51
|
Bialek J, Yankulov S, Kawan F, Fornara P, Theil G. Role of Nivolumab in the Modulation of PD-1 and PD-L1 Expression in Papillary and Clear Cell Renal Carcinoma (RCC). Biomedicines 2022; 10:biomedicines10123244. [PMID: 36552000 PMCID: PMC9776360 DOI: 10.3390/biomedicines10123244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
The expression and cellular mechanisms of programmed cell death-1 protein (PD-1) and its ligands (PD-L1 and PD-L2) in renal cancer cells are not well known. Here, we aimed to investigate the response of renal carcinoma subtypes to the immune checkpoint inhibitor nivolumab and its impact on related signaling pathways. All cell lines analyzed (clear cell (cc)RCC (Caki-1, RCC31) and papillary (p)RCC (ACHN, RCC30)) expressed PD-1 and both ccRCC cell lines, and RCC30 expressed PD-L1. Nivolumab treatment at increasing doses led to increased PD-1 levels in analyzed cells and resulted in aggressive behavior of pRCC but diminished this behavior in ccRCC. The analysis of PD-1/PD-L1-associated signaling pathways demonstrated increased AKT activity in Caki-1 and RCC30 cells but decreased activity in ACHN and RCC31 cells, while ribosomal protein S6 remained largely unchanged. Androgen receptors are related to RCC and were predominantly increased in RCC30 cells, which were the only cells that formed nivolumab-dependent spheroids. Finally, all cell lines exhibited a complex response to nivolumab treatment. Since the pRCC cells responded with increased tumorigenicity and PD-1/PD-L1 levels while ccRCC tumorigenicity was diminished, further studies are needed to improve nivolumab-based therapy for renal carcinoma subtypes, especially the identification of response-involved molecular pathways.
Collapse
|
52
|
Cheng TY, Liu YJ, Yan H, Xi YB, Duan LQ, Wang Y, Zhang TT, Gu YM, Wang XD, Wu CX, Gao S. Tumor Cell-Intrinsic BTLA Receptor Inhibits the Proliferation of Tumor Cells via ERK1/2. Cells 2022; 11:cells11244021. [PMID: 36552785 PMCID: PMC9777428 DOI: 10.3390/cells11244021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
B and T lymphocyte attenuator (BTLA) is an immune checkpoint molecule that mediates the escape of tumor cells from immunosurveillance. Consequently, BTLA and its ligand herpesvirus entry mediator (HVEM) are potentially immunotherapeutic targets. However, the potential effects of BTLA on tumor cells remain incompletely unknown. Here, we show that BTLA is expressed across a broad range of tumor cells. The depletion of BTLA or HVEM promotes cell proliferation and colony formation, which is reversed by the overexpression of BTLA in BTLA knockout cells. In contrast, overexpression of BTLA or HVEM inhibits tumor cell proliferation and colony formation. Furthermore, the proliferation of a subpopulation with high BTLA was also significantly slower than that of the low BTLA subpopulation. Mechanistically, the coordination of BTLA and HVEM inhibits its major downstream extracellular regulated protein kinase (ERK1/2) signaling pathway, thus preventing tumor cell growth. This study demonstrates that tumor cell-intrinsic BTLA/HVEM is a potential tumor suppressor and is likely to have a potential antagonist for immunotherapy, thus representing a potential biomarker for the optimal cancer immunotherapeutic treatment.
Collapse
Affiliation(s)
- Tian-You Cheng
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Ya-Juan Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Hong Yan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yi-Bo Xi
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Li-Qiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yang Wang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Tian-Tian Zhang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yin-Min Gu
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Xiao-Dong Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Chang-Xin Wu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Shan Gao
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
- Correspondence:
| |
Collapse
|
53
|
Takeuchi Y, Inoue S, Odaka A. Expression of programmed cell death-1 on neuroblastoma cells in TH-MYCN transgenic mice. Pediatr Surg Int 2022; 39:6. [PMID: 36441248 DOI: 10.1007/s00383-022-05292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Immunotherapy may improve the poor prognosis of high-risk neuroblastoma. Programmed cell death-1 (PD-1) is expressed in several cancers. The tyrosine hydroxylase MYCN (TH-MYCN) transgenic mouse model is widely used in neuroblastoma research, but detailed information on its immunological background is lacking. Therefore, we studied the immunological tumor microenvironment and tumor cell surface antigen expression in homozygote and hemizygote mice and effects of antibody therapy against PD-1. METHODS CD4, CD8, CD11b, and CD11c expression in immune cells from retroperitoneal lymph nodes and spleen was analyzed by flow cytometry. Tumor cell surface antigen expression was confirmed, and data from homozygote and hemizygote mice were compared. Effects of anti-PD-1 antibody were evaluated. RESULTS CD4-, CD8-, CD11b-, and CD11c-positive cells were not significantly different in homozygote and hemizygote mice, and CD11b- and CD11c-positive cells were identified in the tumor microenvironment in both. Tumor cells expressed PD-1, and anti-PD-1 antibody had anti-tumor effects and significantly reduced the percentage of living tumor cells in cultures after 2 h. CONCLUSION The immunological background is similar in homozygote and hemizygote TH-MYCN transgenic mice, and both have PD-1-positive tumor cells. Anti-PD-1 antibody suppresses tumor growth. This mouse model may be a useful for studying immunotherapy of neuroblastoma.
Collapse
Affiliation(s)
- Yuta Takeuchi
- Department of Pediatric Surgery, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan
| | - Seiichiro Inoue
- Department of Pediatric Surgery, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan.
| | - Akio Odaka
- Department of Pediatric Surgery, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan
| |
Collapse
|
54
|
Bouyahya A, El Allam A, Aboulaghras S, Bakrim S, El Menyiy N, Alshahrani MM, Al Awadh AA, Benali T, Lee LH, El Omari N, Goh KW, Ming LC, Mubarak MS. Targeting mTOR as a Cancer Therapy: Recent Advances in Natural Bioactive Compounds and Immunotherapy. Cancers (Basel) 2022; 14:5520. [PMID: 36428613 PMCID: PMC9688668 DOI: 10.3390/cancers14225520] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine-protein kinase, which regulates many biological processes related to metabolism, cancer, immune function, and aging. It is an essential protein kinase that belongs to the phosphoinositide-3-kinase (PI3K) family and has two known signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Even though mTOR signaling plays a critical role in promoting mitochondria-related protein synthesis, suppressing the catabolic process of autophagy, contributing to lipid metabolism, engaging in ribosome formation, and acting as a critical regulator of mRNA translation, it remains one of the significant signaling systems involved in the tumor process, particularly in apoptosis, cell cycle, and cancer cell proliferation. Therefore, the mTOR signaling system could be suggested as a cancer biomarker, and its targeting is important in anti-tumor therapy research. Indeed, its dysregulation is involved in different types of cancers such as colon, neck, cervical, head, lung, breast, reproductive, and bone cancers, as well as nasopharyngeal carcinoma. Moreover, recent investigations showed that targeting mTOR could be considered as cancer therapy. Accordingly, this review presents an overview of recent developments associated with the mTOR signaling pathway and its molecular involvement in various human cancer types. It also summarizes the research progress of different mTOR inhibitors, including natural and synthetised compounds and their main mechanisms, as well as the rational combinations with immunotherapies.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Aicha El Allam
- Department of Immunology, Yale University School of Medicine, 333 Cedars Street, TAC S610, New Haven, CT 06519, USA
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | | |
Collapse
|
55
|
Guo P, Pi X, Gao F, Li Q, Li D, Feng W, Cao W. Transarterial chemoembolization plus lenvatinib with or without programmed death-1 inhibitors for patients with unresectable hepatocellular carcinoma: A propensity score matching study. Front Oncol 2022; 12:945915. [PMID: 36338683 PMCID: PMC9630329 DOI: 10.3389/fonc.2022.945915] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose We conducted a retrospective study to compare transarterial chemoembolization (TACE) plus lenvatinib plus programmed death-1 (PD-1) inhibitors with TACE plus lenvatinib in patients with unresectable hepatocellular carcinoma (HCC). Patients and methods Patients with HCC were analyzed from January 2018 to January 2022 in three hospitals. Patients received TACE plus lenvatinib with or without PD-1 inhibitors (TACE+L+PD-1 or TACE+L, respectively). The baseline characteristics of the two groups were compared, and propensity score matching (PSM) was performed. Overall survival (OS), progression-free survival (PFS), and objective response rate (ORR) of the two groups were compared. Adverse events in the two groups were analyzed. Results A total of 166 patients were evaluated (TACE+L+PD-1, n = 75; TACE+L, n = 91). Before PSM, OS was prolonged in the TACE+L+PD-1 group (p = 0.010), but PFS was similar between the two groups (p = 0.18). ORR was higher in the TACE+L+PD-1 group (p = 0.047). After PSM, estimated OS rates at 6, 12, and 24 months were 97.9%, 84.6%, and 74.1%, respectively, in the TACE+L+PD-1 group (n = 48) and 93.1%, 66.1%, and 43.4%, respectively, in the TACE+L group (n = 48). Estimated PFS rates at 3, 6, and 12 months were 81.9%, 61.8%, and 30.9%, respectively, in the TACE+L group and 95.7%, 82.1%, and 68.4%, respectively, in the TACE+L+PD-1 group. OS, PFS, and ORR were improved in the TACE+L+PD-1 group compared to the TACE+L group (p = 0.030; p = 0.027; p = 0.013). The safety of the TACE+L+PD-1 regimen was acceptable. Conclusions The addition of PD-1 inhibitors to TACE+L significantly improved clinical outcomes in patients with unresectable HCC. Side effects were manageable.
Collapse
Affiliation(s)
- Peng Guo
- Department of Interventional Therapy, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Interventional Therapy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingtao Pi
- Department of Interventional Therapy, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Interventional Therapy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Interventional Therapy, Shanxi Provincial People´s Hospital, Taiyuan, China
| | - Qiang Li
- Department of Interventional Therapy, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Duqiang Li
- Department of Interventional Therapy, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Interventional Therapy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wendong Feng
- Department of Interventional Therapy, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Interventional Therapy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wendong Cao
- Department of Interventional Therapy, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Interventional Therapy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Wendong Cao,
| |
Collapse
|
56
|
The PD-1/PD-L1 Pathway: A Perspective on Comparative Immuno-Oncology. Animals (Basel) 2022; 12:ani12192661. [PMID: 36230402 PMCID: PMC9558501 DOI: 10.3390/ani12192661] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary The programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) pathway inhibits the function of activated immune cells. This mediates immune tolerance and prevents immune-mediated tissue destruction. The malfunction of this pathway is involved in the pathogenesis of chronic infections, autoimmunity, and cancer. The PD-1/PD-L1 pathway is an excellent example of the research benefits of comparative pathology and attests to the importance of the “one health one medicine” concept. Pioneering research was mainly focused on the examination of cells and tissues of human and mouse origin. It mainly revealed that PD-L1-positive tumor cells can paralyze PD-1-bearing immune cells, which prevents immunological destruction of cancer cells. This led to a major breakthrough in cancer treatment, i.e., the use of antibodies that block the interaction of these molecules and restore anti-cancer immune defense (immune checkpoint therapy). Further studies provided more detailed information on the tissue-specific context and fine-tuning of this pathway. The most recent research has extended the investigations to the examination of several animal species with the aim of improving disease diagnostics and treatment for certain animal diseases, in particular cancer, which is a major cause of disease and death in companion animals. Abstract The programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) pathway mainly attracted attention in immuno-oncology, leading to the development of immune checkpoint therapy. It has, however, much broader importance for tissue physiology and pathology. It mediates basic processes of immune tolerance and tissue homeostasis. In addition, it is involved in the pathogenesis of chronic infectious diseases, autoimmunity, and cancer. It is also an important paradigm for comparative pathology as well as the “one health one medicine” concept. The aim of this review is to provide an overview of novel research into the diverse facets of the PD-1/PD-L1 pathway and to give insights into its fine-tuning homeostatic role in a tissue-specific context. This review details early translational research from the discovery phase based on mice as animal models for understanding pathophysiological aspects in human tissues to more recent research extending the investigations to several animal species. The latter has the twofold goal of comparing this pathway between humans and different animal species and translating diagnostic tools and treatment options established for the use in human beings to animals and vice versa.
