51
|
Juárez P, Bolás G, de Rezende FF, Calvete JJ, Eble JA. Recombinant expression in human cells of active integrin α1β1-blocking RTS-disintegrin jerdostatin. Toxicon 2010; 56:1052-8. [DOI: 10.1016/j.toxicon.2010.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/19/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
|
52
|
Abstract
Triple-helical peptides (THPs) have been utilized as collagen models since the 1960s. The original focus for THP-based research was to unravel the structural determinants of collagen. In the last two decades, virtually all aspects of collagen structural biochemistry have been explored with THP models. More specifically, secondary amino acid analogs have been incorporated into THPs to more fully understand the forces that stabilize triple-helical structure. Heterotrimeric THPs have been utilized to better appreciate the contributions of chain sequence diversity on collagen function. The role of collagen as a cell signaling protein has been dissected using THPs that represent ligands for specific receptors. The mechanisms of collagenolysis have been investigated using THP substrates and inhibitors. Finally, THPs have been developed for biomaterial applications. These aspects of THP-based research are overviewed herein.
Collapse
Affiliation(s)
- Gregg B Fields
- University of Texas Health Science Center, Department of Biochemistry, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
53
|
de Santana Evangelista K, Andrich F, Figueiredo de Rezende F, Niland S, Cordeiro MN, Horlacher T, Castelli R, Schmidt-Hederich A, Seeberger PH, Sanchez EF, Richardson M, Gomes de Figueiredo S, Eble JA. Plumieribetin, a fish lectin homologous to mannose-binding B-type lectins, inhibits the collagen-binding alpha1beta1 integrin. J Biol Chem 2009; 284:34747-59. [PMID: 19850917 PMCID: PMC2787337 DOI: 10.1074/jbc.m109.002873] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 10/09/2009] [Indexed: 11/06/2022] Open
Abstract
Recently, a few fish proteins have been described with a high homology to B-type lectins of monocotyledonous plants. Because of their mannose binding activity, they have been ascribed a role in innate immunity. By screening various fish venoms for their integrin inhibitory activity, we isolated a homologous protein from the fin stings and skin mucus of the scorpionfish (Scorpaena plumieri). This protein inhibits alpha1beta1 integrin binding to basement membrane collagen IV. By protein chemical and spectroscopic means, we demonstrated that this fish protein, called plumieribetin, is a homotetramer and contains a high content of anti-parallel beta strands, similar to the mannose-binding monocot B-lectins. It lacks both N-linked glycoconjugates and common O-glycan motifs. Despite its B-lectin-like structure, plumieribetin binds to alpha1beta1 integrin irrespective of N-glycosylation, suggesting a direct protein-protein interaction. This interaction is independent of divalent cations. On the cellular level, plumieribetin failed to completely detach hepatocarcinoma HepG2 cells and primary arterial smooth muscle cells from the collagen IV fragment CB3. However, plumieribetin weakened the cell-collagen contacts, reduced cell spreading, and altered the actin cytoskeleton, after the compensating alpha2beta1 integrin was blocked. The integrin inhibiting effect of plumieribetin adds a new function to the B-lectin family, which is known for pathogen defense.
Collapse
Affiliation(s)
- Karla de Santana Evangelista
- From the Center for Molecular Medicine, Department of Vascular Matrix Biology, Frankfurt University Hospital, Excellence Cluster Cardio-Pulmonary System, 60590 Frankfurt, Germany
| | - Filipe Andrich
- the Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
- the Department of Physiology and Biophysics, Laboratorio de Venenos e Toxinas Animais, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia Figueiredo de Rezende
- From the Center for Molecular Medicine, Department of Vascular Matrix Biology, Frankfurt University Hospital, Excellence Cluster Cardio-Pulmonary System, 60590 Frankfurt, Germany
| | - Stephan Niland
- From the Center for Molecular Medicine, Department of Vascular Matrix Biology, Frankfurt University Hospital, Excellence Cluster Cardio-Pulmonary System, 60590 Frankfurt, Germany
| | - Marta N. Cordeiro
- the Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil, and
| | - Tim Horlacher
- the Laboratory for Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zürich, 8093 Zurich, Switzerland
| | - Riccardo Castelli
- the Laboratory for Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zürich, 8093 Zurich, Switzerland
| | - Alletta Schmidt-Hederich
- From the Center for Molecular Medicine, Department of Vascular Matrix Biology, Frankfurt University Hospital, Excellence Cluster Cardio-Pulmonary System, 60590 Frankfurt, Germany
| | - Peter H. Seeberger
- the Laboratory for Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zürich, 8093 Zurich, Switzerland
| | - Eladio F. Sanchez
- the Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil, and
| | - Michael Richardson
- the Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil, and
| | | | - Johannes A. Eble
- From the Center for Molecular Medicine, Department of Vascular Matrix Biology, Frankfurt University Hospital, Excellence Cluster Cardio-Pulmonary System, 60590 Frankfurt, Germany
| |
Collapse
|
54
|
Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials 2009; 31:216-25. [PMID: 19781769 DOI: 10.1016/j.biomaterials.2009.09.034] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 09/10/2009] [Indexed: 01/22/2023]
Abstract
In the past 20 years, human amniotic membrane (AM) has become widely used as an ophthalmic surgical patch as well as a substrate for stem cell tissue equivalents for ocular surface reconstruction. AM reduces ocular surface scarring and inflammation, and enhances epithelialization. In addition, it shows limited immunogenicity and some anti-microbial properties. Before being applied clinically, the donor of AM is required to undergo a thorough health screening and the membrane has to undergo an accepted processing routine, which includes preservation, sterilization and de-epithelialization. There have been various articles describing methods in preserving, sterilizing and de-epithelializing AM. Each preparation technique has been reported to have differential effects on the physical and biological properties of the AM. Therefore, it is difficult to establish a standardized procedure. In this review, we discuss the present techniques and several novel, new approaches in the preparation of AM for use in ocular surface reconstruction, and their impact on AM structure and biological activity.
Collapse
|
55
|
Human bone marrow-derived stromal cells show highly efficient stress-resistant adipogenesis on denatured collagen IV matrix but not on its native counterpart: implications for obesity. Matrix Biol 2009; 29:9-14. [PMID: 19761844 DOI: 10.1016/j.matbio.2009.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 08/16/2009] [Accepted: 09/08/2009] [Indexed: 11/23/2022]
Abstract
Collagen IV is the major matrix component associated with differentiating adipocytes in adipose tissues, and the understanding of its contribution in adipogenic differentiation could be important for elucidation of mechanisms and processes driving the obesity. Therefore, in the light of our previous findings of differential effects of structural conformation of collagen I matrix on differentiation of bone marrow stromal cells, we investigated whether similar phenomenon occurs on collagen IV matrix in native and denatured structural states. The results of the present study show that native collagen IV is unsupportive of adipogenic differentiation and very little if any adipogenesis occurs on this matrix in the presence of adipogenic stimuli. In sharp contrast to native collagen IV, the same matrix in denatured structural state drives highly efficient adipogenic differentiation suggesting that it might be the major driver of adipogenesis in adipose tissues and that the ratio of native to denatured matrix might regulate the intensity of adipogenesis and possibly underlies the obesity. In contrast to observations that adipogenesis on denatured collagen I (collagen I is the major matrix component in musculoskeletal tissues) is suppressed by stress, adipogenesis on denatured collagen IV appears to be stress-resistant suggesting an explanation for the observed ineffectiveness of physical exercise, i.e. mechanical stress, in the reduction of adipose tissues. The obesity was shown to be associated with overproduction of MMPs and decline in levels of TIMPs. Such a shift in MMP/TIMP balance was considered a consequence of the pathology. In the light of the present study, however, this shift might constitute the primary source of the decease. The findings of the present study suggest strategies for the treatment of obesity, raise significant questions and indicate directions for further experimentation.
Collapse
|
56
|
Kassis JN, Virador VM, Guancial EA, Kimm D, Ho AS, Mishra M, Chuang EY, Cook J, Gius D, Kohn EC. Genomic and phenotypic analysis reveals a key role for CCN1 (CYR61) in BAG3-modulated adhesion and invasion. J Pathol 2009; 218:495-504. [PMID: 19402132 DOI: 10.1002/path.2557] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chaperone protein quantity may regulate the balance of proteins involved in invasion and malignancy. BAG3 is a co-chaperone and pro-survival protein that has been implicated in adhesion, migration, and metastasis. We reported that BAG3 overexpression in MDA435 human breast cancer cells results in a significant decrease in migration and adhesion to matrix molecules that is reversed upon deletion of the BAG3 proline-rich domain (dPXXP). We now hypothesize that transcriptional analysis would identify proteins involved in matrix-related processes that are regulated by BAG3 and/or its PXXP domain mutant. Expression array analysis of MDA435 cells overexpressing either wild-type BAG3 (FL) or dPXXP identified CCN1 as a BAG3 target protein. CCN1 is a known AP-1 target. Increased AP-1 transcriptional activity and AP-1 DNA-binding was found in MDA435 dPXXP cells. Consistent with these findings, CCN1 quantity and secretion were increased in dPXXP mutants but suppressed in FL cells; both BAG3 forms resulted in up-regulated CCN1 in HeLa cells. CCN1 silencing in the BAG3 FL overexpressors reduced the already low phospho-integrin beta1 in response to attachment on collagen IV. Matrigel invasion of HeLa cells engineered with the BAG3 constructs was enhanced in FL cells and minimal in dPXXP cells. CCN1 silencing blocked a greater percentage of the serum-induced invasion in FL cells than in dPXXP cells. This implies a context-dependent function of BAG3 on CCN1 and thus mesenchymal behaviour. CCN1 may be necessary for adhesion and matrix-related signalling in FL cells, abrogating a negative signal of the PXXP domain when BAG3 is intact. We propose that BAG3 regulates CCN1 expression to regulate tumour cell adhesion and migration.
