the consequent fibro/cirrhosis, derived from chronic injuries of several origins (viral, toxic and metabolic) and observable in almost all oncological patients, represents the most powerful risk factor for HCC and, at the same time, an important obstacle to the efficacy of systemic therapy. Multiple microenvironmental cues, indeed, play a pivotal role in the pathogenesis, evolution and recurrence of HCC as well as in the resistance to standard therapies observed in most of patients. The identification of altered pathways in cancer cells and of microenvironmental changes, strictly connected in pathogenic feedback loop, may permit to plan new therapeutic approaches targeting tumor cells and their permissive microenvironment, simultaneously.
Collapse
Affiliation(s)
- Laura Amicone
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Alessandra Marchetti
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
73
|
Caja L, Dituri F, Mancarella S, Caballero-Diaz D, Moustakas A, Giannelli G, Fabregat I. TGF-β and the Tissue Microenvironment: Relevance in Fibrosis and Cancer. Int J Mol Sci 2018. [PMID: 29701666 DOI: 10.3390/ijms19051294.pmid:29701666;pmcid:pmc5983604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is a cytokine essential for the induction of the fibrotic response and for the activation of the cancer stroma. Strong evidence suggests that a strong cross-talk exists among TGF-β and the tissue extracellular matrix components. TGF-β is stored in the matrix as part of a large latent complex bound to the latent TGF-β binding protein (LTBP) and matrix binding of latent TGF-β complexes, which is required for an adequate TGF-β function. Once TGF-β is activated, it regulates extracellular matrix remodelling and promotes a fibroblast to myofibroblast transition, which is essential in fibrotic processes. This cytokine also acts on other cell types present in the fibrotic and tumour microenvironment, such as epithelial, endothelial cells or macrophages and it contributes to the cancer-associated fibroblast (CAF) phenotype. Furthermore, TGF-β exerts anti-tumour activity by inhibiting the host tumour immunosurveillance. Aim of this review is to update how TGF-β and the tissue microenvironment cooperate to promote the pleiotropic actions that regulate cell responses of different cell types, essential for the development of fibrosis and tumour progression. We discuss recent evidences suggesting the use of TGF-β chemical inhibitors as a new line of defence against fibrotic disorders or cancer.
Collapse
Affiliation(s)
- Laia Caja
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 75123 Uppsala, Sweden.
| | - Francesco Dituri
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Serena Mancarella
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Daniel Caballero-Diaz
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199, 08908 Barcelona, Spain.
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Aristidis Moustakas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 75123 Uppsala, Sweden.
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199, 08908 Barcelona, Spain.
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet, 08907 Barcelona, Spain.
| |
Collapse
|
74
|
Caja L, Dituri F, Mancarella S, Caballero-Diaz D, Moustakas A, Giannelli G, Fabregat I. TGF-β and the Tissue Microenvironment: Relevance in Fibrosis and Cancer. Int J Mol Sci 2018; 19:ijms19051294. [PMID: 29701666 PMCID: PMC5983604 DOI: 10.3390/ijms19051294] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a cytokine essential for the induction of the fibrotic response and for the activation of the cancer stroma. Strong evidence suggests that a strong cross-talk exists among TGF-β and the tissue extracellular matrix components. TGF-β is stored in the matrix as part of a large latent complex bound to the latent TGF-β binding protein (LTBP) and matrix binding of latent TGF-β complexes, which is required for an adequate TGF-β function. Once TGF-β is activated, it regulates extracellular matrix remodelling and promotes a fibroblast to myofibroblast transition, which is essential in fibrotic processes. This cytokine also acts on other cell types present in the fibrotic and tumour microenvironment, such as epithelial, endothelial cells or macrophages and it contributes to the cancer-associated fibroblast (CAF) phenotype. Furthermore, TGF-β exerts anti-tumour activity by inhibiting the host tumour immunosurveillance. Aim of this review is to update how TGF-β and the tissue microenvironment cooperate to promote the pleiotropic actions that regulate cell responses of different cell types, essential for the development of fibrosis and tumour progression. We discuss recent evidences suggesting the use of TGF-β chemical inhibitors as a new line of defence against fibrotic disorders or cancer.
Collapse
Affiliation(s)
- Laia Caja
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 75123 Uppsala, Sweden.
| | - Francesco Dituri
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Serena Mancarella
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Daniel Caballero-Diaz
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199, 08908 Barcelona, Spain.
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Aristidis Moustakas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 75123 Uppsala, Sweden.
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199, 08908 Barcelona, Spain.
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet, 08907 Barcelona, Spain.
| |
Collapse
|
75
|
Zhou Q, Li Y, Zhu Y, Yu C, Jia H, Bao B, Hu H, Xiao C, Zhang J, Zeng X, Wan Y, Xu H, Li Z, Yang X. Co-delivery nanoparticle to overcome metastasis promoted by insufficient chemotherapy. J Control Release 2018; 275:67-77. [PMID: 29471038 DOI: 10.1016/j.jconrel.2018.02.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/29/2018] [Accepted: 02/16/2018] [Indexed: 01/06/2023]
Abstract
Heterogeneous distribution of drug inside tumor is ubiquitous, causing regional insufficient chemotherapy, which might be the hotbed for drug resistance, tumor cell repopulation and metastasis. Herein, we verify, for the first time, that heterogeneous drug distribution induced insufficient chemotherapy would accelerate the process of epithelial mesenchymal transition (EMT), consequently resulting in the promotion of tumor metastasis. To eliminate the insufficient chemotherapy promoted metastasis, we conceived a co-delivery strategy by hydroxyethyl starch-polylactide (HES-PLA) nanoparticle, in which DOX and TGF-β receptor inhibitor, LY2157299 (LY), were administered together. In vitro and in vivo studies demonstrate that this co-delivery strategy can simultaneously suppress primary tumor and distant metastasis. Further study on immunofluorescence images of primary tumor verifies that low dose of DOX exasperates the EMT process, whereas the co-delivery nanoparticle can dramatically inhibit the progression of EMT. We reveal the impact of heterogeneous drug distribution on tumor metastasis and develop an effective co-delivery strategy to suppress the metastasis, providing guidance for clinical cancer therapy.