Collapse
|
57
|
Zhou Q, Yin Y, Yu M, Gao D, Sun J, Yang Z, Weng J, Chen W, Atyah M, Shen Y, Ye Q, Li CW, Hung MC, Dong Q, Zhou C, Ren N. GTPBP4 promotes hepatocellular carcinoma progression and metastasis via the PKM2 dependent glucose metabolism. Redox Biol 2022; 56:102458. [PMID: 36116159 PMCID: PMC9483790 DOI: 10.1016/j.redox.2022.102458] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 12/15/2022] Open
Abstract
Guanosine triphosphate binding protein 4 (GTPBP4) is a key regulator of cell cycle progression and MAPK activation. However, how its biological properties intersect with cellular metabolism in hepatocellular carcinoma (HCC) development remains poorly unexplained. Here, high GTPBP4 expression is found to be significantly associated with worse clinical outcomes in patients with HCC. Moreover, GTPBP4 upregulation is paralleled by DNA promoter hypomethylation and regulated by DNMT3A, a DNA methyltransferase. Additionally, both gain- and loss-of-function studies demonstrate that GTPBP4 promotes HCC growth and metastasis in vitro and in vivo. Mechanically, GTPBP4 can induce dimeric pyruvate kinase M2 (PKM2) formation through protein sumoylation modification to promote aerobic glycolysis in HCC. Notably, active GTPBP4 facilitates SUMO1 protein activation by UBA2, and acts as a linker bridging activated SUMO1 protein and PKM2 protein to induce PKM2 sumoylation. Furthermore, SUMO-modified PKM2 relocates from the cytoplasm to the nucleus may also could contribute to HCC progression through activating epithelial-mesenchymal transition (EMT) and STAT3 signaling pathway. Shikonin, a PKM2-specific inhibitor, can attenuate PKM2 dependent HCC glycolytic reprogramming, growth and metastasis promoted by GTPBP4, which offers a promising therapeutic candidate for HCC patients. Our findings indicate that GTPBP4-PKM2 regulatory axis plays a vital role in promoting HCC proliferation as well as metastasis by aerobic glycolysis and offer a promising therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yirui Yin
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China; Department of Liver Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Mincheng Yu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Dongmei Gao
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Jialei Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Zhangfu Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Jialei Weng
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Wanyong Chen
- Institute of Fudan Minhang Academic Health System (AHS), Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Manar Atyah
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yinghao Shen
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Qinghai Ye
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Qiongzhu Dong
- Institute of Fudan Minhang Academic Health System (AHS), Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China.
| | - Chenhao Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Ning Ren
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China; Institute of Fudan Minhang Academic Health System (AHS), Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China.
| |
Collapse
|
58
|
Asmamaw MD, Shi XJ, Zhang LR, Liu HM. A comprehensive review of SHP2 and its role in cancer. Cell Oncol 2022; 45:729-753. [PMID: 36066752 DOI: 10.1007/s13402-022-00698-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase ubiquitously expressed mainly in the cytoplasm of several tissues. SHP2 modulates diverse cell signaling events that control metabolism, cell growth, differentiation, cell migration, transcription and oncogenic transformation. It interacts with diverse molecules in the cell, and regulates key signaling events including RAS/ERK, PI3K/AKT, JAK/STAT and PD-1 pathways downstream of several receptor tyrosine kinases (RTKs) upon stimulation by growth factors and cytokines. SHP2 acts as both a phosphatase and a scaffold, and plays prominently oncogenic functions but can be tumor suppressor in a context-dependent manner. It typically acts as a positive regulator of RTKs signaling with some inhibitory functions reported as well. SHP2 expression and activity is regulated by such factors as allosteric autoinhibition, microRNAs, ubiquitination and SUMOylation. Dysregulation of SHP2 expression or activity causes many developmental diseases, and hematological and solid tumors. Moreover, upregulated SHP2 expression or activity also decreases sensitivity of cancer cells to anticancer drugs. SHP2 is now considered as a compelling anticancer drug target and several classes of SHP2 inhibitors with different mode of action are developed with some already in clinical trial phases. Moreover, novel SHP2 substrates and functions are rapidly growing both in cell and cancer. In view of this, we comprehensively and thoroughly reviewed literatures about SHP2 regulatory mechanisms, substrates and binding partners, biological functions, roles in human cancers, and different classes of small molecule inhibitors target this oncoprotein in cancer.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Xiao-Jing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450052, People's Republic of China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China. .,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, Henan Province, 450001, People's Republic of China.
| |
Collapse
|
59
|
Zhai Y, Dong S, Li H, Zhang Y, Shami P, Chen M. Antibody-mediated depletion of programmed death 1-positive (PD-1 +) cells. J Control Release 2022; 349:425-433. [PMID: 35820540 PMCID: PMC10699550 DOI: 10.1016/j.jconrel.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
PD-1 immune checkpoint has been intensively investigated in pathogenesis and treatments for cancer and autoimmune diseases. Cells that express PD-1 (PD-1+ cells) draw ever-increasing attention in cancer and autoimmune disease research although the role of PD-1+ cells in the progression and treatments of these diseases remains largely ambiguous. One definite approach to elucidate their roles is to deplete these cells in disease settings and examine how the depletion impacts disease progression and treatments. To execute the depletion, we designed and generated the first depleting antibody (D-αPD-1) that specifically ablates PD-1+ cells. D-αPD-1 has the same variable domains as an anti-mouse PD-1 blocking antibody (RMP1-14). The constant domains of D-αPD-1 were derived from mouse IgG2a heavy and κ-light chain, respectively. D-αPD-1 was verified to bind with mouse PD-1 as well as mouse FcγRIV, an immuno-activating Fc receptor. The cell depletion effect of D-αPD-1 was confirmed in vivo using a PD-1+ cell transferring model. Since transferred PD-1+ cells, EL4 cells, are tumorigenic and EL4 tumors are lethal to host mice, the depleting effect of D-αPD-1 was also manifested by an absolute survival among the antibody-treated mice while groups receiving control treatments had median survival time of merely approximately 30 days. Furthermore, we found that D-αPD-1 leads to elimination of PD-1+ cells through antibody-dependent cell-mediate phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC) mechanisms. These results, altogether, confirmed the specificity and effectiveness of D-αPD-1. The results also highlighted that D-αPD-1 is a robust tool to study PD-1+ cells in cancer and autoimmune diseases and a potential therapeutic for these diseases.
Collapse
Affiliation(s)
- Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Shuyun Dong
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Haojia Li
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Yue Zhang
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Paul Shami
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Mingnan Chen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
60
|
Chen J, Zhang D, Yuan Y. Anti-PD-1/PD-L1 immunotherapy in conversion treatment of locally advanced hepatocellular carcinoma. Clin Exp Med 2022:10.1007/s10238-022-00873-6. [PMID: 36018466 DOI: 10.1007/s10238-022-00873-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022]
Abstract
Curative surgery and locoregional therapy are radical therapies for patients with HCC. But more than 80% of HCC patients cannot be fitful for radical therapies because of local progression or distant metastasis at initial diagnosis. Among patients with unresectable locally advanced hepatocellular carcinoma (HCC), some patients can be converted to be technically resectable by conversion treatment and salvage surgery. For unresectable locally advanced hepatocellular, conversion treatment prior to salvage surgery with transcatheter arterial chemoembolization (TACE) and other locoregional therapies improve outcomes. PD-1/PD-L1 inhibitors as immune checkpoint inhibitor (ICI) therapy which show high antineoplastic activity in HCC patients by preclinical and clinical researches can also be a good choice for conversion therapy. PD-1/PD-L1 inhibitor combined with locoregional therapy plus antiangiogenic agents or not is most potential conversion therapy comparing to PD-1 inhibitor monotherapy and PD-1/PD-L1 inhibitor combined with antiangiogenic agents or CTLA-4 inhibitor. As more clinical evidence reported, PD-1/PD-L1 immunotherapy would be widely used in conversion treatment of locally advanced hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jiaqi Chen
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Ding Zhang
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
61
|
Yin T, Fan Q, Hu F, Ma X, Yin Y, Wang B, Kuang L, Hu X, Xu B, Wang Y. Engineered Macrophage-Membrane-Coated Nanoparticles with Enhanced PD-1 Expression Induce Immunomodulation for a Synergistic and Targeted Antiglioblastoma Activity. NANO LETTERS 2022; 22:6606-6614. [PMID: 35948420 DOI: 10.1021/acs.nanolett.2c01863] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM), the most common subtype of malignant gliomas, is characterized by aggressive infiltration, high malignancy, and poor prognosis. The frustrating anti-GBM outcome of conventional therapeutics is due to the immunosuppressive milieu, in addition to the formidable obstacle of the blood-brain barrier (BBB). Combination therapy with an immune checkpoint blockade (ICB) has emerged as a critical component in the treatment of GBM. Here, we report an engineered macrophage-membrane-coated nanoplatform with enhanced programmed cell death-1 (PD-1) expression (PD-1-MM@PLGA/RAPA). Using both in vitro and in vivo GBM models, we demonstrate that PD-1-MM@PLGA/RAPA can efficiently traverse across the BBB in response to the tumor microenvironment (TME) recruitment with nanoparticles accumulating at the tumor site. Furthermore, we show a boosted immune response as a result of enhancing CD8+ cytotoxic T-lymphocyte (CTL) infiltration. Together we provide a new nanoplatform for enhancing ICB in combination with conventional chemotherapy for GBM and many other cancers.
Collapse
Affiliation(s)
- Tieying Yin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Qin Fan
- School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Fangfang Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xiaoyue Ma
- School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ying Yin
- School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Bingyi Wang
- School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Lei Kuang
- School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xiaoye Hu
- School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Bo Xu
- School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yazhou Wang
- School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
62
|
Zuo B, Yang X, Yang X, Bian J, Long J, Wang D, Ning C, Wang Y, Xun Z, Wang Y, Lu X, Mao Y, Sang X, Zhao H. A real-world study of the efficacy and safety of anti-PD-1 antibodies plus lenvatinib in patients with advanced gallbladder cancer. Cancer Immunol Immunother 2022; 71:1889-1896. [DOI: 10.1007/s00262-021-03121-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
|
63
|
Distinct antibody clones detect PD-1 checkpoint expression and block PD-L1 interactions on live murine melanoma cells. Sci Rep 2022; 12:12491. [PMID: 35864188 PMCID: PMC9304406 DOI: 10.1038/s41598-022-16776-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/15/2022] [Indexed: 12/16/2022] Open
Abstract
Monoclonal antibodies (abs) targeting the programmed cell death 1 (PD-1) immune checkpoint pathway have revolutionized tumor therapy. Because T-cell-directed PD-1 blockade boosts tumor immunity, anti-PD-1 abs have been developed for examining T-cell-PD-1 functions. More recently, PD-1 expression has also been reported directly on cancer cells of various etiology, including in melanoma. Nevertheless, there is a paucity of studies validating anti-PD-1 ab clone utility in specific assay types for characterizing tumor cell-intrinsic PD-1. Here, we demonstrate reactivity of several anti-murine PD-1 ab clones and recombinant PD-L1 with live B16-F10 melanoma cells and YUMM lines using multiple independent methodologies, positive and negative PD-1-specific controls, including PD-1-overexpressing and PD-1 knockout cells. Flow cytometric analyses with two separate anti-PD-1 ab clones, 29F.1A12 and RMP1-30, revealed PD-1 surface protein expression on live murine melanoma cells, which was corroborated by marked enrichment in PD-1 gene (Pdcd1) expression. Immunoblotting, immunoprecipitation, and mass spectrometric sequencing confirmed PD-1 protein expression by B16-F10 cells. Recombinant PD-L1 also recognized melanoma cell-expressed PD-1, the blockade of which by 29F.1A12 fully abrogated PD-1:PD-L1 binding. Together, our data provides multiple lines of evidence establishing PD-1 expression by live murine melanoma cells and validates ab clones and assay systems for tumor cell-directed PD-1 pathway investigations.
