51
|
The Present and the Future of Genetic Testing in Familial Hypercholesterolemia: Opportunities and Caveats. Curr Atheroscler Rep 2018; 20:31. [PMID: 29779130 DOI: 10.1007/s11883-018-0731-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW We summarize recent advances in the understanding of genetic testing in familial hypercholesterolemia (FH), the use of expanded FH next-generation sequencing panels, and directions for future research. RECENT FINDINGS The uptake of massively parallel sequencing in research and diagnostic laboratories has enabled expanded testing for FH and its phenocopies, with the added advantage that copy number variants can be detected. However, increasing the number of genes tested increases the number of variants detected, which may or may not be pathogenic. Guidelines for assessing variant pathogenicity will assist the provision of accurate and consistent interpretations between centers. Expanded FH panels can identify mutations in other relevant genes, such as APOE, LIPA, and ABCG5/8 and enable the identification of polygenic hypercholesterolemia using LDL genetic risk scores. Increased awareness and understanding of genomics by the public, patients, and health professionals is critical for effectively translating into practice new advances in genetic testing for FH.
Collapse
|
52
|
Séguro F, Rabès JP, Taraszkiewicz D, Ruidavets JB, Bongard V, Ferrières J. Genetic diagnosis of familial hypercholesterolemia is associated with a premature and high coronary heart disease risk. Clin Cardiol 2018; 41:385-391. [PMID: 29574850 DOI: 10.1002/clc.22881] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is a common autosomal dominant disease associated with premature coronary heart disease (CHD). Studies tend to show that patients with FH associated with an identified mutation (mutation+ FH) are at higher risk than patients without an identified mutation (mutation- FH). We compared the clinical and biological profile and the risk of CHD in patients with mutation+ FH and mutation- FH. HYPOTHESIS In addition to LDL-C, a pathogenic mutation predicts premature CHD in FH. METHODS We successively included all patients with suspected FH (LDL-C > 190 mg/dL if age > 18 years; LDL-C > 160 mg/dL if age < 18 years) and compared patients with a pathogenic mutation with those without an identified pathogenic mutation. RESULTS We studied 179 patients with mutation+ FH and 147 with mutation- FH. The mean age was 44 (± 18) years. The lipid profile was more atherogenic in those with mutation+ FH, who had higher LDL-C (254 ± 69 mg/dL vs 218 ± 35 mg/dL; P < 0.01) and lower HDL-C (53 ± 14 mg/dL vs 58 ± 17 mg/dL; P < 0.01). Despite the more atherogenic nonlipid cardiovascular profile of patients with mutation- FH, the age of CHD onset was earlier in patients with mutation+ FH (48 vs 56 years; P = 0.026). After multiple adjustment, the presence of a positive mutation was significantly associated with premature CHD (OR: 3.0, 95% CI: 1.38-6.55, P < 0.01). CONCLUSIONS Patients with mutation+ FH have a more atherogenic lipid profile and a 3-fold higher risk of premature CHD, as well as earlier onset of CHD, than patients with mutation- FH.
Collapse
Affiliation(s)
- Florent Séguro
- Department of Epidemiology, Health Economics and Public Health, UMR 1027 INSERM-Université Toulouse 3, Toulouse, France.,Department of Cardiology, Toulouse-Rangueil University Hospital, Toulouse University School of Medicine, Toulouse, France
| | - Jean-Pierre Rabès
- Service de Biochimie et Génétique Moléculaire, AP-HP, Hôpitaux Universitaires Paris Ile-de-France Ouest, Boulogne-Billancourt, France.,UFR des Sciences de la Santé Simone Veil, Université Versailles Saint-Quentin-en-Yvelines, France
| | - Dorota Taraszkiewicz
- Department of Cardiology, Toulouse-Rangueil University Hospital, Toulouse University School of Medicine, Toulouse, France
| | - Jean-Bernard Ruidavets
- Department of Epidemiology, Health Economics and Public Health, UMR 1027 INSERM-Université Toulouse 3, Toulouse, France
| | - Vanina Bongard
- Department of Epidemiology, Health Economics and Public Health, UMR 1027 INSERM-Université Toulouse 3, Toulouse, France
| | - Jean Ferrières
- Department of Epidemiology, Health Economics and Public Health, UMR 1027 INSERM-Université Toulouse 3, Toulouse, France.,Department of Cardiology, Toulouse-Rangueil University Hospital, Toulouse University School of Medicine, Toulouse, France
| |
Collapse
|
53
|
Kalayinia S, Goodarzynejad H, Maleki M, Mahdieh N. Next generation sequencing applications for cardiovascular disease. Ann Med 2018; 50:91-109. [PMID: 29027470 DOI: 10.1080/07853890.2017.1392595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The Human Genome Project (HGP), as the primary sequencing of the human genome, lasted more than one decade to be completed using the traditional Sanger's method. At present, next-generation sequencing (NGS) technology could provide the genome sequence data in hours. NGS has also decreased the expense of sequencing; therefore, nowadays it is possible to carry out both whole-genome (WGS) and whole-exome sequencing (WES) for the variations detection in patients with rare genetic diseases as well as complex disorders such as common cardiovascular diseases (CVDs). Finding new variants may contribute to establishing a risk profile for the pathology process of diseases. Here, recent applications of NGS in cardiovascular medicine are discussed; both Mendelian disorders of the cardiovascular system and complex genetic CVDs including inherited cardiomyopathy, channelopathies, stroke, coronary artery disease (CAD) and are considered. We also state some future use of NGS in clinical practice for increasing our information about the CVDs genetics and the limitations of this new technology. Key messages Traditional Sanger's method was the mainstay for Human Genome Project (HGP); Sanger sequencing has high fidelity but is slow and costly as compared to next generation methods. Within cardiovascular medicine, NGS has been shown to be successful in identifying novel causative mutations and in the diagnosis of Mendelian diseases which are caused by a single variant in a single gene. NGS has provided the opportunity to perform parallel analysis of a great number of genes in an unbiased approach (i.e. without knowing the underlying biological mechanism) which probably contribute to advance our knowledge regarding the pathology of complex diseases such as CVD.
Collapse
Affiliation(s)
- Samira Kalayinia
- a Cardiogenetic Research Laboratory , Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences , Tehran , Iran
| | | | - Majid Maleki
- a Cardiogenetic Research Laboratory , Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Nejat Mahdieh
- a Cardiogenetic Research Laboratory , Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
54
|
New Sequencing technologies help revealing unexpected mutations in Autosomal Dominant Hypercholesterolemia. Sci Rep 2018; 8:1943. [PMID: 29386597 PMCID: PMC5792649 DOI: 10.1038/s41598-018-20281-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/15/2018] [Indexed: 01/25/2023] Open
Abstract
Autosomal dominant hypercholesterolemia (ADH) is characterized by elevated LDL-C levels leading to coronary heart disease. Four genes are implicated in ADH: LDLR, APOB, PCSK9 and APOE. Our aim was to identify new mutations in known genes, or in new genes implicated in ADH. Thirteen French families with ADH were recruited and studied by exome sequencing after exclusion, in their probands, of mutations in the LDLR, PCSK9 and APOE genes and fragments of exons 26 and 29 of APOB gene. We identified in one family a p.Arg50Gln mutation in the APOB gene, which occurs in a region not usually associated with ADH. Segregation and in-silico analysis suggested that this mutation is disease causing in the family. We identified in another family with the p.Ala3396Thr mutation of APOB, one patient with a severe phenotype carrying also a mutation in PCSK9: p.Arg96Cys. This is the first compound heterozygote reported with a mutation in APOB and PCSK9. Functional studies proved that the p.Arg96Cys mutation leads to increased LDL receptor degradation. This work shows that Next-Generation Sequencing (exome, genome or targeted sequencing) are powerful tools to find new mutations and identify compound heterozygotes, which will lead to better diagnosis and treatment of ADH.
Collapse
|
55
|
Usefulness of the genetic risk score to identify phenocopies in families with familial hypercholesterolemia? Eur J Hum Genet 2018; 26:570-578. [PMID: 29374275 DOI: 10.1038/s41431-017-0078-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/23/2017] [Accepted: 12/05/2017] [Indexed: 01/12/2023] Open
Abstract
Familial hypercholesterolemia (FH) is caused by mutations in LDLR (low-density lipoprotein receptor), APOB (apolipoprotein B), PCSK9 (proprotein convertase subtilisin/kexin type 9), or APOE (apolipoprotein E) genes in approximately 80% of the cases. Polygenic forms of hypercholesterolemia may be present among patients clinically diagnosed with FH but with no identified mutation (FH mutation-negative (FH/M-)). To address whether polygenic forms may explain phenocopies in FH families, we calculated a 6-single-nucleotide polymorphism (SNP) genetic risk score (GRS) in all members from five French FH families where a mutation was identified (FH/M+) as well as some phenocopies (FH/M-). In two families, three FH/M- patients present a high GRS suggesting a polygenic hypercholesterolemia for these phenocopies. However, a high GRS is also observed in nine FH/M+ patients and in four unaffected relatives from three families. These observations indicate that the GRS does not seem to be a good diagnostic tool at the individual level. Nevertheless, the GRS seems to be a contributor of the severity of hypercholesterolemia since patients who cumulate a mutation and a high GRS exhibit higher low-density lipoprotein cholesterol levels when compared to patients with only FH (p = 0.054) or only polygenic hypercholesterolemia (p = 0.0039). In conclusion, the GRS can be used as a marker of the severity of hypercholesterolemia but does not seem to be a reliable tool to distinguish phenocopies within FH families.
Collapse
|
56
|
Abstract
PURPOSE OF REVIEW Familial hypercholesterolaemia (FH) is an inherited disorder of low-density lipoprotein cholesterol (LDL-C) which is characterised by a raised cholesterol level from birth and a high risk of premature coronary heart disease. In this paper, we review the genetic basis of FH and its impact on the clinical presentation. RECENT FINDINGS Mutations in any of three genes (LDLR, APOB and PCSK9) are known to cause autosomal dominant FH, but a mutation can be found in only ∼40% of patients with a clinical diagnosis of FH. In the remainder, a polygenic aetiology is most likely, due to the co-inheritance of common LDL-C-raising variants. The cardiovascular presentation and management of FH will differ between patients based on their underlying genetic factors. New genotyping methods such as next-generation sequencing will provide us with better understanding of the genetic architecture of FH.