Collapse
Affiliation(s)
- Jareer N Kassis
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
McDonald DM, Coleman G, Bhatwadekar A, Gardiner TA, Stitt AW. Advanced glycation of the Arg-Gly-Asp (RGD) tripeptide motif modulates retinal microvascular endothelial cell dysfunction. Mol Vis 2009; 15:1509-20. [PMID: 19668595 PMCID: PMC2722710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 07/27/2009] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Advanced glycation endproduct (AGE) formation on the basement membrane of retinal capillaries has been previously described but the impact of these adducts on capillary endothelial cell function vascular repair remains uncertain. This investigation has evaluated retinal microvascular endothelial cells (RMECs) growing on AGE-modified fibronectin (FN) and determined how this has an impact on cell-substrate interactions and downstream oxidative responses and cell survival. METHODS RMECs were grown on methylglyoxal-modified FN (AGE-FN) or native FN as a control. RMEC attachment and spreading was quantified. In a separate treatment, the AGE-FN substrate had Arg-Gly-Asp-Ser (RGDS) or scrambled peptide added before seeding. Phosphorylation of focal adhesion kinase (FAK) and alpha5beta1 integrin localization was assessed and apoptosis evaluated. In a subset of RMECs that remained attached to the AGE-FN substrate, the production of superoxide (O(2) (-)) was assayed using dihydroethidium (DHE) fluorescence or lucigenin, in the presence or absence of NADPH. The specificity of the O(2) (-) assays was confirmed by inhibition in the presence of polyethylene-glycol-superoxide dismutase (PEG-SOD). AGE-mediated changes to mRNAs encoding key basement membrane proteins and regulatory enzymes were investigated using real-time RT-PCR. RESULTS AGE-FN reduced RMEC attachment and spreading when compared to FN controls (p<0.001). RGDS peptide enhanced cell attachment on AGE-FN (p<0.001), while the scrambled peptide had no effect. FAK phosphorylation in AGE-exposed RMECs was reduced in a time-dependent fashion, while alpha5beta1 integrin-immunoreactivity became focal at the basal membrane. AGE-exposure induced apoptosis, a response significantly prevented by RGDS peptide. AGE-exposure caused a significant increase in basal O(2) (-) and NADPH-stimulated production by RMECs (p<0.01), while AGE-FN also increased basement membrane associated mRNA expression (p<0.05). CONCLUSIONS AGE substrate modifications impair the function of retinal capillary endothelium and their reparative potential in response to diabetes-related insults. Arginine-specific modifications alter vital endothelial cell interactions with the substrate. This phenomenon could play an important role in dysfunction and nonperfusion of retinal capillaries during diabetes.
Collapse
|
58
|
Dinkla K, Talay SR, Mörgelin M, Graham RMA, Rohde M, Nitsche-Schmitz DP, Chhatwal GS. Crucial role of the CB3-region of collagen IV in PARF-induced acute rheumatic fever. PLoS One 2009; 4:e4666. [PMID: 19252743 PMCID: PMC2646144 DOI: 10.1371/journal.pone.0004666] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 12/22/2008] [Indexed: 11/18/2022] Open
Abstract
Acute rheumatic fever (ARF) and rheumatic heart disease are serious autoimmune sequelae to infections with Streptococcus pyogenes. Streptococcal M-proteins have been implicated in ARF pathogenesis. Their interaction with collagen type IV (CIV) is a triggering step that induces generation of collagen-specific auto-antibodies. Electron microscopy of the protein complex between M-protein type 3 (M3-protein) and CIV identified two prominent binding sites of which one is situated in the CB3-region of CIV. In a radioactive binding assay, M3-protein expressing S. pyogenes and S. gordonii bound the CB3-fragment. Detailed analysis of the interactions by surface plasmon resonance measurements and site directed mutagenesis revealed high affinity interactions with dissociation constants in the nanomolar range that depend on the recently described collagen binding motif of streptococcal M-proteins. Because of its role in the induction of disease-related collagen autoimmunity the motif is referred to as “peptide associated with rheumatic fever” (PARF). Both, sera of mice immunized with M3-protein as well as sera from patients with ARF contained anti-CB3 auto-antibodies, indicating their contribution to ARF pathogenesis. The identification of the CB3-region as a binding partner for PARF directs the further approaches to understand the unusual autoimmune pathogenesis of PARF-dependent ARF and forms a molecular basis for a diagnostic test that detects rheumatogenic streptococci.
Collapse
Affiliation(s)
- Katrin Dinkla
- Department of Microbial Pathogenesis, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Susanne R. Talay
- Department of Microbial Pathogenesis, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Mörgelin
- Department of Clinical Sciences, BMC B14, Lund University, Lund, Sweden
| | - Rikki M. A. Graham
- Department of Microbial Pathogenesis, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manfred Rohde
- Department of Microbial Pathogenesis, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - D. Patric Nitsche-Schmitz
- Department of Microbial Pathogenesis, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Gursharan S. Chhatwal
- Department of Microbial Pathogenesis, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
59
|
Hopkinson A, Shanmuganathan VA, Gray T, Yeung AM, Lowe J, James DK, Dua HS. Optimization of Amniotic Membrane (AM) Denuding for Tissue Engineering. Tissue Eng Part C Methods 2008; 14:371-81. [DOI: 10.1089/ten.tec.2008.0315] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Andrew Hopkinson
- Divisions of Ophthalmology and Visual Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Vijay A. Shanmuganathan
- Divisions of Ophthalmology and Visual Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Trevor Gray
- Divisions of Pathology, University of Nottingham, Nottingham, United Kingdom
| | - Aaron M. Yeung
- Divisions of Ophthalmology and Visual Sciences, University of Nottingham, Nottingham, United Kingdom
| | - James Lowe
- Divisions of Pathology, University of Nottingham, Nottingham, United Kingdom
| | - David K. James
- Divisions of Obstetrics and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| | - Harminder S. Dua
- Divisions of Ophthalmology and Visual Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
60
|
Heino J, Huhtala M, Käpylä J, Johnson MS. Evolution of collagen-based adhesion systems. Int J Biochem Cell Biol 2008; 41:341-8. [PMID: 18790075 DOI: 10.1016/j.biocel.2008.08.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 12/22/2022]
Abstract
Collagens are large, triple-helical proteins that form fibrils and network-like structures in the extracellular matrix. The collagens may have participated in the evolution of the metazoans from their very earliest origins. Cell adhesion receptors, such as the integrins, are at least as old as the collagens. Still, the early metazoan cells might not have been able to anchor directly to collagen fibrils, since the integrin-type collagen receptors have only been identified in vertebrates. Instead, the early metazoans may have used integrin-type receptors in the recognition of collagen-binding glycoproteins. It is possible that specialized, high-avidity collagen-receptor integrins have become instrumental for the evolution of bone, cartilage, circulatory and immune systems in the chordates. In vertebrates, specific collagen-binding receptor tyrosine kinases send signals into cells after adhesion to collagen. These receptors are members of the discoidin domain receptor (DDR) group. The evolutionary history of DDRs is poorly known at this time. DDR orthologs have been found in many invertebrates, but their ability to function as collagen receptors has not yet been tested. The two main categories of collagens, fibrillar and non-fibrillar, already exist in the most primitive metazoans, such as the sponges. Interestingly, both integrin and DDR families seem to have members that favor either one or the other of these two groups of collagens.
Collapse
Affiliation(s)
- Jyrki Heino
- Department of Biochemistry and Food Chemistry, University of Turku, FI-20014 Turku, Finland.
| | | | | | | |
Collapse
|
61
|
Sudhakar A, Boosani CS. Inhibition of tumor angiogenesis by tumstatin: insights into signaling mechanisms and implications in cancer regression. Pharm Res 2008; 25:2731-9. [PMID: 18551250 PMCID: PMC7275098 DOI: 10.1007/s11095-008-9634-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 05/15/2008] [Indexed: 01/16/2023]
Abstract
Growing tumors develop additional new blood vessels to meet the demand for adequate nutrients and oxygen, a process called angiogenesis. Cancer is a highly complex disease promoted by excess angiogenesis; interfering with this process poses for an attractive approach for controlling tumor growth. This hypothesis led to the identification of endogenous angiogenesis inhibitors generated from type IV collagen, a major component of vascular basement membrane (VBM). Type IV collagen and the angiogenesis inhibitors derived from it are involved in complex roles, than just the molecular construction of basement membranes. Protease degradation of collagens in VBM occurs in various physiological and pathological conditions and produces several peptides. Some of these peptides are occupied in the regulation of functions conflicting from those of their original integral molecules. Tumstatin (alpha3(IV)NC1), a proteolytic C-terminal non-collagenous (NC1) domain from type IV collagen alpha3 chain has been highlighted recently because of its potential role in anti-angiogenesis, however its biological actions are not limited to these processes. alpha3(IV)NC1 inhibits proliferation by promoting endothelial cell apoptosis and suppresses diverse tumor angiogenesis, thus making it a potential candidate for future cancer therapy. The present review surveys the physiological functions of type IV collagen and discovery of alpha3(IV)NC1 as an antiangiogenic protein with a comprehensive overview of the knowledge gained by us towards understanding its signaling mechanisms.
Collapse
Affiliation(s)
- Akulapalli Sudhakar
- Cell Signaling and Tumor Angiogenesis Laboratory, Department of Genetics, Boys Town National Research Hospital, Omaha, NE 68131, USA.
| | | |
Collapse
|
62
|
Abstract
Four decades have passed since the first discovery of collagen IV by Kefalides in 1966. Since then collagen IV has been investigated extensively by a large number of research laboratories around the world. Advances in molecular genetics have resulted in identification of six evolutionary related mammalian genes encoding six different polypeptide chains of collagen IV. The genes are differentially expressed during the embryonic development, providing different tissues with specific collagen IV networks each having unique biochemical properties. Newly translated alpha-chains interact and assemble in the endoplasmic reticulum in a chain-specific fashion and form unique heterotrimers. Unlike most collagens, type IV collagen is an exclusive member of the basement membranes and through a complex inter- and intramolecular interactions form supramolecular networks that influence cell adhesion, migration, and differentiation. Collagen IV is directly involved in a number of genetic and acquired disease such as Alport's and Goodpasture's syndromes. Recent discoveries have also highlighted a new and direct role for collagen IV in the development of rare genetic diseases such as cerebral hemorrhage and porencephaly in infants and hemorrhagic stroke in adults. Years of intensive investigations have resulted in a vast body of information about the structure, function, and biology of collagen IV. In this review article, we will summarize essential findings on the structural and functional relationships of different collagen IV chains and their roles in health and disease.