Collapse
|
64
|
Lee B, Park SJ, Lee S, Lee J, Lee E, Yoo ES, Chung WS, Sohn JW, Oh BC, Kim S. Lomitapide, a cholesterol-lowering drug, is an anticancer agent that induces autophagic cell death via inhibiting mTOR. Cell Death Dis 2022; 13:603. [PMID: 35831271 PMCID: PMC9279289 DOI: 10.1038/s41419-022-05039-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Autophagy is a biological process that maintains cellular homeostasis and regulates the internal cellular environment. Hyperactivating autophagy to trigger cell death has been a suggested therapeutic strategy for cancer treatment. Mechanistic target of rapamycin (mTOR) is a crucial protein kinase that regulates autophagy; therefore, using a structure-based virtual screen analysis, we identified lomitapide, a cholesterol-lowering drug, as a potential mTOR complex 1 (mTORC1) inhibitor. Our results showed that lomitapide directly inhibits mTORC1 in vitro and induces autophagy-dependent cancer cell death by decreasing mTOR signaling, thereby inhibiting the downstream events associated with increased LC3 conversion in various cancer cells (e.g., HCT116 colorectal cancer cells) and tumor xenografts. Lomitapide also significantly suppresses the growth and viability along with elevated autophagy in patient-derived colorectal cancer organoids. Furthermore, a combination of lomitapide and immune checkpoint blocking antibodies synergistically inhibits tumor growth in murine MC38 or B16-F10 preclinical syngeneic tumor models. These results elucidate the direct, tumor-relevant immune-potentiating benefits of mTORC1 inhibition by lomitapide, which complement the current immune checkpoint blockade. This study highlights the potential repurposing of lomitapide as a new therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Boah Lee
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea ,grid.37172.300000 0001 2292 0500Department of Biological Sciences, KAIST, Daejeon, 34141 Korea ,Present Address: ERSTEQ co., Ltd, Daejeon, 34013 Korea
| | - Seung Ju Park
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, KAIST, Daejeon, 34141 Korea ,Present Address: ERSTEQ co., Ltd, Daejeon, 34013 Korea
| | - Seulgi Lee
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, KAIST, Daejeon, 34141 Korea ,Present Address: ERSTEQ co., Ltd, Daejeon, 34013 Korea
| | - Jinwook Lee
- grid.256155.00000 0004 0647 2973Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, College of Medicine, Incheon, 21999 Korea
| | - Eunbeol Lee
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, KAIST, Daejeon, 34141 Korea
| | - Eun-Seon Yoo
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, KAIST, Daejeon, 34141 Korea
| | - Won-Suk Chung
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, KAIST, Daejeon, 34141 Korea
| | - Jong-Woo Sohn
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, KAIST, Daejeon, 34141 Korea
| | - Byung-Chul Oh
- grid.256155.00000 0004 0647 2973Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, College of Medicine, Incheon, 21999 Korea
| | - Seyun Kim
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea ,grid.37172.300000 0001 2292 0500Department of Biological Sciences, KAIST, Daejeon, 34141 Korea ,grid.37172.300000 0001 2292 0500KAIST Institute for the BioCentury, KAIST, Daejeon, 34141 Korea ,grid.37172.300000 0001 2292 0500KAIST Stem Cell Center, KAIST, Daejeon, 34141 Korea
| |
Collapse
|
65
|
Long Y, Yu X, Chen R, Tong Y, Gong L. Noncanonical PD-1/PD-L1 Axis in Relation to the Efficacy of Anti-PD Therapy. Front Immunol 2022; 13:910704. [PMID: 35663968 PMCID: PMC9157498 DOI: 10.3389/fimmu.2022.910704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022] Open
Abstract
With programmed death 1/ligand 1 (PD-1/PD-L1) as the cornerstone, anti-PD antibodies have pioneered revolutionary immunotherapies for malignancies. But most patients struggled to respond to anti-PD owing to primary or acquired resistance or even hyperprogression, pointing to more efforts needed to explore this axis. PD-1 constrains T-cell immunoreactivity via engaging with PD-L1 of tumor/myeloid cells is the canonical PD-1/PD-L1 axis function mode. Studies are increasingly aware of the impact of noncanonical PD-1/PD-L1 expression in various cancers. PD-L1 induced on activated T-cells ligates to PD-1 to mediate self-tolerance or acts on intratumoral myeloid cells and other T-cells, affecting their survival, differentiation and immunophenotyping, leading to tumor immunosuppression. Myeloid PD-1 interferes with their proliferation, differentiation, cytokine secretion and phagocytosis, mediating remarkable pro-tumor effects. Tumor cell intrinsic PD-1 signaling has diverse functions in different tumors, resulting in pro-proliferation or proliferation inhibition. These nonclassical PD-1/PD-L1 functions may be novel anti-PD mechanisms or causes of treatment resistance. This review highlights the nonnegligible role of T-cell-intrinsic PD-L1 and tumor/myeloid PD-1 in the cell interplay network and the complex impact on the efficacy of anti-PD antibodies. Reconsidering and rational utilization of the comprehensive PD-1/PD-L1 axis could cumulate breakthroughs in precision treatment and combination for anti-PD therapies.
Collapse
Affiliation(s)
- Yiru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolu Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Runqiu Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yongliang Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| |
Collapse
|
66
|
Seliger B, Massa C. Modulation of Lymphocyte Functions in the Microenvironment by Tumor Oncogenic Pathways. Front Immunol 2022; 13:883639. [PMID: 35663987 PMCID: PMC9160824 DOI: 10.3389/fimmu.2022.883639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/19/2022] [Indexed: 01/10/2023] Open
Abstract
Despite the broad application of different immunotherapeutic strategies for the treatment of solid as well as hematopoietic cancers, the efficacy of these therapies is still limited, with only a minority of patients having a long-term benefit resulting in an improved survival rate. In order to increase the response rates of patients to the currently available immunotherapies, a better understanding of the molecular mechanisms underlying the intrinsic and/or extrinsic resistance to treatment is required. There exist increasing evidences that activation of different oncogenic pathways as well as inactivation of tumor suppressor genes (TSG) in tumor cells inhibit the immune cell recognition and influegnce the composition of the tumor microenvironment (TME), thus leading to an impaired anti-tumoral immune response. A deeper understanding of the link between the tumor milieu and genomic alterations of TSGs and oncogenes is indispensable for the optimization of immunotherapies and to predict the patients’ response to these treatments. This review summarizes the role of different cancer-related, oncogene- and TSG-controlled pathways in the context of anti-tumoral immunity and response to different immunotherapies.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
67
|
Chen Z, Liu S, Xie P, Zhang B, Yu M, Yan J, Jin L, Zhang W, Zhou B, Li X, Xiao Y, Xu Y, Ye Q, Li H, Guo L. Tumor-derived PD1 and PD-L1 could promote hepatocellular carcinoma growth through autophagy induction in vitro. Biochem Biophys Res Commun 2022; 605:82-89. [DOI: 10.1016/j.bbrc.2022.03.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 02/09/2023]
|
68
|
Kuske M, Haist M, Jung T, Grabbe S, Bros M. Immunomodulatory Properties of Immune Checkpoint Inhibitors-More than Boosting T-Cell Responses? Cancers (Basel) 2022; 14:1710. [PMID: 35406483 PMCID: PMC8996886 DOI: 10.3390/cancers14071710] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
The approval of immune checkpoint inhibitors (ICI) that serve to enhance effector T-cell anti-tumor responses has strongly improved success rates in the treatment of metastatic melanoma and other tumor types. The currently approved ICI constitute monoclonal antibodies blocking cytotoxic T-lymphocyte-associated protein (CTLA)-4 and anti-programmed cell death (PD)-1. By this, the T-cell-inhibitory CTLA-4/CD80/86 and PD-1/PD-1L/2L signaling axes are inhibited. This leads to sustained effector T-cell activity and circumvents the immune evasion of tumor cells, which frequently upregulate PD-L1 expression and modulate immune checkpoint molecule expression on leukocytes. As a result, profound clinical responses are observed in 40-60% of metastatic melanoma patients. Despite the pivotal role of T effector cells for triggering anti-tumor immunity, mounting evidence indicates that ICI efficacy may also be attributable to other cell types than T effector cells. In particular, emerging research has shown that ICI also impacts innate immune cells, such as myeloid cells, natural killer cells and innate lymphoid cells, which may amplify tumoricidal functions beyond triggering T effector cells, and thus improves clinical efficacy. Effects of ICI on non-T cells may additionally explain, in part, the character and extent of adverse effects associated with treatment. Deeper knowledge of these effects is required to further develop ICI treatment in terms of responsiveness of patients to treatment, to overcome resistance to ICI and to alleviate adverse effects. In this review we give an overview into the currently known immunomodulatory effects of ICI treatment in immune cell types other than the T cell compartment.
Collapse
Affiliation(s)
| | | | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.K.); (M.H.); (T.J.); (S.G.)
| |
Collapse
|
69
|
Ieranò C, Righelli D, D'Alterio C, Napolitano M, Portella L, Rea G, Auletta F, Santagata S, Trotta AM, Guardascione G, Liotti F, Prevete N, Maiolino P, Luciano A, Barbieri A, Di Mauro A, Roma C, Esposito Abate R, Tatangelo F, Pacelli R, Normanno N, Melillo RM, Scala S. In PD-1+ human colon cancer cells NIVOLUMAB promotes survival and could protect tumor cells from conventional therapies. J Immunother Cancer 2022; 10:jitc-2021-004032. [PMID: 35246475 PMCID: PMC8900051 DOI: 10.1136/jitc-2021-004032] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most prevalent and deadly tumors worldwide. The majority of CRC is resistant to anti-programmed cell death-1 (PD-1)-based cancer immunotherapy, with approximately 15% with high-microsatellite instability, high tumor mutation burden, and intratumoral lymphocytic infiltration. Programmed death-ligand 1 (PD-L1)/PD-1 signaling was described in solid tumor cells. In melanoma, liver, and thyroid cancer cells, intrinsic PD-1 signaling activates oncogenic functions, while in lung cancer cells, it has a tumor suppressor effect. Our work aimed to evaluate the effects of the anti-PD-1 nivolumab (NIVO) on CRC cells. METHODS In vitro NIVO-treated human colon cancer cells (HT29, HCT116, and LoVo) were evaluated for cell growth, chemo/radiotherapeutic sensitivity, apoptosis, and spheroid growth. Total RNA-seq was assessed in 6-24 hours NIVO-treated human colon cancer cells HT29 and HCT116 as compared with NIVO-treated PES43 human melanoma cells. In vivo mice carrying HT29 xenograft were intraperitoneally treated with NIVO, OXA (oxaliplatin), and NIVO+OXA, and the tumors were characterized for growth, apoptosis, and pERK1/2/pP38. Forty-eight human primary colon cancers were evaluated for PD-1 expression through immunohistochemistry. RESULTS In PD-1+ human colon cancer cells, intrinsic PD-1 signaling significantly decreased proliferation and promoted apoptosis. On the contrary, NIVO promoted proliferation, reduced apoptosis, and protected PD-1+ cells from chemo/radiotherapy. Transcriptional profile of NIVO-treated HT29 and HCT116 human colon cancer cells revealed downregulation of BATF2, DRAM1, FXYD3, IFIT3, MT-TN, and TNFRSF11A, and upregulation of CLK1, DCAF13, DNAJC2, MTHFD1L, PRPF3, PSMD7, and SCFD1; the opposite regulation was described in NIVO-treated human melanoma PES43 cells. Differentially expressed genes (DEGs) were significantly enriched for interferon pathway, innate immune, cytokine-mediated signaling pathways. In vivo, NIVO promoted HT29 tumor growth, thus reducing OXA efficacy as revealed through significant Ki-67 increase, pERK1/2 and pP38 increase, and apoptotic cell reduction. Eleven out of 48 primary human colon cancer biopsies expressed PD-1 (22.9%). PD-1 expression is significantly associated with lower pT stage. CONCLUSIONS In PD-1+ human colon cancer cells, NIVO activates tumor survival pathways and could protect tumor cells from conventional therapies.