Collapse
Affiliation(s)
- Mahtab Sharifi
- Institute of Cardiovascular Science, University College London, 5 University St, London, WC1E 6JF, UK.,Department of Clinical Biochemistry, the Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
| | - Marta Futema
- Institute of Cardiovascular Science, University College London, 5 University St, London, WC1E 6JF, UK
| | - Devaki Nair
- Department of Clinical Biochemistry, the Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
| | - Steve E Humphries
- Institute of Cardiovascular Science, University College London, 5 University St, London, WC1E 6JF, UK.
| |
Collapse
|
57
|
Pek SLT, Dissanayake S, Fong JCW, Lin MX, Chan EZL, Tang JIS, Lee CW, Ong HY, Sum CF, Lim SC, Tavintharan S. Spectrum of mutations in index patients with familial hypercholesterolemia in Singapore: Single center study. Atherosclerosis 2017; 269:106-116. [PMID: 29353225 DOI: 10.1016/j.atherosclerosis.2017.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Familial hypercholesterolemia (FH) is an autosomal dominant genetic disease characterized by the presence of high plasma low density lipoproteins cholesterol (LDL-c). Patients with FH, with mutation detected, are at increased risk of premature cardiovascular disease compared to those without mutations. The aim of the study was to assess the type of mutations in patients, clinically diagnosed with FH in Singapore. METHODS Patients (probands) with untreated/highest on-treatment LDL-c>4.9 mmol/l were recruited (June 2015 to April 2017). Anthropometric, biochemical indices, blood and family history were collected. DNA was extracted and Next Generation Sequencing (NGS) was performed in 26 lipid-related genes, including LDLR, APOB and PCSK9, and validated using Sanger. Multiplex-ligation probe analyses for LDLR were performed to identify large mutation derangements. Based on HGVS nomenclature, LDLR mutations were classified as "Null"(nonsense, frameshift, large rearrangements) and "Defective"(point mutations which are pathogenic). RESULTS Ninety-six probands were recruited: mean age: (33.5 ± 13.6) years. 52.1% (n = 50) of patients had LDLR mutations, with 15 novel mutations, and 4.2% (n = 4) had APOB mutations. Total cholesterol (TC) and LDL-c were significantly higher in those with LDLR mutations compared to APOB and no mutations [(8.53 ± 1.52) vs. (6.93 ± 0.47) vs. (7.80 ± 1.32)] mmol/l, p = 0.012 and [(6.74 ± 0.35) vs. (5.29 ± 0.76) vs. (5.98 ± 1.23)] mmol/l, p=0.005, respectively. Patients with "null LDLR" mutations (n = 13) had higher TC and LDL-c than "defective LDLR" mutations (n = 35): [(9.21 ± 1.60) vs. (8.33 ± 1.41)]mmol/l, p = 0.034 and [(7.43 ± 1.47) vs. (6.53 ± 1.21)]mmol/l, p=0.017, respectively. CONCLUSIONS To our knowledge, this is the first report of mutation detection in patients with clinically suspected FH by NGS in Singapore. While percentage of mutations is similar to other countries, the spectrum locally differs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chee Wan Lee
- Cardiology, Khoo Teck Puat Hospital, 768828, Singapore
| | - Hean Yee Ong
- Cardiology, Khoo Teck Puat Hospital, 768828, Singapore
| | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre, 730676, Singapore; Division of Endocrinology, Khoo Teck Puat Hospital, 768828, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, 768828, Singapore; Diabetes Centre, Admiralty Medical Centre, 730676, Singapore; Division of Endocrinology, Khoo Teck Puat Hospital, 768828, Singapore; Saw Swee Hock School of Public Health, National University Hospital, 117549, Singapore
| | - Subramaniam Tavintharan
- Clinical Research Unit, Khoo Teck Puat Hospital, 768828, Singapore; Diabetes Centre, Admiralty Medical Centre, 730676, Singapore; Division of Endocrinology, Khoo Teck Puat Hospital, 768828, Singapore.
| |
Collapse
|
58
|
A novel indel variant in LDLR responsible for familial hypercholesterolemia in a Chinese family. PLoS One 2017; 12:e0189316. [PMID: 29228028 PMCID: PMC5724832 DOI: 10.1371/journal.pone.0189316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023] Open
Abstract
Familial hypercholesterolemia (FH) is an inherited disorder characterized by elevation of serum cholesterol bound to low-density lipoprotein. Mutations in LDLR are the major factors responsible for FH. In this study, we recruited a four-generation Chinese family with FH and identified the clinical features of hypercholesterolemia. All affected individuals shared a novel indel mutation (c.1885_1889delinsGATCATCAACC) in exon 13 of LDLR. The mutation segregated with the hypercholesterolemia phenotype in the family. To analyze the function of the indel, we established stable clones of mutant and wild-type LDLR in Hep G2 cells. The mutant LDLR was retained in the endoplasmic reticulum (ER) and failed to glycosylate via the Golgi. Moreover, the membrane LDLR was reduced and lost the ability to take up LDL. Our data also expand the spectrum of known LDLR mutations.
Collapse
|
59
|
Naeli P, Mirzadeh Azad F, Malakootian M, Seidah NG, Mowla SJ. Post-transcriptional Regulation of PCSK9 by miR-191, miR-222, and miR-224. Front Genet 2017; 8:189. [PMID: 29230236 PMCID: PMC5711823 DOI: 10.3389/fgene.2017.00189] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/13/2017] [Indexed: 12/24/2022] Open
Abstract
Since proprotein convertase subtilisin kexin 9 (PCSK9) discovery, a gene involved in LDL metabolism regulation and cardiovascular diseases (CVD), many therapeutic strategies have been introduced for direct targeting of PCSK9. The main goal of these strategies has been to reduce PCSK9 protein level either by application of antibodies or inhibition of its production. In this study, we have tried to discover microRNAs (miRNAs) which can target, and hence regulate, PCSK9 expression. Using bioinformatics tools, we selected three microRNAs with binding sites on 3′-UTR of PCSK9. The expression level of these miRNAs was examined in three different cell lines using real-time RT-PCR. We observed a reciprocal expression pattern between expression level of miR-191, miR-222, and miR-224 with that of PCSK9. Accordingly, the expression levels were highest in Huh7 cells which expressed the lowest level of PCSK9, compared to HepG2 and A549 cell lines. PCSK9 mRNA level also showed a significant decline in HepG2 cells transfected with the vectors overexpressing the aforementioned miRNAs. Furthermore, the miRNAs target sites were cloned in psiCHECK-2 vector, and a direct interaction of the miRNAs and the PCSK9 3′-UTR putative target sites was investigated by means of luciferase assay. Our findings revealed that miR-191, miR-222, and miR-224 can directly interact with PCSK9 3′-UTR and regulate its expression. In conclusion, our data introduces a role for miRNAs to regulate PCSK9 expression.
Collapse
Affiliation(s)
- Parisa Naeli
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Mirzadeh Azad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, QC, Canada
| | - Seyed J Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
60
|
Pirillo A, Garlaschelli K, Arca M, Averna M, Bertolini S, Calandra S, Tarugi P, Catapano AL. Spectrum of mutations in Italian patients with familial hypercholesterolemia: New results from the LIPIGEN study. ATHEROSCLEROSIS SUPP 2017; 29:17-24. [PMID: 28965616 DOI: 10.1016/j.atherosclerosissup.2017.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is an autosomal dominant disease characterized by elevated plasma levels of LDL-cholesterol that confers an increased risk of premature atherosclerotic cardiovascular disease. Early identification and treatment of FH patients can improve prognosis and reduce the burden of cardiovascular mortality. Aim of this study was to perform the mutational analysis of FH patients identified through a collaboration of 20 Lipid Clinics in Italy (LIPIGEN Study). METHODS We recruited 1592 individuals with a clinical diagnosis of definite or probable FH according to the Dutch Lipid Clinic Network criteria. We performed a parallel sequencing of the major candidate genes for monogenic hypercholesterolemia (LDLR, APOB, PCSK9, APOE, LDLRAP1, STAP1). RESULTS A total of 213 variants were detected in 1076 subjects. About 90% of them had a pathogenic or likely pathogenic variants. More than 94% of patients carried pathogenic variants in LDLR gene, 27 of which were novel. Pathogenic variants in APOB and PCSK9 were exceedingly rare. We found 4 true homozygotes and 5 putative compound heterozygotes for pathogenic variants in LDLR gene, as well as 5 double heterozygotes for LDLR/APOB pathogenic variants. Two patients were homozygous for pathogenic variants in LDLRAP1 gene resulting in autosomal recessive hypercholesterolemia. One patient was found to be heterozygous for the ApoE variant p.(Leu167del), known to confer an FH phenotype. CONCLUSIONS This study shows the molecular characteristics of the FH patients identified in Italy over the last two years. Full phenotypic characterization of these patients and cascade screening of family members is now in progress.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy.
| | - Katia Garlaschelli
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
| | - Marcello Arca
- Department of Internal Medicine and Medical Specialties, Sapienza University, Rome, Italy
| | - Maurizio Averna
- Biomedical Department of Internal Medicine and Specialistics (DIBIMIS), University of Palermo, Palermo, Italy
| | | | - Sebastiano Calandra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Patrizia Tarugi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| |
Collapse
|
61
|
Rashidi OM, H Nazar FA, Alama MN, Awan ZA. Interpreting the Mechanism of APOE (p.Leu167del) Mutation in the Incidence of Familial Hypercholesterolemia; An In-silico Approach. Open Cardiovasc Med J 2017; 11:84-93. [PMID: 29204218 PMCID: PMC5688386 DOI: 10.2174/1874192401711010084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 06/30/2017] [Accepted: 07/08/2017] [Indexed: 11/22/2022] Open
Abstract
Background: Apolipoprotein E (APOE) gene is a ligand protein in humans which mediates the metabolism of cholesterol by binding to the low-density lipoprotein receptor (LDLR). P.Leu167del mutation in APOE gene was recently connected with Familial Hypercholesterolemia, a condition associated with premature cardiovascular disease. The consequences of this mutation on the protein structure and its receptor binding capacity remain largely unknown. Objective: The current study aims to further decipher the underlying mechanism of this mutation using advanced software-based algorithms. The consequences of disrupting the leucine zipper by this mutation was studied at the structural and functional level of the APOE protein. Methods: 3D protein modeling for both APOE and LDLR (wild types), along with APOE (p.Leu167del) mutant type were generated using homology modeling template-based alignment. Structural deviation analysis was performed to evaluate the spatial orientation and the stability of the mutant APOE structure. Molecular docking analysis simulating APOE-LDLR protein interaction was carried out, in order to evaluate the impact of the mutation on the binding affinity. Result: Structural deviation analysis for APOE mutated model showed low degree of deviance scoring root-mean-square deviation, (RMSD) = 0.322 Å. Whereas Docking simulation revealed an enhanced molecular interaction towards the LDLR with an estimation of +171.03 kJ/mol difference in binding free energy. Conclusion: This in-silico study suggests that p.Leu167del is causing the protein APOE to associate strongly with its receptor, LDLR. This gain-of-function is likely hindering the ability of LDLR to be effectively recycled back to the surface of the hepatocytes to clear cholesterol from the circulation therefore leading to FH.
