51
|
He Y, Feng D, Hwang S, Mackowiak B, Wang X, Xiang X, Rodrigues RM, Fu Y, Ma J, Ren T, Ait-Ahmed Y, Xu M, Liangpunsakul S, Gao B. Interleukin-20 exacerbates acute hepatitis and bacterial infection by downregulating IκBζ target genes in hepatocytes. J Hepatol 2021; 75:163-176. [PMID: 33610678 PMCID: PMC8323118 DOI: 10.1016/j.jhep.2021.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/08/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Interleukin (IL)-20 and IL-22 belong to the IL-10 family. IL-10 is a well-documented anti-inflammatory cytokine while IL-22 is well known for epithelial protection and its antibacterial function, showing great therapeutic potential for organ damage; however, the function of IL-20 remains largely unknown. METHODS Il20 knockout (Il20-/-) mice and wild-type littermates were generated and injected with Concanavalin A (ConA) and Klebsiella pneumoniae (K.P.) to induce acute hepatitis and bacterial infection, respectively. RESULTS Il20-/- mice were resistant to acute hepatitis and exhibited selectively elevated levels of the hepatoprotective cytokine IL-6. Such selective inhibition of IL-6 by IL-20 was due to IL-20 targeting hepatocytes that produce high levels of IL-6 but a limited number of other cytokines. Mechanistically, IL-20 upregulated NAD(P)H: quinone oxidoreductase 1 (NQO1) expression and subsequently promoted the protein degradation of transcription factor IκBζ, resulting in selective downregulation of the IκBζ-dependent gene Il6 as well several other IκBζ-dependent genes including lipocalin-2 (Lcn2). Given the important role of IL-6 and LCN2 in limiting bacterial infection, we examined the effect of IL-20 on bacterial infection and found Il20-/- mice were resistant to K.P. infection and exhibited elevated levels of hepatic IκBζ-dependent antibacterial genes. Moreover, IL-20 upregulated hepatic NQO1 by binding to IL-22R1/IL-20R2 and activating ERK/p38MAPK/NRF2 signaling pathways. Finally, the levels of hepatic IL1B, IL20, and IκBζ target genes were elevated, and correlated with each other, in patients with severe alcoholic hepatitis. CONCLUSIONS IL-20 selectively inhibits hepatic IL-6 production rather than exerting IL-10-like broad anti-inflammatory properties. Unlike IL-22, IL-20 aggravates acute hepatitis and bacterial infection. Thus, anti-IL-20 therapy could be a promising option to control acute hepatitis and bacterial infection. LAY SUMMARY Several interleukin (IL)-20 family cytokines have been shown to play important roles in controllimg inflammatory responses, infection and tissue damage, but the role of IL-20 remains unclear. Herein, we elucidated the role of IL-20 in liver disease and bacterial infection. We show that IL-20 can aggravate hepatitis and bacterial infection; thus, targeting IL-20 holds promise for the treatment of patients with liver disease.
Collapse
Affiliation(s)
- Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaolin Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaogang Xiang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robim M Rodrigues
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tianyi Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yeni Ait-Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mingjiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
52
|
Pathophysiological effects of Klebsiella pneumoniae infection on Galleria mellonella as an invertebrate model organism. Arch Microbiol 2021; 203:3509-3517. [PMID: 33909089 DOI: 10.1007/s00203-021-02346-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 12/27/2022]
Abstract
Klebsiella pneumoniae is an important human pathogen causing urinary tract infections and pneumonia. Due to the increase in resistant strains and being an opportunistic pathogen, it is very important to determine the virulence process, the cellular damage it causes in the host and the immunological response level of the host. In this study, invertebrate infection model Galleria mellonella larvae were used to investigate cellular damage, antioxidant response and changes in biochemical parameters due to K. pneumoniae infection. The activity of cell damage indicators alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase increased in hemolymph of G. mellonella larvae due to K. pneumoniae virulence. Creatine kinase, alkaline phosphatase, gamma glutamyl transferase and amylase activities were increased to regulate the disrupted energy metabolism due to infection. As a result of the damage caused by K. pneumoniae infection, changes occurred in the amount of non-enzymatic antioxidants, uric acid, bilirubin and albumin. Due to K. pneumoniae infection, the amount of calcium, potassium, magnesium and phosphorus altered. This study showed that G. mellonella larvae was important infection model in the investigation of infectious cell damage and physiological effects, given the opportunistic nature of the K. pneumoniae pathogen and the lack of adequate animal models.
Collapse
|
53
|
Olson B, Zhu X, Norgard MA, Levasseur PR, Butler JT, Buenafe A, Burfeind KG, Michaelis KA, Pelz KR, Mendez H, Edwards J, Krasnow SM, Grossberg AJ, Marks DL. Lipocalin 2 mediates appetite suppression during pancreatic cancer cachexia. Nat Commun 2021; 12:2057. [PMID: 33824339 PMCID: PMC8024334 DOI: 10.1038/s41467-021-22361-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 03/12/2021] [Indexed: 12/22/2022] Open
Abstract
Lipocalin 2 (LCN2) was recently identified as an endogenous ligand of the type 4 melanocortin receptor (MC4R), a critical regulator of appetite. However, it remains unknown if this molecule influences appetite during cancer cachexia, a devastating clinical entity characterized by decreased nutrition and progressive wasting. We demonstrate that LCN2 is robustly upregulated in murine models of pancreatic cancer, its expression is associated with reduced food consumption, and Lcn2 deletion is protective from cachexia-anorexia. Consistent with LCN2's proposed MC4R-dependent role in cancer-induced anorexia, pharmacologic MC4R antagonism mitigates cachexia-anorexia, while restoration of Lcn2 expression in the bone marrow is sufficient in restoring the anorexia feature of cachexia. Finally, we observe that LCN2 levels correlate with fat and lean mass wasting and is associated with increased mortality in patients with pancreatic cancer. Taken together, these findings implicate LCN2 as a pathologic mediator of appetite suppression during pancreatic cancer cachexia.
Collapse
Affiliation(s)
- Brennan Olson
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA
| | - Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mason A Norgard
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Peter R Levasseur
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - John T Butler
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA
| | - Abigail Buenafe
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kevin G Burfeind
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA
| | - Katherine A Michaelis
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA
| | - Katherine R Pelz
- Brenden-Colson Center for Pancreatic Care, Oregon Health and & Science University, Portland, OR, USA
| | - Heike Mendez
- Brenden-Colson Center for Pancreatic Care, Oregon Health and & Science University, Portland, OR, USA
| | - Jared Edwards
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Stephanie M Krasnow
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Aaron J Grossberg
- Brenden-Colson Center for Pancreatic Care, Oregon Health and & Science University, Portland, OR, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA.
- Brenden-Colson Center for Pancreatic Care, Oregon Health and & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
54
|
Hori S, Satake M, Kohmoto O, Takagi R, Okada K, Fukiya S, Yokota A, Ishizuka S. Primary 12α-Hydroxylated Bile Acids Lower Hepatic Iron Concentration in Rats. J Nutr 2021; 151:523-530. [PMID: 33438034 DOI: 10.1093/jn/nxaa366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/16/2020] [Accepted: 10/23/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Primary 12α-hydroxylated bile acids (12αOH BAs) enhance intestinal iron uptake due to their ability ex vivo to chelate iron. However, no information is available on their role in vivo, especially in the liver. OBJECTIVES To investigate the effects and mechanisms of primary 12αOH BAs on hepatic iron concentration in vivo. METHODS Male Wistar King A Hokkaido male rats (WKAH/HkmSlc) rats aged 4-5 weeks were fed a control diet or a diet with cholic acid (CA; 0.5 g/kg diet), the primary 12αOH BA, for 2 weeks (Study 1) or 13 weeks (Study 2). In Study 3, rats fed the same diets were given drinking water either alone or containing vancomycin (200 mg/L) for 6 weeks. The variables measured included food intake (Studies 1-3), bile acid profiles (Studies 1 and 3), hepatic iron concentration (Studies 1-3), fecal iron excretion (Studies 1 and 2), iron-related liver gene expression (Studies 2 and 3), and plasma iron-related factors (Studies 2 and 3). RESULTS In Study 1, CA feed reduced the hepatic iron concentration (-16%; P = 0.005) without changing food intake or fecal iron excretion. In Study 2, we found a significant increase in the aortic plasma concentration of lipocalin 2 (LCN2; +65%; P < 0.001), an iron-trafficking protein. In Study 3, we observed no effect of vancomycin treatment on the CA-induced reduction of hepatic iron concentration (-32%; P < 0.001), accompanied by increased plasma LCN2 concentration (+72%; P = 0.003), in the CA-fed rats despite a drastic reduction in the secondary 12αOH BA concentration (-94%; P < 0.001) in the aortic plasma. CONCLUSIONS Primary 12αOH BAs reduced the hepatic iron concentration in rats. LCN2 may be responsible for the hepatic iron-lowering effect of primary 12αOH BAs by transporting iron out of the liver.
Collapse
Affiliation(s)
- Shota Hori
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Minako Satake
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ohji Kohmoto
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ryo Takagi
- Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Kazufumi Okada
- Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Satoru Fukiya
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Atsushi Yokota
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Satoshi Ishizuka
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
55
|
Hastings KL, Green MD, Gao B, Ganey PE, Roth RA, Burleson GR. Beyond Metabolism: Role of the Immune System in Hepatic Toxicity. Int J Toxicol 2021; 39:151-164. [PMID: 32174281 DOI: 10.1177/1091581819898399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver is primarily thought of as a metabolic organ; however, the liver is also an important mediator of immunological functions. Key perspectives on this emerging topic were presented in a symposium at the 2018 annual meeting of the American College of Toxicology entitled "Beyond metabolism: Role of the immune system in hepatic toxicity." Viral hepatitis is an important disease of the liver for which insufficient preventive vaccines exist. Host immune responses inadequately clear these viruses and often potentiate immunological inflammation that damages the liver. In addition, the liver is a key innate immune organ against bacterial infection. Hepatocytes and immune cells cooperatively control systemic and local bacterial infections. Conversely, bacterial infection can activate multiple types of immune cells and pathways to cause hepatocyte damage and liver injury. Finally, the immune system and specifically cytokines and drugs can interact in idiosyncratic drug-induced liver injury. This rare disease can result in a disease spectrum that ranges from mild to acute liver failure. The immune system plays a role in this disease spectrum.
Collapse
Affiliation(s)
| | | | - Bin Gao
- Laboratory of Liver Diseases, NIH, Bethesda, MD, USA
| | - Patricia E Ganey
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Robert A Roth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gary R Burleson
- BRT-Burleson Research Technologies, Inc, Morrisville, NC, USA
| |
Collapse
|
56
|
Lambrecht J, Tacke F. Controversies and Opportunities in the Use of Inflammatory Markers for Diagnosis or Risk Prediction in Fatty Liver Disease. Front Immunol 2021; 11:634409. [PMID: 33633748 PMCID: PMC7900147 DOI: 10.3389/fimmu.2020.634409] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
In the Western society, non-alcoholic fatty liver disease (NAFLD), characterized by the excessive accumulation of fat in the liver, represents the most common cause of chronic liver disease. If left untreated, approximately 15%-20% of patients with NAFLD will progress to non-alcoholic steatohepatitis (NASH), in which lobular inflammation, hepatocyte ballooning and fibrogenesis further contribute to a distorted liver architecture and function. NASH initiation has significant effects on liver-related mortality, as even the presence of early stage fibrosis increases the chances of adverse patient outcome. Therefore, adequate diagnostic tools for NASH are needed, to ensure that relevant therapeutic actions can be taken as soon as necessary. To date, the diagnostic gold standard remains the invasive liver biopsy, which is associated with several drawbacks such as high financial costs, procedural risks, and inter/intra-observer variability in histology analysis. As liver inflammation is a major hallmark of disease progression, inflammation-related circulating markers may represent an interesting source of non-invasive biomarkers for NAFLD/NASH. Examples for such markers include cytokines, chemokines or shed receptors from immune cells, circulating exosomes related to inflammation, and changing proportions of peripheral blood mononuclear cell (PBMC) subtypes. This review aims at documenting and critically discussing the utility of such novel inflammatory markers for NAFLD/NASH-diagnosis, patient stratification and risk prediction.
Collapse
Affiliation(s)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
57
|
Al-Absi B, AL-Habori M, Saif-Ali R. Plasma Lipocalin-2 and Adiponectin are Affected by Obesity Rather Than Type 2 Diabetes Mellitus per se. Diabetes Metab Syndr Obes 2021; 14:4547-4556. [PMID: 34815681 PMCID: PMC8605802 DOI: 10.2147/dmso.s338254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/03/2021] [Indexed: 04/20/2023] Open
Abstract
PURPOSE Changes in plasma adipocytokines and inflammatory markers in type 2 DM remain controversial as to whether they are due to obesity or directly associated with the diabetic state. Our objective was to study the effect of obesity and diabetes on plasma lipocalin-2 (LCN2), adiponectin, and interleukin-1β (IL-1β) by comparing their levels in non-diabetic obese subjects and non-obese type 2 DM patients, as well as determining the association of these adipocytokines with metabolic syndrome factors and diabetic parameters. PATIENTS AND METHODS In this study, 85 Yemeni male volunteers aged 30-60 years old were enrolled, 25 of whom were healthy subjects with BMI < 25 kg/m2 served as control; 30 non-diabetic obese subjects (BMI ≥ 30 kg/m2 and FBG < 6.1 mmol/l); and 30 non-obese type 2 DM patients (BMI < 25 kg/m2 and FBG > 7 mmol/l). RESULTS Lipocalin-2 and adiponectin were significantly (p = 0.043 and p = 0.034) lower in non-diabetic obese subjects by 16.2% and 29.7% with respect to control group, with no effect in the non-obese type 2 DM patients. Moreover, LCN2 was significantly (p = 0.04) lower in the non-diabetic obese subjects by 15.8% as compared with the non-obese type 2 DM patients, with no significant difference in adiponectin levels. In contrast, serum IL-1β was significantly (p = 0.001 and p = 0.003) higher in both non-diabetic obese subjects and the non-obese type 2 DM patients by 76.5% and 67.7% as compared to control group. The significant decrease in both LCN2 and adiponectin and the significant increase in IL-1β in the non-diabetic obese subjects disappeared upon adjustment for waist circumference (WC). In contrast, the significant increase in IL-1β in the non-obese Type 2 DM patients was not affected upon adjustment for WC. CONCLUSION Plasma LCN2 and adiponectin were not affected by diabetes per se, suggesting that the observed changes in LCN2 and adiponectin in type 2 DM may be due to obesity rather than the diabetic state, whereas IL-1β levels were affected by both obesity and diabetes.