Collapse
Affiliation(s)
- Jamshid Khoshnoodi
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, 37232
| | - Vadim Pedchenko
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, 37232
| | - Billyg Hudson
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, 37232
| |
Collapse
|
63
|
Borza CM, Borza DB, Pedchenko V, Saleem MA, Mathieson PW, Sado Y, Hudson HM, Pozzi A, Saus J, Abrahamson DR, Zent R, Hudson BG. Human podocytes adhere to the KRGDS motif of the alpha3alpha4alpha5 collagen IV network. J Am Soc Nephrol 2008; 19:677-84. [PMID: 18235087 DOI: 10.1681/asn.2007070793] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Podocyte adhesion to the glomerular basement membrane is required for proper function of the glomerular filtration barrier. However, the mechanism whereby podocytes adhere to collagen IV networks, a major component of the glomerular basement membrane, is poorly understood. The predominant collagen IV network is composed of triple helical protomers containing the alpha3alpha4alpha5 chains. The protomers connect via the trimeric noncollagenous (NC1) domains to form hexamers at the interface. Because the NC1 domains of this network can potentially support integrin-dependent cell adhesion, it was determined whether individual NC1 monomers or alpha3alpha4alpha5 hexamers support podocyte adhesion. It was found that, although human podocytes did not adhere to NC1 domains proper, they did adhere via integrin alphavbeta3 to a KRGDS motif located adjacent to alpha3NC1 domains. Because the KRGDS motif is a site of phosphorylation, its interactions with integrin alphavbeta3 may play a critical role in cell signaling in physiologic and pathologic states.
Collapse
|
64
|
Fujisaki H, Adachi E, Hattori S. Keratinocyte differentiation and proliferation are regulated by adhesion to the three-dimensional meshwork structure of type IV collagen. Connect Tissue Res 2008; 49:426-36. [PMID: 19085243 DOI: 10.1080/03008200802324998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We examined the behavior of human foreskin keratinocytes (HFKs) on reconstituted type IV collagen gel. HFKs survived for several days and the upper layer cells expressed a differentiation marker, involucrin. Apoptosis was induced after involucrin expression while cell proliferation was suppressed. On molecular type IV collagen, integrins shifted from alpha 2 beta 1 to alpha 3 beta 1 during HFK culture. On type IV collagen gel, HFKs initially expressed integrin alpha 2 beta 1, and later expressed integrin alpha 3 beta 1 in the presence of alpha 2 beta 1 did not disappear. Using synthetic peptides, we examined integrin alpha2-mediated adhesion to type IV collagen gel. Addition of synthetic peptide dose-dependently inhibited cell adhesion both on type IV collagen gel and on molecular type IV collagen. On type IV collagen gel, weaker phosphorylation of focal adhesion kinase, paxillin, and Akt was observed compared with the molecular forms. Based on these observations, we think type IV collagen gel is a novel culture substrate that mimics the physiological environment for HFKs.
Collapse
Affiliation(s)
- Hitomi Fujisaki
- Nippi Research Institute of Biomatrix Toride, Ibaraki, Japan
| | | | | |
Collapse
|
65
|
Abstract
The collagen family of extracellular matrix proteins has played a fundamental role in the evolution of multicellular animals. At the present, 28 triple helical proteins have been named as collagens and they can be divided into several subgroups based on their structural and functional properties. In tissues, the cells are anchored to collagenous structures. Often the interaction is indirect and mediated by matrix glycoproteins, but cells also express receptors, which have the ability to directly bind to the triple helical domains in collagens. Some receptors bind to sites that are abundant in all collagens. However, increasing evidence indicates that the coevolution of collagens and cell adhesion mechanisms has given rise to receptors that bind to specific motifs in collagens. These receptors may also recognize the different members of the large collagen family in a selective manner. This review summarizes the present knowledge about the properties of collagen subtypes as cell adhesion proteins.
Collapse
Affiliation(s)
- Jyrki Heino
- Department of Biochemistry and Food Chemistry, University of Turku, Arcanum, Vatselankatu 2, FI-20014 Turku, Finland.
| |
Collapse
|
66
|
Woodall BP, Nyström A, Iozzo RA, Eble JA, Niland S, Krieg T, Eckes B, Pozzi A, Iozzo RV. Integrin alpha2beta1 is the required receptor for endorepellin angiostatic activity. J Biol Chem 2007; 283:2335-43. [PMID: 18024432 DOI: 10.1074/jbc.m708364200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endorepellin, the C-terminal module of perlecan, has angiostatic activity. Here we provide definitive genetic and biochemical evidence that the functional endorepellin receptor is the alpha2beta1 integrin. Notably, the specific endorepellin binding to the receptor was cation-independent and was mediated by the alpha2 I domain. We show that the anti-angiogenic effects of endorepellin cannot occur in the absence of alpha2beta1. Microvascular endothelial cells from alpha2beta1(-/-) mice, but not those isolated from either wild-type or alpha1beta1(-/-) mice, did not respond to endorepellin. Moreover, syngeneic Lewis lung carcinoma xenografts in alpha2beta1(-/-) mice failed to respond to systemic delivery of endorepellin. In contrast, endorepellin inhibited tumor growth and angiogenesis in the wild-type mice expressing integrin alpha2beta1. We conclude that the angiostatic effects of endorepellin in vivo are mediated by a specific interaction of endorepellin with the alpha2beta1 integrin receptor.
Collapse
Affiliation(s)
- Benjamin P Woodall
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Humphries MJ, Sheridan J, Mould AP, Newham P. Mechanisms of VCAM-1 and fibronectin binding to integrin alpha 4 beta 1: implications for integrin function and rational drug design. CIBA FOUNDATION SYMPOSIUM 2007; 189:177-91; discussion 191-9. [PMID: 7587632 DOI: 10.1002/9780470514719.ch13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Integrin alpha 4 beta 1 can mediate both cell-cell and cell-extracellular matrix adhesion by binding to either fibronectin or vascular cell adhesion molecule 1 (VCAM-1). Both interactions are important for extravasation of leukocytes from the blood implying that rationally designed inhibitors of alpha 4 beta 1 function may be useful for treating a various inflammatory conditions. The mechanisms of ligand binding by alpha 4 beta 1 are complicated by the fact that alternative splicing can generate different isoforms of the receptor-binding domains in both fibronectin and VCAM-1. Therefore, in addition to developing alpha 4 beta 1 antagonists, we have also been interested in identifying isoform-specific functions. Recombinant ligand variants have been tested in adhesion and direct receptor-binding assays and each molecule was found to have a different inherent affinity for alpha 4 beta 1 that endows them with different adhesive activities. This suggests that alternative splicing may regulate alpha 4 beta 1-dependent motility in vivo. The initial strategy that we have adopted to develop alpha 4 beta 1 inhibitors has been to identify key amino acid residues and peptide sequences participating in the receptor-ligand binding event and to use this information to generate synthetic mimetics. Three active sites have been identified in fibronectin by testing truncated proteins, expressing recombinant fragments and screening synthetic peptides. Two of these sites employ versions of a novel integrin-binding motif, LDVP/IDAP. A key active site in VCAM-1 has been identified by similar approaches as the related sequence IDSP. Since IDSP-like sequences are probably used by other integrin-binding immunoglobulins, derivatives of these peptides may turn out to be the forerunners of a new generation of therapeutic agents with multiple applications.
Collapse
Affiliation(s)
- M J Humphries
- School of Biological Sciences, University of Manchester, UK
| | | | | | | |
Collapse
|
68
|
Koide T. Designed triple-helical peptides as tools for collagen biochemistry and matrix engineering. Philos Trans R Soc Lond B Biol Sci 2007; 362:1281-91. [PMID: 17581806 PMCID: PMC2440396 DOI: 10.1098/rstb.2007.2115] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Collagens, characterized by a unique triple-helical structure, are the predominant component of extracellular matrices (ECMs) existing in all multicellular animals. Collagens not only maintain structural integrity of tissues and organs, but also regulate a number of biological events, including cell attachment, migration and differentiation, tissue regeneration and animal development. The specific functions of collagens are generally triggered by specific interactions of collagen-binding molecules (membrane receptors, soluble factors and other ECM components) with certain structures displayed on the collagen triple helices. Thus, synthetic triple-helical peptides that mimic the structure of native collagens have been used to investigate the individual collagen-protein interactions, as well as collagen structure and stability. The first part of this article illustrates the design of various collagen-mimetic peptides and their recent applications in matrix biology. Collagen is also acknowledged as one of the most promising biomaterials in regenerative medicine and tissue engineering. However, the use of animal-derived collagens in human could put the recipients at risks of pathogen transmission or allergic reactions. Hence, the production of safe artificial collagen surrogates is currently of considerable interest. The latter part of this article reviews recent attempts to develop artificial collagens as novel biomaterials.
