51
|
Ogawa Y, Miyamoto Y, Asally M, Oka M, Yasuda Y, Yoneda Y. Two isoforms of Npap60 (Nup50) differentially regulate nuclear protein import. Mol Biol Cell 2009; 21:630-8. [PMID: 20016008 PMCID: PMC2820426 DOI: 10.1091/mbc.e09-05-0374] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Npap60 (Nup50) is a nucleoporin that binds directly to importin α. In humans, there are two Npap60 isoforms: the long (Npap60L) and short (Npap60S) forms. Our results demonstrate that Npap60S stabilizes the binding of importin α to classical NLS-cargo, whereas Npap60L promotes the release of NLS-cargo from importin α. Npap60 (Nup50) is a nucleoporin that binds directly to importin α. In humans, there are two Npap60 isoforms: the long (Npap60L) and short (Npap60S) forms. In this study, we provide both in vitro and in vivo evidence that Npap60L and Npap60S function differently in nuclear protein import. In vitro binding assays revealed that Npap60S stabilizes the binding of importin α to classical NLS-cargo, whereas Npap60L promotes the release of NLS-cargo from importin α. In vivo time-lapse experiments showed that when the Npap60 protein level is controlled, allowing CAS to efficiently promote the dissociation of the Npap60/importin α complex, Npap60S and Npap60L suppress and accelerate the nuclear import of NLS-cargo, respectively. These results demonstrate that Npap60L and Npap60S have opposing functions and suggest that Npap60L and Npap60S levels must be carefully controlled for efficient nuclear import of classical NLS-cargo in humans. This study provides novel evidence that nucleoporin expression levels regulate nuclear import efficiency.
Collapse
Affiliation(s)
- Yutaka Ogawa
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, and Department of Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
52
|
Hoat TX, Bertin N, Ninomiya N, Fukuda S, Usui K, Kawai J, Hayashizaki Y, Suzuki H. Development of a high-throughput method for the systematic identification of human proteins nuclear translocation potential. BMC Cell Biol 2009; 10:69. [PMID: 19772597 PMCID: PMC2754447 DOI: 10.1186/1471-2121-10-69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 09/22/2009] [Indexed: 11/30/2022] Open
Abstract
Background Important clues to the function of novel and uncharacterized proteins can be obtained by identifying their ability to translocate in the nucleus. In addition, a comprehensive definition of the nuclear proteome undoubtedly represents a key step toward a better understanding of the biology of this organelle. Although several high-throughput experimental methods have been developed to explore the sub-cellular localization of proteins, these methods tend to focus on the predominant localizations of gene products and may fail to provide a complete catalog of proteins that are able to transiently locate into the nucleus. Results We have developed a method for examining the nuclear localization potential of human gene products at the proteome scale by adapting a mammalian two-hybrid system we have previously developed. Our system is composed of three constructs co-transfected into a mammalian cell line. First, it contains a PCR construct encoding a fusion protein composed of a tested protein, the PDZ-protein TIP-1, and the transactivation domain of TNNC2 (referred to as ACT construct). Second, our system contains a PCR construct encoding a fusion protein composed of the DNA binding domain of GAL4 and the PDZ binding domain of rhotekin (referred to as the BIND construct). Third, a GAL4-responsive luciferase reporter is used to detect the reconstitution of a transcriptionally active BIND-ACT complex through the interaction of TIP-1 and rhotekin, which indicates the ability of the tested protein to translocate into the nucleus. We validated our method in a small-scale feasibility study by comparing it to green fluorescent protein (GFP) fusion-based sub-cellular localization assays, sequence-based computational prediction of protein sub-cellular localization, and current sub-cellular localization data available from the literature for 22 gene products. Conclusion Our reporter-based system can rapidly screen gene products for their ability to be translocated to the nucleus. Large-scale applications of the system presented herein should provide invaluable information for a more complete biological atlas.
Collapse
Affiliation(s)
- Trinh Xuan Hoat
- RIKEN Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Marg A, Meyer T, Vigneron M, Vinkemeier U. Microinjected antibodies interfere with protein nucleocytoplasmic shuttling by distinct molecular mechanisms. Cytometry A 2009; 73A:1128-40. [PMID: 18773464 DOI: 10.1002/cyto.a.20635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The observation that some antibodies can enter the nucleus after their microinjection into the cytoplasm established the principle of protein nucleocytoplasmic shuttling. Here, we introduce the concept of stationary antibodies for studying nuclear transport, particularly of native proteins. Contrary to the aforementioned translocating immunoglobulins, stationary antibodies do not cross the nuclear envelope. They are distinguished by their ability to trigger the nucleocytoplasmic redistribution of their antigen. What determines these apparently contradictory outcomes has not been explored. We studied a stationary STAT1 antibody and a translocating importin-beta antibody. The stationary phenotype resulted from the inhibition of carrier-independent transport. This was not due to crosslinking or precipitation of antigen, because the antigen-antibody complex remained highly mobile. Rather, decoration with stationary antibody precluded actual nuclear pore passage of antigen. In addition, both antibodies inhibited the carrier-dependent translocation via importin-alpha, but by diverse mechanisms. The translocating antibody blocked the association with importin-alpha, whereas the stationary antibody prevented the phosphorylation of its antigen, and thus functioned upstream of the importin-alpha binding step. We identified a stationary antibody to green-fluorescent protein (GFP) and probed the translocation of GFP fusions of STAT1, thyroid hormone receptor and histones, demonstrating general application of this approach. Our results provide an experimental rationale for the use of antibodies as unique tools for dissecting protein nuclear translocation. As the microinjection of stationary antibodies extends to analyses of native proteins, this method can complement and validate results obtained with fluorescent-labeled derivatives.
Collapse
Affiliation(s)
- Andreas Marg
- Abteilung Molekulare Muskelphysiologie, Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany
| | | | | | | |
Collapse
|
54
|
Mehmood R, Yasuhara N, Oe S, Nagai M, Yoneda Y. Synergistic nuclear import of NeuroD1 and its partner transcription factor, E47, via heterodimerization. Exp Cell Res 2009; 315:1639-52. [PMID: 19272376 DOI: 10.1016/j.yexcr.2009.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 02/13/2009] [Accepted: 02/21/2009] [Indexed: 10/21/2022]
Abstract
The transition from undifferentiated pluripotent cells to terminally differentiated neurons is coordinated by a repertoire of transcription factors. NeuroD1 is a type II basic helix loop helix (bHLH) transcription factor that plays critical roles in neuronal differentiation and maintenance in the central nervous system. Its dimerization with E47, a type I bHLH transcription factor, leads to the transcriptional regulation of target genes. Mounting evidence suggests that regulating the localization of transcription factors contributes to the regulation of their activity during development as defects in their localization underlie a variety of developmental disorders. In this study, we attempted to understand the nuclear import mannerisms of NeuroD1 and E47. We found that the nuclear import of NeuroD1 and E47 is energy-dependent and involves the Ran-mediated pathway. Herein, we demonstrate that NeuroD1 and E47 can dimerize inside the cytoplasm before their nuclear import. Moreover, this dimerization promotes nuclear import as the nuclear accumulation of NeuroD1 was enhanced in the presence of E47 in an in vitro nuclear import assay, and NLS-deficient NeuroD1 was successfully imported into the nucleus upon E47 overexpression. NeuroD1 also had a similar effect on the nuclear accumulation of NLS-deficient E47. These findings suggest a novel role for dimerization that may promote, at least partially, the nuclear import of transcription factors allowing them to function efficiently in the nucleus.