Collapse
Affiliation(s)
- Caterina Ieranò
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | | | - Crescenzo D'Alterio
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Maria Napolitano
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Luigi Portella
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Giuseppina Rea
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Federica Auletta
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Sara Santagata
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Anna Maria Trotta
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Giuseppe Guardascione
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Federica Liotti
- Institute of Endocrinology and Experimental Oncology (IEOS), CNR-NA1, Napoli, Italy
| | - Nella Prevete
- Institute of Endocrinology and Experimental Oncology (IEOS), CNR-NA1, Napoli, Italy.,Traslational Medical Sciences, University of Naples Federico II, Napoli, Italy
| | - Piera Maiolino
- Pharmacy, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Antonio Luciano
- Animal Facility, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Antonio Barbieri
- Animal Facility, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Annabella Di Mauro
- Pathology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Cristin Roma
- Cell Biology and Biotherapy, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Riziero Esposito Abate
- Cell Biology and Biotherapy, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Fabiana Tatangelo
- Pathology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Roberto Pacelli
- Advanced Biomedical Sciences, University of Naples Federico II, Napoli, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Rosa Marina Melillo
- Institute of Endocrinology and Experimental Oncology (IEOS), CNR-NA1, Napoli, Italy.,Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
70
|
Davern M, Fitzgerald MC, Buckley CE, Heeran AB, Donlon NE, McGrath J, O' Connell F, Deshpande MR, Hayes C, MacDonald J, Sheppard AD, Reynolds JV, Maher SG, Lynam-Lennon N, Murphy B, Lysaght J. PD-1 and TIGIT blockade differentially affect tumour cell survival under hypoxia and glucose deprived conditions in oesophageal adenocarcinoma; implications for overcoming resistance to PD-1 blockade in hypoxic tumours. Transl Oncol 2022; 19:101381. [PMID: 35245832 PMCID: PMC8894275 DOI: 10.1016/j.tranon.2022.101381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
PD-1 and TIGIT expression are highly expressed on the surface of oesophageal epithelial cells during the early stages of metaplasia. Glucose deprivation and hypoxia upregulate PD-1 and TIGIT on the surface of oesophageal adenocarcinoma (OAC) cells in vitro. PD-1 and TIGIT blockade decrease Bcl-2 and Bcl-xL expression in OAC cells. PD-1 blockade in OAC cells enhances basal respiration and glycolytic reserve and upregulates GLUT1 on the surface of a subpopulation of OAC cells. PD-1 inhibition confers a survival advantage to OAC cells under glucose deprivation and hypoxia. TIGIT blockade decreases OAC cell proliferation and induces OAC cell death under normoxia, hypoxia and nutrient deprivation. TIGIT blockade increases ECAR yet decreases a range of metabolic parameters in OAC cells.
Recent studies have demontrated that immune checkpoint receptors are expressed on the surface of oesophageal adenocarcinoma (OAC) cells and might confer a survival advantage. This study explores the role of PD-1 and TIGIT signalling in OAC cells in either promoting or inhibiting the survival of OAC cells under characteristic features of the tumour microenvironment including nutrient-deprivation and hypoxia. PD-1 and TIGIT are expressed in normal and pre-malignant oesophageal epithelial cells and this expression significantly decreases along the normal- Barrett's Oesophagus- OAC disease sequence. However, glucose-deprivation and hypoxia significantly upregulated PD-1 and TIGIT on the surface of OAC cells in vitro. PD-1 blockade decreased OAC cell proliferation under normoxia but enhanced proliferation and decreased cell death in OAC cells under hypoxia and glucose-deprivation. TIGIT blockade decreased proliferation and induced OAC cell death, an effect that was maintained under nutrient-deprivation and hypoxia. Basal respiration and glycolytic reserve were enhanced and GLUT1 was upregulated on the surface of a subpopulation of OAC cells following PD-1 blockade. In contrast, TIGIT blockade enhanced a glycolytic phenotype in OAC cells, yet decreased other metabolic parameters including oxidative phosphorylation and basal respiration. Interestingly, inhibition of oxidative phosphorylation significantly upregulated TIGIT expression and inhibition of oxidative phosphorylation and glycolysis significantly decreased PD-1 on the surface of a subpopulation of OAC cells in vitro. These findings suggest an immune-independent mechanism for PD-1 inhibitor resistance in hypoxic tumours and suggest that TIGIT might be a more effective therapeutic target in OAC compared with PD-1 for treating hypoxic tumours.
Collapse
Affiliation(s)
- Maria Davern
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Marie-Claire Fitzgerald
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland
| | - Croí E Buckley
- Translational Radiobiology and Diagnostics Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Aisling B Heeran
- Translational Gastrointestinal Research Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Noel E Donlon
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Jason McGrath
- Cancer Chemoradiation Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Fiona O' Connell
- Translational Gastrointestinal Research Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Malvika R Deshpande
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Conall Hayes
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Jamie MacDonald
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Andrew D Sheppard
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - John V Reynolds
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Stephen G Maher
- Cancer Chemoradiation Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Niamh Lynam-Lennon
- Translational Radiobiology and Diagnostics Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Brona Murphy
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland.
| |
Collapse
|
71
|
A Novel Hypoxic-Angiogenesis-Immune-Related Gene Model for Prognostic and Therapeutic Effect Prediction in Hepatocellular Carcinoma Patients. DISEASE MARKERS 2022; 2022:9428660. [PMID: 35069936 PMCID: PMC8769836 DOI: 10.1155/2022/9428660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 12/04/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most heterogeneous malignant tumors that have been discovered so far, which makes the prognostic prediction difficult. The hypoxia, angiogenesis, and immunity-related genes (HAIRGs) are closely related to the development of liver cancer. However, the prognostic and treatment effect of hypoxia, angiogenesis, and immunity-related genes in HCC continues to be further clarified. Methods The gene expression quantification data and clinical information in patients with liver cancer were downloaded from the TCGA database, and HAIRG signature was built by using the least absolute shrinkage and selection operator (LASSO) technique. Patient from the ICGC database validated the model. Then, tumor immune dysfunction and exclusion (TIDE) algorithm was applied to estimate the clinical response to immunotherapy and the sensitivity of drugs was evaluated by the half-maximal inhibitory concentration (IC50). Result The HAIRGs were identified between the HCC patients and normal patients in the TCGA database. In univariate Cox regression analysis, seventeen differentially expressed genes (DEGs) were associated with overall survival (OS). An eight HAIRG signature model was constructed and was used to divide the patients into two groups according to the median value of the risk score base on the TCGA dataset. Patients in the high-risk group had a significant reduction in OS compared to those in the low-risk group (P < 0.001 in the TCGA, P < 0.001 in the ICGC). For TCGA and ICGC databases of univariate Cox regression analyses, the risk score was used as an independent predictor of OS (HR > 1, P < 0.001). Functional analysis showed that the relevant immune pathways and immune responses were enriched, cellular component analysis showed that the immunoglobulin complex and other related substances were enriched, and immune status existed a difference in the high- and low-risk groups. Then, the tumor immune dysfunction and exclusion (TIDE) algorithm presented differences in immune response in the high- and low-risk groups (P < 0.05), and based on drug sensitivity prediction, patients in the high-risk group were more sensitive to cisplatin compared to those in the low-risk group in both the TCGA and ICGC cohorts (P < 0.05). Conclusions HAIRG signature can be utilized for prognostic prediction in HCC, while it can be considered a prediction model for clinical evaluation of immunotherapy response and chemotherapy sensitivity in HCC.
Collapse
|
72
|
Shao L, Yu X, Han Q, Zhang X, Lu N, Zhang C. Enhancing anti-tumor efficacy and immune memory by combining 3p-GPC-3 siRNA treatment with PD-1 blockade in hepatocellular carcinoma. Oncoimmunology 2022; 11:2010894. [PMID: 36524206 PMCID: PMC9746623 DOI: 10.1080/2162402x.2021.2010894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is associated with a high mortality rate and presents a major challenge for human health. Activation of multiple oncogenes has been reported to be strongly associated with the progression of HCC. Moreover, the immunosuppressive tumor microenvironment (TME) and the host immune system are also implicated in the development of malignant HCC tumors. Glypican-3 (GPC-3), a proteoglycan involved in the regulation of cell proliferation and apoptosis, is aberrantly expressed in HCC. We synthesized a short 5'-triphosphate (3p) RNA targeting GPC-3, 3p-GPC-3 siRNA, and found that it effectively inhibited subcutaneous HCC growth by raising type I IFN levels in tumor cells and serum and promoting tumor cell apoptosis. Moreover, 3p-GPC-3 siRNA was able to enhance the activation of CD4+ T cells, CD8+ T cells, and natural killer (NK) cells while reducing the proportion of regulatory T cells (Tregs) in the TME. Most intriguingly, a blocking anti-PD-1 antibody improved the anti-tumor effect of 3p-GPC-3 siRNA, predominantly by activating the immune response, reversing immune exhaustion, and improving immune memory. Our study suggests that the combination of 3p-GPC-3 siRNA administration and PD-1 blockade may represent a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Liwei Shao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Yu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,College of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xinke Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,CONTACT Cai Zhang , Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012Shandong, China
| |
Collapse
|
73
|
Immune suppressive checkpoint interactions in the tumour microenvironment of primary liver cancers. Br J Cancer 2022; 126:10-23. [PMID: 34400801 PMCID: PMC8727557 DOI: 10.1038/s41416-021-01453-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 05/05/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
Liver cancer is one of the most prevalent cancers, and the third most common cause of cancer-related mortality worldwide. The therapeutic options for the main types of primary liver cancer-hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA)-are very limited. HCC and CCA are immunogenic cancers, but effective immune-mediated tumour control is prevented by their immunosuppressive tumour microenvironment. Despite the critical involvement of key co-inhibitory immune checkpoint interactions in immunosuppression in liver cancer, only a minority of patients with HCC respond to monotherapy using approved checkpoint inhibitor antibodies. To develop effective (combinatorial) therapeutic immune checkpoint strategies for liver cancer, in-depth knowledge of the different mechanisms that contribute to intratumoral immunosuppression is needed. Here, we review the co-inhibitory pathways that are known to suppress intratumoral T cells in HCC and CCA. We provide a detailed description of insights from preclinical studies in cellular crosstalk within the tumour microenvironment that results in interactions between co-inhibitory receptors on different T-cell subsets and their ligands on other cell types, including tumour cells. We suggest alternative immune checkpoints as promising targets, and draw attention to the possibility of combined targeting of co-inhibitory and co-stimulatory pathways to abrogate immunosuppression.
Collapse
|
74
|
Vitale G, Gitto S, Campani C, Turco L, Baldan A, Marra F, Morelli MC. Biological therapies in patients with liver disease: are they really lifesavers? Expert Opin Biol Ther 2021; 22:473-490. [PMID: 34860629 DOI: 10.1080/14712598.2022.2013799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The liver plays a key role in the setting of immune tolerance. Targeting antigens for presentation by antigen-presenting cells in the liver can induce immune tolerance to either autoantigens from the liver itself or organs outside of the liver. Despite its non-conventional capacity for tolerance induction, the liver remains a target organ for autoimmune diseases. Whereas chronic inflammation and intra-hepatic immuno-suppressive microenvironment occurring during liver fibrosis lead to hepatocellular carcinoma. Monoclonal antibodies have revolutionized the therapeutic strategies of many autoimmune diseases and some cancers. AREAS COVERED We review data from literature regarding the safety and efficacy of biologics in treating hepatobiliary autoimmune diseases and primary liver cancers. Furthermore, we describe their potential use in the setting of liver transplants and their main immune-related liver adverse events. EXPERT OPINION Biological therapies have changed the natural history of main autoimmune diseases and solid cancers. Compared to other organs and disease settings, the liver lags behind in biologics and their applications. The development of novel diagnostic and therapeutic strategies based on the immunological and antigenic characteristics of the hepatobiliary system could reduce mortality and transplant rates linked to chronic liver diseases.