Collapse
Affiliation(s)
- Boshra Al-Absi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, University of Sana`a, Sana`a, Yemen
| | - Molham AL-Habori
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, University of Sana`a, Sana`a, Yemen
- Correspondence: Molham AL-Habori Email
| | - Riyadh Saif-Ali
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, University of Sana`a, Sana`a, Yemen
| |
Collapse
|
58
|
He Y, Hwang S, Ahmed YA, Feng D, Li N, Ribeiro M, Lafdil F, Kisseleva T, Szabo G, Gao B. Immunopathobiology and therapeutic targets related to cytokines in liver diseases. Cell Mol Immunol 2021; 18:18-37. [PMID: 33203939 PMCID: PMC7853124 DOI: 10.1038/s41423-020-00580-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic liver injury with any etiology can progress to fibrosis and the end-stage diseases cirrhosis and hepatocellular carcinoma. The progression of liver disease is controlled by a variety of factors, including liver injury, inflammatory cells, inflammatory mediators, cytokines, and the gut microbiome. In the current review, we discuss recent data on a large number of cytokines that play important roles in regulating liver injury, inflammation, fibrosis, and regeneration, with a focus on interferons and T helper (Th) 1, Th2, Th9, Th17, interleukin (IL)-1 family, IL-6 family, and IL-20 family cytokines. Hepatocytes can also produce certain cytokines (such as IL-7, IL-11, and IL-33), and the functions of these cytokines in the liver are briefly summarized. Several cytokines have great therapeutic potential, and some are currently being tested as therapeutic targets in clinical trials for the treatment of liver diseases, which are also described.
Collapse
Affiliation(s)
- Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Na Li
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Marcelle Ribeiro
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Fouad Lafdil
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
- INSERM, U955, F-94000, Créteil, France
- Institut Universitaire de France (IUF), Paris, F-75231, Cedex 05, France
| | - Tatiana Kisseleva
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
59
|
Grønbaek H, Møller HJ, Saliba F, Zeuzem S, Albillos A, Ariza X, Graupera I, Solà E, Amoros A, Pavesi M, Bossen L, Jalan R, Gines P, Arroyo V. Improved prediction of mortality by combinations of inflammatory markers and standard clinical scores in patients with acute-on-chronic liver failure and acute decompensation. J Gastroenterol Hepatol 2021; 36:240-248. [PMID: 32478437 DOI: 10.1111/jgh.15125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Acute-on-chronic liver failure (ACLF) is a sinister prognosis, and there is a need for accurate biomarkers and scoring systems to better characterize ACLF patients and predict prognosis. Systemic inflammation and renal failure are hallmarks in ACLF disease development and progression. We hypothesized that the combination of specific inflammatory markers in combination with clinical scores are better predictors of survival than the originally developed CLIF-C acute decompensation (AD) and CLIF-C ACLF scores. METHODS We reevaluated all previously measured inflammatory markers in 522 patients from the CANONIC study, 342 without and 180 with ACLF. We used the Harrell's C-index to determine the best marker alone or in combination with the original scores and calculated new scores for prediction of mortality in the original CANONIC cohort. RESULTS The best markers to predict 90-day mortality in patients without ACLF were the plasma macrophage activation markers soluble (s)CD163 and mannose receptor (sMR). Urinary neutrophil gelatinase associated lipocalin (UNGAL) and sCD163 were predictors for 28-day mortality in patients with ACLF. The newly developed CLIF-C AD + sMR score in patients without ACLF improved 90-day mortality prediction compared with the original CLIF-C AD score (C-index 0.82 [0.78-0.86] vs 0.74 [0.70-0.78, P = 0.004]). Further, the new CLIF-C ACLF + sCD163 + UNGAL improved the original CLIF-C ACLF score for 28-day mortality (0.85 [0.79-0.91] vs 0.75 [0.70-0.80], P = 0.039). CONCLUSIONS The capability of these inflammatory markers to improve the original prognostic scores in cirrhosis patients without and with ACLF points to a key role of macrophage activation and inflammation in the development and progression of AD and ACLF.
Collapse
Affiliation(s)
- Henning Grønbaek
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Faouzi Saliba
- Centre Hépato-Biliaire, AP-HP Hôpital Paul Brousse, INSERM, Unité 1193, Villejuif, France
| | - Stefan Zeuzem
- Medical Clinik I, Department of Internal Medicine, J.W. Goethe University Hospital, Frankfurt/Main, Germany
| | - Agustin Albillos
- Department of Gastroenterology, Hospital Universitario Ramón y Cajal, IRYCIS, Universidad de Alcalá, CIBEREHD, Madrid, Spain
| | - Xavier Ariza
- Liver Unit, Hospital Clínic de Barcelona, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Barcelona, Spain
| | - Isabel Graupera
- Liver Unit, Hospital Clínic de Barcelona, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Barcelona, Spain
| | - Elsa Solà
- Liver Unit, Hospital Clínic de Barcelona, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Barcelona, Spain
| | - Alex Amoros
- European Foundation for the Study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain
| | - Marco Pavesi
- European Foundation for the Study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain
| | - Lars Bossen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Rajiv Jalan
- UCL Institute for Liver and Digestive Health, University College London, London, UK
| | - Pere Gines
- Liver Unit, Hospital Clínic de Barcelona, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEReHD), Barcelona, Spain
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain
| |
Collapse
|
60
|
da Silva Souza B, Sales ACS, da Silva FDS, de Souza TF, de Freitas CDT, Vasconcelos DFP, de Oliveira JS. Latex Proteins from Plumeria pudica with Therapeutic Potential on Acetaminophen-Induced Liver Injury. Mini Rev Med Chem 2020; 20:2011-2018. [DOI: 10.2174/1389557520666200821121903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 11/22/2022]
Abstract
Liver disease is global health problem. Paracetamol (APAP) is used as an analgesic drug
and is considered safe at therapeutic doses, but at higher doses, it causes acute liver injury. N-acetyl-p-
Benzoquinone Imine (NAPQI) is a reactive toxic metabolite produced by biotransformation of APAP.
NAPQI damages the liver by oxidative stress and the formation of protein adducts. The glutathione
precursor N-acetylcysteine (NAC) is the only approved antidote against APAP hepatotoxicity, but it
has limited hepatoprotective effects. The search for new drugs and novel therapeutic intervention strategies
increasingly includes testing plant extracts and other natural products. Plumeria pudica (Jacq.,
1760) is a plant that produces latex containing molecules with therapeutic potential. Proteins obtained
from this latex (LPPp), a well-defined mixture of chitinases, proteinases proteinase inhibitors have
shown anti-inflammatory, antinociceptive, antidiarrheal effects as well as a protective effect against
ulcerative colitis. These studies have demonstrated that LPPp acts on parameters such as Glutathione
(GSH) and Malondialdehyde (MDA) concentration, Superoxide Dismutase (SOD) activity, Myeloperoxidase
(MPO) activity, and TNF- α IL1-β levels. Since oxidative stress and inflammation have been
reported to affect the initiation and progression of liver injury caused by APAP, it is suggested that
LPPp can act on aspects related to paracetamol hepatoxicity. This article brings new insights into the
potential of the laticifer proteins extracted from the latex of P. pudica and opens new perspectives for
the treatment of this type of liver disease with LPPp.
Collapse
Affiliation(s)
- Bruna da Silva Souza
- Universidade Federal do Delta do Parnaiba - UFDPar, Laboratorio de Bioquimica de Plantas Laticiferas (LABPL), CEP 64.202-020, Parnaiba, Piaui, Brazil
| | - Ana Clara Silva Sales
- Universidade Federal do Delta do Parnaiba - UFDPar, Laboratorio de Bioquimica de Plantas Laticiferas (LABPL), CEP 64.202-020, Parnaiba, Piaui, Brazil
| | - Francisca Dayane Soares da Silva
- Universidade Federal do Delta do Parnaiba - UFDPar, Laboratorio de Bioquimica de Plantas Laticiferas (LABPL), CEP 64.202-020, Parnaiba, Piaui, Brazil
| | - Thalis Ferreira de Souza
- Universidade Federal do Delta do Parnaiba - UFDPar, Laboratorio de Bioquimica de Plantas Laticiferas (LABPL), CEP 64.202-020, Parnaiba, Piaui, Brazil
| | | | - Daniel Fernando Pereira Vasconcelos
- Universidade Federal do Piaui - UFPI, Programa de Doutorado em Biotecnologia - Rede Nordeste de Biotecnologia (RENORBIO), CEP 64049-550, Teresina, PI, Brazil
| | - Jefferson Soares de Oliveira
- Universidade Federal do Delta do Parnaiba - UFDPar, Laboratorio de Bioquimica de Plantas Laticiferas (LABPL), CEP 64.202-020, Parnaiba, Piaui, Brazil
| |
Collapse
|
61
|
Antimicrobial peptides: bridging innate and adaptive immunity in the pathogenesis of psoriasis. Chin Med J (Engl) 2020; 133:2966-2975. [PMID: 33237697 PMCID: PMC7752697 DOI: 10.1097/cm9.0000000000001240] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) are small molecules produced by a myriad of cells and play important roles not only in protecting against infections and sustaining skin barrier homeostasis but also in contributing to immune dysregulation under pathological conditions. Recently, increasing evidence has indicated that AMPs, including cathelicidin (LL-37), human β-defensins, S100 proteins, lipocalin 2, and RNase 7, are highly expressed in psoriatic skin lesions. These peptides broadly regulate immunity by interacting with various immune cells and linking innate and adaptive immune responses during the progression of psoriasis. In this review, we summarize the recent findings regarding AMPs in the pathogenesis of psoriasis with a main focus on their immunomodulatory abilities.
Collapse
|
62
|
Allegretti AS, Solà E, Ginès P. Clinical Application of Kidney Biomarkers in Cirrhosis. Am J Kidney Dis 2020; 76:710-719. [DOI: 10.1053/j.ajkd.2020.03.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
|
63
|
Chen J, Argemi J, Odena G, Xu MJ, Cai Y, Massey V, Parrish A, Vadigepalli R, Altamirano J, Cabezas J, Gines P, Caballeria J, Snider N, Sancho-Bru P, Akira S, Rusyn I, Gao B, Bataller R. Hepatic lipocalin 2 promotes liver fibrosis and portal hypertension. Sci Rep 2020; 10:15558. [PMID: 32968110 PMCID: PMC7512007 DOI: 10.1038/s41598-020-72172-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Advanced fibrosis and portal hypertension influence short-term mortality. Lipocalin 2 (LCN2) regulates infection response and increases in liver injury. We explored the role of intrahepatic LCN2 in human alcoholic hepatitis (AH) with advanced fibrosis and portal hypertension and in experimental mouse fibrosis. We found hepatic LCN2 expression and serum LCN2 level markedly increased and correlated with disease severity and portal hypertension in patients with AH. In control human livers, LCN2 expressed exclusively in mononuclear cells, while its expression was markedly induced in AH livers, not only in mononuclear cells but also notably in hepatocytes. Lcn2-/- mice were protected from liver fibrosis caused by either ethanol or CCl4 exposure. Microarray analysis revealed downregulation of matrisome, cell cycle and immune related gene sets in Lcn2-/- mice exposed to CCl4, along with decrease in Timp1 and Edn1 expression. Hepatic expression of COL1A1, TIMP1 and key EDN1 system components were elevated in AH patients and correlated with hepatic LCN2 expression. In vitro, recombinant LCN2 induced COL1A1 expression. Overexpression of LCN2 increased HIF1A that in turn mediated EDN1 upregulation. LCN2 contributes to liver fibrosis and portal hypertension in AH and could represent a new therapeutic target.
Collapse
Affiliation(s)
- Jiegen Chen
- Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Josepmaria Argemi
- Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Gemma Odena
- Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ming-Jiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, DM, 20892, USA
| | - Yan Cai
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, DM, 20892, USA
| | - Veronica Massey
- Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Austin Parrish
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jose Altamirano
- Hepatology-Internal Medicine Department, Hospital Quironsalud Barcelona, Barcelona, Spain
| | - Joaquin Cabezas
- Gastroenterology and Hepatology Department, Research Institute Valdecilla (IDIVAL), University Hospital Marques de Valdecilla, Santander, Spain
| | - Pere Gines
- Hospital Clinic, Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas Y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Juan Caballeria
- Hospital Clinic, Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas Y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Natasha Snider
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pau Sancho-Bru
- Hospital Clinic, Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas Y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Shizuo Akira
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, DM, 20892, USA
| | - Ramon Bataller
- Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
64
|
Borkham-Kamphorst E, Haas U, Van de Leur E, Trevanich A, Weiskirchen R. Chronic Carbon Tetrachloride Applications Induced Hepatocyte Apoptosis in Lipocalin 2 Null Mice Through Endoplasmic Reticulum Stress and Unfolded Protein Response. Int J Mol Sci 2020; 21:ijms21155230. [PMID: 32718038 PMCID: PMC7432394 DOI: 10.3390/ijms21155230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The lack of Lipocalin (LCN2) provokes overwhelming endoplasmic reticulum (ER) stress responses in vitro and in acute toxic liver injury models, resulting in hepatocyte apoptosis. LCN2 is an acute phase protein produced in hepatocytes in response to acute liver injuries. In line with these findings we investigated ER stress responses of Lcn2−/− mice in chronic ER stress using a long-term repetitive carbon tetrachloride (CCl4) injection model. We found chronic CCl4 application to enhance ER stress and unfolded protein responses (UPR), including phosphorylation of eukaryotic initiation factor 2α (eIF2α), increased expression of binding immunoglobulin protein (BiP) and glucose-regulated protein 94 (GRP94). IRE1α/TRAF2/JNK signaling enhanced mitochondrial apoptotic pathways, and showed slightly higher in Lcn2−/− mice compared to the wild type counterparts, leading to increased hepatocyte apoptosis well evidenced by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Hepatocyte injuries were confirmed by significant high serum alanine transaminase (ALT) levels in CCl4-treated Lcn2−/− mice. Lcn2−/− mice furthermore developed mild hepatic steatosis, supporting our finding that ER stress promotes lipogenesis. In a previous report we demonstrated that the pharmacological agent tunicamycin (TM) induced ER stress through altered protein glycosylation and induced high amounts of C/EBP-homologous protein (CHOP), resulting in hepatocyte apoptosis. We compared TM-induced ER stress in wild type, Lcn2−/−, and Chop null (Chop−/−) primary hepatocytes and found Chop−/− hepatocytes to attenuate ER stress responses and resist ER stress-induced hepatocyte apoptosis through canonical eIF2α/GADD34 signaling, inhibiting protein synthesis. Unexpectedly, in later stages of TM incubation, Chop−/− hepatocytes resumed activation of IRE1α/JNK/c-Jun and p38/ATF2 signaling, leading to late hepatocyte apoptosis. This interesting observation indicates Chop−/− mice to be unable to absolutely prevent all types of liver injury, while LCN2 protects the hepatocytes by maintaining homeostasis under ER stress conditions.