Collapse
Affiliation(s)
- Rashid Mehmood
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
55
|
Kabuta T, Take K, Kabuta C, Hakuno F, Takahashi SI. Differential subcellular localization of insulin receptor substrates depends on C-terminal regions and importin beta. Biochem Biophys Res Commun 2008; 377:741-6. [PMID: 18835249 DOI: 10.1016/j.bbrc.2008.09.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
Abstract
Insulin receptor substrates (IRSs) play essential roles in signal transduction of insulin and insulin-like growth factors. Previously, we showed that IRS-3 is localized to the nucleus as well as the cytosol, while IRS-1 and 2 are mainly localized to the cytoplasm. In the present study, we found that importin beta directly interacts with IRS-3 and is able to mediate nuclear transport of IRS-3. Importin beta interacted with the pleckstrin homology domain, the phosphotyrosine binding domain and the C-terminal region of IRS-3; indeed all of these fragments exhibited predominant nuclear localization. By contrast, almost no interaction of importin beta with IRS-1 and -2 was observed, and their C-terminal regions displayed discrete spotty images in the cytosol. In addition, using chimeric proteins between IRS-1 and IRS-3, we revealed that the C-terminal regions are the main determinants of the differing subcellular localizations of IRS-1 and IRS-3.
Collapse
Affiliation(s)
- Tomohiro Kabuta
- Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
56
|
Andrake MD, Sauter MM, Boland K, Goldstein AD, Hussein M, Skalka AM. Nuclear import of Avian Sarcoma Virus integrase is facilitated by host cell factors. Retrovirology 2008; 5:73. [PMID: 18687138 PMCID: PMC2527327 DOI: 10.1186/1742-4690-5-73] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 08/07/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Integration of retroviral DNA into the host cell genome is an obligatory step in the virus life cycle. In previous reports we identified a sequence (amino acids 201-236) in the linker region between the catalytic core and C-terminal domains of the avian sarcoma virus (ASV) integrase protein that functions as a transferable nuclear localization signal (NLS) in mammalian cells. The sequence is distinct from all known NLSs but, like many, contains basic residues that are essential for activity. RESULTS Our present studies with digitonin-permeabilized HeLa cells show that nuclear import mediated by the NLS of ASV integrase is an active, saturable, and ATP-dependent process. As expected for transport through nuclear pore complexes, import is blocked by treatment of cells with wheat germ agglutinin. We also show that import of ASV integrase requires soluble cellular factors but does not depend on binding the classical adapter Importin-alpha. Results from competition studies indicate that ASV integrase relies on one or more of the soluble components that mediate transport of the linker histone H1. CONCLUSION These results are consistent with a role for ASV integrase and cytoplasmic cellular factors in the nuclear import of its viral DNA substrate, and lay the foundation for identification of host cell components that mediate this reaction.
Collapse
Affiliation(s)
- Mark D Andrake
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | | | | | |
Collapse
|
57
|
Zhou Y, Fang L, Du D, Zhou W, Feng X, Chen J, Zhang Z, Chen Z. Proteome identification of binding-partners interacting with cell polarity protein Par3 in Jurkat cells. Acta Biochim Biophys Sin (Shanghai) 2008. [DOI: 10.1111/j.1745-7270.2008.00452.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
58
|
Tachibana T, Sakaguchi N, Miyamoto Y, Sekimoto T, Yoneda Y, Azuma M. Generation and Characterization of a Monoclonal Antibody Against NPI-1 Subfamily of Importinα. Hybridoma (Larchmt) 2008; 27:285-9. [DOI: 10.1089/hyb.2008.0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Naoko Sakaguchi
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Yoichi Miyamoto
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Toshihiro Sekimoto
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yoshihiro Yoneda
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masayuki Azuma
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| |
Collapse
|
59
|
Tahara K, Takagi M, Ohsugi M, Sone T, Nishiumi F, Maeshima K, Horiuchi Y, Tokai-Nishizumi N, Imamoto F, Yamamoto T, Kose S, Imamoto N. Importin-beta and the small guanosine triphosphatase Ran mediate chromosome loading of the human chromokinesin Kid. ACTA ACUST UNITED AC 2008; 180:493-506. [PMID: 18268099 PMCID: PMC2234231 DOI: 10.1083/jcb.200708003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nucleocytoplasmic transport factors mediate various cellular processes, including nuclear transport, spindle assembly, and nuclear envelope/pore formation. In this paper, we identify the chromokinesin human kinesin-like DNA binding protein (hKid) as an import cargo of the importin-alpha/beta transport pathway and determine its nuclear localization signals (NLSs). Upon the loss of its functional NLSs, hKid exhibited reduced interactions with the mitotic chromosomes of living cells. In digitonin-permeabilized mitotic cells, hKid was bound only to the spindle and not to the chromosomes themselves. Surprisingly, hKid bound to importin-alpha/beta was efficiently targeted to mitotic chromosomes. The addition of Ran-guanosine diphosphate and an energy source, which generates Ran-guanosine triphosphate (GTP) locally at mitotic chromosomes, enhanced the importin-beta-mediated chromosome loading of hKid. Our results indicate that the association of importin-beta and -alpha with hKid triggers the initial targeting of hKid to mitotic chromosomes and that local Ran-GTP-mediated cargo release promotes the accumulation of hKid on chromosomes. Thus, this study demonstrates a novel nucleocytoplasmic transport factor-mediated mechanism for targeting proteins to mitotic chromosomes.
Collapse
Affiliation(s)
- Kiyoshi Tahara
- Cellular Dynamics Laboratory, Discovery Research Institute, Institute of Physical and Chemical Research, Wako, Saitama, 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Nakahara S, Raz A. Regulation of cancer-related gene expression by galectin-3 and the molecular mechanism of its nuclear import pathway. Cancer Metastasis Rev 2008; 26:605-10. [PMID: 17726578 PMCID: PMC3613988 DOI: 10.1007/s10555-007-9095-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Galectin-3 (Gal-3), a member of the beta-galactoside-binding gene family, distributes inside and outside the cell and has pleiotropic biological functions such as cell growth, cell adhesion, cell-cell interaction, and mRNA processing in a specific situation. In particular, Gal-3 in the nucleus plays a pivotal role in the regulation of cancer-related gene expression, including cyclin D1, TTF-1 and MUC2, presumably associated with tumor progression. Therefore, to understand the mechanism of nuclear import of Gal-3 is very significant and might be developed to the new approach for the cancer treatment. In this review, we focus on the role of Gal-3 in the nucleus and the molecular mechanism of nuclear import pathways of Gal-3, providing the hints for the inhibition of Gal-3 function.