Collapse
Affiliation(s)
- Giovanni Vitale
- Division of Internal Medicine for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Stefano Gitto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Claudia Campani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Turco
- Division of Internal Medicine for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Anna Baldan
- Division of Internal Medicine for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Maria Cristina Morelli
- Division of Internal Medicine for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| |
Collapse
|
75
|
Yi YW, You KS, Park JS, Lee SG, Seong YS. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? Int J Mol Sci 2021; 23:ijms23010048. [PMID: 35008473 PMCID: PMC8744729 DOI: 10.3390/ijms23010048] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ribosomal protein S6 (RPS6) is a component of the 40S small ribosomal subunit and participates in the control of mRNA translation. Additionally, phospho (p)-RPS6 has been recognized as a surrogate marker for the activated PI3K/AKT/mTORC1 pathway, which occurs in many cancer types. However, downstream mechanisms regulated by RPS6 or p-RPS remains elusive, and the therapeutic implication of RPS6 is underappreciated despite an approximately half a century history of research on this protein. In addition, substantial evidence from RPS6 knockdown experiments suggests the potential role of RPS6 in maintaining cancer cell proliferation. This motivates us to investigate the current knowledge of RPS6 functions in cancer. In this review article, we reviewed the current information about the transcriptional regulation, upstream regulators, and extra-ribosomal roles of RPS6, with a focus on its involvement in cancer. We also discussed the therapeutic potential of RPS6 in cancer.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| |
Collapse
|
76
|
Pinard CJ, Hocker SE, Poon AC, Inkol JM, Matsuyama A, Wood RD, Wood GA, Woods JP, Mutsaers AJ. Evaluation of PD-1 and PD-L1 expression in canine urothelial carcinoma cell lines. Vet Immunol Immunopathol 2021; 243:110367. [PMID: 34923192 DOI: 10.1016/j.vetimm.2021.110367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
Urothelial carcinoma (UC) is the most common urinary tumor in dogs and despite combinational therapies, only modest improvements in survival have been achieved in recent years. Given the utility of monoclonal antibodies against PD-1 and PD-L1 in human UC, we evaluated the protein and mRNA expression in three established canine urothelial carcinoma cell lines. Flow cytometry and western blot analysis confirmed cell line expression of both molecules in varying degrees. Reverse transcription PCR (RT-PCR) documented mRNA expression in all three cell lines for both PD-1 and PD-L1. Fluorescence microscopy was consistent with strong PD-1 and PD-L1 expression in the canine cell lines and was in line with previous human literature. Importantly, the flow cytometry work described in this study revealed higher cell intrinsic PD-1 expression in these cell lines which may have implications for tumor behavior and potential treatment opportunities in the future. Further work is necessary to determine the expression patterns in canine UC and potential for benefit with immunotherapy directed against PD-1 and PD-L1.
Collapse
Affiliation(s)
- Christopher J Pinard
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Samuel E Hocker
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66502, USA
| | - Andrew C Poon
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jordon M Inkol
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Arata Matsuyama
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - R Darren Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - J Paul Woods
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Anthony J Mutsaers
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
77
|
Burnell SEA, Capitani L, MacLachlan BJ, Mason GH, Gallimore AM, Godkin A. Seven mysteries of LAG-3: a multi-faceted immune receptor of increasing complexity. IMMUNOTHERAPY ADVANCES 2021; 2:ltab025. [PMID: 35265944 PMCID: PMC8895726 DOI: 10.1093/immadv/ltab025] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Despite three decades of research to its name and increasing interest in immunotherapies that target it, LAG-3 remains an elusive co-inhibitory receptor in comparison to the well-established PD-1 and CTLA-4. As such, LAG-3 targeting therapies have yet to achieve the clinical success of therapies targeting other checkpoints. This could, in part, be attributed to the many unanswered questions that remain regarding LAG-3 biology. Of these, we address: (i) the function of the many LAG-3-ligand interactions, (ii) the hurdles that remain to acquire a high-resolution structure of LAG-3, (iii) the under-studied LAG-3 signal transduction mechanism, (iv) the elusive soluble form of LAG-3, (v) the implications of the lack of (significant) phenotype of LAG-3 knockout mice, (vi) the reports of LAG-3 expression on the epithelium, and (vii) the conflicting reports of LAG-3 expression (and potential contributions to pathology) in the brain. These mysteries which surround LAG-3 highlight how the ever-evolving study of its biology continues to reveal ever-increasing complexity in its role as an immune receptor. Importantly, answering the questions which shroud LAG-3 in mystery will allow the maximum therapeutic benefit of LAG-3 targeting immunotherapies in cancer, autoimmunity and beyond.
Collapse
Affiliation(s)
- Stephanie E A Burnell
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Lorenzo Capitani
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Bruce J MacLachlan
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Georgina H Mason
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Awen M Gallimore
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Andrew Godkin
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
- Department of Gastroenterology and Hepatology, University Hospital of Wales, Heath Park, Cardiff, UK
| |
Collapse
|
78
|
Kim MJ, Ha SJ. Differential Role of PD-1 Expressed by Various Immune and Tumor Cells in the Tumor Immune Microenvironment: Expression, Function, Therapeutic Efficacy, and Resistance to Cancer Immunotherapy. Front Cell Dev Biol 2021; 9:767466. [PMID: 34901012 PMCID: PMC8662983 DOI: 10.3389/fcell.2021.767466] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
In the tumor immune microenvironment (TIME), tumor cells interact with various cells and operate various strategies to avoid antitumor immune responses. These immune escape strategies often make the TIME resistant to cancer immunotherapy. Neutralizing immune escape strategies is necessary to overcome resistance to cancer immunotherapy. Immune checkpoint receptors (ICRs) expressed in effector immune cells inhibit their effector function via direct interaction with immune checkpoint ligands (ICLs) expressed in tumor cells. Therefore, blocking ICRs or ICLs has been developed as a promising cancer immunotherapy by reinvigorating the function of effector immune cells. Among the ICRs, programmed cell death 1 (PD-1) has mainly been antagonized to enhance the survival of human patients with cancer by restoring the function of tumor-infiltrating (TI) CD8+ T cells. It has been demonstrated that PD-1 is expressed not only in TI CD8+ T cells, but also in other TI immune cells and even tumor cells. While PD-1 suppresses the function of TI CD8+ T cells, it is controversial whether PD-1 suppresses or amplifies the suppressive function of TI-suppressive immune cells (e.g., regulatory T cells, tumor-associated macrophages, and myeloid cells). There is also controversy regarding the role of tumor-expressing PD-1. Therefore, a precise understanding of the expression pattern and function of PD-1 in each cell subset is important for improving the efficacy of cancer immunotherapy. Here, we review the differential role of PD-1 expressed by various TI immune cells and tumor cells. We focused on how cell-type-specific ablation or blockade of PD-1 affects tumor growth in a murine tumor model. Furthermore, we will also describe how the blockade of PD-1 acts on TI immune cells in human patients with cancer.
Collapse
Affiliation(s)
- Myeong Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, South Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, South Korea
| |
Collapse
|
79
|
Mirzaei R, Gordon A, Zemp FJ, Kumar M, Sarkar S, Luchman HA, Bellail AC, Hao C, Mahoney DJ, Dunn JF, Bose P, Yong VW. PD-1 independent of PD-L1 ligation promotes glioblastoma growth through the NFκB pathway. SCIENCE ADVANCES 2021; 7:eabh2148. [PMID: 34739319 PMCID: PMC8570610 DOI: 10.1126/sciadv.abh2148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Brain tumor–initiating cells (BTICs) drive glioblastoma growth through not fully understood mechanisms. Here, we found that about 8% of cells within the human glioblastoma microenvironment coexpress programmed cell death 1 (PD-1) and BTIC marker. Gain- or loss-of-function studies revealed that tumor-intrinsic PD-1 promoted proliferation and self-renewal of BTICs. Phosphorylation of tyrosines within the cytoplasmic tail of PD-1 recruited Src homology 2–containing phosphatase 2 and activated the nuclear factor kB in BTICs. Notably, the tumor-intrinsic promoting effects of PD-1 did not require programmed cell death ligand 1(PD-L1) ligation; thus, the therapeutic antibodies inhibiting PD-1/PD-L1 interaction could not overcome the growth advantage of PD-1 in BTICs. Last, BTIC-intrinsic PD-1 accelerated intracranial tumor growth, and this occurred in mice lacking T and B cells. These findings point to a critical role for PD-1 in BTICs and uncover a nonimmune resistance mechanism of patients with glioblastoma to PD-1– or PD-L1–blocking therapies.
Collapse
Affiliation(s)
- Reza Mirzaei
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ashley Gordon
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Franz J. Zemp
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mehul Kumar
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Susobhan Sarkar
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - H. Artee Luchman
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anita C. Bellail
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chunhai Hao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Douglas J. Mahoney
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F. Dunn
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Pinaki Bose
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - V. Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
- Corresponding author.
| |
Collapse
|
80
|
Wang ZH, Peng WB, Zhang P, Yang XP, Zhou Q. Lactate in the tumour microenvironment: From immune modulation to therapy. EBioMedicine 2021; 73:103627. [PMID: 34656878 PMCID: PMC8524104 DOI: 10.1016/j.ebiom.2021.103627] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Disordered metabolic states, which are characterised by hypoxia and elevated levels of metabolites, particularly lactate, contribute to the immunosuppression in the tumour microenvironment (TME). Excessive lactate secreted by metabolism-reprogrammed cancer cells regulates immune responses via causing extracellular acidification, acting as an energy source by shuttling between different cell populations, and inhibiting the mechanistic (previously ‘mammalian’) target of rapamycin (mTOR) pathway in immune cells. This review focuses on recent advances in the regulation of immune responses by lactate, as well as therapeutic strategies targeting lactate anabolism and transport in the TME, such as those involving glycolytic enzymes and monocarboxylate transporter inhibitors. Considering the multifaceted roles of lactate in cancer metabolism, a comprehensive understanding of how lactate and lactate-targeting therapies regulate immune responses in the TME will provide insights into the complex relationships between metabolism and antitumour immunity.
Collapse
Affiliation(s)
- Zi-Hao Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Bei Peng
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Ping Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
81
|
Zhao Y, Liu Y, Zhou L, Du GS, He Q. Trends of rapamycin in survival benefits of liver transplantation for hepatocellular carcinoma. World J Gastrointest Surg 2021; 13:953-966. [PMID: 34621472 PMCID: PMC8462078 DOI: 10.4240/wjgs.v13.i9.953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/17/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
The proportion of liver transplantation (LT) for hepatocellular carcinoma (HCC) has kept on increasing over the past years and account for 20%-40% of all LT. Post-transplant HCC recurrence is considered the most important factor affecting the long-term survival of patients. The use of different types of immunosuppressive agents after LT is closely associated with an increased risk for HCC recurrence. The most commonly used conventional immunosuppressive drugs include the calcineurin inhibitors tacrolimus (FK506) and mammalian target of rapamycin inhibitor rapamycin (RAPA). Compared with tacrolimus, RAPA may carry an advantage in survival benefit because of its anti-tumor effects. However, no sufficient evidence to date has proven that RAPA could increase long-term recurrence-free survival and its anti-tumor mechanism of combined therapy remains incompletely clear. In this review, we will focus on recent advances in clinical application experience and basic research results of RAPA in patients undergoing LT for HCC to further guide the clinical practice.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yu Liu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Lin Zhou
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Guo-Sheng Du
- Department of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Qiang He
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
82
|
Sanceau J, Gougelet A. Epigenetic mechanisms of liver tumor resistance to immunotherapy. World J Hepatol 2021; 13:979-1002. [PMID: 34630870 PMCID: PMC8473495 DOI: 10.4254/wjh.v13.i9.979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/04/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor, which stands fourth in rank of cancer-related deaths worldwide. The incidence of HCC is constantly increasing in correlation with the epidemic in diabetes and obesity, arguing for an urgent need for new treatments for this lethal cancer refractory to conventional treatments. HCC is the paradigm of inflammation-associated cancer, since more than 80% of HCC emerge consecutively to cirrhosis associated with a vast remodeling of liver microenvironment. In the recent decade, immunomodulatory drugs have been developed and have given impressive results in melanoma and later in several other cancers. In the present review, we will discuss the recent advancements concerning the use of immunotherapies in HCC, in particular those targeting immune checkpoints, used alone or in combination with other anti-cancers agents. We will address why these drugs demonstrate unsatisfactory results in a high proportion of liver cancers and the mechanisms of resistance developed by HCC to evade immune response with a focus on the epigenetic-related mechanisms.