Collapse
Affiliation(s)
- Qing Zhou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yihui Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yanhong Zhu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chan Yu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Binghao Bao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Hang Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jianqi Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiaofan Zeng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ying Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Huibi Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, PR China; Wuhan Institute of Biotechnology, High Tech Road 666, East Lake high tech Zone, Wuhan 430040, PR China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
76
|
Liu H, Ma Y, He HW, Zhao WL, Shao RG. SPHK1 (sphingosine kinase 1) induces epithelial-mesenchymal transition by promoting the autophagy-linked lysosomal degradation of CDH1/E-cadherin in hepatoma cells. Autophagy 2018; 13:900-913. [PMID: 28521610 PMCID: PMC5446059 DOI: 10.1080/15548627.2017.1291479] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SPHK1 (sphingosine kinase 1), a regulator of sphingolipid metabolites, plays a causal role in the development of hepatocellular carcinoma (HCC) through augmenting HCC invasion and metastasis. However, the mechanism by which SPHK1 signaling promotes invasion and metastasis in HCC remains to be clarified. Here, we reported that SPHK1 induced the epithelial-mesenchymal transition (EMT) by accelerating CDH1/E-cadherin lysosomal degradation and facilitating the invasion and metastasis of HepG2 cells. Initially, we found that SPHK1 promoted cell migration and invasion and induced the EMT process through decreasing the expression of CDH1, which is an epithelial marker. Furthermore, SPHK1 accelerated the lysosomal degradation of CDH1 to induce EMT, which depended on TRAF2 (TNF receptor associated factor 2)-mediated macroautophagy/autophagy activation. In addition, the inhibition of autophagy recovered CDH1 expression and reduced cell migration and invasion through delaying the degradation of CDH1 in SPHK1-overexpressing cells. Moreover, the overexpression of SPHK1 produced intracellular sphingosine-1-phosphate (S1P). In response to S1P stimulation, TRAF2 bound to BECN1/Beclin 1 and catalyzed the lysine 63-linked ubiquitination of BECN1 for triggering autophagy. The deletion of the RING domain of TRAF2 inhibited autophagy and the interaction of BECN1 and TRAF2. Our findings define a novel mechanism responsible for the regulation of the EMT via SPHK1-TRAF2-BECN1-CDH1 signal cascades in HCC cells. Our work indicates that the blockage of SPHK1 activity to attenuate autophagy may be a promising strategy for the prevention and treatment of HCC.
Collapse
Affiliation(s)
- Hong Liu
- a Key Laboratory of Biotechnology of Antibiotics of National Health and Family Planning Commission (NHFPC) , Department of Oncology , Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , China
| | - Yan Ma
- a Key Laboratory of Biotechnology of Antibiotics of National Health and Family Planning Commission (NHFPC) , Department of Oncology , Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , China
| | - Hong-Wei He
- a Key Laboratory of Biotechnology of Antibiotics of National Health and Family Planning Commission (NHFPC) , Department of Oncology , Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , China
| | - Wu-Li Zhao
- a Key Laboratory of Biotechnology of Antibiotics of National Health and Family Planning Commission (NHFPC) , Department of Oncology , Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , China
| | - Rong-Guang Shao
- a Key Laboratory of Biotechnology of Antibiotics of National Health and Family Planning Commission (NHFPC) , Department of Oncology , Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences , Beijing , China
| |
Collapse
|
77
|
Zheng L, Xu M, Xu J, Wu K, Fang Q, Liang Y, Zhou S, Cen D, Ji L, Han W, Cai X. ELF3 promotes epithelial-mesenchymal transition by protecting ZEB1 from miR-141-3p-mediated silencing in hepatocellular carcinoma. Cell Death Dis 2018; 9:387. [PMID: 29523781 PMCID: PMC5845010 DOI: 10.1038/s41419-018-0399-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant cancers and currently the third leading cause of cancer-related deaths, worldwide. Epithelial-mesenchymal transition (EMT) plays a major role in HCC progression. In this study, we first found that the expression of E74-like ETS transcription factor 3 (ELF3), a member of the E-twenty-six family of transcription factors, was increased in HCC tissues, and that ELF3 overexpression was associated with poor prognoses for HCC patients. Gain-of-function and loss-of-function studies revealed that increased ELF3 expression promoted HCC cell proliferation, migration, and invasion, while these processes were inhibited when ELF3 was silenced. Additionally, ELF3 was found to promote EMT, which we demonstrated through decreased E-cadherin expression and increased N-cadherin and fibronectin expression. ELF3 knockdown reversed EMT via repressing ZEB1 expression through miR-141-3p upregulation. Chromatin immunoprecipitation assays revealed that ELF3 bound to the miR-141-3p promoter, suppressing miR-141-3p expression. Taken together, our data show that ELF3 repressed E-cadherin and promoted EMT in HCC cells by suppressing miR-141-3p, thereby activating ZEB1. Thus, ELF3 may be a potential prognostic biomarker and/or therapeutic target for HCC.
Collapse
Affiliation(s)
- Longbo Zheng
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Ming Xu
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Junjie Xu
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Ke Wu
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Qian Fang
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- The First People's Hospital of Wenling, Taizhou, Zhejiang, China
| | - Yuelong Liang
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Senjun Zhou
- Department of Colorectal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Dong Cen
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Lin Ji
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Weili Han
- Department of Lung Transplantation, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiujun Cai
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
78
|
Rani B, Malfettone A, Dituri F, Soukupova J, Lupo L, Mancarella S, Fabregat I, Giannelli G. Galunisertib suppresses the staminal phenotype in hepatocellular carcinoma by modulating CD44 expression. Cell Death Dis 2018. [PMID: 29515105 PMCID: PMC5841307 DOI: 10.1038/s41419-018-0384-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) niche in the tumor microenvironment is
responsible for cancer recurrence and therapy failure. To better understand its
molecular and biological involvement in hepatocellular carcinoma (HCC) progression,
one can design more effective therapies and tailored then to individual patients.
While sorafenib is currently the only approved drug for first-line treatment of
advanced stage HCC, its role in modulating the CSC niche is estimated to be small.
By contrast, transforming growth factor (TGF)-β
pathway seems to influence the CSC and thus may impact hallmarks of HCC, such as
liver fibrosis, cirrhosis, and tumor progression. Therefore, blocking this pathway
may offer an appealing and druggable target. In our study, we have used galunisertib
(LY2157299), a selective ATP-mimetic inhibitor of TGF-β receptor I (TGFβI/ALK5)
activation, currently under clinical investigation in HCC patients. Because the drug
resistance is mainly mediated by CSCs, we tested the effects of galunisertib on
stemness phenotype in HCC cells to determine whether TGF-β signaling modulates CSC
niche and drug resistance. Galunisertib modulated the expression of stemness-related
genes only in the invasive (HLE and HLF) HCC cells inducing a decreased expression
of CD44 and THY1. Furthermore, galunisertib also reduced the stemness-related
functions of invasive HCC cells decreasing the formation of colonies, liver
spheroids and invasive growth ability. Interestingly, CD44 loss of function mimicked
the galunisertib effects on HCC stemness-related functions. Galunisertib treatment
also reduced the expression of stemness-related genes in ex vivo human HCC
specimens. Our observations are the first evidence that galunisertib effectiveness
overcomes stemness-derived aggressiveness via decreased expression CD44 and
THY1.