Collapse
Affiliation(s)
- Omran Mohammed Rashidi
- Department of Clinical Biochemistry. Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatima Amanullah H Nazar
- Department of Biology, Genomic and Biotechnology Section. Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed Nabil Alama
- Adult interventional cardiology, Cardiology unit, King Abdulaziz University Hospital (KAUH), Jeddah, Saudi Arabia
| | - Zuhier Ahmed Awan
- Department of Clinical Biochemistry. Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
62
|
Alallaf F, H.Nazar FA, Alnefaie M, Almaymuni A, Rashidi OM, Alhabib K, Alnouri F, Alama MN, Athar M, Awan Z. The Spectrum of Familial Hypercholesterolemia (FH) in Saudi Arabia: Prime Time for Patient FH Registry. Open Cardiovasc Med J 2017; 11:66-75. [PMID: 28868092 PMCID: PMC5564019 DOI: 10.2174/1874192401711010066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/27/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is a life-threatening inherited condition. Untreated patients have the risk to develop raised plasma levels of cholesterol, atherosclerosis and cardiovascular disease (CVD). If diagnosed and treated early in life, the pathological consequences due to atherosclerosis could be avoided and patients with FH can have an anticipated normal life. Mounting evidence suggests that FH is underdiagnosed and undertreated in all populations. The underlying molecular basis of FH is the presence of mutations in one or more genes in the low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB) or proprotein convertase subtilisin/kexin 9 (PCSK9). However, their prevalence is largely unknown in Saudi Arabia but given the high rates of consanguinity, the prevalence appears to be higher. Furthermore, the high prevalence of obesity and diabetes mellitus in Saudi Arabia increases the vascular disease burden in FH cases by adding additional CVD risk factors. OBJECTIVE This article explores the spectrum of FH-causing mutations in the highly consanguineous Saudi community, the need for establishing the Saudi FH registry, the challenges in creating gene databases, and cascade screening. CONCLUSION The establishment of FH registry and genetic testing should raise awareness not only among healthcare professionals, but the general population as well. It also helps to provide the best treatment regimen in a cost effective manner to this under-recognised population of FH patients.
Collapse
Affiliation(s)
- Faisal Alallaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Mekkah. Saudi Arabia
| | - Fatima Amanullah H.Nazar
- Department of Biology, Genomic and Biotechnology Section, Faculty of Science, King Abdulaziz University, Jeddah. Saudi Arabia
| | - Majed Alnefaie
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah. Saudi Arabia
| | - Adel Almaymuni
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah. Saudi Arabia
| | - Omran Mohammed Rashidi
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah. Saudi Arabia
| | - Khalid Alhabib
- Interventional Cardiology, King Fahad Cardiac Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Alnouri
- Cardiovascular Prevention and Rehabilitation Unit, Prince Sultan Cardiac Centre, Riyadh, Saudi Arabia
| | - Mohamed-Nabil Alama
- Adult interventional cardiology, Cardiology unit, King Abdulaziz University Hospital (KAUH), Jeddah, Saudi Arabia
| | - Mohammad Athar
- Department of Science and Technology, Umm Al-Qura University, Mekkah, Saudi Arabia
| | - Zuhier Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah. Saudi Arabia
| |
Collapse
|
63
|
Paththinige CS, Sirisena ND, Dissanayake V. Genetic determinants of inherited susceptibility to hypercholesterolemia - a comprehensive literature review. Lipids Health Dis 2017; 16:103. [PMID: 28577571 PMCID: PMC5457620 DOI: 10.1186/s12944-017-0488-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/17/2017] [Indexed: 02/08/2023] Open
Abstract
Hypercholesterolemia is a strong determinant of mortality and morbidity associated with cardiovascular diseases and a major contributor to the global disease burden. Mutations in four genes (LDLR, APOB, PCSK9 and LDLRAP1) account for the majority of cases with familial hypercholesterolemia. However, a substantial proportion of adults with hypercholesterolemia do not have a mutation in any of these four genes. This indicates the probability of having other genes with a causative or contributory role in the pathogenesis of hypercholesterolemia and suggests a polygenic inheritance of this condition. Here in, we review the recent evidence of association of the genetic variants with hypercholesterolemia and the three lipid traits; total cholesterol (TC), HDL-cholesterol (HDL-C) and LDL-cholesterol (LDL-C), their biological pathways and the associated pathogenetic mechanisms. Nearly 80 genes involved in lipid metabolism (encoding structural components of lipoproteins, lipoprotein receptors and related proteins, enzymes, lipid transporters, lipid transfer proteins, and activators or inhibitors of protein function and gene transcription) with single nucleotide variants (SNVs) that are recognized to be associated with hypercholesterolemia and serum lipid traits in genome-wide association studies and candidate gene studies were identified. In addition, genome-wide association studies in different populations have identified SNVs associated with TC, HDL-C and LDL-C in nearly 120 genes within or in the vicinity of the genes that are not known to be involved in lipid metabolism. Over 90% of the SNVs in both these groups are located outside the coding regions of the genes. These findings indicates that there might be a considerable number of unrecognized processes and mechanisms of lipid homeostasis, which when disrupted, would lead to hypercholesterolemia. Knowledge of these molecular pathways will enable the discovery of novel treatment and preventive methods as well as identify the biochemical and molecular markers for the risk prediction and early detection of this common, yet potentially debilitating condition.
Collapse
Affiliation(s)
- C S Paththinige
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka.
| | - N D Sirisena
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka
| | - Vhw Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka
| |
Collapse
|
64
|
Calandra S, Tarugi P, Bertolini S. Impact of rare variants in autosomal dominant hypercholesterolemia causing genes. Curr Opin Lipidol 2017; 28:267-272. [PMID: 28323660 DOI: 10.1097/mol.0000000000000414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The systematic analysis of the major candidate genes in autosomal dominant hypercholesterolemia (ADH) and the use of next-generation sequencing (NGS) technology have made possible the discovery of several rare gene variants whose pathogenic effect in most cases remains poorly defined. RECENT FINDINGS One major advance in the field has been the adoption of a set of international guidelines for the assignment of pathogenicity to low-density lipoprotein receptor (LDLR) gene variants based on the use of softwares, complemented with data available from literature and public databases. The clinical impact of several novel rare variants in LDLR, APOB, PCSK9, APOE genes have been reported in large studies describing patients with ADH found to be homozygotes/compound heterozygotes, double heterozygotes, or simple heterozygotes. In-vitro functional studies have been conducted to clarify the effect of some rare ApoB variants on LDL binding to LDLR and the impact of a rare ApoE variant on the uptake of VLDL and LDL by hepatocytes. SUMMARY The update of the ADH gene variants database and the classification of variants in categories of pathogenicity is a major advance in the understanding the pathophysiology of ADH and in the management of this disorder. The studies of molecularly characterized patients with ADH have emphasized the impact of a specific variant and the variable clinical expression of different genotypes. The functional studies of some variants have increased our understanding of the molecular bases of some forms of ADH.
Collapse
Affiliation(s)
- Sebastiano Calandra
- aDepartment of Biomedical, Metabolic and Neural Sciences bDepartment of Life Sciences, University of Modena and Reggio Emilia, Modena cDepartment of Internal Medicine, University of Genova, Genova, Italy
| | | | | |
Collapse
|
65
|
|
66
|
Seidah NG, Abifadel M, Prost S, Boileau C, Prat A. The Proprotein Convertases in Hypercholesterolemia and Cardiovascular Diseases: Emphasis on Proprotein Convertase Subtilisin/Kexin 9. Pharmacol Rev 2017; 69:33-52. [PMID: 27920219 DOI: 10.1124/pr.116.012989] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The secretory proprotein convertase (PC) family comprises nine members, as follows: PC1/3, PC2, furin, PC4, PC5/6, paired basic amino acid cleaving enzyme 4, PC7, subtilisin kexin isozyme 1/site 1 protease (SKI-1/S1P), and PC subtilisin/kexin type 9 (PCSK9). The first seven PCs cleave their substrates at single/paired basic residues and exhibit specific and often essential functions during development and/or in adulthood. The essential SKI-1/S1P cleaves membrane-bound transcription factors at nonbasic residues. In contrast, PCSK9 cleaves itself once, and the secreted inactive protease drags the low-density lipoprotein receptors (LDLR) and very LDLR (VLDLR) to endosomal/lysosomal degradation. Inhibitory PCSK9 monoclonal antibodies are now prescribed to treat hypercholesterolemia. This review focuses on the implication of PCs in cardiovascular functions and diseases, with a major emphasis on PCSK9. We present a phylogeny of the PCs and the analysis of PCSK9 haplotypes in modern and archaic human species. The absence of PCSK9 in mice led to the discovery of a sex- and tissue-specific subcellular distribution of the LDLR and VLDLR. PCSK9 inhibition may have other applications because it reduces inflammation and sepsis in a LDLR-dependent manner. Our present understanding of the cellular mechanism(s) that enables PCSK9 to induce the degradation of receptors is reviewed, as well as the consequences of its key natural mutations. The PCSK9 ongoing clinical trials are reviewed. Finally, how the other PCs may impact cardiovascular disease and the metabolic syndrome, and become relevant targets, is discussed.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, affiliated to Université de Montréal, QC, Canada (N.G.S., A.P.); LVTS, INSERM U1148, Hôpital Xavier-Bichat, Paris, France (M.A., C.B.); Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint-Joseph University, Beirut, Lebanon (M.A.); Department of Integrative Biology, Center for Theoretical Evolutionary Genomics, University of California Berkeley, Berkeley, California (S.P.); Department of Biology, Stanford University, Stanford, California (S.P.); and Département de Génétique, AP-HP, CHU Xavier Bichat, and Université Paris Diderot, Paris, France (C.B.)
| | - Marianne Abifadel
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, affiliated to Université de Montréal, QC, Canada (N.G.S., A.P.); LVTS, INSERM U1148, Hôpital Xavier-Bichat, Paris, France (M.A., C.B.); Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint-Joseph University, Beirut, Lebanon (M.A.); Department of Integrative Biology, Center for Theoretical Evolutionary Genomics, University of California Berkeley, Berkeley, California (S.P.); Department of Biology, Stanford University, Stanford, California (S.P.); and Département de Génétique, AP-HP, CHU Xavier Bichat, and Université Paris Diderot, Paris, France (C.B.)
| | - Stefan Prost
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, affiliated to Université de Montréal, QC, Canada (N.G.S., A.P.); LVTS, INSERM U1148, Hôpital Xavier-Bichat, Paris, France (M.A., C.B.); Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint-Joseph University, Beirut, Lebanon (M.A.); Department of Integrative Biology, Center for Theoretical Evolutionary Genomics, University of California Berkeley, Berkeley, California (S.P.); Department of Biology, Stanford University, Stanford, California (S.P.); and Département de Génétique, AP-HP, CHU Xavier Bichat, and Université Paris Diderot, Paris, France (C.B.)
| | - Catherine Boileau
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, affiliated to Université de Montréal, QC, Canada (N.G.S., A.P.); LVTS, INSERM U1148, Hôpital Xavier-Bichat, Paris, France (M.A., C.B.); Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint-Joseph University, Beirut, Lebanon (M.A.); Department of Integrative Biology, Center for Theoretical Evolutionary Genomics, University of California Berkeley, Berkeley, California (S.P.); Department of Biology, Stanford University, Stanford, California (S.P.); and Département de Génétique, AP-HP, CHU Xavier Bichat, and Université Paris Diderot, Paris, France (C.B.)