Collapse
Affiliation(s)
- Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, D-52074 Aachen, Germany; (U.H.); (E.V.d.L.)
- Correspondence: (E.B.-K.); (R.W.); Tel.: +49-241-80-88684 (E.B.-K.); +49-241-80-88683 (R.W.)
| | - Ute Haas
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, D-52074 Aachen, Germany; (U.H.); (E.V.d.L.)
| | - Eddy Van de Leur
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, D-52074 Aachen, Germany; (U.H.); (E.V.d.L.)
| | - Anothai Trevanich
- Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, D-52074 Aachen, Germany; (U.H.); (E.V.d.L.)
- Correspondence: (E.B.-K.); (R.W.); Tel.: +49-241-80-88684 (E.B.-K.); +49-241-80-88683 (R.W.)
| |
Collapse
|
65
|
Faubel S. The author replies. Kidney Int 2020; 97:1301-1302. [PMID: 32444098 DOI: 10.1016/j.kint.2020.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Sarah Faubel
- Department of Renal Medicine, University of Colorado Denver, Denver, Colorado.
| |
Collapse
|
66
|
Zhong W, Wei X, Hao L, Lin TD, Yue R, Sun X, Guo W, Dong H, Li T, Ahmadi AR, Sun Z, Zhang Q, Zhao J, Zhou Z. Paneth Cell Dysfunction Mediates Alcohol-related Steatohepatitis Through Promoting Bacterial Translocation in Mice: Role of Zinc Deficiency. Hepatology 2020; 71:1575-1591. [PMID: 31520476 PMCID: PMC7069794 DOI: 10.1002/hep.30945] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Microbial dysbiosis is associated with alcohol-related hepatitis (AH), with the mechanisms yet to be elucidated. The present study aimed to determine the effects of alcohol and zinc deficiency on Paneth cell (PC) antimicrobial peptides, α-defensins, and to define the link between PC dysfunction and AH. APPROACH AND RESULTS Translocation of pathogen-associated molecular patterns (PAMPs) was determined in patients with severe AH and in a mouse model of alcoholic steatohepatitis. Microbial composition and PC function were examined in mice. The link between α-defensin dysfunction and AH was investigated in α-defensin-deficient mice. Synthetic human α-defensin 5 (HD5) was orally given to alcohol-fed mice to test the therapeutic potential. The role of zinc deficiency in α-defensin was evaluated in acute and chronic mouse models of zinc deprivation. Hepatic inflammation was associated with PAMP translocation and lipocalin-2 (LCN2) and chemokine (C-X-C motif) ligand 1 (CXCL1) elevation in patients with AH. Antibiotic treatment, lipopolysaccharide injection to mice, and in vitro experiments showed that PAMPs, but not alcohol, directly induced LCN2 and CXCL1. Chronic alcohol feeding caused systemic dysbiosis and PC α-defensin reduction in mice. Knockout of functional α-defensins synergistically affected alcohol-perturbed bacterial composition and the gut barrier and exaggerated PAMP translocation and liver damage. Administration of HD5 effectively altered cecal microbial composition, especially increased Akkermansia muciniphila, and reversed the alcohol-induced deleterious effects. Zinc-regulated PC homeostasis and α-defensins function at multiple levels, and dietary zinc deficiency exaggerated the deleterious effect of alcohol on PC bactericidal activity. CONCLUSIONS Taken together, the study suggests that alcohol-induced PC α-defensin dysfunction is mediated by zinc deficiency and involved in the pathogenesis of AH. HD5 administration may represent a promising therapeutic approach for treating AH.
Collapse
Affiliation(s)
- Wei Zhong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA 28081.,Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA 28081.,Corresponding authors: Wei Zhong, Phone: 704-250-5814, . Zhanxiang Zhou, Phone: 704-250-5800.
| | - Xiaoyuan Wei
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA 72701
| | - Liuyi Hao
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA 28081
| | - Tai-Du Lin
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA 28081.,Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA 28081
| | - Ruichao Yue
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA 28081
| | - Xinguo Sun
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA 28081
| | - Wei Guo
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA 28081
| | - Haibo Dong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA 28081
| | - Tianjiao Li
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA 28081
| | - Ali R. Ahmadi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA 21205
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA 21205
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA 28081.,Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA 28081
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA 72701
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA 28081.,Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA 28081.,Corresponding authors: Wei Zhong, Phone: 704-250-5814, . Zhanxiang Zhou, Phone: 704-250-5800.
| |
Collapse
|
67
|
Hu Z, Han Y, Liu Y, Zhao Z, Ma F, Cui A, Zhang F, Liu Z, Xue Y, Bai J, Wu H, Bian H, Chin YE, Yu Y, Meng Z, Wang H, Liu Y, Fan J, Gao X, Chen Y, Li Y. CREBZF as a Key Regulator of STAT3 Pathway in the Control of Liver Regeneration in Mice. Hepatology 2020; 71:1421-1436. [PMID: 31469186 DOI: 10.1002/hep.30919] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS STAT3, a member of the signal transducer and activator of transcription (STAT) family, is strongly associated with liver injury, inflammation, regeneration, and hepatocellular carcinoma development. However, the signals that regulate STAT3 activity are not completely understood. APPROACH AND RESULTS Here we characterize CREB/ATF bZIP transcription factor CREBZF as a critical regulator of STAT3 in the hepatocyte to repress liver regeneration. We show that CREBZF deficiency stimulates the expression of the cyclin gene family and enhances liver regeneration after partial hepatectomy. Flow cytometry analysis reveals that CREBZF regulates cell cycle progression during liver regeneration in a hepatocyte-autonomous manner. Similar results were observed in another model of liver regeneration induced by intraperitoneal injection of carbon tetrachloride (CCl4 ). Mechanistically, CREBZF potently associates with the linker domain of STAT3 and represses its dimerization and transcriptional activity in vivo and in vitro. Importantly, hepatectomy-induced hyperactivation of cyclin D1 and liver regeneration in CREBZF liver-specific knockout mice was reversed by selective STAT3 inhibitor cucurbitacin I. In contrast, adeno-associated virus-mediated overexpression of CREBZF in the liver inhibits the expression of the cyclin gene family and attenuates liver regeneration in CCl4 -treated mice. CONCLUSIONS These results characterize CREBZF as a coregulator of STAT3 to inhibit regenerative capacity, which may represent an essential cellular signal to maintain liver mass homeostasis. Therapeutic approaches to inhibit CREBZF may benefit the compromised liver during liver transplantation.
Collapse
Affiliation(s)
- Zhimin Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yamei Han
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuxiao Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zehua Zhao
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feifei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinyun Bai
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Haifu Wu
- Metabolic and Bariatric Surgery of Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Y Eugene Chin
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Ying Yu
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
68
|
Lin A, Inman RD, Streutker CJ, Zhang Z, Pritzker KPH, Tsui HW, Tsui FWL. Lipocalin 2 links inflammation and ankylosis in the clinical overlap of inflammatory bowel disease (IBD) and ankylosing spondylitis (AS). Arthritis Res Ther 2020; 22:51. [PMID: 32188494 PMCID: PMC7081573 DOI: 10.1186/s13075-020-02149-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
Background Little is known about the mechanisms underlying the clinical overlap between gut inflammation and joint ankylosis, as exemplified by the concurrence of inflammatory bowel diseases (IBD) and ankylosing spondylitis (AS). As dysbiosis may serve as a common contributor, the anti-microbial pleiotropic factor lipocalin 2 could be a potential mediator due to its roles in inflammation and bone homeostasis. Methods Baseline colonic pathology was conducted in the ank/ank mouse model. Serum lipocalin 2 was analyzed by ELISA, in ank/ank mutants versus C3FeB6-A/Aw-jwt/wt, in patients with concurrent AS-IBD, AS alone, IBD alone, or mechanical back pain, and in healthy controls. In the ank/ank mouse model, the expression of nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) was examined by real-time PCR. Intraperitoneal injection was done with the PPARγ agonist rosiglitazone or antagonist bisphenol A diglycidyl ether for four consecutive days. Serum levels of lipocalin 2 were examined on the sixth day. Results This study showed that the ank/ank mice with fully fused spines had concurrent colonic inflammation. By first using the ank/ank mouse model with progressive ankylosis and subclinical colonic inflammation, confirmed in patients with concurrent AS and IBD, elevated circulating lipocalin 2 levels were associated with the coexisting ankylosis and gut inflammation. The intracellular pathway of lipocalin 2 was further investigated with the ank/ank mouse model involving PPARγ. Colonic expression of PPARγ was negatively associated with the degree of gut inflammation. The PPARγ agonist rosiglitazone treatment significantly upregulated the serum levels of lipocalin 2, suggesting a potential regulatory role of PPARγ in the aberrant expression of lipocalin 2. Conclusions In summary, lipocalin 2 modulated by PPARγ could be a potential pathway involved in concurrent inflammation and ankylosis in AS and IBD.
Collapse
Affiliation(s)
- Aifeng Lin
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada. .,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,KeyIntel Medical Inc, Toronto, Ontario, Canada.
| | - Robert D Inman
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Catherine J Streutker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Li Ka Shing Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Zhenbo Zhang
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kenneth P H Pritzker
- KeyIntel Medical Inc, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Hing Wo Tsui
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Florence W L Tsui
- KeyIntel Medical Inc, Toronto, Ontario, Canada.,Department of Immunology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
69
|
Liu H, Zhu P, Nie C, Ye Q, Gao Y, Liu H, Pang G, Han T. The value of ascitic neutrophil gelatinase-associated lipocalin in decompensated liver cirrhosis with spontaneous bacterial peritonitis. J Clin Lab Anal 2020; 34:e23247. [PMID: 32100329 PMCID: PMC7307354 DOI: 10.1002/jcla.23247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/08/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Background Spontaneous bacterial peritonitis (SBP) is one of the most critical complications of decompensated liver cirrhosis. This study aimed to assess whether ascitic neutrophil gelatinase‐associated lipocalin (NGAL), a reliable inflammation biomarker, can be used to detect SBP in decompensated cirrhosis patients and to predict mortality from decompensated cirrhosis‐related SBP. Methods This study included 204 hospitalized patients with ascites of decompensated liver cirrhosis and follow‐up of 28 days. We measured ascitic NGAL levels by the latex‐enhanced immunoturbidimetric method. Simultaneously, we observed the patterns of ascitic NGAL levels in the SBP group after 7 days of anti‐infection treatment with third‐generation cephalosporins. Results The ascitic NGAL levels significantly increased in the SBP group compared with that in the non‐SBP group, 111(83.9, 178) ng/mL vs 48(35.4, 63) ng/mL, P < .001. Likewise, the ascitic NGAL levels of SBP were higher than non‐SBP with or without renal dysfunction. There was a positive relationship between ascitic NGAL and ascitic polymorphonuclear (PMN) leukocyte and a negative relationship between ascitic NGAL and ascitic albumin in the SBP group. An ascitic NGAL cutoff of 108.95 ng/mL was used for predicting a poor prognosis for SBP patients. Ascitic NGAL and the model for end‐stage liver disease score were independent risk factors in decompensated liver cirrhosis patients with SBP through multivariate Cox regression. A dynamic trend of ascitic NGAL in SBP patients was consistent with the clinical prognosis. Conclusion Ascitic NGAL may not only be a biomarker for monitoring SBP but also a predictor for more severe outcomes in decompensated cirrhosis‐related SBP.