Collapse
Affiliation(s)
- Bhavna Rani
- School of Medicine, University of Bari, Bari, Italy
| | - Andrea Malfettone
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - Francesco Dituri
- National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari, Italy
| | - Jitka Soukupova
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - Luigi Lupo
- School of Medicine, University of Bari, Bari, Italy
| | - Serena Mancarella
- National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari, Italy
| | - Isabel Fabregat
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain.,Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari, Italy.
| |
Collapse
|
79
|
Xu J, Yang Y, Xie R, Liu J, Nie X, An J, Wen G, Liu X, Jin H, Tuo B. The NCX1/TRPC6 Complex Mediates TGFβ-Driven Migration and Invasion of Human Hepatocellular Carcinoma Cells. Cancer Res 2018; 78:2564-2576. [PMID: 29500176 DOI: 10.1158/0008-5472.can-17-2061] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/19/2017] [Accepted: 02/27/2018] [Indexed: 01/11/2023]
Abstract
TGFβ plays an important role in the progression and metastasis of hepatocellular carcinoma (HCC), yet the cellular and molecular mechanisms underlying this role are not completely understood. In this study, we investigated the roles of Na+/Ca2+ exchanger 1 (NCX1) and canonical transient receptor potential channel 6 (TRPC6) in regulating TGFβ in human HCC. In HepG2 and Huh7 cells, TGFβ-stimulated intracellular Ca2+ increases through NCX1 and TRPC6 and induced the formation of a TRPC6/NCX1 molecular complex. This complex-mediated Ca2+ signaling regulated the effect of TGFβ on the migration, invasion, and intrahepatic metastasis of human HCC cells in nude mice. TGFβ upregulated TRPC6 and NCX1 expression, and there was a positive feedback between TRPC6/NCX1 signaling and Smad signaling. Expression of both TRPC6 and NCX1 were markedly increased in native human HCC tissues, and their expression levels positively correlated with advancement of HCC in patients. These data reveal the role of the TRPC6/NCX1 molecular complex in HCC and in regulating TGFβ signaling, and they implicate TRPC6 and NCX1 as potential targets for therapy in HCC.Significance: TGFβ induces the formation and activation of a TRPC6/NCX1 molecular complex, which mediates the effects of TGFβ on the migration, invasion, and intrahepatic metastasis of HCC. Cancer Res; 78(10); 2564-76. ©2018 AACR.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Yuan Yang
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Jilong Liu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Xubiao Nie
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Guorong Wen
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China. .,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| |
Collapse
|
80
|
Lee JH, Cho HS, Lee JJ, Jun SY, Ahn JH, Min JS, Yoon JY, Choi MH, Jeon SJ, Lim JH, Jung CR, Kim DS, Kim HT, Factor VM, Lee YH, Thorgeirsson SS, Kim CH, Kim NS. Plasma glutamate carboxypeptidase is a negative regulator in liver cancer metastasis. Oncotarget 2018; 7:79774-79786. [PMID: 27806330 PMCID: PMC5340238 DOI: 10.18632/oncotarget.12967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/14/2016] [Indexed: 12/24/2022] Open
Abstract
Tumor metastasis is the leading cause of cancer death. In the metastatic process, EMT is a unique phenotypic change that plays an important role in cell invasion and changes in cell morphology. Despite the clinical significance, the mechanism underlying tumor metastasis is still poorly understood. Here we report a novel mechanism by which secreted plasma glutamate carboxypeptidase(PGCP) negatively involves Wnt/β-catenin signaling by DKK4 regulation in liver cancer metastasis. Pathway analysis of the RNA sequencing data showed that PGCP knockdown in liver cancer cell lines enriched the functions of cell migration, motility and mesenchymal cell differentiation. Depletion of PGCP promoted cell migration and invasion via activation of Wnt/β-catenin signaling pathway components such as phospho-LRP6 and β-catenin. Also, addition of DKK4 antagonized the Wnt/β-catenin signaling cascade in a thyroxine (T4)-dependent manner. In an in vivo study, metastatic nodules were observed in the lungs of the mice after injection of shPGCP stable cell lines. Our findings suggest that PGCP negatively associates with Wnt/β-catenin signaling during metastasis. Targeting this regulation may represent a novel and effective therapeutic option for liver cancer by preventing metastatic activity of primary tumor cells.
Collapse
Affiliation(s)
- Jae-Hye Lee
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon 305-333, Republic of Korea
| | - Hyun-Soo Cho
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon 305-333, Republic of Korea
| | - Jeong-Ju Lee
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Republic of Korea
| | - Soo Young Jun
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon 305-333, Republic of Korea
| | - Jun-Ho Ahn
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Republic of Korea
| | - Ju-Sik Min
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Republic of Korea
| | - Ji-Yong Yoon
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Republic of Korea
| | - Min-Hyuk Choi
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon 305-333, Republic of Korea
| | - Su-Jin Jeon
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon 305-333, Republic of Korea
| | - Jung Hwa Lim
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Republic of Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Republic of Korea
| | - Dae-Soo Kim
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon 305-333, Republic of Korea
| | - Hyun-Taek Kim
- Department of Biology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Valentina M Factor
- Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5068, USA
| | - Yun-Han Lee
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 704-701, Republic of Korea
| | - Snorri S Thorgeirsson
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-4255, USA
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Nam-Soon Kim
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon 305-333, Republic of Korea
| |
Collapse
|
81
|
Moore MM, Schoeny RS, Becker RA, White K, Pottenger LH. Development of an adverse outcome pathway for chemically induced hepatocellular carcinoma: case study of AFB1, a human carcinogen with a mutagenic mode of action. Crit Rev Toxicol 2018; 48:312-337. [PMID: 29431554 DOI: 10.1080/10408444.2017.1423462] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adverse outcome pathways (AOPs) are frameworks starting with a molecular initiating event (MIE), followed by key events (KEs) linked by KE relationships (KERs), ultimately resulting in a specific adverse outcome. Relevant data for the pathway and each KE/KER are evaluated to assess biological plausibility, weight-of-evidence, and confidence. We aimed to describe an AOP relevant to chemicals directly inducing mutation in cancer critical gene(s), via the formation of chemical-specific pro-mutagenic DNA adduct(s), as an early critical step in tumor etiology. Such chemicals have mutagenic modes-of-action (MOA) for tumor induction. To assist with developing this AOP, Aflatoxin B1 (AFB1) was selected as a case study because it has a rich database and is considered to have a mutagenic MOA. AFB1 information was used to define specific KEs, KERs, and to inform development of a generic AOP for mutagen-induced hepatocellular carcinoma (HCC). In assessing the AFB1 information, it became clear that existing data are, in fact, not optimal and for some KEs/KERs, the definitive data are not available. In particular, while there is substantial information that AFB1 can induce mutations (based on a number of mutation assays), the definitive evidence - the ability to induce mutation in the cancer critical gene(s) in the tumor target tissue - is not available. Thus, it is necessary to consider the patterns of results in the weight-of-evidence for KEs and KERs. It was important to determine whether there was sufficient evidence that AFB1 can induce the necessary critical mutations early in the carcinogenic process, which was the case.
Collapse
Affiliation(s)
- Martha M Moore
- a Ramboll Environ US Corporation , Little Rock , AR , USA
| | | | | | | | | |
Collapse
|
82
|
Gaitantzi H, Meyer C, Rakoczy P, Thomas M, Wahl K, Wandrer F, Bantel H, Alborzinia H, Wölfl S, Ehnert S, Nüssler A, Bergheim I, Ciuclan L, Ebert M, Breitkopf-Heinlein K, Dooley S. Ethanol sensitizes hepatocytes for TGF-β-triggered apoptosis. Cell Death Dis 2018; 9:51. [PMID: 29352207 PMCID: PMC5833779 DOI: 10.1038/s41419-017-0071-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/19/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022]
Abstract
UNLABELLED Alcohol abuse is a global health problem causing a substantial fraction of chronic liver diseases. Abundant TGF-β-a potent pro-fibrogenic cytokine-leads to disease progression. Our aim was to elucidate the crosstalk of TGF-β and alcohol on hepatocytes. Primary murine hepatocytes were challenged with ethanol and TGF-β and cell fate was determined. Fluidigm RNA analyses revealed transcriptional effects that regulate survival and apoptosis. Mechanistic insights were derived from enzyme/pathway inhibition experiments and modulation of oxidative stress levels. To substantiate findings, animal model specimens and human liver tissue cultures were investigated. RESULTS On its own, ethanol had no effect on hepatocyte apoptosis, whereas TGF-β increased cell death. Combined treatment led to massive hepatocyte apoptosis, which could also be recapitulated in human HCC liver tissue treated ex vivo. Alcohol boosted the TGF-β pro-apoptotic gene signature. The underlying mechanism of pathway crosstalk involves SMAD and non-SMAD/AKT signaling. Blunting CYP2E1 and ADH activities did not prevent this effect, implying that it was not a consequence of alcohol metabolism. In line with this, the ethanol metabolite acetaldehyde did not mimic the effect and glutathione supplementation did not prevent the super-induction of cell death. In contrast, blocking GSK-3β activity, a downstream mediator of AKT signaling, rescued the strong apoptotic response triggered by ethanol and TGF-β. This study provides novel information on the crosstalk between ethanol and TGF-β. We give evidence that ethanol directly leads to a boost of TGF-β's pro-apoptotic function in hepatocytes, which may have implications for patients with chronic alcoholic liver disease.