Collapse
Affiliation(s)
- Julie Sanceau
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris 75006, France
| | - Angélique Gougelet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris 75006, France.
| |
Collapse
|
83
|
Zhang Y, Chen X, Zheng H, Zhan Y, Luo J, Yang Y, Ning Y, Wang H, Wang W, Fan S. Expression of cancer cell-intrinsic PD-1 associates with PD-L1 and p-S6 and predicts a good prognosis in nasopharyngeal carcinoma. J Cancer 2021; 12:6118-6125. [PMID: 34539884 PMCID: PMC8425204 DOI: 10.7150/jca.60739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/05/2021] [Indexed: 01/23/2023] Open
Abstract
Aims: Programmed cell death ligand 1 (PD-L1) is the ligand of programmed death 1 (PD-1), which is a host immunity inhibitory receptor. Expression of PD-L1 in diverse tumor types has been widely discussed, while there is little research about tumor intrinsic-PD-1. Phospho-S6 (p-S6) is an important downstream effector in the PI3K/AKT/mTOR pathway. Our study was focused on investigating expression of cancer cell-intrinsic PD-1, PD-L1 and p-S6 proteins and aimed to illustrate their relationship and clinical significances in nasopharyngeal carcinoma (NPC). Methods: The expression of PD-1, PD-L1 and p-S6 proteins in tissues of NPC, non-cancerous nasopharyngeal epithelia, primary cancer and matching metastatic lesion was detected by immunohistochemistry. Results: Expression of PD-1, PD-L1 and p-S6 proteins and co-expression of PD-1 and PD-L1 were significantly higher in NPC (all P<0.05). The expression of PD-1 and co-expression of PD-1 and PD-L1 in paired metastatic NPC were significantly increased (all P<0.01). NPC patients with positive expression of PD-L1 showed significantly higher overall survival rate (P =0.035). However, NPC patients with positive expression PD-1 and p-S6 showed significantly lower overall survival rate (P =0.031, P=0.044, respectively). Interestingly, NPC patients with co-expression of PD-1 and PD-L1 had lower overall survival rate (P=0.042). Multivariate Cox proportional hazard regression analysis confirmed that positive expression of PD-L1 and p-S6 were independent prognostic factors for NPC patients. Conclusions: Expression of cancer cell-intrinsic PD-1 associates with PD-L1 and p-S6 proteins, PD-L1 might serve as a good prognostic biomarker, while p-S6 could be an independent poor prognostic biomarker for NPC patients.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xianyong Chen
- Department of Pathology, Affiliated Hospital of Xiangnan University, Chenzhou City, Hunan, 423000, China
| | - Hongmei Zheng
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yuting Zhan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jiadi Luo
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yang Yang
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yue Ning
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Haihua Wang
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Weiyuan Wang
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
84
|
Lim WJ, Lee M, Oh Y, Fang XQ, Lee S, Lim CH, Park J, Lim JH. Statins Decrease Programmed Death-Ligand 1 (PD-L1) by Inhibiting AKT and β-Catenin Signaling. Cells 2021; 10:cells10092488. [PMID: 34572136 PMCID: PMC8472538 DOI: 10.3390/cells10092488] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/31/2022] Open
Abstract
Retrospective observational studies have reported that statins improve clinical outcomes in patients previously treated with programmed cell death protein 1 (PD-1)-targeting monoclonal antibodies for malignant pleural mesothelioma (MPM) and advanced non-small cell lung cancer (NSCLC). In multiple mouse cancer models, de novo synthesis of mevalonate and cholesterol inhibitors was found to synergize with anti-PD-1 antibody therapy. In the present study, we investigated whether statins affect programmed death-ligand 1 (PD-L1) expression in cancer cells. Four statins, namely simvastatin, atorvastatin, lovastatin, and fluvastatin, decreased PD-L1 expression in melanoma and lung cancer cells. In addition, we found that AKT and β-catenin signaling involved PD-L1 suppression by statins. Our cellular and molecular studies provide inspiring evidence for extending the clinical evaluation of statins for use in combination with immune checkpoint inhibitor-based cancer therapy.
Collapse
Affiliation(s)
- Woo-Jin Lim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea; (W.-J.L.); (Y.O.); (X.-Q.F.); (S.L.); (C.-H.L.); (J.P.)
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea
| | - Mingyu Lee
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
| | - Yerin Oh
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea; (W.-J.L.); (Y.O.); (X.-Q.F.); (S.L.); (C.-H.L.); (J.P.)
| | - Xue-Quan Fang
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea; (W.-J.L.); (Y.O.); (X.-Q.F.); (S.L.); (C.-H.L.); (J.P.)
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea
| | - Sujin Lee
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea; (W.-J.L.); (Y.O.); (X.-Q.F.); (S.L.); (C.-H.L.); (J.P.)
| | - Chang-Hoon Lim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea; (W.-J.L.); (Y.O.); (X.-Q.F.); (S.L.); (C.-H.L.); (J.P.)
| | - Jooho Park
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea; (W.-J.L.); (Y.O.); (X.-Q.F.); (S.L.); (C.-H.L.); (J.P.)
| | - Ji-Hong Lim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea; (W.-J.L.); (Y.O.); (X.-Q.F.); (S.L.); (C.-H.L.); (J.P.)
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea
- Diabetes and Bio-Research Center, Konkuk University, Chungju 27478, Korea
- Correspondence: ; Tel.: +82-43-840-3567
| |
Collapse
|
85
|
Liu MY, Klement JD, Langan CJ, van Riggelen J, Liu K. Expression regulation and function of PD-1 and PD-L1 in T lymphoma cells. Cell Immunol 2021; 366:104397. [PMID: 34157461 PMCID: PMC8327398 DOI: 10.1016/j.cellimm.2021.104397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 01/01/2023]
Abstract
T lymphoma cells may constitutively express PD-1 and PD-L1. The relative role of PD-1 and PD-L1 in T lymphoma is incompletely understood. We report here that PD-1+ PDL-1+ human T lymphoma cells exhibit constitutive hyperactivation of the TCR signaling and do not respond to PD-L1-mediated suppression in vitro. Knocking out PD-1 or PD-L1 has no effects on T lymphoma cell apoptosis and proliferation in vitro, but significantly increased tumor-bearing mouse survival. Our findings determine that the constitutively active TCR signaling pathway maintain T lymphoma cell growth in vitro and that both PD-1 and PD-L1 promote T lymphoma growth in vivo.
Collapse
Affiliation(s)
- Maria Y Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Candace J Langan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA
| | - Jan van Riggelen
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| |
Collapse
|
86
|
Sukowati CHC, El-Khobar KE, Tiribelli C. Immunotherapy against programmed death-1/programmed death ligand 1 in hepatocellular carcinoma: Importance of molecular variations, cellular heterogeneity, and cancer stem cells. World J Stem Cells 2021; 13:795-824. [PMID: 34367478 PMCID: PMC8316870 DOI: 10.4252/wjsc.v13.i7.795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy related to diverse etiological factors. Different oncogenic mechanisms and genetic variations lead to multiple HCC molecular classifications. Recently, an immune-based strategy using immune checkpoint inhibitors (ICIs) was presented in HCC therapy, especially with ICIs against the programmed death-1 (PD-1) and its ligand PD-L1. However, despite the success of anti-PD-1/PD-L1 in other cancers, a substantial proportion of HCC patients fail to respond. In this review, we gather current information on biomarkers of anti-PD-1/PD-L1 treatment and the contribution of HCC heterogeneity and hepatic cancer stem cells (CSCs). Genetic variations of PD-1 and PD-L1 are associated with chronic liver disease and progression to cancer. PD-L1 expression in tumoral tissues is differentially expressed in CSCs, particularly in those with a close association with the tumor microenvironment. This information will be beneficial for the selection of patients and the management of the ICIs against PD-1/PD-L1.
Collapse
Affiliation(s)
| | | | - Claudio Tiribelli
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
| |
Collapse
|
87
|
Xian D, Niu L, Zeng J, Wang L. LncRNA KCNQ1OT1 Secreted by Tumor Cell-Derived Exosomes Mediates Immune Escape in Colorectal Cancer by Regulating PD-L1 Ubiquitination via MiR-30a-5p/USP22. Front Cell Dev Biol 2021; 9:653808. [PMID: 34350172 PMCID: PMC8326752 DOI: 10.3389/fcell.2021.653808] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Background: This study tried to explore the mechanism of long non-coding RNA (lncRNA) KCNQ1OT1 in tumor immune escape. Methods: Gene Expression Omnibus (GEO) and microarray analysis were used to screen the differentially expressed lncRNA and microRNA (miRNA) in normal tissues and tumor tissues. Quantitative reverse transcription PCR (RT-qPCR) was used to quantify KCNQ1OT1, miR-30a-5p, ubiquitin-specific peptidase 22 (USP22), and programmed death-ligand 1 (PD-L1). The interactive relationship between KCNQ1OT1 and miR-30a-5p was verified using dual-luciferase reporter gene assay and ribonucleoprotein immunoprecipitation (RIP) assay. Cell Counting Kit (CCK)-8, clone formation, wound healing, and apoptosis are used to detect the occurrence of tumor cells after different treatments. Protein half-life and ubiquitination detection are used to study the influence of USP22 on PD-L1 ubiquitination. BALB/c mice and BALB/c nude mice are used to detect the effects of different treatments on tumor growth and immune escape in vivo. Results: The expression of lncRNA KCNQ1OT1 in tumor tissues and tumor cell-derived exosomes was significantly increased. The tumor-promoting effect of lncRNA KCNQ1OT1 was through the autocrine effect of tumor cell-derived exosomes, which mediates the miR-30a-5p/USP22 pathway to regulate the ubiquitination of PD-L1 and inhibits CD8+ T-cell response, thereby promoting colorectal cancer development. Conclusion: Tumor cell-derived exosomes' KCNQ1OT1 could regulate PD-L1 ubiquitination through miR-30a-5p/USP22 to promote colorectal cancer immune escape.
Collapse
Affiliation(s)
- Di Xian
- Department of Emergency Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Liangbo Niu
- Department of Emergency Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jie Zeng
- Department of Emergency Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Lei Wang
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
88
|
Zheng H, Ning Y, Zhan Y, Liu S, Wen Q, Fan S. New insights into the important roles of tumor cell-intrinsic PD-1. Int J Biol Sci 2021; 17:2537-2547. [PMID: 34326692 PMCID: PMC8315021 DOI: 10.7150/ijbs.60114] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/03/2021] [Indexed: 12/28/2022] Open
Abstract
PD-1 (Programmed cell death protein-1) is mainly expressed in various immune cells, while its ligands PD-L1/PD-L2 (Programmed death ligand-1/Programmed death ligand-2) are mostly expressed in tumor cells. Generally, the binding of PD-L1/PD-L2 and PD-1 could lead to the tumor immune evasion. However, some recent studies showed that PD-1 could also be expressed in tumor cells and could activate mTOR (Mammalian Target of Rapamycin) or Hippo signaling pathway, therefore facilitating tumor proliferation independent of the immune system. While there was evidence that tumor cell-intrinsic PD-1 inhibited the activation of AKT and ERK1/2 pathways, thereby inhibiting tumor cell growth. Based on TCGA and CCLE database, we found that PD-1 was expressed in a variety of tumors and was associated with patient's prognosis. Besides, we found that PD-1 may be involved in many carcinogenic signaling pathway on the basis of PD-1 gene enrichment analysis of cancer tissues and cancer cells. Our understanding of the tumor cell-intrinsic PD-1 function is still limited. This review is aimed at elaborating the potential effects of tumor cell-intrinsic PD-1 on carcinogenesis, providing a novel insight into the effects of anti-PD-1/PD-L1 immunotherapy, and helping to open a major epoch of combination therapy.