Collapse
Affiliation(s)
- Hua Liu
- Department of Hepatology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Department of Hepatology, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Ping Zhu
- Department of Hepatology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Caiyun Nie
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China.,Department of Oncology, Henan Cancer Hospital, Zhengzhou, China
| | - Qing Ye
- Department of Hepatology, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Yanying Gao
- Department of Hepatology, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Huaiping Liu
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin, China
| | - Guoju Pang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin, China
| | - Tao Han
- Department of Hepatology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Department of Hepatology, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| |
Collapse
|
70
|
Hathaway-Schrader JD, Poulides NA, Carson MD, Kirkpatrick JE, Warner AJ, Swanson BA, Taylor EV, Chew ME, Reddy SV, Liu B, Westwater C, Novince CM. Specific Commensal Bacterium Critically Regulates Gut Microbiota Osteoimmunomodulatory Actions During Normal Postpubertal Skeletal Growth and Maturation. JBMR Plus 2020; 4:e10338. [PMID: 32161843 PMCID: PMC7059828 DOI: 10.1002/jbm4.10338] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
The commensal gut microbiota critically regulates immunomodulatory processes that influence normal skeletal growth and maturation. However, the influence of specific microbes on commensal gut microbiota osteoimmunoregulatory actions is unknown. We have shown previously that the commensal gut microbiota enhances TH17/IL17A immune response effects in marrow and liver that have procatabolic/antianabolic actions in the skeleton. Segmented filamentous bacteria (SFB), a specific commensal gut bacterium within phylum Firmicutes, potently induces TH17/IL17A‐mediated immunity. The study purpose was to delineate the influence of SFB on commensal gut microbiota immunomodulatory actions regulating normal postpubertal skeletal development. Two murine models were utilized: SFB‐monoassociated mice versus germ‐free (GF) mice and specific‐pathogen‐free (SPF) mice +/− SFB. SFB colonization was validated by 16S rDNA analysis, and SFB‐induced TH17/IL17A immunity was confirmed by upregulation of Il17a in ileum and IL17A in serum. SFB‐colonized mice had an osteopenic trabecular bone phenotype, which was attributed to SFB actions suppressing osteoblastogenesis and enhancing osteoclastogenesis. Intriguingly, SFB‐colonized mice had increased expression of proinflammatory chemokines and acute‐phase reactants in the liver. Lipocalin‐2 (LCN2), an acute‐phase reactant and antimicrobial peptide, was substantially elevated in the liver and serum of SFB‐colonized mice, which supports the notion that SFB regulation of commensal gut microbiota osteoimmunomodulatory actions are mediated in part through a gut–liver–bone axis. Proinflammatory TH17 and TH1 cells were increased in liver‐draining lymph nodes of SFB‐colonized mice, which further substantiates that SFB osteoimmune‐response effects may be mediated through the liver. SFB‐induction of Il17a in the gut and Lcn2 in the liver resulted in increased circulating levels of IL17A and LCN2. Recognizing that IL17A and LCN2 support osteoclastogenesis/suppress osteoblastogenesis, SFB actions impairing postpubertal skeletal development appear to be mediated through immunomodulatory effects in both the gut and liver. This research reveals that specific microbes critically impact commensal gut microbiota immunomodulatory actions regulating normal postpubertal skeletal growth and maturation. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Nicole A Poulides
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Matthew D Carson
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Joy E Kirkpatrick
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Drug Discovery & Biomedical Sciences College of Pharmacy, Medical University of South Carolina Charleston SC USA
| | - Amy J Warner
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Brooks A Swanson
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Eliza V Taylor
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA
| | - Michael E Chew
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA
| | - Sakamuri V Reddy
- Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Bei Liu
- Department of Microbiology and Immunology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Caroline Westwater
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Microbiology and Immunology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Chad M Novince
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| |
Collapse
|
71
|
Skrypnyk NI, Gist KM, Okamura K, Montford JR, You Z, Yang H, Moldovan R, Bodoni E, Blaine JT, Edelstein CL, Soranno DE, Kirkbride-Romeo LA, Griffin BR, Altmann C, Faubel S. IL-6-mediated hepatocyte production is the primary source of plasma and urine neutrophil gelatinase-associated lipocalin during acute kidney injury. Kidney Int 2019; 97:966-979. [PMID: 32081304 DOI: 10.1016/j.kint.2019.11.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 10/09/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
Neutrophil gelatinase associated lipocalin (NGAL, Lcn2) is the most widely studied biomarker of acute kidney injury (AKI). Previous studies have demonstrated that NGAL is produced by the kidney and released into the urine and plasma. Consequently, NGAL is currently considered a tubule specific injury marker of AKI. However, the utility of NGAL to predict AKI has been variable suggesting that other mechanisms of production are present. IL-6 is a proinflammatory cytokine increased in plasma by two hours of AKI and mediates distant organ effects. Herein, we investigated the role of IL-6 in renal and extra-renal NGAL production. Wild type mice with ischemic AKI had increased plasma IL-6, increased hepatic NGAL mRNA, increased plasma NGAL, and increased urine NGAL; all reduced in IL-6 knockout mice. Intravenous IL-6 in normal mice increased hepatic NGAL mRNA, plasma NGAL and urine NGAL. In mice with hepatocyte specific NGAL deletion (Lcn2hep-/-) and ischemic AKI, hepatic NGAL mRNA was absent, and plasma and urine NGAL were reduced. Since urine NGAL levels appear to be dependent on plasma levels, the renal handling of circulating NGAL was examined using recombinant human NGAL. After intravenous recombinant human NGAL administration to mice, human NGAL in mouse urine was detected by ELISA during proximal tubular dysfunction, but not in pre-renal azotemia. Thus, during AKI, IL-6 mediates hepatic NGAL production, hepatocytes are the primary source of plasma and urine NGAL, and plasma NGAL appears in the urine during proximal tubule dysfunction. Hence, our data change the paradigm by which NGAL should be interpreted as a biomarker of AKI.
Collapse
Affiliation(s)
- Nataliya I Skrypnyk
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Katja M Gist
- Department of Cardiology, The Heart Institute, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Kayo Okamura
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - John R Montford
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA; Renal Section, Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | - Zhiying You
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Haichun Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Radu Moldovan
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA; Advanced Light Microscopy Core Facility, Aurora, Colorado, USA
| | - Evelyn Bodoni
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA; Advanced Light Microscopy Core Facility, Aurora, Colorado, USA
| | - Judith T Blaine
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Charles L Edelstein
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Danielle E Soranno
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA; Department of Pediatrics and Bioengineering, University of Colorado, Aurora, Colorado, USA
| | - Lara A Kirkbride-Romeo
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Benjamin R Griffin
- Department of Medicine, Division of Nephrology, University of Iowa, Iowa City, Iowa, USA
| | - Chris Altmann
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Sarah Faubel
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA; Renal Section, Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA.
| |
Collapse
|
72
|
Chella Krishnan K, Sabir S, Shum M, Meng Y, Acín-Pérez R, Lang JM, Floyd RR, Vergnes L, Seldin MM, Fuqua BK, Jayasekera DW, Nand SK, Anum DC, Pan C, Stiles L, Péterfy M, Reue K, Liesa M, Lusis AJ. Sex-specific metabolic functions of adipose Lipocalin-2. Mol Metab 2019; 30:30-47. [PMID: 31767179 PMCID: PMC6812340 DOI: 10.1016/j.molmet.2019.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/04/2019] [Accepted: 09/22/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Lipocalin-2 (LCN2) is a secreted protein involved in innate immunity and has also been associated with several cardiometabolic traits in both mouse and human studies. However, the causal relationship of LCN2 to these traits is unclear, and most studies have examined only males. METHODS Using adeno-associated viral vectors we expressed LCN2 in either adipose or liver in a tissue specific manner on the background of a whole-body Lcn2 knockout or wildtype mice. Metabolic phenotypes including body weight, body composition, plasma and liver lipids, glucose homeostasis, insulin resistance, mitochondrial phenotyping, and metabolic cage studies were monitored. RESULTS We studied the genetics of LCN2 expression and associated clinical traits in both males and females in a panel of 100 inbred strains of mice (HMDP). The natural variation in Lcn2 expression across the HMDP exhibits high heritability, and genetic mapping suggests that it is regulated in part by Lipin1 gene variation. The correlation analyses revealed striking tissue dependent sex differences in obesity, insulin resistance, hepatic steatosis, and dyslipidemia. To understand the causal relationships, we examined the effects of expression of LCN2 selectively in liver or adipose. On a Lcn2-null background, LCN2 expression in white adipose promoted metabolic disturbances in females but not males. It acted in an autocrine/paracrine manner, resulting in mitochondrial dysfunction and an upregulation of inflammatory and fibrotic genes. On the other hand, on a null background, expression of LCN2 in liver had no discernible impact on the traits examined despite increasing the levels of circulating LCN2 more than adipose LCN2 expression. The mechanisms underlying the sex-specific action of LCN2 are unclear, but our results indicate that adipose LCN2 negatively regulates its receptor, LRP2 (or megalin), and its repressor, ERα, in a female-specific manner and that the effects of LCN2 on metabolic traits are mediated in part by LRP2. CONCLUSIONS Following up on our population-based studies, we demonstrate that LCN2 acts in a highly sex- and tissue-specific manner in mice. Our results have important implications for human studies, emphasizing the importance of sex and the tissue source of LCN2.
Collapse
Affiliation(s)
| | - Simon Sabir
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Michaël Shum
- Department of Medicine/Division of Endocrinology, University of California, Los Angeles, CA, USA
| | - Yonghong Meng
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Rebeca Acín-Pérez
- Department of Medicine/Division of Endocrinology, University of California, Los Angeles, CA, USA
| | - Jennifer M Lang
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Raquel R Floyd
- Department of Biology, University of California, Los Angeles, CA, USA
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Marcus M Seldin
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Brie K Fuqua
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Dulshan W Jayasekera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Sereena K Nand
- Department of Biology, University of California, Los Angeles, CA, USA
| | - Diana C Anum
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Calvin Pan
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Linsey Stiles
- Department of Medicine/Division of Endocrinology, University of California, Los Angeles, CA, USA
| | - Miklós Péterfy
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA; Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Marc Liesa
- Department of Medicine/Division of Endocrinology, University of California, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA.
| |
Collapse
|
73
|
Meyerhoff N, Rohn K, Carlson R, Tipold A. Measurement of Neutrophil Gelatinase-Associated Lipocalin Concentration in Canine Cerebrospinal Fluid and Serum and Its Involvement in Neuroinflammation. Front Vet Sci 2019; 6:315. [PMID: 31620456 PMCID: PMC6759468 DOI: 10.3389/fvets.2019.00315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/04/2019] [Indexed: 11/28/2022] Open
Abstract
Neutrophil gelatinase-associated Lipocalin (NGAL) is a glycoprotein involved in inflammation acting as an acute phase protein and chemokine as well as a regulator of iron homeostasis. NGAL has been shown to be upregulated in experimental autoimmune encephalomyelitis (EAE) in mice. Increased NGAL concentration in cerebrospinal fluid (CSF) and expression in central nervous system (CNS) has been described in human neuroinflammatory disease such as multiple sclerosis and neuropsychiatric lupus as well as in bacterial meningitis. We aimed to investigate involvement of NGAL in spontaneous canine neuroinflammation as a potential large animal model for immune- mediated neurological disorders. A commercially available Enzyme-linked Immunosorbent Assay (ELISA) for detection of canine NGAL was validated for use in canine CSF. Concentration in CSF and serum of canine patients suffering from steroid- responsive meningitis- arteriitis (SRMA), Meningoencephalitis of unknown origin (MUO), different non- inflammatory CNS disease and control dogs were compared. Relationship between NGAL concentration in CSF and serum and inflammatory parameters in CSF and blood (IgA concentration, total nucleated cell count (TNCC), protein content) as well as association with erythrocytes in CSF, duration of illness, plasma creatinine and urinary leucocytes were evaluated. In dogs with SRMA and MUO, CSF concentration of NGAL was significantly higher than in dogs with idiopathic epilepsy, compressive myelopathy, intracranial neoplasia and SRMA in remission (p < 0.0001). Patients with acute SRMA had significantly higher levels of NGAL in CSF than neurologically normal controls (p < 0.0001). Serum NGAL concentrations were significantly higher in dogs with SRMA than in patients with myelopathy and intracranial neoplasia (p < 0.0001). NGAL levels in CSF were strongly positively associated with IgA concentration (rSpear= 0.60116, p < 0.0001), TNCC (rSpear= 0.65746, p < 0.0001) and protein content (rSpear= 0.73353, p < 0.0001) in CSF. It can be measured in CSF of healthy and diseased dogs. Higher concentrations in canine patients with SRMA as well as positive association with TNCC in CSF suggest an involvement in pro-inflammatory pathways and chemotaxis in SRMA. High serum levels of NGAL in serum of SRMA patients in different stages of disease might reflect the systemic character of the disease.
Collapse
Affiliation(s)
- Nina Meyerhoff
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine, Hanover, Germany
| | - Regina Carlson
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
74
|
Lu F, Inoue K, Kato J, Minamishima S, Morisaki H. Functions and regulation of lipocalin-2 in gut-origin sepsis: a narrative review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:269. [PMID: 31375129 PMCID: PMC6679544 DOI: 10.1186/s13054-019-2550-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Lipocalin-2 (Lcn2), an innate immune protein, has come to be recognized for its roles in iron homeostasis, infection, and inflammation. In this narrative review, we provide a comprehensive description based on currently available evidence of the clinical implications of Lcn2 and its therapeutic potency in gut-origin sepsis. Lcn2 appears to mitigate gut barrier injury via maintaining homeostasis of the microbiota and exerting antioxidant strategy, as well as by deactivating macrophages and inducing immune cell apoptosis to terminate systemic hyper-inflammation. We propose that development of a therapeutic strategy targeting lipocalin-2 could be highly promising in the management of gut-origin sepsis.
Collapse
Affiliation(s)
- Fanglin Lu
- Keio University Graduate School of Medicine Doctoral Programs, Tokyo, Japan.,Department of Anesthesiology, Keio University School of Medicine, 35 Shinanoamchi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kei Inoue
- Department of Anesthesiology, Keio University School of Medicine, 35 Shinanoamchi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Jungo Kato
- Department of Anesthesiology, Keio University School of Medicine, 35 Shinanoamchi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shizuka Minamishima
- Department of Anesthesiology, Keio University School of Medicine, 35 Shinanoamchi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Morisaki
- Department of Anesthesiology, Keio University School of Medicine, 35 Shinanoamchi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
75
|
Wang C, Dou C, Wang Y, Liu Z, Roberts L, Zheng X. TLX3 repressed SNAI1-induced epithelial-mesenchymal transition by directly constraining STAT3 phosphorylation and functionally sensitized 5-FU chemotherapy in hepatocellular carcinoma. Int J Biol Sci 2019; 15:1696-1711. [PMID: 31360112 PMCID: PMC6643223 DOI: 10.7150/ijbs.33844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/30/2019] [Indexed: 01/05/2023] Open
Abstract
TLX3 has an established role as a sequence-specific transcription factor with vital functions in the nervous system. Although several studies have shown that TLX3 is aberrantly up-regulated in leukemia, its expression and function in hepatocellular carcinoma (HCC) remain unknown. We found that TLX3 expression was decreased in 68/100 (68%) HCC cases and negatively correlated with the expression of p-STAT3, SNAI1, and Vimentin, while it was positively associated with E-cadherin expression. ITRAQ proteomic profiling revealed significantly less TLX3 expression in primary HCC tumors than in portal vein tumor thrombi. Comparison of Kaplan-Meier curves showed that down-regulation of TLX3 in HCC was associated with poor post-surgical survival. TLX3 over-expression inhibited HCC cell viability, proliferation, migration, invasion and enhanced 5-FU treatment, whereas silencing TLX3 produced the opposite results. Further experiments showed that TLX3 attenuated the EMT phenotype. In vivo experiments showed that knockdown of TLX3 promoted the growth of HCC xenografts and attenuated the anti-tumor effects of 5-FU treatment. Gene expression microarray analysis revealed that TLX3 inhibited IL-6/STAT3 signaling. In additional mechanistic studies TLX3 reversed the EMT phenotype of HCC cells by binding to STAT3, inhibiting STAT3 phosphorylation, and down-regulating SNAI1 expression. Taken together, loss of expression of TLX3 induces EMT by enhancing IL-6/STAT3/SNAI1 signaling, and accelerates HCC progression while also attenuated the effect of 5-FU on HCCs.