Collapse
Affiliation(s)
- Takaki Koide
- Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan.
| |
Collapse
|
69
|
Tulla M, Huhtala M, Jäälinoja J, Käpylä J, Farndale RW, Ala-Kokko L, Johnson MS, Heino J. Analysis of an ascidian integrin provides new insight into early evolution of collagen recognition. FEBS Lett 2007; 581:2434-40. [PMID: 17485091 DOI: 10.1016/j.febslet.2007.04.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 04/20/2007] [Accepted: 04/23/2007] [Indexed: 11/28/2022]
Abstract
AlphaI domain integrins have been found in the ascidian Ciona intestinalis. We produced Ciona alpha1I domain as a recombinant protein. It did not recognize fibril-forming collagens or bind to GFOGER or other similar motifs in triple-helical peptides. No GFOGER motifs were found in Ciona collagens. As Ciona alpha1I bound to collagen IX, we propose that before the emergence of GFOGER-dependent collagen receptors in vertebrates, alphaI domain integrins might have been able to bind to collagen with alternative mechanisms.
Collapse
Affiliation(s)
- Mira Tulla
- Department of Biochemistry and Food Chemistry, University of Turku, Turku FI-20014, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Leitinger B, Hohenester E. Mammalian collagen receptors. Matrix Biol 2007; 26:146-55. [PMID: 17141492 DOI: 10.1016/j.matbio.2006.10.007] [Citation(s) in RCA: 292] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 10/11/2006] [Accepted: 10/12/2006] [Indexed: 11/26/2022]
Abstract
Collagen-rich extracellular matrices are abundant and ubiquitous in the mammalian body. Collagens are not only essential for the mechanical stability of tissues, but are also intimately involved in controlling cell behaviour. The hallmark of collagens is a triple helix made up of polypeptide chains containing glycine-X-Y repeats. A structurally and functionally diverse group of cell surface receptors mediates the recognition of triple-helical collagen: integrins, discoidin domain receptors, glycoprotein VI, leukocyte-associated IG-like receptor-1, and members of the mannose receptor family. In this review, we discuss the structure and function of these receptors, focussing on the principles involved in collagen recognition.
Collapse
MESH Headings
- Animals
- Collagen/chemistry
- Collagen/genetics
- Collagen/metabolism
- Discoidin Domain Receptors
- Integrins/chemistry
- Integrins/genetics
- Integrins/metabolism
- Lectins, C-Type/chemistry
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mannose Receptor
- Mannose-Binding Lectins/chemistry
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/metabolism
- Models, Molecular
- Platelet Membrane Glycoproteins/chemistry
- Platelet Membrane Glycoproteins/genetics
- Platelet Membrane Glycoproteins/metabolism
- Protein Conformation
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Collagen/chemistry
- Receptors, Collagen/genetics
- Receptors, Collagen/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Mitogen/chemistry
- Receptors, Mitogen/genetics
- Receptors, Mitogen/metabolism
Collapse
Affiliation(s)
- Birgit Leitinger
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
71
|
Rezler EM, Khan DR, Lauer-Fields J, Cudic M, Baronas-Lowell D, Fields GB. Targeted drug delivery utilizing protein-like molecular architecture. J Am Chem Soc 2007; 129:4961-72. [PMID: 17397150 PMCID: PMC2519954 DOI: 10.1021/ja066929m] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nanotechnology-based drug delivery systems (nanoDDSs) have seen recent popularity due to their favorable physical, chemical, and biological properties, and great efforts have been made to target nanoDDSs to specific cellular receptors. CD44/chondroitin sulfate proteoglycan (CSPG) is among the receptors overexpressed in metastatic melanoma, and the sequence to which it binds within the type IV collagen triple-helix has been identified. A triple-helical "peptide-amphiphile" (alpha1(IV)1263-1277 PA), which binds CD44/CSPG, has been constructed and incorporated into liposomes of differing lipid compositions. Liposomes containing distearoyl phosphatidylcholine (DSPC) as the major bilayer component, in combination with distearoyl phosphatidylglycerol (DSPG) and cholesterol, were more stable than analogous liposomes containing dipalmitoyl phosphatidylcholine (DPPC) instead of DSPC. When dilauroyl phosphatidylcholine (DLPC):DSPG:cholesterol liposomes were prepared, monotectic behavior was observed. The presence of the alpha1(IV)1263-1277 PA conferred greater stability to the DPPC liposomal systems and did not affect the stability of the DSPC liposomes. A positive correlation was observed for cellular fluorophore delivery by the alpha1(IV)1263-1277 PA liposomes and CD44/CSPG receptor content in metastatic melanoma and fibroblast cell lines. Conversely, nontargeted liposomes delivered minimal fluorophore to these cells regardless of the CD44/CSPG receptor content. When metastatic melanoma cells and fibroblasts were treated with exogeneous alpha1(IV)1263-1277, prior to incubation with alpha1(IV)1263-1277 PA liposomes, to potentially disrupt receptor/liposome interactions, a dose-dependent decrease in the amount of fluorophore delivered was observed. Overall, our results suggest that PA-targeted liposomes can be constructed and rationally fine-tuned for drug delivery applications based on lipid composition. The selectivity of alpha1(IV)1263-1277 PA liposomes for CD44/CSPG-containing cells represents a targeted-nanoDDS with potential for further development and application.
Collapse
Affiliation(s)
- Evonne M Rezler
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, USA
| | | | | | | | | | | |
Collapse
|
72
|
Khoshnoodi J, Cartailler JP, Alvares K, Veis A, Hudson BG. Molecular recognition in the assembly of collagens: terminal noncollagenous domains are key recognition modules in the formation of triple helical protomers. J Biol Chem 2006; 281:38117-21. [PMID: 17082192 DOI: 10.1074/jbc.r600025200] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha-chains of the collagen superfamily are encoded with information that specifies self-assembly into fibrils, microfibrils, and networks that have diverse functions in the extracellular matrix. A key self-organizing step, common to all collagen types, is trimerization that selects, binds, and registers cognate alpha-chains for assembly of triple helical protomers that subsequently oligomerize into specific suprastructures. In this article, we review recent findings on the mechanism of chain selection and infer that terminal noncollagenous domains function as recognition modules in trimerization and are therefore key determinants of specificity in the assembly of suprastructures. This mechanism is also illustrated with computer-generated animations.
Collapse
Affiliation(s)
- Jamshid Khoshnoodi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-2372, USA
| | | | | | | | | |
Collapse
|
73
|
Berendsen AD, Bronckers ALJJ, Smit TH, Walboomers XF, Everts V. Collagen type V enhances matrix contraction by human periodontal ligament fibroblasts seeded in three-dimensional collagen gels. Matrix Biol 2006; 25:515-22. [PMID: 16973341 DOI: 10.1016/j.matbio.2006.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 07/21/2006] [Accepted: 07/21/2006] [Indexed: 10/24/2022]
Abstract
Extracellular matrix components play an important role in modulating cellular activity. To study such capacities of the matrix, fibroblasts are frequently cultured in a three-dimensional gel and contraction is assessed as a measure of cellular activity. Since a connective tissue contains several types of collagen, we investigated the effect of gels composed of collagen I alone or in combination with 10% collagen III and/or 5% collagen V on contraction by human periodontal ligament fibroblasts. Gels containing collagen V contracted much faster than those without this type of collagen. Blocking of the integrin beta1-subunit with an activity-blocking antibody delayed (gels with collagen V) or almost completely blocked (gels without collagen V) contraction. Use of an antibody directed against integrin alpha2beta1 resulted in delay of gel contraction for gels both with and without collagen V. Anti-integrin alpha v beta3 or RGD peptides partially blocked contraction of gels containing collagen V, but had no effect on gels consisting of collagen I alone. The beta1-containing integrins are involved in the basal contraction by fibroblasts that bind to collagens I and III. The enhanced contraction, stimulated by collagen V, appears to be mediated by integrin alpha v beta3. We conclude that collagen V may play an important modulating role in connective tissue contraction. Such a modulation may occur during the initial stages of wound healing and/or tissue regeneration.
Collapse
Affiliation(s)
- Agnes D Berendsen
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
74
|
Eble JA, Kassner A, Niland S, Mörgelin M, Grifka J, Grässel S. Collagen XVI Harbors an Integrin α1β1 Recognition Site in Its C-terminal Domains. J Biol Chem 2006; 281:25745-56. [PMID: 16754661 DOI: 10.1074/jbc.m509942200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen XVI is integrated tissue-dependently into distinct fibrillar aggregates, such as D-banded cartilage fibrils and fibrillin-1-containing microfibrils. In skin, the distribution of collagen XVI overlaps that of the collagen-binding integrins alpha1 beta1 and alpha2 beta1. Basal layer keratinocytes express integrin alpha2 beta1, whereas integrin alpha1 beta1 occurs in smooth muscle cells surrounding blood vessels, in hair follicles, and on adipocytes. Cells bearing the integrins alpha1 beta1 and alpha2 beta1 attach and spread on recombinant collagen XVI. Furthermore, collagen XVI induces the recruitment of these integrins into focal adhesion plaques, a principal step in integrin signaling. Of potential physiological relevance, these integrin-collagen XVI interactions may connect cells with specialized fibrils, thus contributing to the organization of fibrillar and cellular components within connective tissues. In cell-free binding assays, collagen XVI is more avidly bound by alpha1 beta1 integrin than by alpha2 beta1 integrin. Both integrins interact with collagen XVI via the A domain of their alpha subunits. A tryptic collagen XVI fragment comprising the collagenous domains 1-3 is recognized by alpha1 beta1 integrin. Electron microscopy of complexes of alpha1 beta1 integrin with this tryptic collagen XVI fragment or with full-length collagen XVI revealed a unique alpha1 beta1 integrin-binding site within collagen XVI located close to its C-terminal end.