Collapse
Affiliation(s)
- Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yue Ning
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Sile Liu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
89
|
Yi Y, Yu MC, Fu PY, Liu G, Zhou PY, Guan RY, Zhou C, Sun BY, Qiu SJ. MNS1 promotes hepatocarcinogenesis and metastasis via activating PI3K/AKT by translocating β-catenin and predicts poor prognosis. Liver Int 2021; 41:1409-1420. [PMID: 33506565 DOI: 10.1111/liv.14803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 12/30/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is a fatal disease characterized by vast molecular heterogeneity. Although major advances in tumour genetics has led to the identification of new biomarkers, the prognosis of patients with HCC remains dismal. METHODS Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and western blot (WB) were used to evaluate meiosis-specific nuclear structural 1 (MNS1) expression in HCC cells. Immunohistochemistry staining was used to evaluate MNS1 expression in HCC tissues. Clinical significance of MNS1 was evaluated by Cox regression analysis. Transwell assays were conducted to assess cells migration ability. Cell counting kit-8 and colony formation assays were performed to detect cells proliferation ability. NOD/SCID/γc(null) (NOG) mice model was adopted to investigate functions of MNS1 in vivo. RESULTS The expression of MNS1, which is elevated in most HCC tissues, correlated with poor survival in HCC patients. Functional experiments revealed the oncogenic role of MNS1, which promotes HCC growth and metastasis through AKT-dependent modulation of β-catenin. β-Catenin expression was crucial for MNS1's oncogenic effects. MNS1 indirectly translocated β-catenin from the cytoplasm to the nucleus via the MNS1-GSK3β axis. CONCLUSIONS MNS1 promotes HCC growth and metastasis via activating PI3K/AKT signalling and may serve as an important prognostic biomarker as well as potential novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Yong Yi
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Min-Cheng Yu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Pei-Yao Fu
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gao Liu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Pei-Yun Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Ruo-Yu Guan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Cheng Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Bao-Ye Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Shuang-Jian Qiu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| |
Collapse
|
90
|
Luo XY, Wu KM, He XX. Advances in drug development for hepatocellular carcinoma: clinical trials and potential therapeutic targets. J Exp Clin Cancer Res 2021; 40:172. [PMID: 34006331 PMCID: PMC8130401 DOI: 10.1186/s13046-021-01968-w] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Although hepatocellular carcinoma (HCC) is one of the deadliest health burdens worldwide, few drugs are available for its clinical treatment. However, in recent years, major breakthroughs have been made in the development of new drugs due to intensive fundamental research and numerous clinical trials in HCC. Traditional systemic therapy schemes and emerging immunotherapy strategies have both advanced. Between 2017 and 2020, the United States Food and Drug Administration (FDA) approved a variety of drugs for the treatment of HCC, including multikinase inhibitors (regorafenib, lenvatinib, cabozantinib, and ramucirumab), immune checkpoint inhibitors (nivolumab and pembrolizumab), and bevacizumab combined with atezolizumab. Currently, there are more than 1000 ongoing clinical trials involving HCC, which represents a vibrant atmosphere in the HCC drug research and development field. Additionally, traditional Chinese medicine approaches are being gradually optimized. This review summarizes FDA-approved agents for HCC, elucidates promising agents evaluated in clinical phase I/II/III trials and identifies emerging targets for HCC treatment. In addition, we introduce the development of HCC drugs in China. Finally, we discuss potential problems in HCC drug therapy and possible future solutions and indicate future directions for the development of drugs for HCC treatment.
Collapse
Affiliation(s)
- Xiang-Yuan Luo
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kong-Ming Wu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xing-Xing He
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
91
|
Bi G, Zhu D, Bian Y, Huang Y, Zhan C, Yang Y, Wang Q. Knockdown of GTF2E2 inhibits the growth and progression of lung adenocarcinoma via RPS4X in vitro and in vivo. Cancer Cell Int 2021; 21:181. [PMID: 33757492 PMCID: PMC7989205 DOI: 10.1186/s12935-021-01878-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is one of the most common malignancies worldwide. However, the molecular mechanism of LUAD tumorigenesis and development remains unclear. The purpose of this study was to comprehensively illustrate the role of GTF2E2 in the growth and progression of LUAD. Methods and materials We obtained the mRNA expression data from The Cancer Genome Atlas, Gene Expression Omnibus database, and our institution. Systematic bioinformatical analyses were performed to investigate the expression and prognostic value of GTF2E2 in LUAD. The results were validated by immunohistochemistry and qPCR. The effect of knocking down GTF2E2 using two short hairpin RNAs was investigated by in vitro and in vivo assays. Subsequently, shotgun liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) analyses were applied to identified potential GTF2E2 interacting proteins, and the downstream molecular mechanisms of GTF2E2-signaling were further explored by a series of cellular functional assays. Results We found that GTF2E2 expression was significantly increased in LUAD tissue compared with adjacent normal tissue and was negatively associated with patients’ overall survival. Besides, we demonstrated that GTF2E2 knockdown inhibited LUAD cell proliferation, migration, invasion, and promote apoptosis in vitro, as well as attenuated tumor growth in vivo. Results from LC–MS/MS suggested that RPS4X might physically interact with GTF2E2 and mediated GTF2E2’s regulatory effect on LUAD development through the mTOR pathway. Conclusion Our findings indicate that GTF2E2 promotes LUAD development by activating RPS4X. Therefore, GTF2E2 might serve as a promising biomarker for the diagnosis and prognosis of LUAD patients, thus shedding light on the precise and personalized therapy for LUAD in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01878-z.
Collapse
Affiliation(s)
- Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Donglin Zhu
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215000, Jiangsu Province, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Yong Yang
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215000, Jiangsu Province, China.
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| |
Collapse
|
92
|
el Hage A, Dormond O. Combining mTOR Inhibitors and T Cell-Based Immunotherapies in Cancer Treatment. Cancers (Basel) 2021; 13:1359. [PMID: 33802831 PMCID: PMC8002586 DOI: 10.3390/cancers13061359] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
mTOR regulates several processes that control tumor development, including cancer cell growth, angiogenesis and the immune response to tumor. Accordingly, mTOR inhibitors have been thoroughly explored in cancer therapy but have failed to provide long-lasting anticancer benefits. Several resistance mechanisms that counteract the antitumor effect of mTOR inhibitors have been identified and have highlighted the need to use mTOR inhibitors in combination therapies. In this context, emerging evidence has demonstrated that mTOR inhibitors, despite their immunosuppressive properties, provide anticancer benefits to immunotherapies. In fact, mTOR inhibitors also display immunostimulatory effects, in particular by promoting memory CD8+ T cell generation. Hence, mTOR inhibitors represent a therapeutic opportunity to promote antitumor CD8 responses and to boost the efficacy of different modalities of cancer immunotherapy. In this context, strategies to reduce the immunosuppressive activity of mTOR inhibitors and therefore to shift the immune response toward antitumor immunity will be useful. In this review, we present the different classes of mTOR inhibitors and discuss their effect on immune cells by focusing mainly on CD8+ T cells. We further provide an overview of the different preclinical studies that investigated the anticancer effects of mTOR inhibitors combined to immunotherapies.
Collapse
Affiliation(s)
| | - Olivier Dormond
- Department of Visceral Surgery, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| |
Collapse
|
93
|
Autophagy, an accomplice or antagonist of drug resistance in HCC? Cell Death Dis 2021; 12:266. [PMID: 33712559 PMCID: PMC7954824 DOI: 10.1038/s41419-021-03553-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal malignancy characterized by poor prognosis and a low 5-year survival rate. Drug treatment is proving to be effective in anti-HCC. However, only a small number of HCC patients exhibit sensitive responses, and drug resistance occurs frequently in advanced patients. Autophagy, an evolutionary process responsible for the degradation of cellular substances, is closely associated with the acquisition and maintenance of drug resistance for HCC. This review focuses on autophagic proteins and explores the intricate relationship between autophagy and cancer stem cells, tumor-derived exosomes, and noncoding RNA. Clinical trials involved in autophagy inhibition combined with anticancer drugs are also concerned.
Collapse
|
94
|
Han J, Bai Y, Wang J, Xie XL, Li AD, Ding Q, Cui ZJ, Yin J, Jiang XY, Jiang HQ. REC8 promotes tumor migration, invasion and angiogenesis by targeting the PKA pathway in hepatocellular carcinoma. Clin Exp Med 2021; 21:479-492. [PMID: 33677646 DOI: 10.1007/s10238-021-00698-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/18/2021] [Indexed: 01/07/2023]
Abstract
REC8 is a member of the cohesin family, and its abnormal activation has been detected in cancer cells. This study explored the role and possible mechanism of REC8 in hepatocellular carcinoma (HCC). A total of 40 pairs of HCC and adjacent tissues were collected, and the clinical significance of REC8 expression in HCC was evaluated. REC8 expression in human HCC tissues and HCC cell lines was investigated by quantitative real-time PCR, Western blotting, immunohistochemistry and immunofluorescence staining. The biological functions of REC8 in HCC cell lines were detected by wound-healing assay, Matrigel invasion assay and tube formation assay. The proteins interacting with REC8 were identified by mass spectrometry after immunoprecipitation screening. There was a correlation between the high expression of REC8 and positive alpha-fetoprotein levels. The expression level of REC8 protein in HCC tissues was higher than that in adjacent tissues. REC8 has mainly located in the nucleus of HCC tissue cells and HCC cell lines, but it was expressed in the cytoplasm of adjacent normal tissue cells and hepatocytes. The results of wound healing, transwell invasion and tubular formation assays indicated that the overexpression of REC8 accelerated the metastasis of HCC in vitro; however, metastasis was suppressed after REC8 was silenced by small interference RNA. A total of 57 differentially expressed proteins were identified by mass spectrometry, and it was found that REC8 and PKA RII-α staining was colocalized in the nucleus. The expression levels of MMP-9 and VEGF-C were decreased after treatment with the PKA inhibitor H89. Overall, REC8 promotes the migration, invasion and angiogenesis of HCC cells through the PKA pathway.
Collapse
Affiliation(s)
- Jing Han
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei, China.,Department of Gastroenterology, The First Central Hospital of Baoding, Baoding, 071000, Hebei, China
| | - Yun Bai
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Jia Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Xiao-Li Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Ai-di Li
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Qian Ding
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Zi-Jin Cui
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Jie Yin
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Xiao-Yu Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Hui-Qing Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
95
|
Khedri M, Kooshki H, Taheri RA. Rapamycin attenuates gene expression of programmed cell death protein-ligand 1 and Foxp3 in the brain; a novel mechanism proposed for immunotherapy in the brain. Res Pharm Sci 2021; 16:165-172. [PMID: 34084203 PMCID: PMC8102928 DOI: 10.4103/1735-5362.310523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 01/04/2021] [Accepted: 02/28/2021] [Indexed: 11/14/2022] Open
Abstract
Background and purpose: Programmed cell death protein-1 (PD1) expresses on the cell surface of the activated lymphocytes and at least a subset of Foxp3+ regulatory T cells. The binding of PD1 to its ligands including PD-L1 and PD-L2 leads to deliver an inhibitory signal to the activated cells. Although PD1/PD-L signal deficiency can lead to failure in the self-tolerance and development of autoimmunity disorders, PD1 blockade with monoclonal antibodies is considered an effective strategy in cancer immunotherapy. Determining effective environmental factors such as stress conditions on the expression of PD1 and PD-L1 genes can provide an immunotherapeutic strategy to control PD1 signaling in the patients Mammalian target of rapamycin signaling is a stress-responsive pathway in the cells that can be blocked by rapamycin. In this study, the effects of rapamycin on the expression of immunoregulatory genes were investigated in the stress condition. Experimental approach: Daily administration of rapamycin (1.5 mg/kg per day) was used in the mouse model of restraint stress and the relative expression of PD1, PD-L1, and Foxp3 genes in the brain and spleen were evaluated using quantitative real-time polymerase chain reaction method. Findings/Results: With our observation, daily restraint stress ceased rapamycin to decrease the expression of Foxp3 in the brain significantly. These findings would be beneficial in developing tolerance to autoimmune diseases and finding immunopathology of stress in the CNS. In another observation, daily administration of rapamycin decreased the expression of PD-L1 in the brain cells of mice. In the spleen samples, significant alteration in genes of interest expression was not detected for all groups of the study. Conclusion and implications: Downregulation of the PD-L1 gene in the brain induced by rapamycin can be followed in future experiences for preventing immunosuppressive effects of PD/PD-L1 signal in the brain.