Collapse
Affiliation(s)
- Cong Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Changwei Dou
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhikui Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lewis Roberts
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xin Zheng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
76
|
Xu Y, Zhu Y, Jadhav K, Li Y, Sun H, Yin L, Kasumov T, Chen X, Zhang Y. Lipocalin-2 Protects Against Diet-Induced Nonalcoholic Fatty Liver Disease by Targeting Hepatocytes. Hepatol Commun 2019; 3:763-775. [PMID: 31168511 PMCID: PMC6545876 DOI: 10.1002/hep4.1341] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/24/2019] [Indexed: 12/27/2022] Open
Abstract
Hepatocytes are the major source of hepatic lipocalin-2 (LCN2), which is up-regulated in response to inflammation, injury, or metabolic stress. So far, the role of hepatocyte-derived LCN2 in the development of nonalcoholic fatty liver disease (NAFLD) remains unknown. Herein we show that overexpression of human LCN2 in hepatocytes protects against high fat/high cholesterol/high fructose (HFCF) diet-induced liver steatosis and nonalcoholic steatohepatitis by promoting lipolysis and fatty acid oxidation (FAO) and inhibiting de novo lipogenesis (DNL), lipid peroxidation, and apoptosis. LCN2 fails to reduce triglyceride accumulation in hepatocytes lacking sterol regulatory element-binding protein 1. In contrast, Lcn2-/- mice have defective lipolysis, increased lipid peroxidation and apoptosis, and exacerbated NAFLD after being fed an HFCF diet. In primary hepatocytes, Lcn2 deficiency stimulates de novo lipogenesis but inhibits FAO. Conclusion: The current study indicates that hepatocyte LCN2 protects against diet-induced NAFLD by regulating lipolysis, FAO, DNL, lipid peroxidation, and apoptosis. Targeting hepatocyte LCN2 may be useful for treatment of NAFLD.
Collapse
Affiliation(s)
- Yanyong Xu
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOH
| | - Yingdong Zhu
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOH
| | - Kavita Jadhav
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOH
| | - Yuanyuan Li
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOH
| | - Huihui Sun
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOH
| | - Liya Yin
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOH
| | - Takhar Kasumov
- Department of Pharmaceutical SciencesNortheast Ohio Medical UniversityRootstownOH
| | - Xiaoli Chen
- Department of Food Science and NutritionUniversity of MinnesotaSt. PaulMN
| | - Yanqiao Zhang
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOH
| |
Collapse
|
77
|
Hermann A, Winkler A, Paschen C, Kuzmina Z, Hladik A, Icme S, Robak O. Lipocalin-2 levels in acute and chronic graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. Exp Hematol 2019; 74:25-32.e1. [PMID: 31078634 DOI: 10.1016/j.exphem.2019.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022]
Abstract
Lipocalin-2 (LCN2) is an immunomodulatory protein holding major metabolic and immune functions. It is involved in several inflammatory processes and induced by cytokines of the interleukin-1 family known as contributors to the morbidity in graft-versus-host disease (GVHD) following hematopoietic stem cell transplantation (HSCT). The possible role of LCN2 in predicting outcome and course of illness has never been elucidated in patients undergoing HSCT for hematologic malignancies. We conducted a prospective cohort study including 40 patients following autologous or allogeneic HSCT by collecting plasma samples at seven time points with respect to GVHD, relapse, and outcome. LCN2 levels were significantly increased in acute patients with GVHD compared with autologous and healthy controls (125.7 ng/mL vs. 65.9 and 71.4 ng/mL) and correlated with its severity. Similarly, LCN2 levels were significantly elevated in chronic GHVD compared with autologous and healthy controls (295.0 ng/mL vs. 54.9 and 76.5 ng/mL). Moreover, LCN2 correlated with mortality. The suspected role of LCN2 as a predictive parameter for outcome and prognosis needs to be further investigated.
Collapse
Affiliation(s)
- Alexander Hermann
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Andreas Winkler
- Department of Cardiac Surgery, Vascular Surgery, and Endovascular Surgery, Medical University of Salzburg, Salzburg, Austria
| | | | - Zoya Kuzmina
- Department of Haematology and Oncology, Wilhelminenspital, Vienna, Austria
| | - Anastasiya Hladik
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Süphan Icme
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Oliver Robak
- Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
78
|
Perilipin 5 and Lipocalin 2 Expression in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11030385. [PMID: 30893876 PMCID: PMC6468921 DOI: 10.3390/cancers11030385] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and deadly cancers worldwide. Therefore, current global research focuses on molecular tools for early diagnosis of HCC, which can lead to effective treatment at an early stage. Perilipin 5 (PLIN5) has been studied as one of the main proteins of the perilipin family, whose role is to maintain lipid homeostasis by inhibiting lipolysis. In this study, we show for the first time that PLIN5 is strongly expressed in tumors of human patients with HCC as well as in mouse livers, in which HCC was genetically or experimentally induced by treatment with the genotoxic agent diethylnitrosamine. Moreover, the secreted acute phase glycoprotein Lipocalin 2 (LCN2) established as a biomarker of acute kidney injury, is also proven to indicate liver injury with upregulated expression in numerous cases of hepatic damage, including steatohepatitis. LCN2 has been studied in various cancers, and it has been assigned roles in multiple cellular processes such as the suppression of the invasion of HCC cells and their metastatic abilities. The presence of this protein in blood and urine, in combination with the presence of α-Fetoprotein (AFP), is hypothesized to serve as a biomarker of early stages of HCC. In the current study, we show in humans and mice that LCN2 is secreted into the serum from liver cancer tissue. We also show that AFP-positive hepatocytes represent the main source for the massive expression of LCN2 in tumoral tissue. Thus, the strong presence of PLIN5 and LCN2 in HCC and understanding their roles could establish them as markers for diagnosis or as treatment targets against HCC.
Collapse
|
79
|
P-selectin drives complement attack on endothelium during intravascular hemolysis in TLR-4/heme-dependent manner. Proc Natl Acad Sci U S A 2019; 116:6280-6285. [PMID: 30850533 DOI: 10.1073/pnas.1814797116] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hemolytic diseases are frequently linked to multiorgan failure subsequent to vascular damage. Deciphering the mechanisms leading to organ injury upon hemolytic event could bring out therapeutic approaches. Complement system activation occurs in hemolytic disorders, such as sickle cell disease, but the pathological relevance and the acquisition of a complement-activating phenotype during hemolysis remain unclear. Here we found that intravascular hemolysis, induced by injection of phenylhydrazine, resulted in increased alanine aminotransferase plasma levels and NGAL expression. This liver damage was at least in part complement-dependent, since it was attenuated in complement C3-/- mice and by injection of C5-blocking antibody. We evidenced C3 activation fragments' deposits on liver endothelium in mice with intravascular hemolysis or injected with heme as well as on cultured human endothelial cells (EC) exposed to heme. This process was mediated by TLR4 signaling, as revealed by pharmacological blockade and TLR4 deficiency in mice. Mechanistically, TLR4-dependent surface expression of P-selectin triggered an unconventional mechanism of complement activation by noncovalent anchoring of C3 activation fragments, including the typical fluid-phase C3(H2O), measured by surface plasmon resonance and flow cytometry. P-selectin blockade by an antibody prevented complement deposits and attenuated the liver stress response, measured by NGAL expression, in the hemolytic mice. In conclusion, these results revealed the critical impact of the triad TLR4/P-selectin/complement in the liver damage and its relevance for hemolytic diseases. We anticipate that blockade of TLR4, P-selectin, or the complement system could prevent liver injury in hemolytic diseases like sickle cell disease.
Collapse
|
80
|
Malik G, Wilting J, Hess CF, Ramadori G, Malik IA. PECAM-1 modulates liver damage induced by synergistic effects of TNF-α and irradiation. J Cell Mol Med 2019; 23:3336-3344. [PMID: 30761739 PMCID: PMC6484309 DOI: 10.1111/jcmm.14224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/29/2022] Open
Abstract
The mechanisms of radiation‐induced liver damage are poorly understood. We investigated if tumour necrosis factor (TNF)‐α acts synergistically with irradiation, and how its activity is influenced by platelet endothelial cell adhesion molecule‐1 (PECAM‐1). We studied murine models of selective single‐dose (25 Gy) liver irradiation with and without TNF‐α application (2 μg/mouse; i.p.). In serum of wild‐type (wt)‐mice, irradiation induced a mild increase in hepatic damage marker aspartate aminotransferase (AST) in comparison to sham‐irradiated controls. AST levels further increased in mice treated with both irradiation and TNF‐α. Accordingly, elevated numbers of leucocytes and increased expression of the macrophage marker CD68 were observed in the liver of these mice. In parallel to hepatic damage, a consecutive decrease in expression of hepatic PECAM‐1 was found in mice that received radiation or TNF‐α treatment alone. The combination of radiation and TNF‐α induced an additional significant decline of PECAM‐1. Furthermore, increased expression of hepatic lipocalin‐2 (LCN‐2), a hepatoprotective protein, was detected at mRNA and protein levels after irradiation or TNF‐α treatment alone and the combination of both. Signal transducer and activator of transcription‐3 (STAT‐3) seems to be involved in the signalling cascade. To study the involvement of PECAM‐1 in hepatic damage more deeply, the liver of both wt‐ and PECAM‐1‐knock‐out‐mice were selectively irradiated (25 Gy). Thereby, ko‐mice showed higher liver damage as revealed by elevated AST levels, but also increased hepatoprotective LCN‐2 expression. Our studies show that TNF‐α has a pivotal role in radiation‐induced hepatic damage. It acts in concert with irradiation and its activity is modulated by PECAM‐1, which mediates pro‐ and anti‐inflammatory signalling.
Collapse
Affiliation(s)
- Gesa Malik
- Clinic for Gastroenterology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Jörg Wilting
- Department of Anatomy and Cell Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Clemens Friedrich Hess
- Clinic for Radiotherapy and Radiooncology, University Medical Center Göttingen, Göttingen, Germany
| | - Giuliano Ramadori
- Clinic for Gastroenterology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Ihtzaz Ahmed Malik
- Clinic for Gastroenterology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany.,Department of Anatomy and Cell Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
81
|
Borkham-Kamphorst E, Van de Leur E, Haas U, Weiskirchen R. Liver parenchymal cells lacking Lipocalin 2 (LCN2) are prone to endoplasmic reticulum stress and unfolded protein response. Cell Signal 2019; 55:90-99. [PMID: 30615971 DOI: 10.1016/j.cellsig.2019.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 01/16/2023]
Abstract
Unfolded protein response (UPR) is an adaptive mechanism allowing the endoplasmic reticulum (ER) to react to an accumulation of unfolded proteins in its lumen, also known as ER stress. The UPR is interconnected with inflammation through several pathways such as reactive oxygen species (ROS) production resulting from the protein folding or alternatively, activation of nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) via IRE1, or induction of acute phase response (APR). Lipocalin 2 (LCN2) is one of the APR proteins induced under inflammatory conditions and up-regulated during ER stress. Upon incubation of Lcn2-/- and wild type (wt) primary hepatocytes with tunicamycin (TM) or thapsigargin (TG) we found the Lcn2-/- hepatocytes to react with strong UPR to the ER stress, as evidenced by significantly increased levels of Grp94, Bip and Chop mRNA and protein compared to the wt. TM and TG-treated hepatocytes activated p65 NF-κB and JNK, the pathways that respond to stress stimuli and playing a central role in inflammation and apoptosis, respectively. ER stress further activated and cleaved full-length CREBH/CREB3L3, the hepatocyte specific transcription factor to induce systemic inflammatory responses. Upregulation of the C/EBP homologous protein (CHOP) was very prominent in Lcn2-/- hepatocytes and sustained until 48 h, resulting in hepatocyte apoptosis as evidenced by increased cleaved caspase 3. We also explored the UPR of the Lcn2 null mouse livers in acute intoxication and inflammation stages with a single application of lipopolysaccharide (LPS) or carbon tetrachloride (CCl4). The Lcn2 null mice clearly developed stronger UPR in LPS- and CCl4-induced ER stress compared to the wt. Our findings indicate that the upregulation of LCN2 during ER stress-induced inflammatory responses protects hepatocytes from being overwhelmed by UPR upon liver injury.