Collapse
Affiliation(s)
- Johannes A Eble
- Institute for Physiological Chemistry and Pathobiochemistry, Muenster University Hospital, Waldeyerstrasse 15, 48149 Muenster, Germany.
| | | | | | | | | | | |
Collapse
|
75
|
Dobler D, Ahmed N, Song L, Eboigbodin KE, Thornalley PJ. Increased dicarbonyl metabolism in endothelial cells in hyperglycemia induces anoikis and impairs angiogenesis by RGD and GFOGER motif modification. Diabetes 2006; 55:1961-9. [PMID: 16804064 DOI: 10.2337/db05-1634] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic vascular disease in diabetes is associated with disruption of extracellular matrix (ECM) interactions with adherent endothelial cells, compromising cell survival and impairing vasculature structure. Loss of functional contact with integrins activates anoikis and impairs angiogenesis. The metabolic dysfunction underlying this vascular damage and disruption is unclear. Here, we show that increased modification of vascular basement membrane type IV collagen by methylglyoxal, a dicarbonyl glycating agent with increased formation in hyperglycemia, formed arginine-derived hydroimidazolone residues at hotspot modification sites in RGD and GFOGER integrin-binding sites of collagen, causing endothelial cell detachment, anoikis, and inhibition of angiogenesis. Endothelial cells incubated in model hyperglycemia in vitro and experimental diabetes in vivo produced the same modifications of vascular collagen, inducing similar responses. Pharmacological scavenging of methylglyoxal prevented anoikis and maintained angiogenesis, and inhibition of methylglyoxal metabolism with a cell permeable glyoxalase I inhibitor provoked these responses in normoglycemia. Thus, increased formation of methylglyoxal and ECM glycation in hyperglycemia impairs endothelial cell survival and angiogenesis and likely contributes to similar vascular dysfunction in diabetes.
Collapse
Affiliation(s)
- Darin Dobler
- Department of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | | | | | | | | |
Collapse
|
76
|
Klose A, Wilbrand-Hennes A, Zigrino P, Weber E, Krieg T, Mauch C, Hunzelmann N. Contact of high-invasive, but not low-invasive, melanoma cells to native collagen I induces the release of mature cathepsin B. Int J Cancer 2006; 118:2735-43. [PMID: 16381007 DOI: 10.1002/ijc.21700] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Metastasis of malignant tumor cells involves cell-cell and cell-matrix interactions, which regulate the expression and localization of proteolytic enzymes. In the present study, we investigated the expression and localization of the lysosomal cysteine proteinase cathepsin B and its natural inhibitors cystatin A, B and C in high- (MV3), intermediate- (SKmel28) and low-invasive (SKmel23, WM164) human melanoma cell lines grown on plastic or in contact with monomeric or fibrillar collagen type I. Neither the transcript levels of cathepsin B nor those of the natural inhibitors, cystatin B and C, were altered by the interaction of melanoma cells with collagen type I. However, protein expression and cellular localization of cathepsin B and its inhibitors were markedly affected. In contrast to low-invasive cells, high-invasive cells constitutively released procathepsin B when cultured on plastic. In addition, contact of invasive cells with fibrillar collagen type I resulted in the release of both mature forms of the protease. Perturbation studies using inhibitory antibodies against the beta1 subunit of the integrin receptor indicated a role for the beta1 integrin receptor family in the regulation of cathepsin B release. Cystatin B protein expression was much lower in high-invasive cells in both culture conditions, when compared to low-invasive cells. Cystatin C expression was comparable in all cells, but cell contact to fibrillar collagen type I induced its expression. These results strongly implicate a pivotal role of cell-matrix interactions for the regulation of cathepsin B localization and activity in melanoma cells.
Collapse
Affiliation(s)
- Anke Klose
- Department of Dermatology, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
77
|
Pedchenko VK, Chetyrkin SV, Chuang P, Ham AJL, Saleem MA, Mathieson PW, Hudson BG, Voziyan PA. Mechanism of perturbation of integrin-mediated cell-matrix interactions by reactive carbonyl compounds and its implication for pathogenesis of diabetic nephropathy. Diabetes 2005; 54:2952-60. [PMID: 16186398 DOI: 10.2337/diabetes.54.10.2952] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Perturbation of interactions between cells and the extracellular matrix (ECM) of renal glomeruli may contribute to characteristic histopathological lesions found in the kidneys of patients with diabetic nephropathy. However, the mechanism by which the diabetic conditions may affect cell-ECM interactions is unknown. Existing hypotheses suggest a role of glucose in direct modification of ECM. Here, we have demonstrated that carbonyl compound methylglyoxal (MGO) completely inhibited endothelial cell adhesion to recombinant alpha3 noncollagenous 1 domain of type IV collagen mediated via a short collagenous region containing RGD (Arg-Gly-Asp) sequence as well as binding of purified alpha(v)beta(3) integrin to this protein. Specific MGO adducts of the arginine residue were detected within RGD sequence using mass spectrometry. Modification by carbonyl compounds glyoxal or glycolaldehyde had similar but smaller effects. MGO strongly inhibited adhesion of renal glomerular cells, podocytes, and mesangial cells to native collagen IV and laminin-1 as well as binding of collagen IV to its major receptor in glomerular cells, alpha(1)beta(1) integrin. In contrast, modification of these proteins by glucose had no effect on cell adhesion. Pyridoxamine, a promising drug for treatment of diabetic nephropathy, protected cell adhesion and integrin binding from inhibition by MGO. We suggest that in diabetes, perturbation of integrin-mediated cell-matrix interactions occurs via the modification of critical arginine residues in renal ECM by reactive carbonyl compounds. This mechanism may contribute to the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Vadim K Pedchenko
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2372, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Koide T, Homma DL, Asada S, Kitagawa K. Self-complementary peptides for the formation of collagen-like triple helical supramolecules. Bioorg Med Chem Lett 2005; 15:5230-3. [PMID: 16185864 DOI: 10.1016/j.bmcl.2005.08.041] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 08/13/2005] [Accepted: 08/17/2005] [Indexed: 11/20/2022]
Abstract
Collagen is acknowledged as one of the most prominent biomaterials on account of its high biocompatibility and biostability. The development of artificial collagens to replace the animal-derived collagens presents a challenge in the formation of safer and highly functionalized biomaterials. Here, a novel peptide-based system for obtaining collagen-like supramolecules via a spontaneous self-assembling process is described. The designed collagen-like peptides are self-complementary trimers in which each of the 24-mer peptide strands is tethered by two cystine knots forming a staggered arrangement. Their self-assembling ability in aqueous solution was analyzed by circular dichroism, ultrafiltration, and laser diffraction particle size estimation. The obtained results indicate that the staggered trimers form large supramolecular architectures through intermolecular triple helix-formation.
Collapse
Affiliation(s)
- Takaki Koide
- Faculty of Pharmaceutical Science, Niigata University of Pharmacy and Applied Life Sciences, Niigata 950-2081, Japan.
| | | | | | | |
Collapse
|
79
|
Huhtala M, Heino J, Casciari D, de Luise A, Johnson MS. Integrin evolution: insights from ascidian and teleost fish genomes. Matrix Biol 2005; 24:83-95. [PMID: 15890260 DOI: 10.1016/j.matbio.2005.01.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 01/13/2005] [Accepted: 01/24/2005] [Indexed: 10/25/2022]
Abstract
Integrins are a family of alphabeta heterodimeric receptors essential to cell adhesion in all metazoans. In humans, the family consists of 18 alpha and 8 beta subunits that combine to form 24 dimers. Here, we present phylogenetic reconstructions for the alpha and beta integrin subunits based on sequences from 24 invertebrate and vertebrate species, including the fully sequenced genomes of the ascidian Ciona intestinalis (a urochordate) and the pufferfish Takifugu rubripes (a teleost). Both genomes contain integrin alpha subunits that have the inserted alphaI domain. As for the one alphaI domain containing integrin alpha subunit discovered earlier from the ascidian Halocynthia roretzi, the Ciona alphaI domains are missing the distinctive characteristics of mammalian collagen receptors and segregate from all vertebrate alphaI domain integrins in a phylogenetic tree, forming a new subgroup of alpha subunits with alphaI domains. Each of the pufferfish alphaI domain sequences does have characteristics of the collagen receptor alphaI domains, but no leukocyte-specific alphaI domains were found in pufferfish. Comparative protein modeling suggests that several of these fish alphaI domains are structurally compatible with binding to a GFOGER sequence in a collagen triple helix.