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, affiliated to Université de Montréal, QC, Canada (N.G.S., A.P.); LVTS, INSERM U1148, Hôpital Xavier-Bichat, Paris, France (M.A., C.B.); Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint-Joseph University, Beirut, Lebanon (M.A.); Department of Integrative Biology, Center for Theoretical Evolutionary Genomics, University of California Berkeley, Berkeley, California (S.P.); Department of Biology, Stanford University, Stanford, California (S.P.); and Département de Génétique, AP-HP, CHU Xavier Bichat, and Université Paris Diderot, Paris, France (C.B.)
| |
Collapse
|
67
|
Alkindi M, Siminovitch KA, Gupta M, Genest J. Monoclonal Antibodies for the Treatment of Hypercholesterolemia: Targeting PCSK9. Can J Cardiol 2016; 32:1552-1560. [DOI: 10.1016/j.cjca.2016.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/11/2022] Open
|
68
|
Leren TP, Strøm TB, Berge KE. Variable phenotypic expression of nonsense mutation p.Thr5* in the APOE gene. Mol Genet Metab Rep 2016; 9:67-70. [PMID: 27830118 PMCID: PMC5094269 DOI: 10.1016/j.ymgmr.2016.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 01/29/2023] Open
Abstract
Subjects with hypercholesterolemia who do not carry a mutation in the low density lipoprotein receptor gene, in the apolipoprotein B gene or in the proprotein convertase subtilisin/kexin type 9 gene, could possible carry a mutation in the apolipoprotein E (APOE) gene. DNA from 844 unrelated hypercholesterolemic subjects who did not carry a mutation in any of the three above mentioned genes, was subjected to DNA sequencing of the APOE gene. Two subjects were found to be heterozygous for mutation p.Thr5*. This mutation which generates a stop codon in the signal peptide, is assumed to prevent the synthesis of APOE. Family studies revealed that the mutation was carried on an APOE4 allele in both families. In one of the families only those who had an APOE2 allele as the second allele, had hypercholesterolemia. These were functionally hemizygous for APOE2 and presented with a Type III hyperlipoproteinemia phenotype. However, in the second family, hypercholesterolemia was observed in the index patient who had APOE3 as the second allele, but not in four heterozygous family members who also had APOE3 as the second allele. These findings underscore that the phenotypic expression of mutations in the APOE gene is variable and that the trait exhibits reduced penetrance.
Collapse
Affiliation(s)
- Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Knut Erik Berge
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
69
|
Ellis KL, Hooper AJ, Burnett JR, Watts GF. Progress in the care of common inherited atherogenic disorders of apolipoprotein B metabolism. Nat Rev Endocrinol 2016; 12:467-84. [PMID: 27199287 DOI: 10.1038/nrendo.2016.69] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Familial hypercholesterolaemia, familial combined hyperlipidaemia (FCH) and elevated lipoprotein(a) are common, inherited disorders of apolipoprotein B metabolism that markedly accelerate the onset of atherosclerotic cardiovascular disease (ASCVD). These disorders are frequently encountered in clinical lipidology and need to be accurately identified and treated in both index patients and their family members, to prevent the development of premature ASCVD. The optimal screening strategies depend on the patterns of heritability for each condition. Established therapies are widely used along with lifestyle interventions to regulate levels of circulating lipoproteins. New therapeutic strategies are becoming available, and could supplement traditional approaches in the most severe cases, but their long-term cost-effectiveness and safety have yet to be confirmed. We review contemporary developments in the understanding, detection and care of these highly atherogenic disorders of apolipoprotein B metabolism.
Collapse
Affiliation(s)
- Katrina L Ellis
- School of Medicine and Pharmacology, The University of Western Australia, PO Box X2213, Perth, Western Australia 6847, Australia
- Centre for Genetic Origins of Health and Disease, The University of Western Australia and Curtin University, 35 Stirling Highway, Crawley, Perth, Western Australia 6009, Australia
| | - Amanda J Hooper
- School of Medicine and Pharmacology, The University of Western Australia, PO Box X2213, Perth, Western Australia 6847, Australia
- PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Western Australia, Australia
- School of Pathology and Laboratory Medicine, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009, Australia
| | - John R Burnett
- School of Medicine and Pharmacology, The University of Western Australia, PO Box X2213, Perth, Western Australia 6847, Australia
- PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Western Australia, Australia
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Wellington Street Perth, Western Australia, Australia
| | - Gerald F Watts
- School of Medicine and Pharmacology, The University of Western Australia, PO Box X2213, Perth, Western Australia 6847, Australia
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Wellington Street Perth, Western Australia, Australia
| |
Collapse
|
70
|
Foody JM, Vishwanath R. Familial hypercholesterolemia/autosomal dominant hypercholesterolemia: Molecular defects, the LDL-C continuum, and gradients of phenotypic severity. J Clin Lipidol 2016; 10:970-986. [DOI: 10.1016/j.jacl.2016.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 01/17/2023]
|
71
|
Abstract
PURPOSE OF REVIEW Plasma lipids, namely cholesterol and triglyceride, and lipoproteins, such as low-density lipoprotein (LDL) and high-density lipoprotein, serve numerous physiological roles. Perturbed levels of these traits underlie monogenic dyslipidemias, a diverse group of multisystem disorders. We are on the verge of having a relatively complete picture of the human dyslipidemias and their components. RECENT FINDINGS Recent advances in genetics of plasma lipids and lipoproteins include the following: (1) expanding the range of genes causing monogenic dyslipidemias, particularly elevated LDL cholesterol; (2) appreciating the role of polygenic effects in such traits as familial hypercholesterolemia and combined hyperlipidemia; (3) accumulating a list of common variants that determine plasma lipids and lipoproteins; (4) applying exome sequencing to identify collections of rare variants determining plasma lipids and lipoproteins that via Mendelian randomization have also implicated gene products such as NPC1L1, APOC3, LDLR, APOA5, and ANGPTL4 as causal for atherosclerotic cardiovascular disease; and (5) using naturally occurring genetic variation to identify new drug targets, including inhibitors of apolipoprotein (apo) C-III, apo(a), ANGPTL3, and ANGPTL4. SUMMARY Here, we compile this disparate range of data linking human genetic variation to plasma lipids and lipoproteins, providing a "one stop shop" for the interested reader.
Collapse
Affiliation(s)
- Jacqueline S. Dron
- Departments of Medicine and Biochemistry, and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A - 1151 Richmond Street North, London, ON N6A 5B7 Canada
| | - Robert A. Hegele
- Departments of Medicine and Biochemistry, and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A - 1151 Richmond Street North, London, ON N6A 5B7 Canada
| |
Collapse
|
72
|
Safarova MS, Kullo IJ. My Approach to the Patient With Familial Hypercholesterolemia. Mayo Clin Proc 2016; 91:770-86. [PMID: 27261867 PMCID: PMC5374743 DOI: 10.1016/j.mayocp.2016.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/18/2016] [Accepted: 04/12/2016] [Indexed: 02/07/2023]
Abstract
Familial hypercholesterolemia (FH), a relatively common Mendelian genetic disorder, is associated with a dramatically increased lifetime risk of premature atherosclerotic cardiovascular disease due to elevated plasma low-density lipoprotein cholesterol (LDL-C) levels. The diagnosis of FH is based on clinical presentation or genetic testing. Early identification of patients with FH is of great public health importance because preventive strategies can lower the absolute lifetime cardiovascular risk and screening can detect affected relatives. However, low awareness, detection, and control of FH pose hurdles in the prevention of FH-related cardiovascular events. Of the estimated 0.65 million to 1 million patients with FH in the United States, less than 10% carry a diagnosis of FH. Based on registry data, a substantial proportion of patients with FH are receiving no or inadequate lipid-lowering therapy. Statins remain the mainstay of treatment for patients with FH. Lipoprotein apheresis and newly approved lipid-lowering drugs are valuable adjuncts to statin therapy, particularly when the LDL-C-lowering response is suboptimal. Monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9 provide an additional approximately 60% lowering of LDL-C levels and are approved for use in patients with FH. For homozygous FH, 2 new drugs that work independent of the LDL receptor pathway are available: an apolipoprotein B antisense oligonucleotide (mipomersen) and a microsomal triglyceride transfer protein inhibitor (lomitapide). This review attempts to critically examine the available data to provide a summary of the current evidence for managing patients with FH, including screening, diagnosis, treatment, and surveillance.
Collapse
Affiliation(s)
- Maya S Safarova
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester MN
| | - Iftikhar J Kullo
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester MN.
| |
Collapse
|
73
|
Cenarro A, Etxebarria A, de Castro-Orós I, Stef M, Bea AM, Palacios L, Mateo-Gallego R, Benito-Vicente A, Ostolaza H, Tejedor T, Martín C, Civeira F. The p.Leu167del Mutation in APOE Gene Causes Autosomal Dominant Hypercholesterolemia by Down-regulation of LDL Receptor Expression in Hepatocytes. J Clin Endocrinol Metab 2016; 101:2113-21. [PMID: 27014949 DOI: 10.1210/jc.2015-3874] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT The p.Leu167del mutation in the APOE gene has been associated with hyperlipidemia. OBJECTIVES Our objective was to determine the frequency of p.Leu167del mutation in APOE gene in subjects with autosomal dominant hypercholesterolemia (ADH) in whom LDLR, APOB, and PCSK9 mutations had been excluded and to identify the mechanisms by which this mutant apo E causes hypercholesterolemia. DESIGN The APOE gene was analyzed in a case-control study. SETTING The study was conducted at a University Hospital Lipid Clinic. PATIENTS OR OTHER PARTICIPANTS Two groups (ADH, 288 patients; control, 220 normolipidemic subjects) were included. INTERVENTION We performed sequencing of APOE gene and proteomic and cellular experiments. MAIN OUTCOME MEASURE To determine the frequency of the p.Leu167del mutation and the mechanism by which it causes hypercholesterolemia. RESULTS In the ADH group, nine subjects (3.1%) were carriers of the APOE c.500_502delTCC, p.Leu167del mutation, cosegregating with hypercholesterolemia in studied families. Proteomic quantification of wild-type and mutant apo E in very low-density lipoprotein (VLDL) from carrier subjects revealed that apo E3 is almost a 5-fold increase compared to mutant apo E. Cultured cell studies revealed that VLDL from mutation carriers had a significantly higher uptake by HepG2 and THP-1 cells compared to VLDL from subjects with E3/E3 or E2/E2 genotypes. Transcriptional down-regulation of LDLR was also confirmed. CONCLUSIONS p.Leu167del mutation in APOE gene is the cause of hypercholesterolemia in the 3.1% of our ADH subjects without LDLR, APOB, and PCSK9 mutations. The mechanism by which this mutation is associated to ADH is that VLDL carrying the mutant apo E produces LDLR down-regulation, thereby raising plasma low-density lipoprotein cholesterol levels.