Collapse
Affiliation(s)
- Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Germany.
| | - Eddy Van de Leur
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Germany
| | - Ute Haas
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Germany.
| |
Collapse
|
82
|
Zhao R, Wu W, Zhou Z, Zheng X, Sun W, Shi Y, Yu H, Wang F, Zhao H, Sun S, Jin L, Sheng J, Shi Y. Prognostic utility of novel biomarkers in acute-on-chronic liver failure (ACLF) associated with hepatitis B: A multicenter prospective study. Hepatol Res 2019; 49:42-50. [PMID: 30246902 DOI: 10.1111/hepr.13251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 12/29/2022]
Abstract
AIM Flare-ups of chronic hepatitis B can sometimes be severe and even progress to acute-on-chronic liver failure (ACLF), with high short-term mortality. A timely estimation of the risk of death should be initiated early. The aim of the present study was to determine whether novel biomarkers add prognostic information beyond current clinical scoring systems. METHODS Patients with hepatitis B-associated ACLF were prospectively enrolled from five hospitals in China between August 2017 and March 2018. Their plasma was screened for soluble CD163 (sCD163), neutrophil gelatinase-associated lipocalin (NGAL), and copeptin. The association between these biomarkers and mortality was analyzed. The performance of the Model for End-stage Liver Disease, Asian-Pacific Association for the Study of the Liver-ACLF Research Consortium score, and the Chronic Liver Failure Consortium ACLF score, with or without biomarkers, were compared. RESULTS One hundred fifty one patients were enrolled. Advanced ACLF patients had significantly higher levels than early ACLF individuals of plasma biomarkers sCD163 (P = 0.001), NGAL (P = 0.006), and copeptin (P = 0.049). Thirty-four deaths occurred during the 28-day follow-up period (22.5%). Both sCD163 and NGAL showed a strong independent association with 28-day mortality, whereas copeptin did not. Scoring systems incorporating sCD163 and NGAL had better discrimination and calibration, as measured by area under the receiver operating characteristic curves, the Akaike information criteria, integrated discrimination improvement, and net reclassification improvement. CONCLUSIONS Soluble CD163 and NGAL are independently associated with short-term mortality in hepatitis B-associated ACLF. Use of a combination of sCD163 and NGAL improves prognostication.
Collapse
Affiliation(s)
- Ruihong Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhibo Zhou
- Department of Infectious Diseases, Shulan Hospital, Hangzhou, China
| | - Xiaoqing Zheng
- Department of Hepatology, Ningbo No.2 Hospital, School of Medicine, Ningbo University, Ningbo, China
| | - Wenjie Sun
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, China
| | - Yemin Shi
- Department of Infectious Diseases, Yuyao People's Hospital, Yuyao, China
| | - Haiying Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Infectious Diseases, Yiwu Central Hospital, Yiwu, China
| | - Fang Wang
- Department of Infectious Diseases, Ningbo Beilun People's Hospital, Beilun, China
| | - Hong Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linfeng Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
83
|
Lu J, Lin L, Ye C, Tao Q, Cui M, Zheng S, Zhu D, Liu L, Xue Y. Serum NGAL Is Superior to Cystatin C in Predicting the Prognosis of Acute-on-Chronic Liver Failure. Ann Hepatol 2019; 18:155-164. [PMID: 31113585 DOI: 10.5604/01.3001.0012.7907] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/02/2018] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND AIM Acute-on-chronic liver failure (ACLF) is a syndrome with high short-term mortality, and predicting the prognosis is challenging. This study aimed to compare the performance of neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C (CysC) in predicting the 90-day mortality in patients with hepatitis B virus (HBV)-associated ACLF (HBV-ACLF). MATERIALS AND METHODS This prospective, observational study enrolled 54 patients with HBV-ACLF. The serum NGAL and CysC levels were determined. A multivariate logistic regression analysis was used to analyze the independent risk factors of mortality. RESULTS Serum NGAL, but not CysC, was found to significantly correlate with the total bilirubin, international normalized ratio, and model for end-stage liver disease (MELD). Serum NGAL [odds ratio (OR), 1.008; 95% confidence interval (CI), 1.004-1.012; P < 0.01], but not CysC, was an independent risk factor for developing hepatorenal syndrome. Moreover, NGAL (OR, 1.005; 95% CI, 1.001-1.010; P < 0.01) along with the MELD score was independently associated with the overall survival in patients with HBV-ACLF. Patients with HBV-ACLF were stratified into two groups according to the serum NGAL level at baseline (low risk: <217.11 ng/mL and high risk: ≥ 217.11 ng/mL). The 90-day mortality rate was 22.73% (5/22) in the low-risk group and 71.88% (23/32) in the high-risk group. Moreover, NGAL, but not CysC, significantly improved the MELD score in predicting the prognosis of HBV-ACLF. CONCLUSION The serum NGAL might be superior to CysC in predicting the prognosis of HBV-ACLF with the normal creatinine level.
Collapse
Affiliation(s)
- Jianchun Lu
- Institute of Hepatology, the Third People's Hospital of Changzhou, Changzhou, Jiangsu, China; Department of Liver Diseases, the Third People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Lin Lin
- Institute of Hepatology, the Third People's Hospital of Changzhou, Changzhou, Jiangsu, China; Department of Pharmacy, the Third People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Chunyan Ye
- Institute of Hepatology, the Third People's Hospital of Changzhou, Changzhou, Jiangsu, China; Department of Liver Diseases, the Third People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Qian Tao
- Institute of Hepatology, the Third People's Hospital of Changzhou, Changzhou, Jiangsu, China; Department of Liver Diseases, the Third People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Manman Cui
- Institute of Hepatology, the Third People's Hospital of Changzhou, Changzhou, Jiangsu, China; Department of Liver Diseases, the Third People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Shuqin Zheng
- Institute of Hepatology, the Third People's Hospital of Changzhou, Changzhou, Jiangsu, China; Department of Liver Diseases, the Third People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Dongmei Zhu
- Institute of Hepatology, the Third People's Hospital of Changzhou, Changzhou, Jiangsu, China; Department of Liver Diseases, the Third People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Longgen Liu
- Institute of Hepatology, the Third People's Hospital of Changzhou, Changzhou, Jiangsu, China; Department of Liver Diseases, the Third People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Yuan Xue
- Institute of Hepatology, the Third People's Hospital of Changzhou, Changzhou, Jiangsu, China; Department of Liver Diseases, the Third People's Hospital of Changzhou, Changzhou, Jiangsu, China.
| |
Collapse
|
84
|
Dahl SL, Woodworth JS, Lerche CJ, Cramer EP, Nielsen PR, Moser C, Thomsen AR, Borregaard N, Cowland JB. Lipocalin-2 Functions as Inhibitor of Innate Resistance to Mycobacterium tuberculosis. Front Immunol 2018; 9:2717. [PMID: 30534124 PMCID: PMC6275245 DOI: 10.3389/fimmu.2018.02717] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/05/2018] [Indexed: 01/14/2023] Open
Abstract
Lipocalin-2 is a constituent of the neutrophil secondary granules and is expressed de novo by macrophages and epithelium in response to inflammation. Lipocalin-2 acts in a bacteriostatic fashion by binding iron-loaded siderophores required for bacterial growth. Mycobacterium tuberculosis (M.tb) produces siderophores that can be bound by lipocalin-2. The impact of lipocalin-2 in the innate immune response toward extracellular bacteria has been established whereas the effect on intracellular bacteria, such as M.tb, is less well-described. Here we show that lipocalin-2 surprisingly confers a growth advantage on M.tb in the early stages of infection (3 weeks post-challenge). Using mixed bone marrow chimeras, we demonstrate that lipocalin-2 derived from granulocytes, but not from epithelia and macrophages, leads to increased susceptibility to M.tb infection. In contrast, lipocalin-2 is not observed to promote mycobacterial growth at later stages of M.tb infection. We demonstrate co-localization of granulocytes and mycobacteria within the nascent granulomas at week 3 post-challenge, but not in the consolidated granulomas at week 5. We hypothesize that neutrophil-derived lipocalin-2 acts to supply a source of iron to M.tb in infected macrophages within the immature granuloma, thereby facilitating mycobacterial growth.
Collapse
Affiliation(s)
- Sara Louise Dahl
- Granulocyte Research Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Joshua S Woodworth
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark
| | | | | | - Pia Rude Nielsen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Borregaard
- Granulocyte Research Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Jack Bernard Cowland
- Granulocyte Research Laboratory, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
85
|
Liang Q, Liu Z, Zhu C, Wang B, Liu X, Yang Y, Lv X, Mu H, Wang K. Intrahepatic T-Cell Receptor β Immune Repertoire Is Essential for Liver Regeneration. Hepatology 2018; 68:1977-1990. [PMID: 29704254 DOI: 10.1002/hep.30067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/27/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022]
Abstract
T lymphocytes synergize with the cellular immune system to promote hepatocyte regeneration. The T-cell receptor (TCR) immune repertoire is closely associated with the host immune response and regenerative proliferation. High-throughput sequencing of TCR provides deep insight into monitoring the immune microenvironment. Here, we aimed to determine the role of the TCRβ immune repertoire in liver regeneration (LR). We investigated hepatic regeneration in TCRβ chain-deficient (tcrb-/- ) mice by two-thirds partial hepatectomy (PHx) method. Our results demonstrated that tcrb-/- mice revealed a reduced capacity for LR, which was characterized by impaired hepatocyte proliferation and enhanced hepatocyte apoptosis. Dysregulation of inflammatory signaling activation and inflammatory factors was observed in regenerated tcrb-/- livers. Simultaneously, significantly altered immunocyte levels and aberrant cytokine levels were observed during hepatic regeneration. In addition, we first determined the profile of the TCRβ immune repertoire during LR, indicating that PHx resulted in remarkably lower TCRβ diversity in intrahepatic T lymphocytes. Conclusion: Taken together, our data suggest that TCRβ deficiency gives a rise to aberrant intrahepatic immune microenvironment that impairs LR, and the TCRβ reconstitution is required for hepatic immunocyte recruitment and activation during LR.
Collapse
Affiliation(s)
- Qing Liang
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Zeyuan Liu
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Chao Zhu
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Bin Wang
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaoke Liu
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Yanan Yang
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Xue Lv
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Haiyu Mu
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Kejia Wang
- College of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
86
|
Álvarez-Mercado AI, Bujaldon E, Gracia-Sancho J, Peralta C. The Role of Adipokines in Surgical Procedures Requiring Both Liver Regeneration and Vascular Occlusion. Int J Mol Sci 2018; 19:3395. [PMID: 30380727 PMCID: PMC6274984 DOI: 10.3390/ijms19113395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Abstract
Liver regeneration is a perfectly calibrated mechanism crucial to increase mass recovery of small size grafts from living donor liver transplantation, as well as in other surgical procedures including hepatic resections and liver transplantation from cadaveric donors. Regeneration involves multiple events and pathways in which several adipokines contribute to their orchestration and drive hepatocytes to proliferate. In addition, ischemia-reperfusion injury is a critical factor in hepatic resection and liver transplantation associated with liver failure or graft dysfunction post-surgery. This review aims to summarize the existing knowledge in the role of adipokines in surgical procedures requiring both liver regeneration and vascular occlusion, which increases ischemia-reperfusion injury and regenerative failure. We expose and discuss results in small-for-size liver transplantation and hepatic resections from animal studies focused on the modulation of the main adipokines associated with liver diseases and/or regeneration published in the last five years and analyze future perspectives and their applicability as potential targets to decrease ischemia-reperfusion injury and improve regeneration highlighting marginal states such as steatosis. In our view, adipokines means a promising approach to translate to the bedside to improve the recovery of patients subjected to partial hepatectomy and to increase the availability of organs for transplantation.
Collapse
Affiliation(s)
- Ana Isabel Álvarez-Mercado
- Experimental Liver Surgery and Liver Transplantation, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| | - Esther Bujaldon
- Experimental Liver Surgery and Liver Transplantation, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| | - Jordi Gracia-Sancho
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas (CIBEREHD), 28029 Madrid, Spain.
- Liver Vascular Biology Research Group, IDIBAPS, 08036 Barcelona, Spain.
| | - Carmen Peralta
- Experimental Liver Surgery and Liver Transplantation, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas (CIBEREHD), 28029 Madrid, Spain.
- Facultad de Medicina, Universidad Internacional de Cataluña, 08017 Barcelona, Spain.
| |
Collapse
|
87
|
Li H, Feng D, Cai Y, Liu Y, Xu M, Xiang X, Zhou Z, Xia Q, Kaplan MJ, Kong X, Gao B. Hepatocytes and neutrophils cooperatively suppress bacterial infection by differentially regulating lipocalin-2 and neutrophil extracellular traps. Hepatology 2018; 68:1604-1620. [PMID: 29633303 PMCID: PMC6173649 DOI: 10.1002/hep.29919] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/19/2018] [Accepted: 03/30/2018] [Indexed: 12/12/2022]
Abstract
UNLABELLED Lipocalin-2 (LCN2), also known as neutrophil gelatinase-associated lipocalin (NGAL), a key antibacterial protein, is highly elevated in patients with end-stage liver disease that is often associated with bacterial infection. LCN2 is expressed at high levels in both hepatocytes and neutrophils; however, how hepatocyte-derived and neutrophil-derived LCN2 cooperate to combat bacterial infection remains unclear. Here, by studying hepatocyte-specific and myeloid-specific Lcn2 knockout mice in two models of systemic and local Klebsiella pneumoniae infections, we demonstrated that hepatocytes played a critical role in controlling systemic infection by secreting LCN2 protein into the circulation following intraperitoneal injection of bacteria, whereas neutrophils were more important in combating local lung infection by carrying LCN2 in their specific granules to the local infection site following intratracheal intubation of bacteria. Both hepatocyte-derived and myeloid cell-derived LCN2 were required against bacterial infection in the peritoneal cavity and liver necrotic areas following intraperitoneal injection of Klebsiella pneumoniae. LCN2/NGAL protein was detected in neutrophil extracellular traps (NETs) in activated neutrophils from mice and humans. Disruption of the Lcn2 gene in neutrophils abolished LCN2 on NETs, whereas deletion of this gene in hepatocytes did not affect LCN2 protein on NETs. Genetic deletion of the Lcn2 gene globally or specifically in neutrophils did not affect NET formation but reduced the bactericidal effect of NETs in vitro. Finally, NGAL-positive NETs were detected in the liver from patients with various types of liver diseases. CONCLUSION Both hepatocytes and neutrophils combat bacterial infection through the production of LCN2; extracellular LCN2 secreted by hepatocytes limits systemic bacterial infection, whereas neutrophils carry LCN2 protein to the local site and against local bacterial infection through NETs. (Hepatology 2018).