Collapse
Affiliation(s)
- Mikko Huhtala
- Department of Biochemistry and Pharmacy, Abo Akademi University, Tykistökatu 6, FIN-20521 Turku, Finland
| | | | | | | | | |
Collapse
|
80
|
Van Agtmael T, Schlötzer-Schrehardt U, McKie L, Brownstein DG, Lee AW, Cross SH, Sado Y, Mullins JJ, Pöschl E, Jackson IJ. Dominant mutations of Col4a1 result in basement membrane defects which lead to anterior segment dysgenesis and glomerulopathy. Hum Mol Genet 2005; 14:3161-8. [PMID: 16159887 DOI: 10.1093/hmg/ddi348] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Members of the type IV collagen family are essential components of all basement membranes (BMs) and define structural stability as well as tissue-specific functions. The major isoform, alpha1.alpha1.alpha2(IV), contributes to the formation of many BMs and its deficiency causes embryonic lethality in mouse. We have identified an allelic series of three ENU induced dominant mouse mutants with missense mutations in the gene Col4a1 encoding the alpha1(IV) subunit chain. Two severe alleles (Bru and Svc) have mutations affecting the conserved glycine residues in the Gly-Xaa-Yaa collagen repeat. Bru heterozygous mice display defects similar to Axenfeld-Rieger anomaly, including iris defects, corneal opacity, vacuolar cataracts, significant iris/corneal adhesions, buphthalmos and optic nerve cupping, a sign indicative of glaucoma. Kidneys of Bru mice have peripheral glomerulopathy characterized by hypertrophy and hyperplasia of the parietal epithelium of Bowman's capsule. A milder allele (Raw) contains a mutation in the Yaa residue of the collagen repeat and was identified by a silvery appearance of the retinal arterioles. All phenotypes are associated with BM defects that affect the eye, kidney and other tissues. This allelic series shows that mutations affecting the collagen domain cause dominant negative effects on the expression and function of the major collagen IV isoform alpha1(IV), and pathological effects vary with the individual mutations.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/pathology
- Amino Acid Sequence
- Animals
- Base Sequence
- Collagen Type IV/genetics
- Collagen Type IV/metabolism
- Electrophoresis, Polyacrylamide Gel
- Eye Diseases/genetics
- Eye Diseases/pathology
- Genes, Dominant/genetics
- Glomerular Basement Membrane/ultrastructure
- Glomerulonephritis, Membranous/genetics
- Glomerulonephritis, Membranous/pathology
- Immunohistochemistry
- Mice
- Microsatellite Repeats/genetics
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Mutation, Missense/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Tom Van Agtmael
- Molecular Physiology, Centre for Cardiovascular Science, University of Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Sinner EK, Reuning U, Kök FN, Saccà B, Moroder L, Knoll W, Oesterhelt D. Incorporation of integrins into artificial planar lipid membranes: characterization by plasmon-enhanced fluorescence spectroscopy. Anal Biochem 2005; 333:216-24. [PMID: 15450795 DOI: 10.1016/j.ab.2004.05.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Indexed: 11/27/2022]
Abstract
An optimized peptide-tethered artificial lipid membrane system has been developed. Integrins (cell adhesion receptors) were functionally incorporated into this membrane model and integrin-ligand interactions were analyzed by surface plasmon-enhanced fluorescence spectroscopy (SPFS). The transmembrane receptors alpha(v)beta(3) and alpha(1)beta(1) of the integrin superfamily were incorporated into a lipid-functionalized peptide layer by vesicle spreading. Consecutive layer formations were monitored by surface plasmon spectroscopy (SPS). Orientation and accessibility of the membrane receptor alpha(v)beta(3) was reliably assessed by specific and reproducible binding of selective antibodies. Moreover, full retention of the functional properties of this receptor was verified by specific and reversible binding of natural ligands. Functional integrity of incorporated integrins was maintained over a time period of 72 h. The integrin/extracellular matrix ligand complexes, whose formations are known to depend on the presence of divalent cations, were lost upon addition of ethylenediaminetetraacetate. Therefore, regeneration of the surface for further binding experiments with minimized unspecific ligand association was possible. These results demonstrate that integrins can be functionally incorporated into peptide-tethered artificial membranes. In combination with the SPS/SPFS method, this artificial membrane system provides a reliable experimental platform for investigation of isolated membrane proteins under experimental conditions resembling those of their native environment.
Collapse
|
82
|
La Linn M, Eble JA, Lübken C, Slade RW, Heino J, Davies J, Suhrbier A. An arthritogenic alphavirus uses the α1β1 integrin collagen receptor. Virology 2005; 336:229-39. [PMID: 15892964 DOI: 10.1016/j.virol.2005.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 01/03/2005] [Accepted: 03/15/2005] [Indexed: 01/23/2023]
Abstract
Ross River (RR) virus is an alphavirus endemic to Australia and New Guinea and is the aetiological agent of epidemic polyarthritis or RR virus disease. Here we provide evidence that RR virus uses the collagen-binding alpha1beta1 integrin as a cellular receptor. Infection could be inhibited by collagen IV and antibodies specific for the beta1 and alpha1 integrin proteins, and fibroblasts from alpha1-integrin-/- mice were less efficiently infected than wild-type fibroblasts. Soluble alpha1beta1 integrin bound immobilized RR virus, and peptides representing the alpha1beta1 integrin binding-site on collagen IV inhibited virus binding to cells. We speculate that two highly conserved regions within the cell-receptor binding domain of E2 mimic collagen and provide access to cellular collagen-binding receptors.
Collapse
Affiliation(s)
- May La Linn
- The Australian Centre for International and Tropical Health and Nutrition, Brisbane, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Collagen, a large insoluble protein with a characteristic triple helical structure, is found as the most prominent component of extracellular matrix. The functions of collagen are not limited to providing mechanical strength to various tissues and organs as a structural protein, as it has been pointed out that collagen exhibits various biological functions through specific interactions with other macromolecules. However, the use of native triple helical collagen is often troublesome because of its insolubility and gelating properties. Instead, triple helical collagen-like peptides have been designed and are used as collagen surrogates in studies on collagen structure, stability, and biological functions including binding to other proteins and cultured cells. This article reviews recent progress in peptide design, synthesis, and the applications of collagen-like peptides in current matrix biology, while emphasizing the advantages of the peptide-based strategy.
Collapse
Affiliation(s)
- Takaki Koide
- Faculty of Pharmaceutical Science, Niigata University of Science and Applied Life Sciences, Niigata, Japan.
| |
Collapse
|
84
|
Extracellular matrix and the development of disease: The role of its components in cancer progression. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1574-3349(05)15007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
85
|
Käpylä J, Jäälinoja J, Tulla M, Ylöstalo J, Nissinen L, Viitasalo T, Vehviläinen P, Marjomäki V, Nykvist P, Säämänen AM, Farndale RW, Birk DE, Ala-Kokko L, Heino J. The Fibril-associated Collagen IX Provides a Novel Mechanism for Cell Adhesion to Cartilaginous Matrix. J Biol Chem 2004; 279:51677-87. [PMID: 15383545 DOI: 10.1074/jbc.m409412200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen IX is the prototype fibril-associated collagen with interruptions in triple helix. In human cartilage it covers collagen fibrils, but its putative cellular receptors have been unknown. The reverse transcription-PCR analysis of human fetal tissues suggested that based on their distribution all four collagen receptor integrins, namely alpha1beta1, alpha2beta1, alpha10beta1, and alpha11beta1, are possible receptors for collagen IX. Furthermore primary chondrocytes and chondrosarcoma cells express the four integrins simultaneously. Chondrosarcoma cells, as well as Chinese hamster ovary cells transfected to express alpha1beta1, alpha2beta1, or alpha10beta1 integrin as their only collagen receptor, showed fast attachment and spreading on human recombinant collagen IX indicating that it is an effective cell adhesion protein. To further study the recognition of collagen IX we produced recombinant alphaI domains in Escherichia coli. For each of the four alphaI domains, collagen IX was among the best collagenous ligands, making collagen IX exceptional compared with all other collagen subtypes tested so far. Rotary shadowing electron microscopy images of both alpha1I- and alpha2I-collagen IX complexes unveiled only one binding site located in the COL3 domain close to the kink between it and the COL2 domain. The recognition of collagen IX by alpha2I was considered to represent a novel mechanism for two reasons. First, collagen IX has no GFOGER motif, and the identified binding region lacks any similar sequences. Second, the alpha2I domain mutations D219R and H258V, which both decreased binding to collagen I and GFOGER, had very different effects on its binding to collagen IX. D219R had no effect, and H258V prevented type IX binding. Thus, our results indicate that collagen IX has unique cell adhesion properties when compared with other collagens, and it provides a novel mechanism for cell adhesion to cartilaginous matrix.
Collapse
Affiliation(s)
- Jarmo Käpylä
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Söder S, Pöschl E. The NC1 domain of human collagen IV is necessary to initiate triple helix formation. Biochem Biophys Res Commun 2004; 325:276-80. [PMID: 15522229 DOI: 10.1016/j.bbrc.2004.10.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Indexed: 11/28/2022]
Abstract
Type IV collagen is a heterotrimeric molecule, which contains the N-terminal 7S, a central triple-helical domain, and the globular C-terminal NC1 domain. A zipper-like mechanism of triple helix formation, starting from the C-terminus, has been proposed for most collagens but for collagen type IV there has only been indirect evidence so far. In this study we expressed trimeric human collagen type IV to compare the effects of different structural variants on the formation of collagen IV molecules. Our data show that the NC1 but not 7S domain is essential for the chain association and initiation of triple helix formation. This strongly suggests an N-to-C terminal mechanism of triple helix formation. Additionally, we could show that the human alpha2(IV) chain can form chimeric alpha1.alpha1.alpha2(IV) heterotrimers with mouse subunits when expressed in PF-HR9 cells.
Collapse
Affiliation(s)
- Stephan Söder
- Osteoarticular and Arthritis Research, Department of Pathology, University of Erlangen-Nürnberg, Germany.
| | | |
Collapse
|
87
|
Pasco S, Brassart B, Ramont L, Maquart FX, Monboisse JC. Control of melanoma cell invasion by type IV collagen. ACTA ACUST UNITED AC 2004; 29:260-6. [PMID: 15936594 DOI: 10.1016/j.cdp.2004.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 09/15/2004] [Indexed: 11/19/2022]
Abstract
Malignant melanoma is the leading cause of death from diseases of the skin. This review summarizes the data from the literature and our laboratory addressing the effects of type IV collagen on melanoma progression. Many different sequences from type IV collagen promote melanoma cell adhesion, migration and invasion. The triple helical conformation of the collagenous domain plays a critical role in some of these interactions. However, recent studies from our group demonstrated that a sequence from the alpha3(IV) NC1 domain inhibits melanoma cell proliferation, migration and invasion by decreasing MMP production and activation. Peptide sequences from the alpha1(IV), alpha2(IV) and alpha3(IV) chains named arresten, canstatin and tumstatin, respectively were shown to inhibit angiogenesis. Further investigations regarding the inhibitory effects of the alpha(IV) NC1 domains will have a paramount relevance for the design of efficient strategies to limit melanoma development.