Collapse
Affiliation(s)
- Ana Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis (A.C., I.d.C.-O., A.M.B., R.M.-G., F.C.), Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain; Unidad de Biofísica (Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular (A.E., A.B.-V., H.O., C.M.), Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain; Progenika Biopharma (M.S., L.P.), a Grifols Company, Derio, Spain; and Departamento de Anatomía (T.T.), Embriología y Genética, Universidad de Zaragoza, Spain
| | - Aitor Etxebarria
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis (A.C., I.d.C.-O., A.M.B., R.M.-G., F.C.), Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain; Unidad de Biofísica (Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular (A.E., A.B.-V., H.O., C.M.), Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain; Progenika Biopharma (M.S., L.P.), a Grifols Company, Derio, Spain; and Departamento de Anatomía (T.T.), Embriología y Genética, Universidad de Zaragoza, Spain
| | - Isabel de Castro-Orós
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis (A.C., I.d.C.-O., A.M.B., R.M.-G., F.C.), Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain; Unidad de Biofísica (Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular (A.E., A.B.-V., H.O., C.M.), Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain; Progenika Biopharma (M.S., L.P.), a Grifols Company, Derio, Spain; and Departamento de Anatomía (T.T.), Embriología y Genética, Universidad de Zaragoza, Spain
| | - Marianne Stef
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis (A.C., I.d.C.-O., A.M.B., R.M.-G., F.C.), Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain; Unidad de Biofísica (Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular (A.E., A.B.-V., H.O., C.M.), Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain; Progenika Biopharma (M.S., L.P.), a Grifols Company, Derio, Spain; and Departamento de Anatomía (T.T.), Embriología y Genética, Universidad de Zaragoza, Spain
| | - Ana M Bea
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis (A.C., I.d.C.-O., A.M.B., R.M.-G., F.C.), Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain; Unidad de Biofísica (Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular (A.E., A.B.-V., H.O., C.M.), Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain; Progenika Biopharma (M.S., L.P.), a Grifols Company, Derio, Spain; and Departamento de Anatomía (T.T.), Embriología y Genética, Universidad de Zaragoza, Spain
| | - Lourdes Palacios
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis (A.C., I.d.C.-O., A.M.B., R.M.-G., F.C.), Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain; Unidad de Biofísica (Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular (A.E., A.B.-V., H.O., C.M.), Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain; Progenika Biopharma (M.S., L.P.), a Grifols Company, Derio, Spain; and Departamento de Anatomía (T.T.), Embriología y Genética, Universidad de Zaragoza, Spain
| | - Rocío Mateo-Gallego
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis (A.C., I.d.C.-O., A.M.B., R.M.-G., F.C.), Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain; Unidad de Biofísica (Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular (A.E., A.B.-V., H.O., C.M.), Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain; Progenika Biopharma (M.S., L.P.), a Grifols Company, Derio, Spain; and Departamento de Anatomía (T.T.), Embriología y Genética, Universidad de Zaragoza, Spain
| | - Asier Benito-Vicente
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis (A.C., I.d.C.-O., A.M.B., R.M.-G., F.C.), Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain; Unidad de Biofísica (Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular (A.E., A.B.-V., H.O., C.M.), Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain; Progenika Biopharma (M.S., L.P.), a Grifols Company, Derio, Spain; and Departamento de Anatomía (T.T.), Embriología y Genética, Universidad de Zaragoza, Spain
| | - Helena Ostolaza
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis (A.C., I.d.C.-O., A.M.B., R.M.-G., F.C.), Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain; Unidad de Biofísica (Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular (A.E., A.B.-V., H.O., C.M.), Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain; Progenika Biopharma (M.S., L.P.), a Grifols Company, Derio, Spain; and Departamento de Anatomía (T.T.), Embriología y Genética, Universidad de Zaragoza, Spain
| | - Teresa Tejedor
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis (A.C., I.d.C.-O., A.M.B., R.M.-G., F.C.), Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain; Unidad de Biofísica (Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular (A.E., A.B.-V., H.O., C.M.), Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain; Progenika Biopharma (M.S., L.P.), a Grifols Company, Derio, Spain; and Departamento de Anatomía (T.T.), Embriología y Genética, Universidad de Zaragoza, Spain
| | - César Martín
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis (A.C., I.d.C.-O., A.M.B., R.M.-G., F.C.), Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain; Unidad de Biofísica (Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular (A.E., A.B.-V., H.O., C.M.), Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain; Progenika Biopharma (M.S., L.P.), a Grifols Company, Derio, Spain; and Departamento de Anatomía (T.T.), Embriología y Genética, Universidad de Zaragoza, Spain
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis (A.C., I.d.C.-O., A.M.B., R.M.-G., F.C.), Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain; Unidad de Biofísica (Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular (A.E., A.B.-V., H.O., C.M.), Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Spain; Progenika Biopharma (M.S., L.P.), a Grifols Company, Derio, Spain; and Departamento de Anatomía (T.T.), Embriología y Genética, Universidad de Zaragoza, Spain
| |
Collapse
|
74
|
Wintjens R, Bozon D, Belabbas K, MBou F, Girardet JP, Tounian P, Jolly M, Boccara F, Cohen A, Karsenty A, Dubern B, Carel JC, Azar-Kolakez A, Feillet F, Labarthe F, Gorsky AMC, Horovitz A, Tamarindi C, Kieffer P, Lienhardt A, Lascols O, Di Filippo M, Dufernez F. Global molecular analysis and APOE mutations in a cohort of autosomal dominant hypercholesterolemia patients in France. J Lipid Res 2016; 57:482-91. [PMID: 26802169 DOI: 10.1194/jlr.p055699] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 11/20/2022] Open
Abstract
Autosomal dominant hypercholesterolemia (ADH) is a human disorder characterized phenotypically by isolated high-cholesterol levels. Mutations in the low density lipoprotein receptor (LDLR), APOB, and proprotein convertase subtilisin/kexin type 9 (PCSK9) genes are well known to be associated with the disease. To characterize the genetic background associated with ADH in France, the three ADH-associated genes were sequenced in a cohort of 120 children and 109 adult patients. Fifty-one percent of the cohort had a possible deleterious variant in LDLR, 3.1% in APOB, and 1.7% in PCSK9. We identified 18 new variants in LDLR and 2 in PCSK9. Three LDLR variants, including two newly identified, were studied by minigene reporter assay confirming the predicted effects on splicing. Additionally, as recently an in-frame deletion in the APOE gene was found to be linked to ADH, the sequencing of this latter gene was performed in patients without a deleterious variant in the three former genes. An APOE variant was identified in three patients with isolated severe hypercholesterolemia giving a frequency of 1.3% in the cohort. Therefore, even though LDLR mutations are the major cause of ADH with a large mutation spectrum, APOE variants were found to be significantly associated with the disease. Furthermore, using structural analysis and modeling, the identified APOE sequence changes were predicted to impact protein function.
Collapse
Affiliation(s)
- René Wintjens
- Faculty of Pharmacy (CP206/04), Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | | | - Khaldia Belabbas
- Laboratoire Commun de Biologie et Génétiques Moléculaires (LCBGM), AP-HP (Assistance Publique-Hopitaux de Paris), Hôpital Saint-Antoine, F-75012, Paris, France
| | - Félicien MBou
- Service d'Endocrinologie, CHU du Lamentin, F-97232 Le Lamentin, Martinique, France
| | - Jean-Philippe Girardet
- Service de Gastroentérologie et Nutrition Pédiatrique, AP-HP, Hôpital Trousseau, F-75012, Paris, France
| | - Patrick Tounian
- Service de Gastroentérologie et Nutrition Pédiatrique, AP-HP, Hôpital Trousseau, F-75012, Paris, France
| | - Mathilde Jolly
- Service d'Endocrinologie, Diabétologie et Nutrition, CH Angers, F-49933, Angers, France
| | - Franck Boccara
- Service d'Endocrinologie, Diabétologie et Nutrition, CH Angers, F-49933, Angers, France
| | - Ariel Cohen
- Service d'Endocrinologie, Diabétologie et Nutrition, CH Angers, F-49933, Angers, France
| | - Alexandra Karsenty
- Service de Gastroentérologie et Nutrition Pédiatrique, AP-HP, Hôpital Trousseau, F-75012, Paris, France
| | - Béatrice Dubern
- Service de Gastroentérologie et Nutrition Pédiatrique, AP-HP, Hôpital Trousseau, F-75012, Paris, France
| | - Jean-Claude Carel
- Université Paris Diderot, Sorbonne Paris Cité, F-75019, Paris, France Service d'Endocrinologie Diabétologie Pédiatrique et Centre de Référence des Maladies Endocriniennes Rares de la Croissance, AP-HP, Hôpital Robert Debré, F-75019, Paris, France
| | - Ahlam Azar-Kolakez
- Université Paris Diderot, Sorbonne Paris Cité, F-75019, Paris, France Service d'Endocrinologie Diabétologie Pédiatrique et Centre de Référence des Maladies Endocriniennes Rares de la Croissance, AP-HP, Hôpital Robert Debré, F-75019, Paris, France
| | - François Feillet
- Service de Médecine Infantile et de génétique clinique, CHU Nancy-Brabois, F-54511 Vandoeuvre les Nancy, France INSERM NGERE UMR 954, F-54500, Vandoeuvre les Nancy, France
| | - François Labarthe
- Service de médecine pédiatrique, Hopital Clocheville, CHU Tours, F-37044, Tours, France
| | | | - Alice Horovitz
- Service de Cardiologie, CHU Bordeaux-Haut Lévêque, F-33604, Pessac, France
| | | | - Pierre Kieffer
- Service de Médecine Interne, CH Mulhouse, Hôpital E. Muller, F-68070 Mulhouse, France
| | - Anne Lienhardt
- Service de Pédiatrie Médicale, CH Limoges, Hôpital mère/enfants, F-87042 Limoges, France
| | - Olivier Lascols
- Laboratoire Commun de Biologie et Génétiques Moléculaires (LCBGM), AP-HP (Assistance Publique-Hopitaux de Paris), Hôpital Saint-Antoine, F-75012, Paris, France
| | - Mathilde Di Filippo
- Centre de Biologie et de Pathologie Est, CHU Lyon, France Service de Pédiatrie Médicale, CH Limoges, Hôpital mère/enfants, F-87042 Limoges, France
| | - Fabienne Dufernez
- Laboratoire Commun de Biologie et Génétiques Moléculaires (LCBGM), AP-HP (Assistance Publique-Hopitaux de Paris), Hôpital Saint-Antoine, F-75012, Paris, France
| |
Collapse
|
75
|
Brautbar A, Leary E, Rasmussen K, Wilson DP, Steiner RD, Virani S. Genetics of familial hypercholesterolemia. Curr Atheroscler Rep 2015; 17:491. [PMID: 25712136 DOI: 10.1007/s11883-015-0491-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Familial hypercholesterolemia (FH) is a genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol and premature cardiovascular disease, with a prevalence of approximately 1 in 200-500 for heterozygotes in North America and Europe. Monogenic FH is largely attributed to mutations in the LDLR, APOB, and PCSK9 genes. Differential diagnosis is critical to distinguish FH from conditions with phenotypically similar presentations to ensure appropriate therapeutic management and genetic counseling. Accurate diagnosis requires careful phenotyping based on clinical and biochemical presentation, validated by genetic testing. Recent investigations to discover additional genetic loci associated with extreme hypercholesterolemia using known FH families and population studies have met with limited success. Here, we provide a brief overview of the genetic determinants, differential diagnosis, genetic testing, and counseling of FH genetics.