Collapse
Affiliation(s)
- Susumu Nakahara
- Tumor Progression and Metastasis Program, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA. Suita Municipal Hospital, Suita, Osaka, Japan
| | - Avraham Raz
- Tumor Progression and Metastasis Program, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
61
|
Characterization of the human herpesvirus 6 U69 gene product and identification of its nuclear localization signal. J Virol 2007; 82:710-8. [PMID: 18003734 DOI: 10.1128/jvi.00736-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To elucidate the function of the U69 protein kinase of human herpesvirus 6 (HHV-6) in vivo, we first analyzed its subcellular localization in HHV-6-infected Molt 3 cells by using polyclonal antibodies against the U69 protein. Immunofluorescence studies showed that the U69 signal localized to the nucleus in a mesh-like pattern in both HHV-6-infected and HHV6-transfected cells. A computer program predicted two overlapping classic nuclear localization signals (NLSs) in the N-terminal region of the protein; this NLS motif is highly conserved in the N-terminal region of most of the herpesvirus protein kinases examined to date. An N-terminal deletion mutant form of the protein failed to enter the nucleus, whereas a fusion protein of green fluorescent protein (GFP) and/or glutathione S-transferase (GST) and the U69 N-terminal region was transported into the nucleus, demonstrating that the predicted N-terminal NLSs of the protein actually function as NLSs. The nuclear transport of the GST-GFP fusion protein containing the N-terminal NLS of U69 was inhibited by wheat germ agglutinin and by the Q69L Ran-GTP mutant, indicating that the U69 protein is transported into the nucleus from the cytoplasm via classic nuclear transport machinery. A cell-free import assay showed that the nuclear transport of the U69 protein was mediated by importin alpha/beta in conjunction with the small GTPase Ran. When the import assay was performed with a low concentration of each importin-alpha subtype, NPI2/importin-alpha7 elicited more efficient transport activity than did Rch1/importin-alpha1 or Qip1/importin-alpha3. These results suggest a relationship between the localization of NPI2/importin-alpha7 and the cell tropism of HHV-6.
Collapse
|
62
|
Pradeepa MM, Manjunatha S, Sathish V, Agrawal S, Rao MRS. Involvement of importin-4 in the transport of transition protein 2 into the spermatid nucleus. Mol Cell Biol 2007; 28:4331-41. [PMID: 17682055 PMCID: PMC2447153 DOI: 10.1128/mcb.00519-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mammalian spermiogenesis is characterized by a unique chromatin-remodeling process in which histones are replaced by transition protein 1 (TP1), TP2, and TP4, which are further replaced by protamines. We showed previously that the import of TP2 into the haploid spermatid nucleus requires the components of cytosol and ATP. We have now carried out a detailed analysis to characterize the molecular components underlying the nuclear translocation of TP2. Real-time PCR analysis of the expression of different importins in testicular germ cells revealed that importin-4 and importin-beta3 are significantly up-regulated in tetraploid and haploid germ cells. We carried out physical interaction studies as well as an in vitro nuclear transport assay using recombinant TP2 and the nuclear localization signal of TP2 (TP2(NLS)) fused to glutathione S-transferase in digitonin-permeabilized, haploid, round spermatids and identified importin-4 to be involved in the import of TP2. A three-dimensional model of the importin-4 protein was generated using the crystal structure of importin-beta1 as the template. Molecular docking simulations of TP2(NLS) with the importin-4 structure led to the identification of a TP2(NLS) binding pocket spanning the three helices (helices 21 to 23) of importin-4, which was experimentally confirmed by in vitro interaction and import studies with different deletion mutants of importin-4. In contrast to TP2, TP1 import was accomplished through a passive diffusion process.
Collapse
Affiliation(s)
- M M Pradeepa
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | | | | | | | | |
Collapse
|
63
|
Singhal PK, Kumar PR, Rao MRKS, Kyasani M, Mahalingam S. Simian immunodeficiency virus Vpx is imported into the nucleus via importin alpha-dependent and -independent pathways. J Virol 2007; 80:526-36. [PMID: 16352576 PMCID: PMC1317556 DOI: 10.1128/jvi.80.1.526-536.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Vpx protein of human immunodeficiency virus type 2/simian immunodeficiency virus (SIV) has been implicated in the transport of the viral genome into the nuclei of nondividing cells. The mechanism by which Vpx enters the nucleus remains unknown. Here we have identified two distinct noncanonical nuclear localization signals (NLSs) in Vpx of SIV(smPbj1.9) and defined the pathways for its nuclear import. Although nuclear targeting signals identified here are distinct from known nuclear import signals, translocation of Vpx into the nucleus involves the interaction of its N-terminal NLS (amino acids 20 to 40) or C-terminal NLS (amino acids 65 to 75) with importin alpha and, in the latter case, also with importin beta. Collectively, these results suggest that importins interact with Vpx and ensure the effective import of Vpx into the nucleus to support virus replication in nondividing cells.
Collapse
Affiliation(s)
- Prabhat K Singhal
- Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics (CDFD), ECIL Road, Nacharam, Hyderabad 500 076, India
| | | | | | | | | |
Collapse
|
64
|
Kumari G, Singhal PK, Rao MRKS, Mahalingam S. Nuclear transport of Ras-associated tumor suppressor proteins: different transport receptor binding specificities for arginine-rich nuclear targeting signals. J Mol Biol 2007; 367:1294-311. [PMID: 17320110 DOI: 10.1016/j.jmb.2007.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 12/28/2006] [Accepted: 01/05/2007] [Indexed: 12/30/2022]
Abstract
Ras proteins regulate a wide range of biological processes by interacting with a variety of effector proteins. In addition to the known role in tumorigensis, the activated form of Ras exhibits growth-inhibitory effects by unknown mechanisms. Several Ras effector proteins identified as mediators of apoptosis and cell-cycle arrest also exhibit properties normally associated with tumor suppressor proteins. Here, we show that Ras effector RASSF5/NORE-1 binds strongly to K-Ras but weakly to both N-Ras and H-Ras. RASSF5 was found to localize both in the nucleus and the nucleolus in contrast to other Ras effector proteins, RASSF1C and RASSF2, which are localized in the nucleus and excluded from nucleolus. A 50 amino acid residue transferable arginine-rich nucleolar localization signal (NoLS) identified in RASSF5 is capable of interacting with importin-beta and transporting the cargo into the nucleolus. Surprisingly, similar arginine-rich signals identified in RASSF1C and RASSF2 interact with importin-alpha and transport the heterologous cytoplasmic proteins to the nucleus. Interestingly, mutation of arginine residues within these nuclear targeting signals prevented interaction of Ras effector proteins with respective transport receptors and abolished their nuclear translocation. These results provide evidence for the first time that arginine-rich signals are able to recognize different nuclear import receptors and transport the RASSF proteins into distinct sub-cellular compartments. In addition, our data suggest that the nuclear localization of RASSF5 is critical for its cell growth control activity. Together, these data suggest that the transport of Ras effector superfamily proteins into the nucleus/nucleolus may play a vital role in modulating Ras-mediated cell proliferation during tumorigenesis.
Collapse
Affiliation(s)
- Gita Kumari
- Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076, India
| | | | | | | |
Collapse
|
65
|
Nakahara S, Oka N, Wang Y, Hogan V, Inohara H, Raz A. Characterization of the nuclear import pathways of galectin-3. Cancer Res 2006; 66:9995-10006. [PMID: 17047062 DOI: 10.1158/0008-5472.can-06-1772] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Galectin-3 (Gal-3), a pleiotropic beta-galactoside-binding protein, was shown to be involved in several nuclear-dependent functions, including up-regulation of transcriptional factors, RNA processing, and cell cycle regulation. Gal-3 compartmentalization in the nucleus versus the cytoplasm affects, in part, the malignant phenotype of various cancers. However, to date, the mechanism by which Gal-3 translocates into the nucleus remains debatable. Thus, we have constructed and expressed a variety of fusion proteins containing deletion mutants of Gal-3 fused with monomers, dimers, and trimers of enhanced green fluorescent protein and searched for the Gal-3 sequence motifs essential for its nuclear localization in vivo. In addition, a digitonin-permeabilized, cell-free transport in vitro assay was used to directly examine the mechanism of Gal-3 nuclear import. Partial deletions of the COOH-terminal region (114-250) of the human Gal-3 significantly decreases its nuclear translocation, whereas a peptide (1-115) was transported to the nuclei. The in vitro nuclear import assay revealed that there are at least two independent nuclear pathways for shuttling Gal-3 into the nucleus: a passive diffusion and an active transport. This is the first article providing direct evidence for the nuclear import mechanisms of Gal-3 and suggests that Gal-3 nuclear translocation is governed by dual pathways, whereas the cytoplasmic/nuclear distribution may be regulated by multiple processes, including cytoplasmic anchorage, nuclear retention, and or nuclear export. These results may lead to the development of a therapeutic modality aiming at abrogating Gal-3 translocation into the nucleus and thus hampering its activity during cancer progression and metastasis.