Collapse
Affiliation(s)
- Sylvie Pasco
- Laboratoire de Biochimie, UMR 6198 CNRS, IFR 53 Biomolecules, UFR Médecine, Université de Reims Champagne-Ardenne, 51 Rue Cognacq Jay, F51095, REIMS Cedex, France.
| | | | | | | | | |
Collapse
|
88
|
Pasco S, Ramont L, Maquart FX, Monboisse JC. Control of melanoma progression by various matrikines from basement membrane macromolecules. Crit Rev Oncol Hematol 2004; 49:221-33. [PMID: 15036262 DOI: 10.1016/j.critrevonc.2003.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2003] [Indexed: 11/25/2022] Open
Abstract
Many biological processes such as cell differentiation, cell migration or gene expression are tightly controlled by cell-cell interactions or by various cytokines. During tumor progression, cancer cells are in contact with extracellular matrix (ECM) macromolecules involving specific receptors such as integrins. The different stages of tumor progression, and mainly the proteolytic cascades implicated in extracellular matrix degradation and cell migration, may be controlled by the extracellular matrix macromolecules or by domains released by directed and limited proteolysis of these molecules. In this review, we summarise the biological effects of various peptides, named matrikines, derived from basement membranes (BM) components, such as laminins (LN), proteoglycans or collagens. These peptides may control tumor progression by regulating the proteolytic cascades leading to cancer cell dissemination and metastasis.
Collapse
Affiliation(s)
- Sylvie Pasco
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS FRE 2534, Faculté de Médecine, IFR 53 Biomolécules, 51 Rue Cognac Jay, 51095 Reims Cedex, France
| | | | | | | |
Collapse
|
89
|
Renner C, Saccà B, Moroder L. Synthetic heterotrimeric collagen peptides as mimics of cell adhesion sites of the basement membrane. Biopolymers 2004; 76:34-47. [PMID: 14997473 DOI: 10.1002/bip.10569] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Collagen type IV forms a network in the basement membrane into which other constituents of the tissue are incorporated. It also provides cell-adhesion sites that are specifically recognized by cell-surface receptors, i.e., the integrins. Different from the ubiquitous sequential RGD adhesion motif found in most of the matrix proteins, in collagen type IV, the responsible binding sites for alpha1beta1 integrin have been identified as Asp461 of the two alpha1 chains and Arg461 of the alpha2 chain. Because of the heterotrimeric character of this collagen, the spatial geometry of the binding epitope depends not only on the triple-helical fold, but decisively even on the stagger of the chains. To investigate the effects of chain registration on the conformational properties and binding affinities of this adhesion epitope, two synthetic heterotrimeric collagen peptides consisting of the identical three chains were assembled by an artificial cystine knot in two different registers, i.e., in the most plausible alpha2alpha1alpha1' and less probable alpha1alpha2alpha1' chain alignment. A detailed conformational characterization of both trimers allowed to correlate their different binding affinities for alpha1beta1 integrin with the degree of local plasticity of the two different triple helices. Optimal local breathing of the rod-shaped collagens is apparently crucial for selective recognition by proteins interacting with these main components of the extracellular matrix.
Collapse
Affiliation(s)
- Christian Renner
- Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | |
Collapse
|
90
|
Bellon G, Martiny L, Robinet A. Matrix metalloproteinases and matrikines in angiogenesis. Crit Rev Oncol Hematol 2004; 49:203-20. [PMID: 15036261 DOI: 10.1016/j.critrevonc.2003.10.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2003] [Indexed: 01/29/2023] Open
Abstract
Neoangiogenesis, the formation of new blood capillaries from pre-existing vessels, plays an important role in a number of physiological and pathological processes, particularly in tumor growth and metastasis. Extracellular proteolysis by matrix metalloproteinases or other neutral proteinases is an absolute requirement for initiating tumor invasion and angiogenesis. Cryptic segments or pre-existing domains within larger proteins, most of them belonging to the extracellular matrix, can be exposed by conformational changes and/or generated by partial enzymatic hydrolysis. They can positively or negatively regulate important functions of endothelial cells including adhesion, migration, proliferation, cell survival and cell-cell interactions. Such regulations by cryptic segments and proteolytic fragments led to the concept of matricryptins and matrikines, respectively. Matrix metalloproteinases and matrikines in conjunction with other pro- or anti-angiogenic factors might act in concert at any step of the angiogenesis process. A number of matrikines have been identified as potent anti-angiogenic factors, which could provide a new alternative to anti-proteolytic strategies for the development of anti-angiogenic therapeutic molecules aimed at inhibiting tumor growth and metastasis. Some of them are currently being investigated in clinical trials.
Collapse
Affiliation(s)
- Georges Bellon
- FRE 2534 CNRS, Faculty of Medicine, IFR-53 "Biomolécules", University of Reims Champagne-Ardenne, 51 rue Cognacq Jay, 51095 Reims Cedex, France.
| | | | | |
Collapse
|
91
|
Pedchenko V, Zent R, Hudson BG. Alpha(v)beta3 and alpha(v)beta5 integrins bind both the proximal RGD site and non-RGD motifs within noncollagenous (NC1) domain of the alpha3 chain of type IV collagen: implication for the mechanism of endothelia cell adhesion. J Biol Chem 2003; 279:2772-80. [PMID: 14610079 DOI: 10.1074/jbc.m311901200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NC1 domains of human type IV collagen, in particular alpha3NC1, are inhibitors of angiogenesis and tumor growth (Petitclerc, E., Boutaud, A., Prestayko, A., Xu, J., Sado, Y., Ninomiya, Y., Sarras, M. P., Jr., Hudson, B. G., and Brooks, P. C. (2000) J. Biol. Chem. 275, 8051-8061). The recombinant alpha3NC1 domain contained a RGD site as part of a short collagenous sequence at the N terminus, designated herein as RGD-alpha3NC1. Others, using synthetic peptides, have concluded that this RGD site is nonfunctional in cell adhesion, and therefore, the anti-angiogenic activity is attributed exclusively to alpha(v)beta(3) integrin interactions with non-RGD motifs of the RGD-alpha3NC1 domain (Maeshima, Y., Colorado, P. C., and Kalluri, R. (2000) J. Biol. Chem. 275, 23745-23750). This nonfunctionality is surprising given that RGD is a binding site for alpha(v)beta(3) integrin in several proteins. In the present study, we used the alpha3NC1 domain with or without the RGD site, expressed in HEK 293 cells for native conformation, as an alternative approach to synthetic peptides to assess the functionality of the RGD site and non-RGD motifs. Our results demonstrate a predominant role of the RGD site for endothelial adhesion and for binding of alpha(v)beta(3) and alpha(v)beta(5) integrins. Moreover, we demonstrate that the two non-RGD peptides, previously identified as the alpha(v)beta(3) integrin-binding sites of the alpha3NC1 domain, are 10-fold less potent in competing for integrin binding than the native protein, indicating the importance of additional structural and/or conformational features of the alpha3NC1 domain for integrin binding. Therefore, the RGD site, in addition to non-RGD motifs, may contribute to the mechanisms of endothelial cell adhesion in the human vasculature and the anti-angiogenic activity of the RGD-alpha3NC1 domain.
Collapse
Affiliation(s)
- Vadim Pedchenko
- Division of Nephrology, Veterans Affairs Hospital, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | | | |
Collapse
|
92
|
Perret S, Eble JA, Siljander PRM, Merle C, Farndale RW, Theisen M, Ruggiero F. Prolyl hydroxylation of collagen type I is required for efficient binding to integrin alpha 1 beta 1 and platelet glycoprotein VI but not to alpha 2 beta 1. J Biol Chem 2003; 278:29873-9. [PMID: 12771137 DOI: 10.1074/jbc.m304073200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen is a potent adhesive substrate for cells, an event essentially mediated by the integrins alpha 1 beta 1 and alpha 2 beta 1. Collagen fibrils also bind to the integrin alpha 2 beta 1 and the platelet receptor glycoprotein VI to activate and aggregate platelets. The distinct triple helical recognition motifs for these receptors, GXOGER and (GPO)n, respectively, all contain hydroxyproline. Using unhydroxylated collagen I produced in transgenic plants, we investigated the role of hydroxyproline in the receptor-binding properties of collagen. We show that alpha 2 beta 1 but not alpha 1 beta 1 mediates cell adhesion to unhydroxylated collagen. Soluble recombinant alpha 1 beta 1 binding to unhydroxylated collagen is considerably reduced compared with bovine collagens, but binding can be restored by prolyl hydroxylation of recombinant collagen. We also show that platelets use alpha 2 beta 1 to adhere to the unhydroxylated recombinant molecules, but the adhesion is weaker than on fully hydroxylated collagen, and the unhydroxylated collagen fibrils fail to aggregate platelets. Prolyl hydroxylation is thus required for binding of collagen to platelet glycoprotein VI and to cells by alpha 1 beta 1. These observations give new insights into the molecular basis of collagen-receptor interactions and offer new selective applications for the recombinant unhydroxylated collagen I.
Collapse
Affiliation(s)
- Stéephanie Perret
- Institut de Biologie et Chimie des Protéines, CNRS UMR 5086, IFR128 BioSciences Lyon-Gerland, 7 Passage du Vercors, 69367 Lyon, Cedex 7, France
| | | | | | | | | | | | | |
Collapse
|
93
|
Lauer-Fields JL, Malkar NB, Richet G, Drauz K, Fields GB. Melanoma cell CD44 interaction with the alpha 1(IV)1263-1277 region from basement membrane collagen is modulated by ligand glycosylation. J Biol Chem 2003; 278:14321-30. [PMID: 12574156 DOI: 10.1074/jbc.m212246200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Invasion of the basement membrane is believed to be a critical step in the metastatic process. Melanoma cells have been shown previously to bind distinct triple-helical regions within basement membrane (type IV) collagen. Additionally, tumor cell binding sites within type IV collagen contain glycosylated hydroxylysine residues. In the present study, we have utilized triple-helical models of the type IV collagen alpha1(IV)1263-1277 sequence to (a) determine the melanoma cell receptor for this ligand and (b) analyze the results of single-site glycosylation on melanoma cell recognition. Receptor identification was achieved by a combination of methods, including (a) cell adhesion and spreading assays using triple-helical alpha1(IV)1263-1277 and an Asp(1266)Abu variant, (b) inhibition of cell adhesion and spreading assays, and (c) triple-helical alpha1(IV)1263-1277 affinity chromatography with whole cell lysates and glycosaminoglycans. Triple-helical alpha1(IV)1263-1277 was bound by melanoma cell CD44/chondroitin sulfate proteoglycan receptors and not by the collagen-binding integrins or melanoma-associated proteoglycan. Melanoma cell adhesion to and spreading on the triple-helical alpha1(IV)1263-1277 sequence was then compared for glycosylated (replacement of Lys(1265) with Hyl(O-beta-d-galactopyranosyl)) versus non-glycosylated ligand. Glycosylation was found to strongly modulate both activities, as adhesion and spreading were dramatically decreased due to the presence of galactose. CD44/chondroitin sulfate proteoglycan did not bind to glycosylated alpha1(IV)1263-1277. Overall, this study (a) is the first demonstration of the prophylactic effects of glycosylation on tumor cell interaction with the basement membrane, (b) provides a rare example of an apparent unfavorable interaction between carbohydrates, and (c) suggests that sugars may mask "cryptic sites" accessible to tumor cells with cell surface or secreted glycosidase activities.