Collapse
Affiliation(s)
- Hongjie Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China,Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yan Cai
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yudong Liu
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mingjiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaogang Xiang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhou Zhou
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaoni Kong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
88
|
Yao M, Wang L, Leung PSC, Li Y, Liu S, Wang L, Guo X, Zhou G, Yan Y, Guan G, Chen X, Bowlus CL, Liu T, Jia J, Gershwin ME, Ma X, Zhao J, Lu F. The Clinical Significance of GP73 in Immunologically Mediated Chronic Liver Diseases: Experimental Data and Literature Review. Clin Rev Allergy Immunol 2018; 54:282-294. [PMID: 29256057 DOI: 10.1007/s12016-017-8655-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is significant void in establishing validated non-invasive surrogate biomarkers of liver fibrosis/cirrhosis in chronic liver diseases (CLD). Golgi protein 73 (GP73) has been suggested as a potential serum marker for the diagnosis of hepatocellular carcinoma (HCC). However, significant background of cirrhosis could have accounted for the elevation of serum GP73 in HCC. In this study, we have taken advantage of a well-defined extensive cohort of 3044 patients with either compensated cirrhosis (n = 1247), decompensated cirrhosis (n = 841) or pre-cirrhotic CLD (n = 956) and our ability to quantify serum GP73 to define the potential of serum GP73 as a biomarker of liver cirrhosis/fibrosis in CLD. The diagnostic value of GP73 was compared with aspartate aminotransferase-to-platelet ratio index (APRI), fibrosis index based on four factors (FIB-4) and liver stiffness measurement (LSM). Immunohistochemical analysis was performed to measure hepatic GP73 expression. Receiver operating characteristic curve analysis demonstrated that serum GP73 had a good diagnostic potential for compensated cirrhosis regardless of etiology. The diagnostic performance of GP73 is better than APRI, FIB-4 and similar with LSM, especially in patients with severe inflammation, steatosis and cholestasis. Notably, in patients of autoimmune liver diseases, non-alcoholic fatty liver disease and viral hepatitis, serum GP73 also exhibited diagnostic value for advanced fibrosis as well as cirrhosis. Furthermore, there is also a gradual increase in GP73 expression with disease progression from mild fibrosis to cirrhosis. In conclusion, GP73 is an effective and reliable serological marker for the diagnosis of advanced fibrosis and prediction of appearance of cirrhosis.
Collapse
Affiliation(s)
- Mingjie Yao
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, 100191, Beijing, People's Republic of China
| | - Leijie Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, 100191, Beijing, People's Republic of China
| | - Patrick S C Leung
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, The University of California, Davis, CA, 95616, USA.
| | - Yanmei Li
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, People's Republic of China
| | - Shuhong Liu
- Department of Pathology and Hepatology, Beijing 302 Hospital, 100039, Beijing, People's Republic of China
| | - Lu Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, 100191, Beijing, People's Republic of China
| | - Xiaodong Guo
- Department of Pathology and Hepatology, Beijing 302 Hospital, 100039, Beijing, People's Republic of China
| | - Guangde Zhou
- Department of Pathology and Hepatology, Beijing 302 Hospital, 100039, Beijing, People's Republic of China
| | - Ying Yan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, 100191, Beijing, People's Republic of China
| | - Guiwen Guan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, 100191, Beijing, People's Republic of China
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, 100191, Beijing, People's Republic of China
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, School of Medicine, The University of California, Davis, CA, 95616, USA
| | - Tianhui Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, 100050, Beijing, People's Republic of China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, 100050, Beijing, People's Republic of China
| | - M Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, The University of California, Davis, CA, 95616, USA
| | - Xiong Ma
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, People's Republic of China.
| | - Jingmin Zhao
- Department of Pathology and Hepatology, Beijing 302 Hospital, 100039, Beijing, People's Republic of China.
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, 100191, Beijing, People's Republic of China.
| |
Collapse
|
89
|
Li CY, Cui JY. Regulation of protein-coding gene and long noncoding RNA pairs in liver of conventional and germ-free mice following oral PBDE exposure. PLoS One 2018; 13:e0201387. [PMID: 30067809 PMCID: PMC6070246 DOI: 10.1371/journal.pone.0201387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/14/2018] [Indexed: 02/07/2023] Open
Abstract
Gut microbiome communicates with the host liver to modify hepatic xenobiotic biotransformation and nutrient homeostasis. Polybrominated diphenyl ethers (PBDEs) are persistent environmental contaminants that are detected in fatty food, household dust, and human breast milk at worrisome levels. Recently, long noncoding RNAs (lncRNAs) have been recognized as novel biomarkers for toxicological responses and may regulate the transcriptional/translational output of protein-coding genes (PCGs). However, very little is known regarding to what extent the interactions between PBDEs and gut microbiome modulate hepatic lncRNAs and PCGs, and what critical signaling pathways are impacted at the transcriptomic scale. In this study, we performed RNA-Seq in livers of nine-week-old male conventional (CV) and germ-free (GF) mice orally exposed to the most prevalent PBDE congeners BDE-47 and BDE-99 (100 μmol/kg once daily for 4-days; vehicle: corn oil, 10 ml/kg), and unveiled key molecular pathways and PCG-lncRNA pairs targeted by PBDE-gut microbiome interactions. Lack of gut microbiome profoundly altered the PBDE-mediated transcriptomic response in liver, with the most prominent effect observed in BDE-99-exposed GF mice. The top pathways up-regulated by PBDEs were related to xenobiotic metabolism, whereas the top pathways down-regulated by PBDEs were in lipid metabolism and protein synthesis in both enterotypes. Genomic annotation of the differentially regulated lncRNAs revealed that majority of these lncRNAs overlapped with introns and 3'-UTRs of PCGs. Lack of gut microbiome profoundly increased the percentage of PBDE-regulated lncRNAs mapped to the 3'-UTRs of PCGs, suggesting the potential involvement of lncRNAs in increasing the translational efficiency of PCGs by preventing miRNA-3'-UTR binding, as a compensatory mechanism following toxic exposure to PBDEs. Pathway analysis of PCGs paired with lncRNAs revealed that in CV mice, BDE-47 regulated nucleic acid and retinol metabolism, as well as circadian rhythm; whereas BDE-99 regulated fatty acid metabolism. In GF mice, BDE-47 differentially regulated 19 lncRNA-PCG pairs that were associated with glutathione conjugation and transcriptional regulation. In contrast, BDE-99 up-regulated the xenobiotic-metabolizing Cyp3a genes, but down-regulated the fatty acid-metabolizing Cyp4 genes. Taken together, the present study reveals common and unique lncRNAs and PCG targets of PBDEs in mouse liver, and is among the first to show that lack of gut microbiome sensitizes the liver to toxic exposure of BDE-99 but not BDE-47. Therefore, lncRNAs may serve as specific biomarkers that differentiate various PBDE congeners as well as environmental chemical-mediated dysbiosis. Coordinate regulation of PCG-lncRNA pairs may serve as a more efficient molecular mechanism to combat against xenobiotic insult, and especially during dysbiosis-induced increase in the internal dose of toxicants.
Collapse
Affiliation(s)
- Cindy Yanfei Li
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
90
|
Zhao H, Han Q, Lu N, Xu D, Tian Z, Zhang J. HMBOX1 in hepatocytes attenuates LPS/D-GalN-induced liver injury by inhibiting macrophage infiltration and activation. Mol Immunol 2018; 101:303-311. [PMID: 30032072 DOI: 10.1016/j.molimm.2018.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022]
Abstract
The HMBOX1 (Homeobox Containing 1) gene was first isolated from the human pancreatic cDNA libraries and is widely expressed in many tissues. Previously, we detected high expression of HMBOX1 in the liver, but its function was unclear. In this study, hepatocyte-specific HMBOX1 knockout mice (Hm△hep mice) were generated and used to characterize the function of HMBOX1 in the LPS/D-GalN-induced acute liver failure model. HMBOX1-knockout exhibits exacerbated liver injury induced by LPS/D-GalN, accompanied with high levels of inflammatory cytokines both in the liver and in circulation. Further investigation demonstrated that HMBOX1 negatively regulates NF-κB signal transduction. Therefore, HMBOX1-knockout in hepatocytes promotes CCL2 expression through the activation of NF-κB signaling, which enhanced the infiltration of macrophages into the liver. In addition, the decrease of HMBOX1 in hepatocytes promotes the activation of macrophages, upregulating CD80 and MHCⅡ, as well as inflammatory factors TNF-α and IL-6. Importantly, overexpression of HMBOX1 rescued liver injury in Hm△hep mice. These findings indicate that HMBOX1 in hepatocytes acts as a key immunosuppressive factor for inflammation and plays a critical protective role in LPS/D-GalN-induced liver injury.
Collapse
Affiliation(s)
- Hengli Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China
| | - Nan Lu
- Diagnostic Institute, Medical School, Shandong University, China
| | - Dongqing Xu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China.
| |
Collapse
|
91
|
Molina L, Bell D, Tao J, Preziosi M, Pradhan-Sundd T, Singh S, Poddar M, Luo J, Ranganathan S, Chikina M, Monga SP. Hepatocyte-Derived Lipocalin 2 Is a Potential Serum Biomarker Reflecting Tumor Burden in Hepatoblastoma. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1895-1909. [PMID: 29920228 DOI: 10.1016/j.ajpath.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 12/24/2022]
Abstract
Hepatoblastoma (HB) is the most common pediatric liver malignant tumor. Previously, we reported co-activation of β-catenin and Yes-associated protein-1 (YAP1) in 80% of HB. Hepatic co-expression of active β-catenin and YAP1 via sleeping beauty transposon/transposase and hydrodynamic tail vein injection led to HB development in mice. Here, we identify lipocalin 2 (Lcn2) as a target of β-catenin and YAP1 in HB and show that serum Lcn2 values positively correlated with tumor burden. Lcn2 was strongly expressed in HB tumor cells in our mouse model. A tissue array of 62 HB cases showed highest LCN2 expression in embryonal and lowest in fetal, blastemal, and small cell undifferentiated forms of HB. Knockdown of LCN2 in HB cells had no effect on cell proliferation but reduced NF-κB reporter activity. Next, liver-specific Lcn2 knockout (KO) mice were generated. No difference in tumor burden was observed between Lcn2 KO mice and wild-type littermate controls after sleeping beauty transposon/transposase and hydrodynamic tail vein injection delivery of active YAP1 and β-catenin, although Lcn2 KO mice with HB lacked any serum Lcn2 elevation, demonstrating that transformed hepatocytes are the source of serum Lcn2. More blastemal areas and inflammation were observed within HB in Lcn2 KO compared with wild-type tumors. In conclusion, Lcn2 expressed in hepatocytes appears to be dispensable for the pathogenesis of HB. However, transformed hepatocytes secrete serum Lcn2, making Lcn2 a valuable biomarker for HB.
Collapse
Affiliation(s)
- Laura Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Danielle Bell
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Division of Hematology-Oncology, Department of Pediatrics, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Junyan Tao
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Morgan Preziosi
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tirthadipa Pradhan-Sundd
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Minakshi Poddar
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jianhua Luo
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sarangarajan Ranganathan
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Division of Pediatric Pathology, Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Maria Chikina
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
92
|
Shan Z, Liu X, Chen Y, Wang M, Gao YR, Xu L, Dar WA, Lee CG, Elias JA, Castillo PD, Di Paola J, Ju C. Chitinase 3-like-1 promotes intrahepatic activation of coagulation through induction of tissue factor in mice. Hepatology 2018; 67:2384-2396. [PMID: 29251791 PMCID: PMC5992002 DOI: 10.1002/hep.29733] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 01/03/2023]
Abstract
Coagulation is a critical component in the progression of liver disease. Identification of key molecules involved in the intrahepatic activation of coagulation (IAOC) will be instrumental in the development of effective therapies against liver disease. Using a mouse model of concanavalin A (ConA)-induced hepatitis, in which IAOC plays an essential role in causing liver injury, we uncovered a procoagulant function of chitinase 3-like 1 (Chi3l1). Chi3l1 expression is dramatically elevated after ConA challenge, which is dependent on ConA-induced T cell activation and the resulting interferon γ and tumor necrosis factor α productions. Compared with wild-type mice, Chi3l1-/- mice show less IAOC, reduced tissue factor (TF) expression, and attenuated liver injury. Reconstituting Chi3l1-/- mice with recombinant TF triggers IAOC and augments liver injury. CONCLUSION Our data demonstrate that Chi3l1, through induction of TF via mitogen-activated protein kinase activation, promotes IAOC and tissue injury. (Hepatology 2018;67:2384-2396).