Collapse
Affiliation(s)
- Susumu Nakahara
- Tumor Progression and Metastasis Program, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
66
|
Nakahara S, Hogan V, Inohara H, Raz A. Importin-mediated Nuclear Translocation of Galectin-3. J Biol Chem 2006; 281:39649-59. [PMID: 17056590 DOI: 10.1074/jbc.m608069200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Galectin-3 (Gal-3), a member of a beta-galactoside-binding protein family, is involved in RNA processing and cell cycle regulation through activation of transcription factors when translocated to the nucleus. We have previously shown that Gal-3 can import into the nucleus through at least two pathways; via passive diffusion and/or active transport (Nakahara, S., Oka, N., Wang, Y., Hogan, V., Inohara, H, and Raz, A. (2006) Cancer Res. 66, 9995-10006). Here, we investigated the process mediated by the active nuclear transport of Gal-3 and have identified a nuclear localization signal (NLS)-like motif in its protein sequence, (223)HRVKKL(228), that resembles p53 and c-Myc NLSs ((378)SRHKKL(383), (322)AKRVKL(327)), respectively. Moreover, trimers of enhanced green fluorescence protein (3xGFP) fused with this NLS-like sequence, which is too large to passively diffuse through the nuclear pores, accumulated in the cell nuclei. To gain insights into this newly identified nuclear import mechanism, the interaction between Gal-3 and importins (importins alpha and beta) that carry the NLS harboring nuclear proteins into the nucleus, was investigated. Pull-down assays and bimolecular fluorescence complementation (BiFC) analysis revealed that wild-type Gal-3, but not mutant Gal-3 (R224A), binds to importin-alpha. Down-regulation of importin-beta by RNA interference (RNAi) efficiently abrogates its nuclear accumulation. Furthermore, we provide evidence that impaired nuclear translocation of mutant Gal-3 protein (R224A) results in accelerated degradation compared with the wild-type protein. Thus, these results suggest that Gal-3 is translocated to the nucleus, in part, via the importin-alpha/beta route and that Arg(224) amino acid residue of human Gal-3 is essential for its active nuclear translocation and its molecular stability.
Collapse
Affiliation(s)
- Susumu Nakahara
- Tumor Progression and Metastasis Program, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
67
|
Leslie DM, Timney B, Rout MP, Aitchison JD. Studying nuclear protein import in yeast. Methods 2006; 39:291-308. [PMID: 16979507 DOI: 10.1016/j.ymeth.2006.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Accepted: 07/15/2006] [Indexed: 01/18/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is a common model organism for biological discovery. It has become popularized primarily because it is biochemically and genetically amenable for many fundamental studies on eukaryotic cells. These features, as well as the development of a number of procedures and reagents for isolating protein complexes, and for following macromolecules in vivo, have also fueled studies on nucleo-cytoplasmic transport in yeast. One limitation of using yeast to study transport has been the absence of a reconstituted in vitro system that yields quantitative data. However, advances in microscopy and data analysis have recently enabled quantitative nuclear import studies, which, when coupled with the significant advantages of yeast, promise to yield new fundamental insights into the mechanisms of nucleo-cytoplasmic transport.
Collapse
Affiliation(s)
- Deena M Leslie
- Institute for Systems Biology, 1141 N 34th St., Seattle, WA 98103, USA
| | | | | | | |
Collapse
|
68
|
Nakanishi A, Li PP, Qu Q, Jafri QH, Kasamatsu H. Molecular dissection of nuclear entry-competent SV40 during infection. Virus Res 2006; 124:226-30. [PMID: 17112617 PMCID: PMC1847345 DOI: 10.1016/j.virusres.2006.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 10/04/2006] [Accepted: 10/05/2006] [Indexed: 11/23/2022]
Abstract
To establish viral infection, SV40 must expose nuclear localization signals (NLSs) that are internal in the virion architecture in order to enter the nucleus via interaction with the host's nuclear import machinery, which includes importin alpha and importin beta. The time course for SV40 association with the importins in infected cells was examined. The viral DNA associated with importin alpha by 1.5h post infection, before associating with the importin beta nuclear import receptor, by 3h post infection. Only a small fraction of cell-internalized SV40 that contained viral DNA was bound by the two importins. This fraction, termed "nuclear entry-competent SV40," was slightly smaller than the virion but, importantly, was larger than the viral chromatin and contained both Vp1 and Vp3. Furthermore, the internalized viral DNA in either anti-importin or anti-Vp3 immune complexes was sensitive to DNase I, whereas the viral DNA in mature virions was resistant. All these results suggest that once SV40 enters the cytoplasm, it undergoes an architectural modification that exposes the virion's NLSs for nuclear entry.
Collapse
Affiliation(s)
- Akira Nakanishi
- Molecular Biology Institute and Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Peggy P. Li
- Molecular Biology Institute and Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Qiumin Qu
- Molecular Biology Institute and Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Qumber H. Jafri
- Molecular Biology Institute and Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Harumi Kasamatsu
- Molecular Biology Institute and Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- *Corresponding author. Mailing address: Molecular Biology Institute, 456 Boyer Hall, University of California, Los Angeles, 611 East Charles E. Young Dr., Box 951570, Los Angeles, CA 90095-1570. Phone: (310) 825-3048. Fax: (310) 206-7286. E-mail:
| |
Collapse
|
69
|
Boulo S, Akarsu H, Ruigrok RWH, Baudin F. Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes. Virus Res 2006; 124:12-21. [PMID: 17081640 DOI: 10.1016/j.virusres.2006.09.013] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/29/2006] [Accepted: 09/30/2006] [Indexed: 11/23/2022]
Abstract
Influenza virus is a negative strand RNA virus and is one of the rare RNA viruses to replicate in the nucleus. The viral RNA is associated with 4 viral proteins to form ribonucleoprotein particles (RNPs). After cell entry the RNPs are dissociated from the viral matrix protein in the low pH of the endosome and are actively imported into the cell nucleus. After translation of viral mRNAs, the proteins necessary for the assembly of new RNPs (the nucleoprotein and the three subunits of the polymerase complex) are also imported into the nucleus. Apart from these four proteins, part of the newly made matrix protein is also imported and the nuclear export protein (NEP) enters the nucleus probably through diffusion. Finally, NS1 also enters the nucleus in order to regulate a number of nuclear processes. The nuclear localization signals on all these viral proteins and their interaction with the cellular transport system are discussed. In the nucleus, the matrix protein binds to the newly assembled RNPs and NEP then binds to the matrix protein. NEP contains the nuclear export signal necessary for transport of the RNPs to the cytoplasm, necessary for the budding of new virus particles. There appears to be a intricate ballet in exposing and hiding nuclear transport signals which leads to a unidirectional transport of the RNPs to the nucleus at the start of the infection process and an opposite unidirectional export of RNPs at the end of the infection.