Collapse
Affiliation(s)
- Ariel Brautbar
- Division of Genetics, Cook Children's Medical Center, Fort Worth, TX, USA,
| | | | | | | | | | | |
Collapse
|
76
|
Gidding SS, Champagne MA, de Ferranti SD, Defesche J, Ito MK, Knowles JW, McCrindle B, Raal F, Rader D, Santos RD, Lopes-Virella M, Watts GF, Wierzbicki AS. The Agenda for Familial Hypercholesterolemia: A Scientific Statement From the American Heart Association. Circulation 2015; 132:2167-92. [PMID: 26510694 DOI: 10.1161/cir.0000000000000297] [Citation(s) in RCA: 508] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
77
|
Stitziel NO, Peloso GM, Abifadel M, Cefalu AB, Fouchier S, Motazacker MM, Tada H, Larach DB, Awan Z, Haller JF, Pullinger CR, Varret M, Rabès JP, Noto D, Tarugi P, Kawashiri MA, Nohara A, Yamagishi M, Risman M, Deo R, Ruel I, Shendure J, Nickerson DA, Wilson JG, Rich SS, Gupta N, Farlow DN, Neale BM, Daly MJ, Kane JP, Freeman MW, Genest J, Rader DJ, Mabuchi H, Kastelein JJP, Hovingh GK, Averna MR, Gabriel S, Boileau C, Kathiresan S. Exome sequencing in suspected monogenic dyslipidemias. ACTA ACUST UNITED AC 2015; 8:343-50. [PMID: 25632026 DOI: 10.1161/circgenetics.114.000776] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/14/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Exome sequencing is a promising tool for gene mapping in Mendelian disorders. We used this technique in an attempt to identify novel genes underlying monogenic dyslipidemias. METHODS AND RESULTS We performed exome sequencing on 213 selected family members from 41 kindreds with suspected Mendelian inheritance of extreme levels of low-density lipoprotein cholesterol (after candidate gene sequencing excluded known genetic causes for high low-density lipoprotein cholesterol families) or high-density lipoprotein cholesterol. We used standard analytic approaches to identify candidate variants and also assigned a polygenic score to each individual to account for their burden of common genetic variants known to influence lipid levels. In 9 families, we identified likely pathogenic variants in known lipid genes (ABCA1, APOB, APOE, LDLR, LIPA, and PCSK9); however, we were unable to identify obvious genetic etiologies in the remaining 32 families, despite follow-up analyses. We identified 3 factors that limited novel gene discovery: (1) imperfect sequencing coverage across the exome hid potentially causal variants; (2) large numbers of shared rare alleles within families obfuscated causal variant identification; and (3) individuals from 15% of families carried a significant burden of common lipid-related alleles, suggesting complex inheritance can masquerade as monogenic disease. CONCLUSIONS We identified the genetic basis of disease in 9 of 41 families; however, none of these represented novel gene discoveries. Our results highlight the promise and limitations of exome sequencing as a discovery technique in suspected monogenic dyslipidemias. Considering the confounders identified may inform the design of future exome sequencing studies.
Collapse
|
78
|
Lahtinen AM, Havulinna AS, Jula A, Salomaa V, Kontula K. Prevalence and clinical correlates of familial hypercholesterolemia founder mutations in the general population. Atherosclerosis 2015; 238:64-9. [DOI: 10.1016/j.atherosclerosis.2014.11.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/27/2014] [Accepted: 11/10/2014] [Indexed: 11/26/2022]
|
79
|
Fouchier SW, Hutten BA, Defesche JC. Current novel-gene-finding strategy for autosomal-dominant hypercholesterolaemia needs refinement. J Med Genet 2014; 52:80-4. [PMID: 25412742 DOI: 10.1136/jmedgenet-2014-102653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIMS Autosomal-dominant hypercholesterolaemia (ADH) is a heterogeneous common disorder, and uncovering the molecular determinants that underlie ADH is a major focus of cardiovascular research. However, despite rapid technical advances, efforts to identify novel ADH genes have yet not been very successful and are largely challenged by phenotypic and genetic heterogeneity of this disease. We aimed to investigate the impact of this phenotypic heterogeneity on successfully finding new genes that are involved in ADH. METHODS AND RESULTS For the ADH phenotype, subjects are considered as affected according to plasma cholesterol levels above the 95th percentile for age and gender. The disease penetrance is generally set at 0.9. These parameters were evaluated in 10000 carriers of true pathogenic APOB and LDLR mutations and 20000 relatives negative for the familial mutations. Application of the above parameters in almost a thousand families included in this study would have identified the causal variant in only 38% of all families. An average penetrance of 0.9 or higher, with a cut-point at the 95th percentile, was only observed for LDLR nonsense mutations. For APOB and LDLR missense mutations, a disease penetrance of 0.9 or higher is only expected, when total cholesterol and low-density lipoprotein cholesterol cut-points between the 75th and 90th percentile are used to determine an individual's disease status. CONCLUSIONS Although pathogenic LDLR and APOB mutations do follow Mendelian patterns of inheritance, the extensive variation in genotype and phenotype for well-known ADH-causing mutations emphasises that current criteria and strategies indeed are likely to hamper the identification of novel genes related to ADH. These findings provide a basis for the revision of our assessment on who is affected and who is not and emphasise the essence of pedigree information and mapping data before exome sequencing is applied in order to increase success rates of finding new genes related to ADH.
Collapse
Affiliation(s)
- Sigrid W Fouchier
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Barbara A Hutten
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joep C Defesche
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
80
|
Faiz F, Nguyen LT, van Bockxmeer FM, Hooper AJ. Genetic screening to improve the diagnosis of familial hypercholesterolemia. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/clp.14.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
81
|
Awan Z, Baass A, Genest J. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9): Lessons Learned from Patients with Hypercholesterolemia. Clin Chem 2014; 60:1380-9. [DOI: 10.1373/clinchem.2014.225946] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND
Identification of the proprotein convertase subtilisin/kexin type 9 (PCSK9) as the third gene causing familial hypercholesterolemia (FH) and understanding its complex biology has led to the discovery of a novel class of therapeutic agents.
CONTENT
PCSK9 undergoes autocatalytic cleavage in the endoplasmic reticulum and enters the secretory pathway. The PCSK9 gene is under the regulatory control of sterol receptor binding proteins 1 and 2. Statins increase PCSK9 and this may modulate the response to this class of medications. In plasma, PCSK9 binds to the epidermal growth factor–like domain of the LDL receptor (LDL-R) on the cell and, once incorporated in the late endosomal pathway, directs the LDL-R toward lysosomal degradation rather than recycling to the plasma membrane. Thus, gain-of-function PCSK9 mutations lead to an FH phenotype, whereas loss-of-function mutations are associated with increased LDL-R–mediated endocytosis of LDL particles and lower LDL cholesterol in plasma. Inhibition of PCSK9 is thus an attractive therapeutic target. Presently, this is achieved by using monoclonal antibodies for allosteric inhibition of the PCSK9–LDL-R interaction. Phase 2 and 3 clinical trials in patients with moderate and severe hypercholesterolemia (including FH) show that this approach is safe and highly efficacious to lower LDL-C and lipoprotein(a).
SUMMARY
PCSK9 has other biological roles observed in vitro and in animal studies, including viral entry into the cell, insulin resistance, and hepatic tissue repair. Given the potential number of humans exposed to this novel class of medications, careful evaluation of clinical trial results is warranted.
Collapse
Affiliation(s)
- Zuhier Awan
- King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alexis Baass
- The McGill University Health Centre, Montreal, Canada
| | | |
Collapse
|
82
|
Ason B, van der Hoorn JWA, Chan J, Lee E, Pieterman EJ, Nguyen KK, Di M, Shetterly S, Tang J, Yeh WC, Schwarz M, Jukema JW, Scott R, Wasserman SM, Princen HMG, Jackson S. PCSK9 inhibition fails to alter hepatic LDLR, circulating cholesterol, and atherosclerosis in the absence of ApoE. J Lipid Res 2014; 55:2370-9. [PMID: 25258384 DOI: 10.1194/jlr.m053207] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
LDL cholesterol (LDL-C) contributes to coronary heart disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) increases LDL-C by inhibiting LDL-C clearance. The therapeutic potential for PCSK9 inhibitors is highlighted by the fact that PCSK9 loss-of-function carriers exhibit 15-30% lower circulating LDL-C and a disproportionately lower risk (47-88%) of experiencing a cardiovascular event. Here, we utilized pcsk9(-/-) mice and an anti-PCSK9 antibody to study the role of the LDL receptor (LDLR) and ApoE in PCSK9-mediated regulation of plasma cholesterol and atherosclerotic lesion development. We found that circulating cholesterol and atherosclerotic lesions were minimally modified in pcsk9(-/-) mice on either an LDLR- or ApoE-deficient background. Acute administration of an anti-PCSK9 antibody did not reduce circulating cholesterol in an ApoE-deficient background, but did reduce circulating cholesterol (-45%) and TGs (-36%) in APOE*3Leiden.cholesteryl ester transfer protein (CETP) mice, which contain mouse ApoE, human mutant APOE3*Leiden, and a functional LDLR. Chronic anti-PCSK9 antibody treatment in APOE*3Leiden.CETP mice resulted in a significant reduction in atherosclerotic lesion area (-91%) and reduced lesion complexity. Taken together, these results indicate that both LDLR and ApoE are required for PCSK9 inhibitor-mediated reductions in atherosclerosis, as both are needed to increase hepatic LDLR expression.