Collapse
Affiliation(s)
- Mostafa Khedri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, I.R. Iran.,Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Hamid Kooshki
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, I.R. Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
96
|
Cao Z, Kon N, Liu Y, Xu W, Wen J, Yao H, Zhang M, Wu Z, Yan X, Zhu WG, Gu W, Wang D. An unexpected role for p53 in regulating cancer cell-intrinsic PD-1 by acetylation. SCIENCE ADVANCES 2021; 7:7/14/eabf4148. [PMID: 33789902 PMCID: PMC8011965 DOI: 10.1126/sciadv.abf4148] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/10/2021] [Indexed: 05/30/2023]
Abstract
Cancer cell-intrinsic programmed cell death protein-1 (PD-1) has emerged as a tumor regulator in an immunity-independent manner, but its precise role in modulating tumor behaviors is complex, and how PD-1 is regulated in cancer cells is largely unknown. Here, we identified PD-1 as a direct target of tumor suppressor p53. Notably, p53 acetylation at K120/164 played a critical role in p53-mediated PD-1 transcription. Acetylated p53 preferentially recruited acetyltransferase cofactors onto PD-1 promoter, selectively facilitating PD-1 transcription by enhancing local chromatin acetylation. Reexpression of PD-1 in cancer cells inhibited tumor growth, whereas depletion of cancer cell-intrinsic PD-1 compromised p53-dependent tumor suppression. Moreover, histone deacetylase inhibitor (HDACi) activated PD-1 in an acetylated p53-dependent manner, supporting a synergistic effect by HDACi and p53 on tumor suppression via stimulating cancer cell-intrinsic PD-1. Our study reveals a mechanism for activating cancer cell-intrinsic PD-1 and indicates that p53-mediated PD-1 activation is critically involved in tumor suppression in an immunity-independent manner.
Collapse
Affiliation(s)
- Zhijie Cao
- State Key Laboratory of Medical Molecular Biology and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Ning Kon
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yajing Liu
- State Key Laboratory of Medical Molecular Biology and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Wenbin Xu
- State Key Laboratory of Medical Molecular Biology and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jia Wen
- State Key Laboratory of Medical Molecular Biology and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Han Yao
- State Key Laboratory of Medical Molecular Biology and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Mi Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang 110122, China
| | - Zhen Wu
- State Key Laboratory of Medical Molecular Biology and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xiaojun Yan
- State Key Laboratory of Medical Molecular Biology and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Donglai Wang
- State Key Laboratory of Medical Molecular Biology and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
97
|
Zha H, Jiang Y, Wang X, Shang J, Wang N, Yu L, Zhao W, Li Z, An J, Zhang X, Chen H, Zhu B, Li Z. Non-canonical PD-1 signaling in cancer and its potential implications in clinic. J Immunother Cancer 2021; 9:jitc-2020-001230. [PMID: 33593825 PMCID: PMC7888367 DOI: 10.1136/jitc-2020-001230] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death 1 (PD-1)-based immunotherapy has revolutionized the treatment of various cancers. However, only a certain group of patients benefit from PD-1 blockade therapy and many patients succumb to hyperprogressive disease. Although, CD8 T cells and conventional T cells are generally considered to be the primary source of PD-1 in cancer, accumulating evidence suggests that other distinct cell types, including B cells, regulatory T cells, natural killer cells, dendritic cells, tumor-associated macrophages and cancer cells, also express PD-1. Hence, the response of patients with cancer to PD-1 blockade therapy is a cumulative effect of anti-PD-1 antibodies acting on a myriad of cell types. Although, the contribution of CD8 T cells to PD-1 blockade therapy has been well-established, recent studies also suggest the involvement of non-canonical PD-1 signaling in blockade therapy. This review discusses the role of non-canonical PD-1 signaling in distinct cell types and explores how the available knowledge can improve PD-1 blockade immunotherapy, particularly in identifying novel biomarkers and combination treatment strategies.
Collapse
Affiliation(s)
- Haoran Zha
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Ying Jiang
- Postgraduate Training Base in Rocket Army Special Medical Center of the PLA, Jinzhou Medical University, Jinzhou, P.R. China
| | - Xi Wang
- Otorhinolaryngology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Jin Shang
- Department of Health Service, Guard Bureau of the Joint Staff Department, Central Military Commission of PLA, Beijing, P.R. China
| | - Ning Wang
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Lei Yu
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Wei Zhao
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Zhihua Li
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Juan An
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Xiaochun Zhang
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Huoming Chen
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Zhaoxia Li
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| |
Collapse
|
98
|
Wu L, Cai S, Deng Y, Zhang Z, Zhou X, Su Y, Xu D. PD-1/PD-L1 enhanced cisplatin resistance in gastric cancer through PI3K/AKT mediated P-gp expression. Int Immunopharmacol 2021; 94:107443. [PMID: 33581579 DOI: 10.1016/j.intimp.2021.107443] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Programmed cell death receptor 1 (PD-1) is an immunosuppressive molecule expressed on T cells, and its ligand (PD-L1) which expressed on tumor cells play pivotal roles in regulating host immune responses. However, little is known whether PD-1/PD-L1 axis could directly activates intracellular oncogenic signaling pathways in tumor cells, leading to tumor resistance. METHODS In the present study, the expression of PD-1 and PD-L1 in the tissues of gastric cancer was detected by western blot and immunofluorescence. The effect of PD-L1-Fc and cisplatin on resistant gastric cancer cells was examined by MTT assay and Flow Cytometry. In addition. The effect of PD-L1-Fc on the expression of P-gp in gastric cancer cells and resistant gastric cancer cells was detected by quantitative real-time reverse-transcription PCR (qRT-PCR) and western blot. The molecular mechanisms of the regulation of cisplatin and PD-L1-Fc treatment were evaluated by western blot. RESULTS We found that the level of PD-1 was significantly increased in human gastric cancer tissues and drug-resistant gastric cancer cells and P-gp was the same result. The PD-L1 could reduce the level of cell damage caused by cisplatin. In addition, we found PD-L1 can also up-regulate the expression of P-gp. Mechanistically, PD-L1 activated the PI3K/AKT signaling pathway in which PI3K/AKT pathway inhibition attenuated the upregulation of P-gp. CONCLUSION PD-1/PD-L1 enhanced cisplatin resistance in gastric cancer through PI3K/AKT mediated P-gp expression.
Collapse
Affiliation(s)
- Lijun Wu
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Shiyi Cai
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yiyun Deng
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhe Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiehai Zhou
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China
| | - Yong Su
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dujuan Xu
- School of Pharmacy, Anhui Medical University, Hefei, China; The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
99
|
Del Valle L, Dai L, Lin HY, Lin Z, Chen J, Post SR, Qin Z. Role of EIF4G1 network in non-small cell lung cancers (NSCLC) cell survival and disease progression. J Cell Mol Med 2021; 25:2795-2805. [PMID: 33539648 PMCID: PMC7957206 DOI: 10.1111/jcmm.16307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/07/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Although the Eukaryotic Translation Initiation Factor 4 Gamma 1 (EIF4G1) has been found overexpressed in a variety of cancers, its role in non–small cell lung cancers (NSCLC) pathogenesis especially in immunoregulatory functions, its clinical relevance and therapeutic potential remain largely unknown. By using cancer patients tissue assays, the results indicate that EIF4G1 expressional levels are much higher in NSCLC tissues than in adjacent or normal lung tissues, which are also associated with NSCLC patient survival. By using an RNA‐Sequencing based pipeline, the data show that EIF4G1 has a significant association with immune checkpoint molecules such as PD‐1/PD‐L1 in NSCLC. EIF4G1 small‐molecule inhibitors effectively repress NSCLC growth in cell culture and xenograft animal models. Protein array results identify the signature of proteins controlled by EIF4G1 in NSCLC cells, in which new candidates such as MUC1 and NRG1 are required for NSCLC survival and tumorigenesis with clinical relevance. Taken together, these results have for the first time demonstrated the immunoregulatory functions, clinical relevance and therapeutic potential of the EIF4G1 network in NSCLC, which may represent a promising and novel target to improve lung cancer treatment.
Collapse
Affiliation(s)
- Luis Del Valle
- Department of Pathology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA, USA
| | - Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Zhen Lin
- Department of Pathology, Tulane University Health Sciences Center, Tulane Cancer Center, New Orleans, LA, USA
| | - Jungang Chen
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Steven R Post
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
100
|
Liotti F, Kumar N, Prevete N, Marotta M, Sorriento D, Ieranò C, Ronchi A, Marino FZ, Moretti S, Colella R, Puxeddu E, Paladino S, Kano Y, Ohh M, Scala S, Melillo RM. PD-1 blockade delays tumor growth by inhibiting an intrinsic SHP2/Ras/MAPK signalling in thyroid cancer cells. J Exp Clin Cancer Res 2021; 40:22. [PMID: 33413561 PMCID: PMC7791757 DOI: 10.1186/s13046-020-01818-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The programmed cell death-1 (PD-1) receptor and its ligands PD-L1 and PD-L2 are immune checkpoints that suppress anti-cancer immunity. Typically, cancer cells express the PD-Ls that bind PD-1 on immune cells, inhibiting their activity. Recently, PD-1 expression has also been found in cancer cells. Here, we analysed expression and functions of PD-1 in thyroid cancer (TC). METHODS PD-1 expression was evaluated by immunohistochemistry on human TC samples and by RT-PCR, western blot and FACS on TC cell lines. Proliferation and migration of TC cells in culture were assessed by BrdU incorporation and Boyden chamber assays. Biochemical studies were performed by western blot, immunoprecipitation, pull-down and phosphatase assays. TC cell tumorigenicity was assessed by xenotransplants in nude mice. RESULTS Human TC specimens (47%), but not normal thyroids, displayed PD-1 expression in epithelial cells, which significantly correlated with tumour stage and lymph-node metastasis. PD-1 was also constitutively expressed on TC cell lines. PD-1 overexpression/stimulation promoted TC cell proliferation and migration. Accordingly, PD-1 genetic/pharmacologic inhibition caused the opposite effects. Mechanistically, PD-1 recruited the SHP2 phosphatase to the plasma membrane and potentiated its phosphatase activity. SHP2 enhanced Ras activation by dephosphorylating its inhibitory tyrosine 32, thus triggering the MAPK cascade. SHP2, BRAF and MEK were necessary for PD-1-mediated biologic functions. PD-1 inhibition decreased, while PD-1 enforced expression facilitated, TC cell xenograft growth in mice by affecting tumour cell proliferation. CONCLUSIONS PD-1 circuit blockade in TC, besides restoring anti-cancer immunity, could also directly impair TC cell growth by inhibiting the SHP2/Ras/MAPK signalling pathway.
Collapse
Affiliation(s)
- Federica Liotti
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy
| | - Narender Kumar
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy
| | - Nella Prevete
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria Marotta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Caterina Ieranò
- Functional Genomics, Istituto Nazionale Tumouri "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Andrea Ronchi
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federica Zito Marino
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sonia Moretti
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Renato Colella
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Efiso Puxeddu
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Yoshihito Kano
- Department of Clinical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Biochemistry Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Stefania Scala
- Functional Genomics, Istituto Nazionale Tumouri "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Rosa Marina Melillo
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|