Collapse
Affiliation(s)
- Sébastien Boulo
- Institut de Virologie Moléculaire et Structurale, FRE 2854 CNRS-UJF, BP 181, 38042 Grenoble cedex 9, France
| | | | | | | |
Collapse
|
70
|
Lee HG, Ueda M, Miyamoto Y, Yoneda Y, Perry G, Smith MA, Zhu X. Aberrant localization of importin alpha1 in hippocampal neurons in Alzheimer disease. Brain Res 2006; 1124:1-4. [PMID: 17070506 DOI: 10.1016/j.brainres.2006.09.084] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 09/11/2006] [Accepted: 09/24/2006] [Indexed: 11/19/2022]
Abstract
Since many nuclear proteins are ectopically localized in the cytoplasm in the vulnerable neurons in Alzheimer disease (AD), we speculated that there is failure of the cytoplasmic-nuclear transport machinery in AD. In support of this notion, we found that importin alpha1, an essential component of cytoplasmic-nuclear transport, is abnormally accumulated in Hirano bodies in vulnerable hippocampal neurons in AD. These data suggest a hindrance in importin-mediated cytoplasmic-nuclear transport in AD.
Collapse
Affiliation(s)
- Hyoung-gon Lee
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
71
|
Rao MRKS, Kumari G, Balasundaram D, Sankaranarayanan R, Mahalingam S. A novel lysine-rich domain and GTP binding motifs regulate the nucleolar retention of human guanine nucleotide binding protein, GNL3L. J Mol Biol 2006; 364:637-54. [PMID: 17034816 DOI: 10.1016/j.jmb.2006.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/01/2006] [Accepted: 09/01/2006] [Indexed: 01/13/2023]
Abstract
A variety of G-proteins and GTPases are known to be involved in nucleolar function. We describe here a new evolutionarily conserved putative human GTPase, guanine nucleotide binding protein-like 3-like (GNL3L). Genes encoding proteins related to GNL3L are present in bacteria and yeast to metazoa and suggests its critical role in development. Conserved domain search analysis revealed that the GNL3L contains a circularly permuted G-motif described by a G5-G4-G1-G2-G3 pattern similar to the HSR1/MMR1 GTP-binding protein subfamily. Highly conserved and critical residues were identified from a three-dimensional structural model obtained for GNL3L using the crystal structure of an Ylqf GTPase from Bacillus subtilis. We demonstrate here that GNL3L is transported into the nucleolus by a novel lysine-rich nucleolar localization signal (NoLS) residing within 1-50 amino acid residues. NoLS identified here is necessary and sufficient to target the heterologous proteins to the nucleolus. We show for the first time that the lysine-rich targeting signal interacts with the nuclear transport receptor, importin-beta and transports GNL3L into the nucleolus. Interestingly, depletion of intracellular GTP blocks GNL3L accumulation into the nucleolar compartment. Furthermore, mutations within the G-domains alter the GTP binding ability of GNL3L and abrogate wild-type nucleolar retention even in the presence of functional NoLS, suggesting that the efficient nucleolar retention of GNL3L involves activities of both basic NoLS and GTP-binding domains. Collectively, these data suggest that GNL3L is composed of distinct modules, each of which plays a specific role in molecular interactions for its nucleolar retention and subsequent function(s) within the nucleolus.
Collapse
Affiliation(s)
- M R K Subba Rao
- Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, ECIL Road, Nacharam, Hyderabad 500076, India
| | | | | | | | | |
Collapse
|
72
|
Ma J, Cao X. Regulation of Stat3 nuclear import by importin α5 and importin α7 via two different functional sequence elements. Cell Signal 2006; 18:1117-26. [PMID: 16298512 DOI: 10.1016/j.cellsig.2005.06.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 05/30/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
Regulated import of STAT proteins into the nucleus through the nuclear pores is a vital event. We previously identified Arg214/215 in the coiled-coil domain and Arg414/417 in the DNA binding domain involved in the ligand-induced nuclear translocation of Stat3. In this study, we investigated the mechanism for Stat3 nuclear transport. We report here that among five ubiquitously expressed human importin alphas, importin alpha5 and alpha7, but not importin alpha1, alpha3, and alpha4, bind to Stat3 upon cytokine stimulation. Similar results were observed for Stat1, but not for Stat5a and 5b, which were unable to interact with any of the importin alphas. The C-terminus of importin alpha5 is necessary but not sufficient for Stat3 binding. Truncation mutant of Stat3 (aa1-320) that contains Arg214/215 exhibits specific binding to importin alpha5, and an exclusive nuclear localization. Point mutations of Arg214/215 in this mutant destroy importin alpha5 binding and its nuclear localization. In contrast, the truncation mutant (aa320-770) including Arg414/417 fails to interact with importin alpha5 and is localized in the cytoplasm. However, both sequence elements are necessary for the full-length Stat3's interaction with importin alpha5. These results suggest that Arg214/215 is likely the binding site for importin alpha5, whereas Arg414/417 may not be involved in the direct binding, but necessary for maintaining the proper conformation of Stat3 dimer for importin binding. A model for Stat3 nuclear translocation is proposed based on these data.
Collapse
Affiliation(s)
- Jing Ma
- Signal Transduction Laboratory, Institute of Molecular and Cell Biology, Proteos Building, 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | | |
Collapse
|
73
|
Van Hoof D, Passier R, Ward-Van Oostwaard D, Pinkse MWH, Heck AJR, Mummery CL, Krijgsveld J. A Quest for Human and Mouse Embryonic Stem Cell-specific Proteins. Mol Cell Proteomics 2006; 5:1261-73. [PMID: 16600995 DOI: 10.1074/mcp.m500405-mcp200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Embryonic stem cells (ESCs) are of immense interest as they can proliferate indefinitely in vitro and give rise to any adult cell type, serving as a potentially unlimited source for tissue replacement in regenerative medicine. Extensive analyses of numerous human and mouse ESC lines have shown generic similarities and differences at both the transcriptional and functional level. However, comprehensive proteome analyses are missing or are restricted to mouse ESCs. Here we have used an extensive proteomic approach to search for ESC-specific proteins by analyzing the differential protein expression profiles of human and mouse ESCs and their differentiated derivatives. The data sets comprise 1,775 non-redundant proteins identified in human ESCs, 1,532 in differentiated human ESCs, 1,871 in mouse ESCs, and 1,552 in differentiated mouse ESCs with a false positive rate of <0.2%. Comparison of the data sets distinguished 191 proteins exclusively identified in both human and mouse ESCs but not in their differentiated derivatives. Besides well known ESC benchmarks, this subset included many uncharacterized proteins, some of which may be novel ESC-specific markers. To complement the mass spectrometric approach, differential expression of a selection of these proteins was confirmed by Western blotting, immunofluorescence confocal microscopy, and fluorescence-activated cell sorting. Additionally two other independently isolated and cultured human ESC lines as well as their differentiated derivatives were monitored for differential expression of selected proteins. Some of these proteins were identified exclusively in ESCs of all three human lines and may thus serve as generic ESC markers. Our wide scale proteomic approach enabled us to screen thousands of proteins rapidly and select putative ESC-associated proteins for further analysis. Validation by three independent conventional protein analysis techniques shows that our methodology is robust, provides an excellent tool to characterize ESCs at the protein level, and may disclose novel ESC-specific benchmarks.