Collapse
Affiliation(s)
- Haristi Gaitantzi
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Pia Rakoczy
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Kristin Wahl
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Franziska Wandrer
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Heike Bantel
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Hamed Alborzinia
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Sabrina Ehnert
- Eberhard-Karls University Tübingen, BG Trauma Center, SWI, Schnarrenbergstraße 95, 72076, Tübingen, Germany
| | - Andreas Nüssler
- Eberhard-Karls University Tübingen, BG Trauma Center, SWI, Schnarrenbergstraße 95, 72076, Tübingen, Germany
| | - Ina Bergheim
- University of Vienna, Department of Nutritional Sciences, Molecular Nutritional Science, Althanstr. 14, UZA II, A-1090, Wien, Austria
| | - Loredana Ciuclan
- Roche Products Limited, 6 Falcon Way, Shire Park, Welwyn Garden City, AL7 1TW, UK
| | - Matthias Ebert
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Katja Breitkopf-Heinlein
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
83
|
He X, Guo X, Zhang H, Kong X, Yang F, Zheng C. Mechanism of action and efficacy of LY2109761, a TGF-β receptor inhibitor, targeting tumor microenvironment in liver cancer after TACE. Oncotarget 2017; 9:1130-1142. [PMID: 29416682 PMCID: PMC5787425 DOI: 10.18632/oncotarget.23193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/01/2017] [Indexed: 12/27/2022] Open
Abstract
TACE (transcatheter arterial chemoembolization) has been recognized as an effective palliative treatment option for patients with HCC, however, the medium-long term efficacy of it remains modest. LY2109761, a TGF-β receptor inhibitor, was confirmed to reduce tumor cell growth, intravasation, and metastatic dissemination of HCC cells through different molecular mechanisms. This study aims to investigate the treatment effect of combining TACE therapy with LY2109761- a TGF-β receptor I kinase inhibitor on suppressing tumor growth and metastasis in a rabbit VX2 tumor model. The molecular mechanisms underlying the biological activities of LY2109761 was also evaluated through an in vitro model. And we found that LY2109761 could inhibit cell proliferation by down-regulating the phosphorylation of Smad-2 as well as improved the therapeutic effect of TACE in a VX2 hepatocellular carcinoma model. And we further found that LY2109761 may play a modulating role in the process of T cell transformation. Hence, based on those obsevations in our research, we concluded that combing LY2109761 with TACE for the treatment of VX2 rabbit liver cancer can help inhibit tumor growth as well as increase the tumor cell necrosis after TACE.
Collapse
Affiliation(s)
- Xiaojun He
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Radiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongsen Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangchuang Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
84
|
Wu L, Sun B, Lin X, Liu C, Qian H, Chen L, Yang Y, Shen F, Su C. I 131 reinforces antitumor activity of metuximab by reversing epithelial-mesenchymal transition via VEGFR-2 signaling in hepatocellular carcinoma. Genes Cells 2017; 23:35-45. [PMID: 29210217 DOI: 10.1111/gtc.12545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023]
Abstract
CD147 is highly expressed in hepatocellular carcinoma (HCC) and associated with the invasion and metastasis of HCC. The efficacy of I131 -metuximab (I131 -mab), a newly developed agent that targets CD147, as a radio-immunotherapy for local HCC, has been validated in clinical practice. However, the synergistic anticancer activity and molecular mechanism of different conjugated components within I131 -mab remain unclear. In this study, the cytological experiments proved that I131 -mab inhibited the proliferation and invasion of HCC cells. Mechanically, this inhibition effect was mainly mediated by the antibody component part of I131 -mab, which could reverse the epithelial-mesenchymal transition of HCC cells partially by suppressing the phosphorylation of VEGFR-2. The inhibitory effect of I131 on HCC cell proliferation and invasion is limited, whereas, when combined with metuximab, I131 significantly enhanced the sensitivity of HCC cells to CD147-mab and consequently reinforced the anticancer effects of CD147-mab, suggesting that the two components of I131 -mab exerted synergistic anti-HCC capability. Furthermore, the experiments using SMMC-7721 human HCC xenografts in athymic nude mice showed that I131 -mab and CD147-mab significantly inhibited the growth of xenograft tumors and that I131 -mab was more effective than CD147-mab. In conclusion, our results elucidated the mechanism underlying the anti-HCC effects of I131 -mab and provided a theoretical foundation for the clinical application of I131 -mab.
Collapse
Affiliation(s)
- Lu Wu
- Department of Hepatic Surgery & Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Bin Sun
- Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Xuejing Lin
- Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Chunying Liu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Haihua Qian
- Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Lei Chen
- Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Yefa Yang
- Department of Hepatic Surgery & Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Feng Shen
- Department of Hepatic Surgery & Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| |
Collapse
|
85
|
β-defensin 1 expression in HCV infected liver/liver cancer: an important role in protecting HCV progression and liver cancer development. Sci Rep 2017; 7:13404. [PMID: 29042578 PMCID: PMC5645372 DOI: 10.1038/s41598-017-13332-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022] Open
Abstract
β-defensin family plays a role in host defense against viral infection, however its role in HCV infection is still unknown. In this study, we demonstrated that β-defensin 1 was significantly reduced in HCV-infected liver specimens. Treatment with interferon and ribavirin upregulated β-defensin-1, but not other β-defensin tested, with the extent and duration of upregulation associated with treatment response. We investigated β-defensin family expression in liver cancer in publicly available datasets and found that among all the β-defensins tested, only β-defensin 1 was significantly downregulated, suggesting β-defensin 1 plays a crucial role in liver cancer development. Further analysis identified E-cadherin as the top positive correlated gene, while hepatocyte growth factor-regulated tyrosine kinase substrate as the top negative correlated gene. Expression of two proteoglycans were also positively correlated with that of β-defensin 1. We have also identified small molecules as potential therapeutic agents to reverse β-defensin 1-associated gene signature. Furthermore, the downregulation of β-defensin 1 and E-cadherin, and upregulation of hepatocyte growth factor-regulated tyrosine kinase substrate, were further confirmed in liver cancer and adjacent normal tissue collected from in-house Chinese liver cancer patients. Together, our results suggest β-defensin 1 plays an important role in protecting HCV progression and liver cancer development.