Collapse
Affiliation(s)
- Brandon Ason
- Metabolic Disorders Amgen, Inc., South San Francisco, CA
| | | | - Joyce Chan
- Metabolic Disorders Amgen, Inc., South San Francisco, CA
| | - Edward Lee
- Metabolic Disorders Amgen, Inc., South San Francisco, CA
| | - Elsbet J Pieterman
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | | | - Mei Di
- Metabolic Disorders Amgen, Inc., South San Francisco, CA
| | | | - Jie Tang
- Protein Technologies, Amgen, Inc., South San Francisco, CA
| | - Wen-Chen Yeh
- Metabolic Disorders Amgen, Inc., South San Francisco, CA
| | | | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob Scott
- Cardiovascular, Amgen Inc., Thousand Oaks, CA
| | | | - Hans M G Princen
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Simon Jackson
- Metabolic Disorders Amgen, Inc., South San Francisco, CA
| |
Collapse
|
83
|
|
84
|
Kuivenhoven JA, Hegele RA. Mining the genome for lipid genes. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1993-2009. [PMID: 24798233 DOI: 10.1016/j.bbadis.2014.04.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/22/2014] [Accepted: 04/27/2014] [Indexed: 12/12/2022]
Abstract
Mining of the genome for lipid genes has since the early 1970s helped to shape our understanding of how triglycerides are packaged (in chylomicrons), repackaged (in very low density lipoproteins; VLDL), and hydrolyzed, and also how remnant and low-density lipoproteins (LDL) are cleared from the circulation. Gene discoveries have also provided insights into high-density lipoprotein (HDL) biogenesis and remodeling. Interestingly, at least half of these key molecular genetic studies were initiated with the benefit of prior knowledge of relevant proteins. In addition, multiple important findings originated from studies in mouse, and from other types of non-genetic approaches. Although it appears by now that the main lipid pathways have been uncovered, and that only modulators or adaptor proteins such as those encoded by LDLRAP1, APOA5, ANGPLT3/4, and PCSK9 are currently being discovered, genome wide association studies (GWAS) in particular have implicated many new loci based on statistical analyses; these may prove to have equally large impacts on lipoprotein traits as gene products that are already known. On the other hand, since 2004 - and particularly since 2010 when massively parallel sequencing has become de rigeur - no major new insights into genes governing lipid metabolism have been reported. This is probably because the etiologies of true Mendelian lipid disorders with overt clinical complications have been largely resolved. In the meantime, it has become clear that proving the importance of new candidate genes is challenging. This could be due to very low frequencies of large impact variants in the population. It must further be emphasized that functional genetic studies, while necessary, are often difficult to accomplish, making it hazardous to upgrade a variant that is simply associated to being definitively causative. Also, it is clear that applying a monogenic approach to dissect complex lipid traits that are mostly of polygenic origin is the wrong way to proceed. The hope is that large-scale data acquisition combined with sophisticated computerized analyses will help to prioritize and select the most promising candidate genes for future research. We suggest that at this point in time, investment in sequence technology driven candidate gene discovery could be recalibrated by refocusing efforts on direct functional analysis of the genes that have already been discovered. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
- Jan Albert Kuivenhoven
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Section Molecular Genetics, Antonius Deusinglaan 1, 9713GZ Groningen, The Netherlands
| | - Robert A Hegele
- Blackburn Cardiovascular Genetics Laboratory, Robarts Research Institute, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada
| |
Collapse
|
85
|
Danielsson K, Mun LJ, Lordemann A, Mao J, Lin CHJ. Next-generation sequencing applied to rare diseases genomics. Expert Rev Mol Diagn 2014; 14:469-87. [PMID: 24702023 DOI: 10.1586/14737159.2014.904749] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genomics has revolutionized the study of rare diseases. In this review, we overview the latest technological development, rare disease discoveries, implementation obstacles and bioethical challenges. First, we discuss the technology of genome and exome sequencing, including the different next-generation platforms and exome enrichment technologies. Second, we survey the pioneering centers and discoveries for rare diseases, including few of the research institutions that have contributed to the field, as well as an overview survey of different types of rare diseases that have had new discoveries due to next-generation sequencing. Third, we discuss the obstacles and challenges that allow for clinical implementation, including returning of results, informed consent and privacy. Last, we discuss possible outlook as clinical genomics receives wider adoption, as third-generation sequencing is coming onto the horizon, and some needs in informatics and software to further advance the field.
Collapse
Affiliation(s)
- Krissi Danielsson
- Rare Genomics Institute, 4100 Forest Park Ave, Suite 204, St. Louis, MO 63108, USA
| | | | | | | | | |
Collapse
|
86
|
Johansen CT, Dubé JB, Loyzer MN, MacDonald A, Carter DE, McIntyre AD, Cao H, Wang J, Robinson JF, Hegele RA. LipidSeq: a next-generation clinical resequencing panel for monogenic dyslipidemias. J Lipid Res 2014; 55:765-72. [PMID: 24503134 PMCID: PMC3966710 DOI: 10.1194/jlr.d045963] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/21/2014] [Indexed: 01/13/2023] Open
Abstract
We report the design of a targeted resequencing panel for monogenic dyslipidemias, LipidSeq, for the purpose of replacing Sanger sequencing in the clinical detection of dyslipidemia-causing variants. We also evaluate the performance of the LipidSeq approach versus Sanger sequencing in 84 patients with a range of phenotypes including extreme blood lipid concentrations as well as additional dyslipidemias and related metabolic disorders. The panel performs well, with high concordance (95.2%) in samples with known mutations based on Sanger sequencing and a high detection rate (57.9%) of mutations likely to be causative for disease in samples not previously sequenced. Clinical implementation of LipidSeq has the potential to aid in the molecular diagnosis of patients with monogenic dyslipidemias with a high degree of speed and accuracy and at lower cost than either Sanger sequencing or whole exome sequencing. Furthermore, LipidSeq will help to provide a more focused picture of monogenic and polygenic contributors that underlie dyslipidemia while excluding the discovery of incidental pathogenic clinically actionable variants in nonmetabolism-related genes, such as oncogenes, that would otherwise be identified by a whole exome approach, thus minimizing potential ethical issues.
Collapse
Affiliation(s)
| | | | | | - Austin MacDonald
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5B7
| | - David E. Carter
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5B7
| | - Adam D. McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5B7
| | - Henian Cao
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5B7
| | - Jian Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5B7
| | - John F. Robinson
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5B7
| | - Robert A. Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5B7
| |
Collapse
|
87
|
Marais AD, Solomon GAE, Blom DJ. Dysbetalipoproteinaemia: a mixed hyperlipidaemia of remnant lipoproteins due to mutations in apolipoprotein E. Crit Rev Clin Lab Sci 2014; 51:46-62. [PMID: 24405372 DOI: 10.3109/10408363.2013.870526] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Atherosclerosis is strongly associated with dyslipoproteinaemia, and especially with increasing concentrations of low-density lipoprotein and decreasing concentrations of high-density lipoproteins. Its association with increasing concentrations of plasma triglyceride is less clear but, within the mixed hyperlipidaemias, dysbetalipoproteinaemia (Fredrickson type III hyperlipidaemia) has been identified as a very atherogenic entity associated with both premature ischaemic heart disease and peripheral arterial disease. Dysbetalipoproteinaemia is characterized by the accumulation of remnants of chylomicrons and of very low-density lipoproteins. The onset occurs after childhood and usually requires an additional metabolic stressor. In women, onset is typically delayed until menopause. Clinical manifestations may vary from no physical signs to severe cutaneous and tendinous xanthomata, atherosclerosis of coronary and peripheral arteries, and pancreatitis when severe hypertriglyceridaemia is present. Rarely, mutations in apolipoprotein E are associated with lipoprotein glomerulopathy, a condition characterized by progressive proteinuria and renal failure with varying degrees of plasma remnant accumulation. Interestingly, predisposing genetic causes paradoxically result in lower than average cholesterol concentration for most affected persons, but severe dyslipidaemia develops in a minority of patients. The disorder stems from dysfunctional apolipoprotein E in which mutations result in impaired binding to low-density lipoprotein (LDL) receptors and/or heparin sulphate proteoglycans. Apolipoprotein E deficiency may cause a similar phenotype. Making a diagnosis of dysbetalipoproteinaemia aids in assessing cardiovascular risk correctly and allows for genetic counseling. However, the diagnostic work-up may present some challenges. Diagnosis of dysbetalipoproteinaemia should be considered in mixed hyperlipidaemias for which the apolipoprotein B concentration is relatively low in relation to the total cholesterol concentration or when there is significant disparity between the calculated LDL and directly measured LDL cholesterol concentrations. Genetic tests are informative in predicting the risk of developing the disease phenotype and are diagnostic only in the context of hyperlipidaemia. Specialised lipoprotein studies in reference laboratory centres can also assist in diagnosis. Fibrates and statins, or even combination treatment, may be required to control the dyslipidaemia.
Collapse
Affiliation(s)
- A D Marais
- Department of Chemical Pathology, Health Science Faculty, University of Cape Town , Cape Town , South Africa
| | | | | |
Collapse
|
88
|
Exome sequencing greatly expedites the progressive research of Mendelian diseases. Front Med 2014; 8:42-57. [PMID: 24384736 DOI: 10.1007/s11684-014-0303-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 09/30/2013] [Indexed: 12/23/2022]
Abstract
The advent of whole-exome sequencing (WES) has facilitated the discovery of rare structure and functional genetic variants. Combining exome sequencing with linkage studies is one of the most efficient strategies in searching disease genes for Mendelian diseases. WES has achieved great success in the past three years for Mendelian disease genetics and has identified over 150 new Mendelian disease genes. We illustrate the workflow of exome capture and sequencing to highlight the advantages of WES. We also indicate the progress and limitations of WES that can potentially result in failure to identify disease-causing mutations in part of patients. With an affordable cost, WES is expected to become the most commonly used tool for Mendelian disease gene identification. The variants detected cumulatively from previous WES studies will be widely used in future clinical services.