Collapse
Affiliation(s)
- Dennis Van Hoof
- Hubrecht Laboratory, Netherlands Institute of Developmental Biology, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
74
|
Kurisaki A, Kurisaki K, Kowanetz M, Sugino H, Yoneda Y, Heldin CH, Moustakas A. The mechanism of nuclear export of Smad3 involves exportin 4 and Ran. Mol Cell Biol 2006; 26:1318-32. [PMID: 16449645 PMCID: PMC1367208 DOI: 10.1128/mcb.26.4.1318-1332.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Transforming growth factor beta (TGF-beta) receptors phosphorylate Smad3 and induce its nuclear import so it can regulate gene transcription. Smad3 can return to the cytoplasm to propagate further cycles of signal transduction or to be degraded. We demonstrate that Smad3 is exported by a constitutive mechanism that is insensitive to leptomycin B. The Mad homology 2 (MH2) domain is responsible for Smad3 export, which requires the GTPase Ran. Inactive, GDP-locked RanT24N or nuclear microinjection of Ran GTPase activating protein 1 blocked Smad3 export. Inactivation of the Ran guanine nucleotide exchange factor RCC1 inhibited Smad3 export and led to nuclear accumulation of phosphorylated Smad3. A screen for importin/exportin family members that associate with Smad3 identified exportin 4, which binds a conserved peptide sequence in the MH2 domain of Smad3 in a Ran-dependent manner. Exportin 4 is sufficient for carrying the in vitro nuclear export of Smad3 in cooperation with Ran. Knockdown of endogenous exportin 4 completely abrogates the export of endogenous Smad3. A short peptide representing the minimal interaction domain in Smad3 effectively competes with Smad3 association to exportin 4 and blocks nuclear export of Smad3 in vivo. We thus delineate a novel nuclear export pathway for Smad3.
Collapse
Affiliation(s)
- Akira Kurisaki
- Ludwig Institute for Cancer Research, Box 595 Biomedical Center, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
75
|
Yasuda Y, Miyamoto Y, Saiwaki T, Yoneda Y. Mechanism of the stress-induced collapse of the Ran distribution. Exp Cell Res 2006; 312:512-20. [PMID: 16368437 DOI: 10.1016/j.yexcr.2005.11.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 10/28/2005] [Accepted: 11/11/2005] [Indexed: 11/17/2022]
Abstract
The small GTPase Ran plays a central role in several key nuclear functions, including nucleocytoplasmic transport, cell cycle progression, and assembly of the nuclear envelope. In a previous study, we showed that cellular stress induces the nuclear accumulation of importin alpha, and that this appears to be triggered by a collapse in the Ran gradient, leading to the down-regulation of classical nuclear transport. We report here that a decrease in stress-induced ATP is associated with an increase in cytoplasmic Ran levels. A luciferin-luciferase assay showed that cellular stress decreased the intracellular levels of ATP. Treatment of the cells with ATP-depleting agents altered the distribution of Ran. Furthermore, when exogenous ATP was introduced in oxidative stress-treated cells, a normal distribution of Ran was restored. In addition, a pull-down experiment with an importin beta1 variant that binds to RanGTP showed that oxidative stress was accompanied by a decrease in intracellular RanGTP levels. These findings indicate that the decrease in ATP levels induced by cellular stress causes a decrease in RanGTP levels and a collapse of Ran distribution.
Collapse
Affiliation(s)
- Yoshinari Yasuda
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
76
|
Raichaudhuri A, Bhattacharyya R, Chaudhuri S, Chakrabarti P, Dasgupta M. Domain analysis of a groundnut calcium-dependent protein kinase: nuclear localization sequence in the junction domain is coupled with nonconsensus calcium binding domains. J Biol Chem 2006; 281:10399-409. [PMID: 16464867 DOI: 10.1074/jbc.m511001200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signature of calcium-dependent protein kinases (CDPKs) is a C-terminal calmodulin-like domain (CaMLD) with four consensus calcium-binding sites. A junction domain (JD) joins the kinase with CaMLD and interacts with them through its autoinhibitory and CaMLD binding subdomains, respectively. We noted several CDPKs additionally have a bipartite nuclear localization signal (NLS) sequence as a subdomain in their JD, and this feature is obligatorily coupled with the absence of consensus calcium-binding sites in their respective CaMLDs. These predicted features are substantiated by undertaking investigations on a CDPK (gi:67479988) isolated from cultured groundnut (Arachis hypogea) cells. This kinase can bind 3.1 mol of Ca(2+) under saturating conditions with a considerably high K(d) of 392 mum as compared with its canonical counterparts. CD spectroscopic analysis, however, indicates the intramolecular structural changes accompanied with calcium binding to be similar to canonical CDPKs. Attesting to the presence of NLS in the JD, the endogenous kinase is localized in the nucleus of osmotically stressed Arachis cells, and in vitro binding assays indicate the NLS in the JD to interact with nuclear transport factors of the importin family. Homology modeling also indicates the feasibility of interaction of importins with the NLS present in the JD of such CDPKs in their activated form. The possible significance of obligatory coupling between the presence of NLS in the junction domain and atypical calcium binding properties of these CDPKs is discussed in the light of the known mechanisms of activation of these kinases.
Collapse
Affiliation(s)
- Ayan Raichaudhuri
- Department of Biochemistry, Calcutta University, 35 Ballygunge Circular Road, Calcutta 700019
| | | | | | | | | |
Collapse
|
77
|
Aratani S, Oishi T, Fujita H, Nakazawa M, Fujii R, Imamoto N, Yoneda Y, Fukamizu A, Nakajima T. The nuclear import of RNA helicase A is mediated by importin-α3. Biochem Biophys Res Commun 2006; 340:125-33. [PMID: 16375861 DOI: 10.1016/j.bbrc.2005.11.161] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
RNA helicase A (RHA), an ATPase/helicase, regulates the gene expression at various steps including transcriptional activation and RNA processing. RHA is known to shuttle between the nucleus and cytoplasm. We identified the nuclear localization signal (NLS) of RHA and analyzed the nuclear import mechanisms. The NLS of RHA (RHA-NLS) consisting of 19 amino acid residues is highly conserved through species and does not have the consensus classical NLS. In vitro nuclear import assays revealed that the nuclear import of RHA was Ran-dependent and mediated with the classical importin-alpha/beta-dependent pathway. The binding assay indicated that the basic residues in RHA-NLS were used for interaction with importin-alpha. Furthermore, the nuclear import of RHA-NLS was supported by importin-alpha1 and preferentially importin-alpha3. Our results indicate that the nuclear import of RHA is mediated by the importin-alpha3/importin-beta-dependent pathway and suggest that the specificity for importin may regulate the functions of cargo proteins.