Collapse
|
86
|
Abstract
Transforming growth factor βs (TGF-βs) are closely related ligands that have pleiotropic activity on most cell types of the body. They act through common heterotetrameric TGF-β type II and type I transmembrane dual specificity kinase receptor complexes, and the outcome of signaling is context-dependent. In normal tissue, they serve a role in maintaining homeostasis. In many diseased states, particularly fibrosis and cancer, TGF-β ligands are overexpressed and the outcome of signaling is diverted toward disease progression. There has therefore been a concerted effort to develop drugs that block TGF-β signaling for therapeutic benefit. This review will cover the basics of TGF-β signaling and its biological activities relevant to oncology, present a summary of pharmacological TGF-β blockade strategies, and give an update on preclinical and clinical trials for TGF-β blockade in a variety of solid tumor types.
Collapse
Affiliation(s)
- Rosemary J Akhurst
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158-9001
| |
Collapse
|
87
|
Shi Y, Qin N, Zhou Q, Chen Y, Huang S, Chen B, Shen G, Jia H. Role of IQGAP3 in metastasis and epithelial-mesenchymal transition in human hepatocellular carcinoma. J Transl Med 2017; 15:176. [PMID: 28810875 PMCID: PMC5558666 DOI: 10.1186/s12967-017-1275-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/01/2017] [Indexed: 01/06/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide owing to its high rates of metastasis and recurrence. The oncogene IQ motif-containing GTPase activating protein 3 (IQGAP3) is ubiquitously overexpressed in several human cancers, including liver, ovary, lung, large intestine, gastric, bone marrow, and breast malignancies and is involved in the invasion and metastasis of cancer cells. Therefore, we aimed to determine the biological role and molecular mechanism of IQGAP3 in HCC. Methods We used 120 archived clinical HCC samples, 9 snap-frozen HCC tumor tissues, and 4 normal liver tissues. Expression of IQGAP3 mRNA and protein in HCC cell lines (Hep3B, SMMC-7721, HCCC-9810, HepG2, BEL-7404, HCCLM3, QGY-7701, Huh7, and MHCC97H) and normal liver epithelial cells LO2 was examined by western blot, quantitative polymerase chain reaction, and immunohistochemistry. In addition, wound-healing and transwell matrix penetration assays were used to assess the migratory and invasive abilities of HCC cells, respectively. Results Expression of the IQGAP3 was robustly upregulated in HCC cells and tissues. High expression of IQGAP3 in HCC correlated with aggressive clinicopathological features and was an independent poor prognostic factor for overall survival. Furthermore, ectopic expression of IQGAP3 markedly enhanced HCC cell migration, invasion, and epithelial-to-mesenchymal transition (EMT) in vitro and promoted metastasis of orthotopic hepatic tumors in nude mice. Conversely, silencing endogenous IQGAP3 showed an opposite effect. Mechanistically, IQGAP3 promoted EMT and metastasis by activating TGF-β signaling. Conclusions IQGAP3 functions as an important regulator of metastasis and EMT by constitutively activating the TGF-β signaling pathway in HCC. Our findings present new evidence of the role of IQGAP3 in EMT and metastasis, indicating its potential as a prognostic biomarker candidate and a therapeutic target against HCC.
Collapse
Affiliation(s)
- Yongjie Shi
- Department of Clinical Examination, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Nan Qin
- Department of Clinical Examination, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Qiang Zhou
- Department of Clinical Examination, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Yanqiu Chen
- Department of ENT, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9th Jinsui Road, Guangzhou, 510623, Guangdong, People's Republic of China
| | - Sicong Huang
- Department of Clinical Examination, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Bo Chen
- Department of Clinical Examination, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Gang Shen
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9th Jinsui Road, Guangzhou, 510623, Guangdong, People's Republic of China.
| | - Hongyun Jia
- Department of Clinical Examination, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China.
| |
Collapse
|
88
|
Turan T, Torun M, Atalay F, Gönenç A. Assessment of Vitronectin, Soluble Epithelial-Cadherin and TGF-β1 as a Serum Biomarker with Predictive Value for Endometrial and Ovarian Cancers. Turk J Pharm Sci 2017; 14:141-147. [PMID: 32454605 DOI: 10.4274/tjps.81994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/13/2017] [Indexed: 12/01/2022]
Abstract
Objectives Extracellular matrix components, including vitronectin (VN), soluble epithelial-cadherin (sE-cadherin) and transforming growth factor-beta 1 (TGF-β1), play a key role in the invasion and metastasis of cancer. The objective of the study was to determine the clinical significance of serum levels of these molecules in patients with endometrial and ovarian cancers. Materials and Methods Serum levels of VN, sE-cadherin and TGF-β1 in patients with endometrial (n=28) and ovarian cancers (n=40) and healthy controls (n=41) were measured by ELISA using commercial kits. Results A significant difference was found in VN, sE-cadherin and TGF-β1 levels between patients and healthy controls (p<0.01, p<0.01 and p<0.05, respectively). Serum VN and sE-cadherin levels were decreased significantly in both endometrial and ovarian cancer patients compared to controls (p<0.01, p<0.01, respectively). Conversely, TGF-β1 levels were increased significantly in patients with ovarian cancer as compared to controls (p<0.01). There was no significant difference between healthy controls and endometrial cancer patients. Conclusion In conclusion, our study reveals that serum VN, sE-cadherin and TGF-β1 levels can be candidate targets for providing new diagnostic procedures in endometrial and ovarian cancers.