Collapse
Affiliation(s)
- Zhao Shan
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Xiaodong Liu
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Yuan Chen
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Meng Wang
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Yue Rachel Gao
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Liangguo Xu
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Wasim A. Dar
- Department of Surgery, UTHealth McGovern Medical School, Houston, TX, USA
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, New Haven, CT, USA
| | - Jack Angel Elias
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, New Haven, CT, USA
- Division of Medicine and Biological Sciences, Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, New Haven, CT, USA
| | - Pavel Davizon Castillo
- Department of Pediatric, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Jorge Di Paola
- Department of Pediatric, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Cynthia Ju
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
- Integrated Department of Immunology, University of Colorado Denver Aurora, CO, USA
| |
Collapse
|
93
|
You M, Zhou Z, Daniels M, Jogasuria A. Endocrine Adiponectin-FGF15/19 Axis in Ethanol-Induced Inflammation and Alcoholic Liver Injury. Gene Expr 2018; 18:103-113. [PMID: 29096734 PMCID: PMC5953845 DOI: 10.3727/105221617x15093738210295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) is the most prevalent form of liver disease, encompassing a spectrum of progressive pathological changes from steatosis to steatohepatitis to fibrosis/cirrhosis and hepatocellular carcinoma. Alcoholic steatosis/steatohepatitis is the initial stage of ALD and a major risk factor for advanced liver injuries. Adiponectin is a hormone secreted from adipocytes. Fibroblast growth factor (FGF) 15 (human homolog, FGF19) is an ileum-derived hormone. Adipocyte-derived adiponectin and gut-derived FGF15/19 regulate each other, share common signaling cascades, and exert similar beneficial functions. Emerging evidence has revealed that dysregulated adiponectin-FGF15/19 axis and impaired hepatic adiponectin-FGF15/19 signaling are associated with alcoholic liver damage in rodents and humans. More importantly, endocrine adiponectin-FGF15/19 signaling confers protection against ethanol-induced liver damage via fine tuning the adipose-intestine-liver crosstalk, leading to limited hepatic inflammatory responses, and ameliorated alcoholic liver injury. This review is focused on the recently discovered endocrine adiponectin-FGF15/19 axis that is emerging as an essential adipose-gut-liver coordinator involved in the development and progression of alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Min You
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Zhou Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Michael Daniels
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Alvin Jogasuria
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
94
|
Parmar T, Parmar VM, Perusek L, Georges A, Takahashi M, Crabb JW, Maeda A. Lipocalin 2 Plays an Important Role in Regulating Inflammation in Retinal Degeneration. THE JOURNAL OF IMMUNOLOGY 2018; 200:3128-3141. [PMID: 29602770 DOI: 10.4049/jimmunol.1701573] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/05/2018] [Indexed: 12/17/2022]
Abstract
It has become increasingly important to understand how retinal inflammation is regulated because inflammation plays a role in retinal degenerative diseases. Lipocalin 2 (LCN2), an acute stress response protein with multiple innate immune functions, is increased in ATP-binding cassette subfamily A member 4 (Abca4) -/- retinol dehydrogenase 8 (Rdh8) -/- double-knockout mice, an animal model for Stargardt disease and age-related macular degeneration (AMD). To examine roles of LCN2 in retinal inflammation and degeneration, Lcn2-/-Abca4-/-Rdh8-/- triple-knockout mice were generated. Exacerbated inflammation following light exposure was observed in Lcn2-/-Abca4-/-Rdh8-/- mice as compared with Abca4-/-Rdh8-/- mice, with upregulation of proinflammatory genes and microglial activation. RNA array analyses revealed an increase in immune response molecules such as Ccl8, Ccl2, and Cxcl10 To further probe a possible regulatory role for LCN2 in retinal inflammation, we examined the in vitro effects of LCN2 on NF-κB signaling in human retinal pigmented epithelial (RPE) cells differentiated from induced pluripotent stem cells derived from healthy donors. We found that LCN2 induced expression of antioxidant enzymes heme oxygenase 1 and superoxide dismutase 2 in these RPE cells and could inhibit the cytotoxic effects of H2O2 and LPS. ELISA revealed increased LCN2 levels in plasma of patients with Stargardt disease, retinitis pigmentosa, and age-related macular degeneration as compared with healthy controls. Finally, overexpression of LCN2 in RPE cells displayed protection from cell death. Overall these results suggest that LCN2 is involved in prosurvival responses during cell stress and plays an important role in regulating inflammation during retinal degeneration.
Collapse
Affiliation(s)
- Tanu Parmar
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Vipul M Parmar
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Lindsay Perusek
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Anouk Georges
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - John W Crabb
- Cole Eye Institute, Cleveland Clinic, OH 44195; and
| | - Akiko Maeda
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106; .,Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
95
|
Zhu J, Li S, Zhang Y, Ding G, Zhu C, Huang S, Zhang A, Jia Z, Li M. COX-2 contributes to LPS-induced Stat3 activation and IL-6 production in microglial cells. Am J Transl Res 2018; 10:966-974. [PMID: 29636886 PMCID: PMC5883137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Many stimuli including lipopolysaccharide (LPS) could activate microglial cells to subsequently cause inflammatory nerve injury. However, the mechanism of LPS-induced neuroinflammation in microglial cells is still elusive. Thus, the present study was undertaken to examine the role of COX-2 in mediating the activation of Stat3 and the production of IL-6 in BV2 cells challenged with LPS. After 24 h treatment, LPS dose-dependently enhanced COX-2 expression at both mRNA and protein levels. Meanwhile, IL-6 with other inflammatory cytokines including IL-1β, TNF-α, and MCP-1 were similarly enhanced by LPS. Then a specific COX-2 inhibitor (NS-398) was administered to BV2 before LPS treatment. Significantly, COX-2 inhibition suppressed the upregulation of IL-6 at both mRNA and protein levels in line with the trend blockade on IL-1β, TNF-α, and MCP-1. Stat3 drives proinflammatory signaling pathways and contributes to IL-6 production via a transcriptional mechanism in many diseases. Here we found that inhibition of COX-2 entirely blocked LPS-induced Stat3 phosphorylation, which might contribute to the blockade of IL-6 production to some extent. Meanwhile, COX-2 siRNA approach largely reproduced the phenotypes shown by specific COX-2 inhibitor in LPS-treated BV2 cells. Together, these findings suggested that COX-2 might contribute to LPS-induced IL-6 production possibly through activating Stat3 signaling pathway in microglial cells.
Collapse
Affiliation(s)
- Jie Zhu
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, P. R. China
- Department of Nursing, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, P. R. China
| | - Shuzhen Li
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, P. R. China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, P. R. China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical UniversityNanjing 210029, P. R. China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, P. R. China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, P. R. China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical UniversityNanjing 210029, P. R. China
| | - Guixia Ding
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, P. R. China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, P. R. China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical UniversityNanjing 210029, P. R. China
| | - Chunhua Zhu
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, P. R. China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, P. R. China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical UniversityNanjing 210029, P. R. China
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, P. R. China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, P. R. China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical UniversityNanjing 210029, P. R. China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, P. R. China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, P. R. China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical UniversityNanjing 210029, P. R. China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, P. R. China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, P. R. China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical UniversityNanjing 210029, P. R. China
| | - Mei Li
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, P. R. China
- Department of Nursing, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, P. R. China
| |
Collapse
|
96
|
Su L, Li N, Tang H, Lou Z, Chong X, Zhang C, Su J, Dong X. Kupffer cell-derived TNF-α promotes hepatocytes to produce CXCL1 and mobilize neutrophils in response to necrotic cells. Cell Death Dis 2018; 9:323. [PMID: 29476069 PMCID: PMC5833701 DOI: 10.1038/s41419-018-0377-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 02/08/2023]
Abstract
The damage-associated molecular pattern molecules (DAMPs) released by necrotic cells can trigger inflammatory response, which will facilitate the clearance of these dead cells. Neutrophil mobilization is a very important step for the dead cell clearance, however the detailed mechanisms for DAMPs induce neutrophil mobilization remains largely elusive. In this study, by using a necrotic cell-induced neutrophil mobilization mice model, we found that both neutrophil number and percentage rapidly (as early as 30 min) increased with necrotic cells but not live cell treatment. CXCL1 was rapidly increased in the serum and was responsible for the neutrophil mobilization when treated with necrotic cells. We further demonstrated that the hepatocytes in the liver were the main source of CXCL1 production in response to necrotic cells challenge. However, the hepatocytes did not express CXCL1 when incubating with necrotic cells alone. When Kupffer cells were ablated, the increased CXCL1 levels as well as neutrophil mobilization were abolished with necrotic cells challenge. Moreover, we clarified Kupffer cells-derived TNF-α activates the NF-κB pathway in hepatocytes and promote hepatocytes to express CXCL1. In summary, we showed that the liver is the main source for necrotic cell-induced CXCL1 production and neutrophil mobilization. Kupffer cells in the liver sense DAMPs and release TNF-α to activate the NF-κB pathway in hepatocytes. The interaction between Kupffer cells and hepatocytes is critical for CXCL1 production.
Collapse
Affiliation(s)
- Li Su
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Na Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hua Tang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ziyang Lou
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xiaodan Chong
- Cancer Institute, Institute of Translational Medicine, Second Military Medical University, Shanghai, China
| | - Chenxi Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jiacan Su
- Department of Orthopedics Trauma, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China.
| | - Xin Dong
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
97
|
Ching CB, Gupta S, Li B, Cortado H, Mayne N, Jackson AR, McHugh KM, Becknell B. Interleukin-6/Stat3 signaling has an essential role in the host antimicrobial response to urinary tract infection. Kidney Int 2018; 93:1320-1329. [PMID: 29475562 DOI: 10.1016/j.kint.2017.12.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 12/09/2017] [Accepted: 12/14/2017] [Indexed: 01/03/2023]
Abstract
The signaling networks regulating antimicrobial activity during urinary tract infection (UTI) are incompletely understood. Interleukin-6 (IL-6) levels increase with UTI severity, but the specific contributions of IL-6 to host immunity against bacterial uropathogens are unknown. To clarify this we tested whether IL-6 activates the Stat3 transcription factor, to drive a program of antimicrobial peptide gene expression in infected urothelium during UTI. Transurethral inoculation of uropathogenic Escherichia coli led to IL-6 secretion, urothelial Stat3 phosphorylation, and activation of antimicrobial peptide transcription, in a Toll-like receptor 4-dependent manner in a murine model of cystitis. Recombinant IL-6 elicited Stat3 phosphorylation in primary urothelial cells in vitro, and systemic IL-6 administration promoted urothelial Stat3 phosphorylation and antimicrobial peptide expression in vivo. IL-6 deficiency led to decreased urothelial Stat3 phosphorylation and antimicrobial peptide mRNA expression following UTI, a finding mirrored by conditional Stat3 deletion. Deficiency in IL-6 or Stat3 was associated with increased formation of intracellular bacterial communities, and exogenous IL-6 reversed this phenotype in IL-6 knockout mice. Moreover, chronic IL-6 depletion led to increased renal bacterial burden and severe pyelonephritis in C3H/HeOuJ mice. Thus, IL-6/Stat3 signaling drives a transcriptional program of antimicrobial gene expression in infected urothelium, with key roles in limiting epithelial invasion and ascending infection.
Collapse
Affiliation(s)
- Christina B Ching
- Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio, USA; Department of Surgery, Division of Pediatric Urology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Sudipti Gupta
- Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio, USA
| | - Birong Li
- Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio, USA
| | - Hanna Cortado
- Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio, USA
| | - Nicholas Mayne
- Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio, USA
| | - Ashley R Jackson
- Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio, USA
| | - Kirk M McHugh
- Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio, USA; Department of Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Brian Becknell
- Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio, USA; Nephrology Section, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.
| |
Collapse
|
98
|
Yin L, Guo X, Zhang C, Cai Z, Xu C. In silico analysis of expression data during the early priming stage of liver regeneration after partial hepatectomy in rat. Oncotarget 2018; 9:11794-11804. [PMID: 29545936 PMCID: PMC5837750 DOI: 10.18632/oncotarget.24370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
The priming stage is the first step of liver regeneration (LR). This stage is characterized by the transition from G0 to cell cycle for 4 hours in rat. In this study, individual gene level and gene set level (GSEA) was performed to identify the candidate genes and significantly changed biological processes at 2 h after partial hepatectomy (PH). The leading edge analysis is performed to identify the key genes and iRegulon was employed for transcription factor (TF) analysis. A total of 53 differentially expressed genes were identified using RMA package based on R language at 2 h after PH, including the transcription factor, enzyme and cytokine. As the most important genes in our analysis, Socs3 was selected with a special analysis so as to find the pathways correlate to the expression of it. The changed significantly pathways in LR involved response to stress, ATP metabolism, and regulation of cell cycle mainly. Several transcription factors were identified including Stat5a, Cnot3 and zfp384. Taken together, at the early priming stage of LR in rat, the liver is experiencing some changes including response to stress, activated ATP metabolism and inhibition of cell cycle. Our analysis provided a detailed and comprehensive map for further research of the early priming stage of LR in rat.
Collapse
Affiliation(s)
- Li Yin
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang 453007, Henan Province, China.,Luohe Medical College, Luohe 462002, Henan Province, China
| | - Xueqiang Guo
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China
| | - Chunyan Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China
| | - Zhihui Cai
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China.,Luohe Medical College, Luohe 462002, Henan Province, China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang 453007, Henan Province, China
| |
Collapse
|
99
|
Park YR, Oh JS, Jeong H, Park J, Oh YM, Choi S, Choi KH. Predicting long-term outcomes after cardiac arrest by using serum neutrophil gelatinase-associated lipocalin. Am J Emerg Med 2017; 36:660-664. [PMID: 29317152 DOI: 10.1016/j.ajem.2017.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES Neutrophil gelatinase-associated lipocalin (NGAL) is secreted by various tissues in pathologic states. Previous studies reported that post-cardiac arrest serum NGAL levels correlate with short-term neurologic outcomes and survival. The aim of this study was to examine the associations between NGAL levels post-cardiac arrest and long-term outcomes and survival. METHODS This prospective observational study and retrospective review included adult out-of-hospital cardiac arrest survivors who were treated by hypothermia-targeted temperature management. Serum NGAL was assessed at 0, 24, 48, and 72h after return of spontaneous circulation. The primary outcome was poor outcome at six months after cardiac arrest, defined as cerebral performance category score of 3-5. The secondary outcome was six-month mortality. RESULTS In total, 76 patients were analyzed. The patients with poor outcomes showed significantly higher NGAL levels at 24, 48 and 72h after cardiac arrest than the patients with good outcomes. Long-term survival rates were significantly lower in the high-NGAL group than in the low-NGAL group at each time point. Subgroup analysis of patients who survived 72h showed that only serum NGAL 72h after cardiac arrest had prognostic value for long-term outcomes (area under the receiver operating characteristic curve=0.72; p=0.02). CONCLUSIONS Post-cardiac arrest serum NGAL is associated with long-term outcomes and survival; particularly, three days post-cardiac arrest is the optimal time point for predicting long-term outcomes. However, the predictive power of NGAL is unsatisfactory, and it should be regarded as an additional prognostic modality.
Collapse
Affiliation(s)
- Yu-Ri Park
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.
| | - Joo Suk Oh
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.
| | - Hyunho Jeong
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.
| | - Jungtaek Park
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Young Min Oh
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.
| | - Semin Choi
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.
| | - Kyoung Ho Choi
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.
| |
Collapse
|
100
|
Therapeutic dose of green tea extract provokes liver damage and exacerbates paracetamol-induced hepatotoxicity in rats through oxidative stress and caspase 3-dependent apoptosis. Biomed Pharmacother 2017; 96:798-811. [DOI: 10.1016/j.biopha.2017.10.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/02/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022] Open
|