Collapse
Affiliation(s)
- Satoko Aratani
- Department of Genome Science, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Jung CG, Kim HJ, Kawaguchi M, Khanna KK, Hida H, Asai K, Nishino H, Miura Y. Homeotic factor ATBF1 induces the cell cycle arrest associated with neuronal differentiation. Development 2005; 132:5137-45. [PMID: 16251211 DOI: 10.1242/dev.02098] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study aimed to elucidate the function of AT motif-binding factor 1 (ATBF1) during neurogenesis in the developing brain and in primary cultures of neuroepithelial cells and cell lines (Neuro 2A and P19 cells). Here, we show that ATBF1 is expressed in the differentiating field in association with the neuronal differentiation markers beta-tubulin and MAP2 in the day E14.5 embryo rat brain, suggesting that it promotes neuronal differentiation. In support of this, we show that ATBF1 suppresses nestin expression, a neural stem cell marker, and activates the promoter of Neurod1 gene, a marker for neuronal differentiation. Furthermore, we show that in Neuro 2A cells, overexpressed ATBF1 localizes predominantly in the nucleus and causes cell cycle arrest. In P19 cells, which formed embryonic bodies in the floating condition, ATBF1 is mainly cytoplasmic and has no effect on the cell cycle. However, the cell cycle was arrested when ATBF1 became nuclear after transfer of P19 cells onto adhesive surfaces or in isolated single cells. The nuclear localization of ATBF1 was suppressed by treatment with caffeine, an inhibitor of PI(3)K-related kinase activity of ataxa-telangiectasia mutated (ATM) gene product. The cytoplasmic localization of ATBF1 in floating/nonadherent cells is due to CRM1-dependent nuclear export of ATBF1. Moreover, in the embryonic brain ATBF1 was expressed in the cytoplasm of proliferating stem cells on the ventricular zone, where cells are present at high density and interact through cell-to-cell contact. Conversely, in the differentiating field, where cell density is low and extracellular matrix is dense, the cell-to-matrix interaction triggered nuclear localization of ATBF1, resulting in the cell cycle arrest. We propose that ATBF1 plays an important role in the nucleus by organizing the neuronal differentiation associated with the cell cycle arrest.
Collapse
Affiliation(s)
- Cha-Gyun Jung
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, Mizuhoku, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Furuta M, Kose S, Koike M, Shimi T, Hiraoka Y, Yoneda Y, Haraguchi T, Imamoto N. Heat-shock induced nuclear retention and recycling inhibition of importin alpha. Genes Cells 2005; 9:429-41. [PMID: 15147272 DOI: 10.1111/j.1356-9597.2004.00734.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Heat-shock induces a strong stress response and modifies all aspects of cellular physiology, which involves dynamic changes in the nucleocytoplasmic distributions of a variety of proteins. Many distinct nucleocytoplasmic transport pathways exist in eukaryotic cells, but how a particular transport pathway is regulated under different cellular conditions remains elusive. The finding of this study indicate that conventional nuclear import, which is mediated by importin alpha/beta, is down-regulated, while the nuclear import of 70 kD heat-shock cognate protein is up-regulated in heat-shock cells. Among the factors involved in the mediation of the conventional nuclear import, significant levels of importin alpha accumulate in the nucleus in response to heat-shock. An analysis of the behaviour of importin alpha with fluorescence recovery after photobleaching and fluorescence loss in photobleaching studies show that nuclear importin alpha becomes less mobile and its nucleocytoplasmic recycling is impaired in heat-shock cells. These data coincided well with biochemical and cytological studies. Our present data show that heat-shock induces the nuclear accumulation, nuclear retention, and recycling inhibition of importin alpha, resulting in the suppression of conventional nuclear import. This suggests a new regulatory mechanism for the adaptation of cells to environmental changes, such as heat-shock.
Collapse
Affiliation(s)
- Maiko Furuta
- Cellular Dynamics Laboratory, Discovery Research Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Fukuhara T, Ozaki T, Shikata K, Katahira J, Yoneda Y, Ogino K, Tachibana T. Specific Monoclonal Antibody Against the Nuclear Pore Complex Protein, Nup98. Hybridoma (Larchmt) 2005; 24:244-7. [PMID: 16225424 DOI: 10.1089/hyb.2005.24.244] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nup98 is a component of nuclear pore complexes, which are large protein assemblies embedded in the nuclear envelope. Previous studies have shown that Nup98 interacts with several transport factors and plays a critical part in nuclear trafficking. However, the mechanism by which Nup98 contributes to nuclear trafficking is not clear. The present study reports on the preparation of a monoclonal antibody (MAb) directed against human Nup98. The antibody was produced by the hybridization of mouse myeloma cells with lymph node cells from an immunized rat. This antibody, MAb 2H10, specifically recognized Nup98, as evidenced by immunoblotting using a nuclear membrane fraction. In immunostaining using MAb 2H10, a punctuate nuclear rim staining pattern was observed. This MAb will be useful in immunoblotting and immunolocalization experiments in various cells and tissues, as well as further analyses of the biological function and cellular dynamics of this protein.
Collapse
Affiliation(s)
- Takaomi Fukuhara
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
81
|
Hu W, Kemp BE, Jans DA. Kinetic properties of nuclear transport conferred by the retinoblastoma (Rb) NLS. J Cell Biochem 2005; 95:782-93. [PMID: 15838894 DOI: 10.1002/jcb.20439] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The retinoblastoma (RB) tumor suppressor is a nuclear phosphoprotein central to control of cellular proliferation. We have previously shown that human RB possesses an evolutionarily conserved bipartite nuclear localization sequence (NLS) (KRSAEGSNPPKPLKKLR877) resembling that of nucleoplasmin. Here we analyze the kinetic properties of the RB NLS in detail with respect to recognition by cellular nuclear import factors, the importins (IMPs), and nuclear transport properties, comparing results to those for the NLSs from SV40 large tumor antigen (T-ag) and the Xenopus laevis phosphoprotein N1N2. Binding affinities of different IMPalpha subunits for the Rb NLS, in the absence or presence of IMPbeta subunits were determined, and NLS-dependent nuclear import reconstituted in vitro for the first time using purified IMPalpha/beta subunits together with recombinant human RanGDP and nuclear transport factor 2 (NTF2). RB NLS-mediated transport had a strict requirement for all components, with high NTF2 concentrations inhibiting transport. As in the case of transport mediated by the T-ag- and N1N2-NLSs, nuclear import of an RB-NLS containing beta-Gal fusion protein was reduced or abolished when anti-IMPalpha or beta antibody was added to cytosolic extract, respectively, confirming that RB NLS-mediated nuclear import occurs through action of IMPalpha/beta. We conclude that although mediated by IMPalpha/beta, and similar in most respects to transport mediated by the similarly bipartite N1N2 NLS, nuclear import conferred by the RB NLS has distinct properties, in part due to the affinity of its interaction with IMPalpha.
Collapse
Affiliation(s)
- Wei Hu
- Nuclear Signalling Laboratory, Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian Capital Territory, Canberra, Australia
| | | | | |
Collapse
|
82
|
Blink EJ, Jiansheng Z, Hu W, Calanni ST, Trapani JA, Bird PI, Jans DA. Interaction of the nuclear localizing cytolytic granule serine protease granzyme B with importin alpha or beta: modulation by the serpin inhibitor PI-9. J Cell Biochem 2005; 95:598-610. [PMID: 15791691 DOI: 10.1002/jcb.20415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Conditional on perforin-dependent delivery to the nucleus of target cells, the cytolytic granule serine protease granzyme B (GrB) plays a central role in eliciting the nuclear events of apoptosis, as shown by the fact that reducing GrB nuclear entry prevents nuclear apoptosis. Apart from a requirement for cytosolic factors and lack of dependence on the guanine-nucleotide-binding protein Ran, little is known regarding the nuclear import pathway of GrB. In this study we use quantitative yeast two-hybrid and direct binding assays to show that GrB can be recognized independently by either of the nuclear import receptor family members importin (IMP) alpha and beta1, but that these proteins either alone or in combination cannot replace exogenous cytosol to reconstitute GrB nuclear import in vitro. Whereas antibodies to IMP(alpha) inhibit transport, indicating that IMP(alpha) is required for GrB nuclear import, those to IMP(beta) enhance transport, implying that IMP(beta) inhibits GrB nuclear import; consistent with this, the addition of recombinant IMP(beta) but not IMP(alpha) reduces maximal nuclear accumulation in the presence of cytosol. Intriguingly, complexation of GrB with its specific serpin inhibitor PI-9 was found to prevent recognition by IMP(beta) but not by IMP(alpha), and eliminate the apparent requirement for IMP(alpha) for nuclear import. We conclude that GrB nuclear import exhibits complex regulation by IMPs; that heterodimerization with PI-9 can modulate the interaction has implications for protection against apoptosis.