Collapse
Affiliation(s)
- Taylan Turan
- Gazi University, Faculty Of Pharmacy, Department Of Biochemistry, Ankara, Turkey
| | - Meral Torun
- Gazi University, Faculty Of Pharmacy, Department Of Biochemistry, Ankara, Turkey
| | - Funda Atalay
- Ankara Oncology Training And Research Hospital, Clinic Of Obstetrics And Gynecology, Ankara, Turkey
| | - Aymelek Gönenç
- Gazi University, Faculty Of Pharmacy, Department Of Biochemistry, Ankara, Turkey
| |
Collapse
|
89
|
Wang WM, Xu Y, Wang YH, Sun HX, Sun YF, He YF, Zhu QF, Hu B, Zhang X, Xia JL, Qiu SJ, Zhou J, Yang XR, Fan J. HOXB7 promotes tumor progression via bFGF-induced activation of MAPK/ERK pathway and indicated poor prognosis in hepatocellular carcinoma. Oncotarget 2017; 8:47121-47135. [PMID: 28454092 PMCID: PMC5564549 DOI: 10.18632/oncotarget.17004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/06/2017] [Indexed: 12/30/2022] Open
Abstract
The homeobox-containing gene HOXB7 plays an important role in the pathogenesis and progression of many cancers, yet its role in hepatocellular carcinoma (HCC) remains unclear. This study comprehensively analyzed the expression and clinical significance of HOXB7 in HCC and explored its potential mechanism in tumor progression. We found HOXB7 was highly expressed in HCC cell lines with highly metastatic potential and cancerous tissues from patients with tumor recurrence. The abilities of proliferation, migration, and invasion were notably decreased by depletion of HOXB7, and were enhanced by its enforced expression in vitro. HOXB7 expression was positively correlated with tumor progression and lung metastasis in vivo. The gene microarray data implied that HOXB7 affects biological functions of HCC cells through MAPK/ERK pathway activation. Further study confirmed that the effect of HOXB7 in activating MAPK/ERK pathway via induction of basic fibroblast growth factor (bFGF) secretion, and the inhibition of bFGF secretion could abolish MAPK/ERK pathway activation after ectopic expression of HOXB7. Chromatin immunoprecipitation experiments and luciferase reporter assays confirmed that HOXB7 promoted bFGF secretion via binding its promoter directly. Furthermore, the clinical significance of HOXB7 expression was confirmed using tissue microarrays containing 394 HCC tissue specimens. Patients with high HOXB7 expression showed shorter survival times and higher recurrence rates, and HOXB7 was an independent indicator for survival and recurrence. Overall, HOXB7 promotes HCC cell proliferation, migration, and invasion through the bFGF-induced MAPK/ERK pathway activation. It might be a novel prognostic factor in HCC and a promising therapeutic target for tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Wei-Min Wang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P. R. China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Yang Xu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P. R. China
| | - Yao-Hui Wang
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Hai-Xiang Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P. R. China
| | - Yun-Fan Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P. R. China
| | - Yi-Feng He
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P. R. China
| | - Qing-Feng Zhu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P. R. China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Bo Hu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P. R. China
| | - Xin Zhang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P. R. China
| | - Jing-Lin Xia
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P. R. China
| | - Shuang-Jian Qiu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P. R. China
| | - Jian Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P. R. China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Xin-Rong Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P. R. China
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P. R. China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
90
|
Mazzocchi LC, Vohwinkel CU, Mayer K, Herold S, Morty RE, Seeger W, Vadász I. TGF-β inhibits alveolar protein transport by promoting shedding, regulated intramembrane proteolysis, and transcriptional downregulation of megalin. Am J Physiol Lung Cell Mol Physiol 2017; 313:L807-L824. [PMID: 28705909 DOI: 10.1152/ajplung.00569.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 01/11/2023] Open
Abstract
Disruption of the alveolar-capillary barrier is a hallmark of acute respiratory distress syndrome (ARDS) that leads to the accumulation of protein-rich edema in the alveolar space, often resulting in comparable protein concentrations in alveolar edema and plasma and causing deleterious remodeling. Patients who survive ARDS have approximately three times lower protein concentrations in the alveolar edema than nonsurvivors; thus the ability to remove excess protein from the alveolar space may be critical for a positive outcome. We have recently shown that clearance of albumin from the alveolar space is mediated by megalin, a 600-kDa transmembrane endocytic receptor and member of the low-density lipoprotein receptor superfamily. In the currents study, we investigate the molecular mechanisms by which transforming growth factor-β (TGF-β), a key molecule of ARDS pathogenesis, drives downregulation of megalin expression and function. TGF-β treatment led to shedding and regulated intramembrane proteolysis of megalin at the cell surface and to a subsequent increase in intracellular megalin COOH-terminal fragment abundance resulting in transcriptional downregulation of megalin. Activity of classical protein kinase C enzymes and γ-secretase was required for the TGF-β-induced megalin downregulation. Furthermore, TGF-β-induced shedding of megalin was mediated by matrix metalloproteinases (MMPs)-2, -9, and -14. Silencing of either of these MMPs stabilized megalin at the cell surface after TGF-β treatment and restored normal albumin transport. Moreover, a direct interaction of megalin with MMP-2 and -14 was demonstrated, suggesting that these MMPs may function as novel sheddases of megalin. Further understanding of these mechanisms may lead to novel therapeutic approaches for the treatment of ARDS.
Collapse
Affiliation(s)
- Luciana C Mazzocchi
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Christine U Vohwinkel
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Department of Pediatrics, University of Colorado at Denver, Aurora, Colorado; and
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Rory E Morty
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany;
| |
Collapse
|
91
|
Cui FM, Sun XJ, Huang CC, Chen Q, He YM, Zhang SM, Guan H, Song M, Zhou PK, Hou J. Inhibition of c-Myc expression accounts for an increase in the number of multinucleated cells in human cervical epithelial cells. Oncol Lett 2017; 14:2878-2886. [PMID: 28928827 PMCID: PMC5588452 DOI: 10.3892/ol.2017.6554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/23/2017] [Indexed: 01/06/2023] Open
Abstract
The present study aimed to explore the mechanisms by which c-Myc is involved in mitotic catastrophe. HeLa-630 is a cell line stably silenced for c-Myc expression that was established in the laboratory of the School of Radiation Medicine and Protection. Multinucleated cells were observed in this line, and gene expression analysis was utilized to examine differences in gene expression in these cells compared with in the control cells transfected with the control plasmid. Gene ontology analysis was performed for differentially expressed genes. Expression profile analyses revealed that cells with silenced c-Myc exhibited abnormal expression patterns of genes involved in various functions, including the regulation of microtubule nucleation, centrosome duplication, the formation of pericentriolar material, DNA synthesis and metabolism, protein metabolism and the regulation of ion concentrations. Pathway analyses of differentially expressed genes demonstrated that these genes were primarily involved in diverse signal transduction pathways, including not only the adherens junction pathway, the transforming growth factor-β signaling pathway and the Wnt signaling pathway, among others, but also signaling pathways with roles in cytokine and immune regulation. The proportion of multinucleated cells with multipolar spindles was significantly higher in silenced c-Myc cells as compared with the control cells, and this discrepancy became more pronounced following cell irradiation. The inhibition of c-Myc in tumors may account for the radiosensitization of certain tumor cell types.
Collapse
Affiliation(s)
- Feng Mei Cui
- Department of Radiation Medicine, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xiu Jin Sun
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Cheng Cheng Huang
- Department of Radiation Medicine, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Qiu Chen
- Department of Radiation Medicine, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yong Ming He
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shi Meng Zhang
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Hua Guan
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Man Song
- Department of Radiation Medicine, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Ping Kun Zhou
- Department of Radiation Medicine, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Jun Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
92
|
Wu J, Zhou XJ, Sun X, Xia TS, Li XX, Shi L, Zhu L, Zhou WB, Wei JF, Ding Q. RBM38 is involved in TGF-β-induced epithelial-to-mesenchymal transition by stabilising zonula occludens-1 mRNA in breast cancer. Br J Cancer 2017; 117:675-684. [PMID: 28683467 PMCID: PMC5572167 DOI: 10.1038/bjc.2017.204] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The transforming growth factor-β (TGF-β) pathway plays a vital role in driving cancer cell epithelial-mesenchymal transition (EMT). Zonula occludens-1 (ZO-1), which is downregulated in response to TGF-β, is able to control endothelial cell-cell tension, cell migration, and barrier formation. However, the molecular mechanism of how TGF-β regulates ZO-1 expression remains unclear. METHODS Breast cancer cells were treated with TGF-β to induce an EMT progress. Chromatin immunoprecipitation and dual-luciferase reporter assay were performed to investigate direct relationship between Snail and RNA binding motif protein 38 (RBM38). The RNA immunoprecipitation combined with RNA electrophoretic mobility shift assay and dual-luciferase reporter assay were conducted to testify direct relationship between RBM38 and ZO-1. The ZO-1 siRNA was transfected to breast cancer cells that overexpress RBM38 and the control, followed by transwell and Matrigel invasion assays to examine cell migratory and invasive ability. RESULTS Transforming growth factor-β induced a remarkable downregulation of RBM38 in breast cancer that was directly regulated by transcription repressor Snail targeting the E-box elements in promoter region of RBM38 gene. Additionally, RBM38 positively regulated ZO-1 transcript via directly binding to AU/U-rich elements in its mRNA 3'-UTR. Moreover, by magnifying RBM38 expression, cell migration and invasion mediated by knockdown of ZO-1 in breast cancer were reversed. CONCLUSIONS All the results clarified a linear regulation relationship among Snail, RBM38, and ZO-1, implicating RBM38 as a pivotal mediator in TGF-β-induced EMT in breast cancer.