Collapse
|
89
|
APOE p.Leu167del mutation in familial hypercholesterolemia. Atherosclerosis 2013; 231:218-22. [DOI: 10.1016/j.atherosclerosis.2013.09.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/28/2013] [Accepted: 09/11/2013] [Indexed: 12/24/2022]
|
90
|
Alves AC, Etxebarria A, Soutar AK, Martin C, Bourbon M. Novel functional APOB mutations outside LDL-binding region causing familial hypercholesterolaemia. Hum Mol Genet 2013; 23:1817-28. [DOI: 10.1093/hmg/ddt573] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
91
|
Okorodudu DE, Crowley MJ, Sebastian S, Rowell JV, Guyton JR. Inherited lipemic splenomegaly and the spectrum of apolipoprotein E p.Leu167del mutation phenotypic variation. J Clin Lipidol 2013; 7:566-72. [DOI: 10.1016/j.jacl.2013.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/26/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022]
|
92
|
Poirier S, Mayer G. The biology of PCSK9 from the endoplasmic reticulum to lysosomes: new and emerging therapeutics to control low-density lipoprotein cholesterol. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1135-48. [PMID: 24115837 PMCID: PMC3793591 DOI: 10.2147/dddt.s36984] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) directly binds to the epidermal growth factor-like repeat A domain of low-density lipoprotein receptor and induces its degradation, thereby controlling circulating low-density lipoprotein cholesterol (LDL-C) concentration. Heterozygous loss-of-function mutations in PCSK9 can decrease the incidence of coronary heart disease by up to 88%, owing to lifelong reduction of LDL-C. Moreover, two subjects with PCSK9 loss-of-function mutations on both alleles, resulting in a total absence of functional PCSK9, were found to have extremely low circulating LDL-C levels without other apparent abnormalities. Accordingly, PCSK9 could represent a safe and effective pharmacological target to increase clearance of LDL-C and to reduce the risk of coronary heart disease. Recent clinical trials using anti-PCSK9 monoclonal antibodies that block the PCSK9:low-density lipoprotein receptor interaction were shown to considerably reduce LDL-C levels by up to 65% when given alone and by up to 72% in patients already receiving statin therapy. In this review, we will discuss how major scientific breakthroughs in PCSK9 cell biology have led to the development of new and forthcoming LDL-C-lowering pharmacological agents.
Collapse
Affiliation(s)
- Steve Poirier
- Laboratory of Molecular Cell Biology, Montreal Heart institute, Montréal, QC, Canada ; Départements de Pharmacologie, Montréal, Université de Montréal, Montréal, QC, Canada
| | | |
Collapse
|
93
|
Masana L, Civeira F, Pedro-Botet J, de Castro I, Pocoví M, Plana N, Mateo-Gallego R, Jarauta E, Pedragosa À. [Expert consensus on the detection and clinical management of familial hypercholesterolemia]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2013; 25:182-93. [PMID: 24041477 DOI: 10.1016/j.arteri.2013.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/26/2013] [Indexed: 11/28/2022]
Abstract
Familial hypercholesterolemia (FH) is one of the most common and severe genetic diseases, causing disabilities and premature death to those who suffer it. Lipid-lowering therapy substantially improves the prognosis of FH patients and, therefore, appropriate pharmacological treatment is of the utmost importance. The Spanish Society of Arteriosclerosis (SEA) has always been a pioneer in the diagnosis and treatment of FH. Since its inception, FH has been one of the main areas of clinical and scientific interest, mainly for Lipids Units of the SEA, where most patients with this pathology are referred in Spain. This document arises from the willingness of our society to update the scientific knowledge on this subject and to provide physicians with clear clinical guidelines regarding diagnosis and treatment of FH. These guidelines can be summarized in two main aspects: early diagnosis of the disease and a rapid normalization of LDLcholesterol. In the coming years, health providers should accomplish that the majority of patients with FH are aware of their diagnosis and that adequate treatment is provided.
Collapse
|
94
|
Awan Z, Delvin EE, Levy E, Genest J, Davignon J, Seidah NG, Baass A. Regional distribution and metabolic effect of PCSK9 insLEU and R46L gene mutations and apoE genotype. Can J Cardiol 2013; 29:927-33. [PMID: 23743349 DOI: 10.1016/j.cjca.2013.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Natural loss-of-function mutations in the proprotein convertase subtilisin/kexin type-9 gene (PCSK9) are associated with lower cholesterol and cardiovascular risk. Because a founder effect exists in French Canadians for many lipid-related genes, we sought to investigate PCSK9 mutations and associated variables in this population. We also investigated the combined effect of PCSK9 mutations and the apolipoprotein E (apoE) polymorphism on metabolic variables. METHODS Gene sequencing and screening was carried out in 1745 healthy individuals ages 9, 13, and 16 years from a provincially representative population sample. In parallel, we measured related metabolic markers and used appropriate statistical methods. RESULTS We report herein that the carrier rates of the R46L single-nucleotide polymorphism were higher in the French Canadian population (4.8%) than previously seen in Caucasian individuals (2.4%). This is second to the most common variant, insertion of leucine, at a carrier rate of 24%, making it the most common PCSK9 loss-of-function mutation in French Canadian individuals. In R46L carriers, the contribution of the apoE genotype better explains the cholesterol phenotype than the R46L mutation alone. Patients, with both the R46L and apoE3/E2 genotype also showed a tendency toward insulin resistance as indicated by a 2-fold increase in insulin, homeostasis model assessment of insulin resistance, and leptin concentrations, compared with those without apoE3/E2. CONCLUSIONS R46L and insertion of leucine mutations were more frequent in French Canadian individuals and showed a specific geographic distribution. This might represent a gene selection to overcome clustering genes harbouring familial hypercholesterolemia and might suggest a founder effect. Subjects with the apoE3/E2 genotype and R46L have increased plasma insulin, homeostasis model assessment of insulin resistance, and leptin, an intriguing finding that warrants further investigation.
Collapse
Affiliation(s)
- Zuhier Awan
- Institut de Recherches Cliniques (IRCM), Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
95
|
De Castro-Orós I, Pocoví M, Civeira F. The fine line between familial and polygenic hypercholesterolemia. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/clp.13.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
96
|
Canuel M, Sun X, Asselin MC, Paramithiotis E, Prat A, Seidah NG. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1). PLoS One 2013; 8:e64145. [PMID: 23675525 PMCID: PMC3652815 DOI: 10.1371/journal.pone.0064145] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/08/2013] [Indexed: 02/07/2023] Open
Abstract
Elevated LDL-cholesterol (LDLc) levels are a major risk factor for cardiovascular disease and atherosclerosis. LDLc is cleared from circulation by the LDL receptor (LDLR). Proprotein convertase subtilisin/kexin 9 (PCSK9) enhances the degradation of the LDLR in endosomes/lysosomes, resulting in increased circulating LDLc. PCSK9 can also mediate the degradation of LDLR lacking its cytosolic tail, suggesting the presence of as yet undefined lysosomal-targeting factor(s). Herein, we confirm this, and also eliminate a role for the transmembrane-domain of the LDLR in mediating its PCSK9-induced internalization and degradation. Recent findings from our laboratory also suggest a role for PCSK9 in enhancing tumor metastasis. We show herein that while the LDLR is insensitive to PCSK9 in murine B16F1 melanoma cells, PCSK9 is able to induce degradation of the low density lipoprotein receptor-related protein 1 (LRP-1), suggesting distinct targeting mechanisms for these receptors. Furthermore, PCSK9 is still capable of acting upon the LDLR in CHO 13-5-1 cells lacking LRP-1. Conversely, PCSK9 also acts on LRP-1 in the absence of the LDLR in CHO-A7 cells, where re-introduction of the LDLR leads to reduced PCSK9-mediated degradation of LRP-1. Thus, while PCSK9 is capable of inducing degradation of LRP-1, the latter is not an essential factor for LDLR regulation, but the LDLR effectively competes with LRP-1 for PCSK9 activity. Identification of PCSK9 targets should allow a better understanding of the consequences of PCSK9 inhibition for lowering LDLc and tumor metastasis.
Collapse
Affiliation(s)
- Maryssa Canuel
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the University of Montreal, Montreal, Quebec, Canada
| | - Xiaowei Sun
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the University of Montreal, Montreal, Quebec, Canada
| | - Marie-Claude Asselin
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the University of Montreal, Montreal, Quebec, Canada
| | | | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the University of Montreal, Montreal, Quebec, Canada
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
97
|
Saavedra YGL, Day R, Seidah NG. The M2 module of the Cys-His-rich domain (CHRD) of PCSK9 protein is needed for the extracellular low-density lipoprotein receptor (LDLR) degradation pathway. J Biol Chem 2012; 287:43492-501. [PMID: 23105118 DOI: 10.1074/jbc.m112.394023] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PCSK9 enhances the cellular degradation of the LDL receptor (LDLR), leading to increased plasma LDL cholesterol. This multidomain protein contains a prosegment, a catalytic domain, a hinge region, and a cysteine-histidine rich domain (CHRD) composed of three tightly packed modules named M1, M2, and M3. The CHRD is required for the activity of PCSK9, but the mechanism behind this remains obscure. To define the contribution of each module to the function of PCSK9, we dissected the CHRD structure. Six PCSK9 deletants were generated by mutagenesis, corresponding to the deletion of only one (ΔM1, ΔM2, ΔM3) or two (ΔM12, ΔM13, ΔM23) modules. Transfection of HEK293 cells showed that all deletants were well processed and expressed compared with the parent PCSK9 but that only those lacking the M2 module were secreted. HepG2 cells lacking endogenous PCSK9 (HepG2/shPCSK9) were used for the functional analysis of the extracellular or intracellular activity of PCSK9 and its deletants. To analyze the ability of the deletants to enhance the LDLR degradation by the intracellular pathway, cellular expressions revealed that only the ΔM2 deletant retains a comparable total LDLR-degrading activity to full-length PCSK9. To probe the extracellular pathway, HepG2/shPCSK9 cells were incubated with conditioned media from transfected HEK293 or HepG2/shPCSK9 cells, and cell surface LDLR levels were analyzed by FACS. The results showed no activity of any secreted deletant compared with PCSK9. Thus, although M2 is dispensable for secretion, its presence is required for the extracellular activity of PCSK9 on cell surface LDLR.
Collapse
Affiliation(s)
- Yascara Grisel Luna Saavedra
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, (IRCM), affiliated to the University of Montreal, Montreal, Québec H2W 1R7, Canada
| | | | | |
Collapse
|