Collapse
Affiliation(s)
- Janelle L Lauer-Fields
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton 33431-0991, USA
| | | | | | | | | |
Collapse
|
94
|
Karpusas M, Ferrant J, Weinreb PH, Carmillo A, Taylor FR, Garber EA. Crystal structure of the alpha1beta1 integrin I domain in complex with an antibody Fab fragment. J Mol Biol 2003; 327:1031-41. [PMID: 12662928 DOI: 10.1016/s0022-2836(03)00203-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The alpha1beta1 (VLA-1) integrin is a cell-surface receptor for collagen and laminin and has been implicated in biological pathways involved in several pathological processes. These processes may be inhibited by the monoclonal antibody AQC2, which binds with high affinity to human alpha1beta1 integrin. To understand the structural basis of the inhibition we determined the crystal structure of the complex of a chimeric rat/human I domain of the alpha1beta1 integrin and the Fab fragment of humanized AQC2 antibody. The structure of the complex shows that the antibody blocks the collagen binding site of the I domain. An aspartate residue, from the CDR3 loop of the antibody heavy chain, coordinates the MIDAS metal ion in a manner similar to that of a glutamate residue from collagen. Substitution of the aspartate residue by alanine or arginine results in significant reduction of antibody binding affinity. Interestingly, although the mode of metal ion coordination resembles that of the open conformation, the I domain maintains an overall closed conformation previously observed only for unliganded I domains.
Collapse
|
95
|
Zhang WM, Kapyla J, Puranen JS, Knight CG, Tiger CF, Pentikainen OT, Johnson MS, Farndale RW, Heino J, Gullberg D. alpha 11beta 1 integrin recognizes the GFOGER sequence in interstitial collagens. J Biol Chem 2003; 278:7270-7. [PMID: 12496264 DOI: 10.1074/jbc.m210313200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integrins alpha(1)beta(1), alpha(2)beta(1), alpha(10)beta(1), and alpha(11)beta(1) are referred to as a collagen receptor subgroup of the integrin family. Recently, both alpha(1)beta(1) and alpha(2)beta(1) integrins have been shown to recognize triple-helical GFOGER (where single letter amino acid nomenclature is used, O = hydroxyproline) or GFOGER-like motifs found in collagens, despite their distinct binding specificity for various collagen subtypes. In the present study we have investigated the mechanism whereby the latest member in the integrin family, alpha(11)beta(1), recognizes collagens using C2C12 cells transfected with alpha(11) cDNA and the bacterially expressed recombinant alpha(11) I domain. The ligand binding properties of alpha(11)beta(1) were compared with those of alpha(2)beta(1). Mg(2+)-dependent alpha(11)beta(1) binding to type I collagen required micromolar Ca(2+) but was inhibited by 1 mm Ca(2+), whereas alpha(2)beta(1)-mediated binding was refractory to millimolar concentrations of Ca(2+). The bacterially expressed recombinant alpha(11) I domain preference for fibrillar collagens over collagens IV and VI was the same as the alpha(2) I domain. Despite the difference in Ca(2+) sensitivity, alpha(11)beta(1)-expressing cells and the alpha(11) I domain bound to helical GFOGER sequences in a manner similar to alpha(2)beta(1)-expressing cells and the alpha(2) I domain. Modeling of the alpha I domain-collagen peptide complexes could partially explain the observed preference of different I domains for certain GFOGER sequence variations. In summary, our data indicate that the GFOGER sequence in fibrillar collagens is a common recognition motif used by alpha(1)beta(1), alpha(2)beta(1), and also alpha(11)beta(1) integrins. Although alpha(10) and alpha(11) chains show the highest sequence identity, alpha(2) and alpha(11) are more similar with regard to collagen specificity. Future studies will reveal whether alpha(2)beta(1) and alpha(11)beta(1) integrins also show overlapping biological functions.
Collapse
Affiliation(s)
- Wan-Ming Zhang
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Box 582, Uppsala University, Uppsala S-751 23, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Eble JA, Berditchevski F. Purification of integrins and characterization of integrin-associated proteins. Methods Cell Biol 2003; 69:223-46. [PMID: 12070995 DOI: 10.1016/s0091-679x(02)69015-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, Universität Münster, 48149 Münster, Germany
| | | |
Collapse
|
97
|
Yurchenco PD, Smirnov S, Mathus T. Analysis of basement membrane self-assembly and cellular interactions with native and recombinant glycoproteins. Methods Cell Biol 2003; 69:111-44. [PMID: 12070988 DOI: 10.1016/s0091-679x(02)69010-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Peter D Yurchenco
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
98
|
Saccà B, Renner C, Moroder L. The chain register in heterotrimeric collagen peptides affects triple helix stability and folding kinetics. J Mol Biol 2002; 324:309-18. [PMID: 12441109 DOI: 10.1016/s0022-2836(02)01065-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Collagen type IV is a highly specialized form of collagen found only in basement membranes, where it provides mechanical stability and structural integrity to tissues and organs, and binding sites for cell adhesion. In its ubiquitous form, collagen type IV consists of two alpha1 chains and one alpha2 chain, whose internal alignment within the triple helix seems to exert a strong influence on the binding affinity to alpha1beta1 integrin receptor. This has been assessed recently using two synthetic collagen peptides that contain the cell adhesion epitope of collagen type IV and are assembled into the most plausible alpha1alpha2alpha1' and alpha2alpha1alpha1' registers. In the present study, the effects of the chain register on the stability of the triple helix and the folding kinetics of these collagen peptides were investigated by CD spectroscopy and microcalorimetry. The results revealed a multi-domain structural organization for both trimers, with an unexpected strong effect of the chain alignment on the conformational stability. Molecular dynamics simulations served to rationalize more properly the experimental results.
Collapse
Affiliation(s)
- Barbara Saccà
- Max-Planck-Institute of Biochemistry, D-82152, Martinsried, Germany
| | | | | |
Collapse
|
99
|
Ortega N, Werb Z. New functional roles for non-collagenous domains of basement membrane collagens. J Cell Sci 2002; 115:4201-14. [PMID: 12376553 PMCID: PMC2789001 DOI: 10.1242/jcs.00106] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Collagens IV, XV and XVIII are major components of various basement membranes. In addition to the collagen-specific triple helix, these collagens are characterized by the presence of several non-collagenous domains. It is clear now that these ubiquitous collagen molecules are involved in more subtle and sophisticated functions than just the molecular architecture of basement membranes, particularly in the context of extracellular matrix degradation. Degradation of the basement membrane collagens occurs during numerous physiological and pathological processes such as embryonic development or tumorigenesis and generates collagen fragments. These fragments are involved in the regulation of functions differing from those of their original intact molecules. The non-collagenous C-terminal fragment NC1 of collagen IV, XV and XVIII have been recently highlighted in the literature because of their potential in reducing angiogenesis and tumorigenesis, but it is clear that their biological functions are not limited to these processes. Proteolytic release of soluble NC1 fragments stimulates migration, proliferation, apoptosis or survival of different cell types and suppresses various morphogenetic events.
Collapse
|
100
|
Zigrino P, Kamiguti AS, Eble J, Drescher C, Nischt R, Fox JW, Mauch C. The reprolysin jararhagin, a snake venom metalloproteinase, functions as a fibrillar collagen agonist involved in fibroblast cell adhesion and signaling. J Biol Chem 2002; 277:40528-35. [PMID: 12186858 DOI: 10.1074/jbc.m202049200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The integrins alpha(2)beta(1) and alpha(1)beta(1) have been shown to modulate cellular activities of fibroblasts on contact with fibrillar collagen. Previously it has been shown that collagen binding to alpha(2)beta(1) regulates matrix metalloproteinase MMP-1 and membrane-type MT1-MMP expression. Jararhagin is a snake venom metalloproteinase of the Reprolysin family of zinc metalloproteinases, containing a metalloproteinase domain followed by disintegrin-like and cysteine-rich domains. Jararhagin blocks type I collagen-induced platelet aggregation by binding to the alpha(2)beta(1) integrin and inhibiting collagen-mediated intracellular signaling events. Here we present evidence that, in contrast to the observations in platelets, jararhagin binding to the integrin receptor alpha(2)beta(1) in fibroblasts produces collagen-like cell signaling events such as up-regulation of MMP-1 and MT1-MMP. Inactivation of the metalloproteinase domain had no effect on these properties of jararhagin. Thus, in fibroblasts the snake venom metalloproteinase jararhagin functions as a collagen-mimetic substrate that binds to and activates integrins. Given the homology between the metalloproteinase, disintegrin-like and cysteine-rich domains of jararhagin and those of the members of the ADAMs (a disintegrin-like and metalloproteinase) family of proteins, this work demonstrates the potential of the disintegrin-like/cysteine-rich domains in the ADAMs as cellular signaling agents to elicit responses relevant to the biological function of these proteins.
Collapse
Affiliation(s)
- Paola Zigrino
- Department of Dermatology, University of Cologne, Cologne 50924, Germany
| | | | | | | | | | | | | |
Collapse
|