Collapse
Affiliation(s)
- Jing Wu
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Xu-Jie Zhou
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Xi Sun
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Tian-Song Xia
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Xiao-Xia Li
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Liang Shi
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Lei Zhu
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Wen-Bin Zhou
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
93
|
Fabregat I, Giannelli G, on behalf of the IT-LIVER Consortium. The TGF-β pathway: a pharmacological target in hepatocellular carcinoma? Hepat Oncol 2017; 4:35-38. [PMID: 30191051 PMCID: PMC6095167 DOI: 10.2217/hep-2017-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/11/2017] [Indexed: 11/21/2022] Open
Affiliation(s)
- Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) & University of Barcelona, L’Hospitalet, Barcelona, Spain
| | - Gianluigi Giannelli
- National Institute of Gastroenterology IRCCS ‘S. De Bellis’, Castellana Grotte Bari, Italy
| | - on behalf of the IT-LIVER Consortium
- Bellvitge Biomedical Research Institute (IDIBELL) & University of Barcelona, L’Hospitalet, Barcelona, Spain
- National Institute of Gastroenterology IRCCS ‘S. De Bellis’, Castellana Grotte Bari, Italy
| |
Collapse
|
94
|
Sah SK, Kim HY, Lee JH, Lee SW, Kim HS, Kim YS, Kang KS, Kim TY. Effects of Human Mesenchymal Stem Cells Coculture on Calcium-Induced Differentiation of Normal Human Keratinocytes. Stem Cells 2017; 35:1592-1602. [PMID: 28207189 DOI: 10.1002/stem.2593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/01/2017] [Accepted: 02/09/2017] [Indexed: 01/05/2023]
Abstract
The influence of mesenchymal stem cells (MSCs) on keratinocytes in altered microenvironments is poorly understood. Here, we cocultured umbilical cord blood-derived MSCs with normal human epidermal keratinocytes to evaluate their paracrine effect in the presence of high extracellular calcium (Ca2+ ) concentration. High Ca2+ environment to keratinocytes can disrupt normal skin barrier function due to abnormal/premature differentiation of keratinocytes. Surprisingly, we found that MSCs suppress both proliferation and differentiation of keratinocytes under a high Ca2+ environment in transforming growth factors β1 (TGFβ1)-dependent manner. Furthermore, we determined that MSCs can regulate the mitogen-activated protein kinases, phosphatidylinositol 3-kinase/protein kinase B, and protein kinase C pathways in Ca2+ -induced differentiated keratinocytes. Knockdown of TGFβ1 from MSCs results in decreased suppression of differentiation with significantly increased proliferation of keratinocytes compared with control MSCs. MSCs-derived TGFβ1 further induced growth inhibition of keratinocyte in high extracellular Ca2+ environment as analyzed by a decrease in DNA synthesis, accumulation of phosphorylated retinoblastoma protein, cdc2, and increased mRNA level of p21, and independent of TGFβ1/SMAD pathway. Taken together, we found that MSCs-derived TGFβ1 is a critical regulator of keratinocyte function, and involves multiple proximal signaling cascades. Stem Cells 2017;35:1592-1602.
Collapse
Affiliation(s)
- Shyam Kishor Sah
- Laboratory of Dermatology-Immunology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hae Young Kim
- Laboratory of Dermatology-Immunology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hae Lee
- Department of Dermatology, The Catholic University of Korea, St. Vincent's Hospital, Jungbu-daero, Paldal-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Seong-Wook Lee
- Department of Integrated Life Sciences, Dankook University, Jukjeon-ro, Suji-gu, Yongin, Republic of Korea
| | - Hyung-Sik Kim
- Biomedical Research Institute, Pusan National University, School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Yeon-Soo Kim
- Graduate School of New Drug Development, Chungnam National University, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Tae-Yoon Kim
- Laboratory of Dermatology-Immunology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
95
|
NGS-based transcriptome profiling reveals biomarkers for companion diagnostics of the TGF-β receptor blocker galunisertib in HCC. Cell Death Dis 2017; 8:e2634. [PMID: 28230858 PMCID: PMC5386488 DOI: 10.1038/cddis.2017.44] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/15/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
Transforming growth factor-beta (TGF-β) signaling has gained extensive interest in hepatocellular carcinoma (HCC). The small molecule kinase inhibitor galunisertib, targeting the TGF-β receptor I (TGF-βRI), blocks HCC progression in preclinical models and shows promising effects in ongoing clinical trials. As the drug is not similarly effective in all patients, this study was aimed at identifying new companion diagnostics biomarkers for patient stratification. Next-generation sequencing-based massive analysis of cDNA ends was used to investigate the transcriptome of an invasive HCC cell line responses to TGF-β1 and galunisertib. These identified mRNA were validated in 78 frozen HCC samples and in 26 ex-vivo HCC tissues treated in culture with galunisertib. Respective protein levels in patients blood were measured by enzyme-linked immunosorbent assay. SKIL, PMEPA1 ANGPTL4, SNAI1, Il11 and c4orf26 were strongly upregulated by TGF-β1 and downregulated by galunisertib in different HCC cell lines. In the 78 HCC samples, only SKIL and PMEPA1 (P<0.001) were correlated with endogenous TGF-β1. In ex-vivo samples, SKIL and PMEPA1 were strongly downregulated (P<0.001), and correlated (P<0.001) with endogenous TGF-β1. SKIL and PMEPA1 mRNA expression in tumor tissues was significantly increased compared with controls and not correlated with protein levels in the blood of paired HCC patients. SKIL and PMEPA1 mRNA levels were positively correlated with TGF-β1 mRNA concentrations in HCC tissues and strongly downregulated by galunisertib. The target genes identified here may serve as biomarkers for the stratification of HCC patients undergoing treatment with galunisertib.
Collapse
|
96
|
Stem cell, biomaterials and growth factors therapy for hepatocellular carcinoma. Biomed Pharmacother 2017; 88:1046-1053. [PMID: 28192881 DOI: 10.1016/j.biopha.2017.01.154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma is an antecedent of liver illnesses, including viral hepatitis, alcohol abuse, or metabolic disease. Transforming growth factor-Beta (TGF-b) plays an important role in creating a favorable microenvironment for tumor cell growth via two major mechanisms: an intrinsic activity as an autocrine growth factor and an extrinsic activity by inducing microenvironment changes. Recently stem cell therapy as also been a promising and potential treatment for liver cancer and in addition signaling pathways like GF/GFR systems, SDF-1α/CXC4 ligand receptor interaction and PI3K/Akt signaling, and cytokines has been identified to regulate cell fate decisions, and can be utilized to positively influence cell therapy outcomes. Thus stem cell-based therapy, together with signaling pathways can become a practical option in regenerative processes for replacing dead hepatocytes cells. Targeted drug delivery systems (TDDS) via biomaterials are presently been explored for cancer therapeutics especially liver cancer as it allows the enhancement of drug concentration in the liver and decrease the dosage and side effects. This review is intended to give a comprehensive summary of available liver cancer therapy using stem cells, growth factor and biomaterials.
Collapse
|
97
|
Sano R, Nakajima A, Kawato T, Maeno M, Shimizu N. Effect of Compressive Force on TGF-β1/2 Signaling Pathway in MC3T3-E1 Cells. J HARD TISSUE BIOL 2017. [DOI: 10.2485/jhtb.26.177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Remi Sano
- Nihon University Graduate School of Dentistry
- Department of Orthodontics, Nihon University School of Dentistry
| | - Akira Nakajima
- Department of Orthodontics, Nihon University School of Dentistry
- Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry
| | - Takayuki Kawato
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Masao Maeno
- Department of Oral Health Sciences, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Noriyoshi Shimizu
- Department of Orthodontics, Nihon University School of Dentistry
- Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
98
|
Ferreira BI, Lie MK, Engelsen AST, Machado S, Link W, Lorens JB. Adaptive mechanisms of resistance to anti-neoplastic agents. MEDCHEMCOMM 2017; 8:53-66. [PMID: 30108690 PMCID: PMC6072477 DOI: 10.1039/c6md00394j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022]
Abstract
Intrinsic and acquired resistance to conventional and targeted therapeutics is a fundamental reason for treatment failure in many cancer patients. Targeted approaches to overcome chemoresistance as well as resistance to targeted approaches require in depth understanding of the underlying molecular mechanisms. The anti-cancer activity of a drug can be limited by a broad variety of molecular events at different levels of drug action in a cell-autonomous and non-cell-autonomous manner. This review summarizes recent insights into the adaptive mechanisms used by tumours to resist therapy including cellular phenotypic plasticity, dynamic alterations of the tumour microenvironment, activation of redundant signal transduction pathways, modulation of drug target expression levels, and exploitation of pro-survival responses.
Collapse
Affiliation(s)
- Bibiana I Ferreira
- Centre for Biomedical Research (CBMR) , University of Algarve , Campus of Gambelas, Building 8, room 2.22 , 8005-139 Faro , Portugal
- Regenerative Medicine Program , Department of Biomedical Sciences and Medicine , University of Algarve , Campus de Gambelas , 8005-139 Faro , Portugal .
| | - Maria K Lie
- Department of Biomedicine , Centre for Cancer Biomarkers , University of Bergen , Jonas Lies Vei 91 , 5009 Bergen , Norway
- Department of Pathology , Haukeland University Hospital , Jonas Lies vei 65 , 5021 Bergen , Norway
| | - Agnete S T Engelsen
- Department of Biomedicine , Centre for Cancer Biomarkers , University of Bergen , Jonas Lies Vei 91 , 5009 Bergen , Norway
| | - Susana Machado
- Centre for Biomedical Research (CBMR) , University of Algarve , Campus of Gambelas, Building 8, room 2.22 , 8005-139 Faro , Portugal
- Regenerative Medicine Program , Department of Biomedical Sciences and Medicine , University of Algarve , Campus de Gambelas , 8005-139 Faro , Portugal .
| | - Wolfgang Link
- Centre for Biomedical Research (CBMR) , University of Algarve , Campus of Gambelas, Building 8, room 2.22 , 8005-139 Faro , Portugal
- Regenerative Medicine Program , Department of Biomedical Sciences and Medicine , University of Algarve , Campus de Gambelas , 8005-139 Faro , Portugal .
| | - James B Lorens
- Department of Biomedicine , Centre for Cancer Biomarkers , University of Bergen , Jonas Lies Vei 91 , 5009 Bergen , Norway
| |
Collapse
|
99
|
Gueorguieva I, Cleverly A, Desaiah D, Azaro A, Seoane J, Braña I, Sicart E, Miles C, Lahn MM, Mitchell MI, Rodon J. Relative bioavailability of three formulations of galunisertib administered as monotherapy in patients with advanced or metastatic cancer. Drugs Context 2016; 5:212303. [PMID: 27990167 PMCID: PMC5147053 DOI: 10.7573/dic.212303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 12/16/2022] Open
Abstract
Objective Galunisertib (LY2157299 monohydrate), an inhibitor of the transforming growth factor β (TGFβ) pathway, is currently under investigation in several clinical trials involving multiple tumor types. The primary objective of this study was to assess relative bioavailability of two new galunisertib formulations developed using the roller compaction (RC) dry-milled (RCD) and RC slurry-milled (RCS) processes, compared with the existing formulation developed using the high-sheer wet granulation (HSWG) process. The secondary objective was to report the safety profile after a single dose of the three formulations. Methods Patients with advanced or metastatic cancer were enrolled into this single-center, 3-period, 6-sequence crossover study. Patients were assigned sequentially to 1 of 6 sequences in blocks of 6 to ensure that all 6 sequences have the same number of completers. A patient entering a sequence received a different galunisertib formulation as a single 150 mg dose orally during each of the 3 periods. Each period was separated from the next by a washout interval of at least 48 hours. Pharmacokinetic (PK) parameters, including area under curve (AUC) and Cmax, were computed using standard non-compartmentalized methods of analysis. For comparison of exposures between formulations, log-transformed AUC and Cmax values were analyzed using a linear mixed-effects model. Safety assessments included adverse event monitoring, physical examinations, and laboratory tests. Results Of the 14 patients who entered and completed the study, 13 patients were included in the final statistical analysis. AUC(0-tlast), AUC(0–48 h), and AUC(0-∞) for the RC formulations and the HSWG formulation were similar. Cmax was reduced by approximately 22% and tmax was longer by at least 1.00 h for the RCD and RCS formulations compared with the HSWG formulation. The RC formulations demonstrated a safety profile after a single dose similar to the HSWG formulation. Conclusions In this relative bioavailability study comparing galunisertib formulations after a single dose, RCD and RCS formulations had similar exposure and safety profile compared with the HSWG formulation.
Collapse
Affiliation(s)
| | | | | | - Analia Azaro
- Medical Oncology, Vall d'Hebron University Hospital and Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Joan Seoane
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Irene Braña
- Medical Oncology, Vall d'Hebron University Hospital and Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Elisabet Sicart
- Medical Oncology, Vall d'Hebron University Hospital and Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | | | | | - Jordi Rodon
- Medical Oncology, Vall d'Hebron University Hospital and Universitat Autonoma de Barcelona, Barcelona, Spain
| |
Collapse
|
100
|
Ezzoukhry Z, Henriet E, Piquet L, Boyé K, Bioulac-Sage P, Balabaud C, Couchy G, Zucman-Rossi J, Moreau V, Saltel F. TGF-β1 promotes linear invadosome formation in hepatocellular carcinoma cells, through DDR1 up-regulation and collagen I cross-linking. Eur J Cell Biol 2016; 95:503-512. [DOI: 10.1016/j.ejcb.2016.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/31/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023] Open
|