Collapse
Affiliation(s)
- Elizabeth J Blink
- Nuclear Signalling Laboratory, Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra City, Australia
| | | | | | | | | | | | | |
Collapse
|
83
|
Ushijima R, Sakaguchi N, Kano A, Maruyama A, Miyamoto Y, Sekimoto T, Yoneda Y, Ogino K, Tachibana T. Extracellular signal-dependent nuclear import of STAT3 is mediated by various importin alphas. Biochem Biophys Res Commun 2005; 330:880-6. [PMID: 15809078 DOI: 10.1016/j.bbrc.2005.03.063] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Indexed: 01/08/2023]
Abstract
The signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is involved in a variety of biological functions. STAT3 is activated by cytokines and growth factors via the phosphorylation of a tyrosine residue, dimerization, and subsequent nuclear translocation. However, the mechanism of its nuclear translocation is unclear. A study of the cytokine-stimulated import of STAT3 into the nucleus is reported herein. An oncostatin M (OSM)-dependent nuclear import assay system was first established in living cells. Using this system, we demonstrated that the microinjection of the importin alpha5/NPI-1 mutant, an anti-importin beta antibody, and the RanQ69L mutant inhibited the nuclear import of STAT3. Second, we showed that tyrosine-phosphorylated STAT3 associates, not only with importin alpha5/NPI-1 but also with other importin alphas, as a result of OSM stimulation, as evidenced by a solution binding assay. These findings suggest that the extracellular signal-dependent nuclear transport of STAT3 is mediated by various importin alphas, importin beta, and Ran.
Collapse
Affiliation(s)
- Ryosuke Ushijima
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Hu W, Philips AS, Kwok JC, Eisbacher M, Chong BH. Identification of nuclear import and export signals within Fli-1: roles of the nuclear import signals in Fli-1-dependent activation of megakaryocyte-specific promoters. Mol Cell Biol 2005; 25:3087-108. [PMID: 15798196 PMCID: PMC1069587 DOI: 10.1128/mcb.25.8.3087-3108.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Ets factor Friend leukemia integration 1 (Fli-1) is an important regulator of megakaryocytic (Mk) differentiation. Here, we demonstrate two novel nuclear localization signals (NLSs) within Fli-1: one (NLS1) is located at the N terminus, and another (NLS2) is within the Ets domain. Nuclear accumulation of Fli-1 reflected the combined functional effects of the two discrete NLSs. Each NLS can independently direct nuclear transport of a carrier protein, with mutations within the NLSs affecting nuclear accumulation. NLS1 has a bipartite motif, whereas the NLS2 region contains a nonclassical NLS. Both NLSs bind importin alpha (IMPalpha) and IMPbeta, with NLS1 and NLS2 being predominantly recognized by IMPalpha and IMPbeta, respectively. Fli-1 also contains one nuclear export signal. Leptomycin B abolished its cytoplasmic accumulation, showing CRM1 dependency. We demonstrate that Ets domain binding to specific target DNA effectively blocks IMP binding, indicating that the targeted DNA binding plays a role in localizing Fli-1 to its destination and releasing IMPs for recycling back to the cytoplasm. Finally, by analyzing full-length Fli-1 carrying NLS1, NLS2, and combined NLS1-NLS2 mutations, we conclude that two functional NLSs exist in Fli-1 and that each NLS is sufficient to target Fli-1 to the nucleus for activation of Mk-specific genes.
Collapse
Affiliation(s)
- Wei Hu
- Centre for Thrombosis and Vascular Research, Department of Medicine, SXt. George Clinical School, University of New South Wales, Sydney, New South Wales 2217, Australia
| | | | | | | | | |
Collapse
|
85
|
Malki S, Nef S, Notarnicola C, Thevenet L, Gasca S, Méjean C, Berta P, Poulat F, Boizet-Bonhoure B. Prostaglandin D2 induces nuclear import of the sex-determining factor SOX9 via its cAMP-PKA phosphorylation. EMBO J 2005; 24:1798-809. [PMID: 15889150 PMCID: PMC1142593 DOI: 10.1038/sj.emboj.7600660] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 04/05/2005] [Indexed: 01/23/2023] Open
Abstract
During mammalian gonadal development, nuclear import/export of the transcription factor SOX9 is a critical step of the Sry-initiated testis-determining cascade. In this study, we identify a molecular mechanism contributing to the SOX9 nuclear translocation in NT2/D1 cells, which is mediated by the prostaglandin D2 (PGD2) signalling pathway via stimulation of its adenylcyclase-coupled DP1 receptor. We find that activation of cAMP-dependent protein kinase A (PKA) induces phosphorylation of SOX9 on its two S64 and S181 PKA sites, and its nuclear localization by enhancing SOX9 binding to the nucleocytoplasmic transport protein importin beta. Moreover, in embryonic gonads, we detect a male-specific prostaglandin D synthase expression and an active PGD2 signal at the time and place of SOX9 expression. We thus propose a new step in the sex-determining cascade where PGD2 acts as an autocrine factor inducing SOX9 nuclear translocation and subsequent Sertoli cell differentiation.
Collapse
Affiliation(s)
- Safia Malki
- Institut de Génétique Humaine, CNRS UPR1142, rue de la Cardonille, Montpellier Cedex, France
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet, Geneva, Switzerland
| | - Cécile Notarnicola
- Institut de Génétique Humaine, CNRS UPR1142, rue de la Cardonille, Montpellier Cedex, France
| | - Laurie Thevenet
- Institut de Génétique Humaine, CNRS UPR1142, rue de la Cardonille, Montpellier Cedex, France
| | - Stéphan Gasca
- Institut de Génétique Humaine, CNRS UPR1142, rue de la Cardonille, Montpellier Cedex, France
| | - Catherine Méjean
- Institut de Génétique Humaine, CNRS UPR1142, rue de la Cardonille, Montpellier Cedex, France
| | - Philippe Berta
- Institut de Génétique Humaine, CNRS UPR1142, rue de la Cardonille, Montpellier Cedex, France
| | - Francis Poulat
- Institut de Génétique Humaine, CNRS UPR1142, rue de la Cardonille, Montpellier Cedex, France
| | - Brigitte Boizet-Bonhoure
- Institut de Génétique Humaine, CNRS UPR1142, rue de la Cardonille, Montpellier Cedex, France
- Institut de Génétique Humaine, CNRS UPR1142, 141, rue de la Cardonille, Montpellier Cedex 5, 34396, France. Tel.: +33 4 99 61 99 40; Fax: +33 4 99 61 99 42; E-mail:
| |
Collapse
|
86
|
Kamata M, Nitahara-Kasahara Y, Miyamoto Y, Yoneda Y, Aida Y. Importin-alpha promotes passage through the nuclear pore complex of human immunodeficiency virus type 1 Vpr. J Virol 2005; 79:3557-64. [PMID: 15731250 PMCID: PMC1075686 DOI: 10.1128/jvi.79.6.3557-3564.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral protein R (Vpr) of human immunodeficiency virus type 1 has potent karyophilic properties, but details of the mechanism by which it enters the nucleus remain to be clarified. We reported previously that two regions, located between residues 17 and 34 (alphaH1) and between residues 46 and 74 (alphaH2), are indispensable for the nuclear localization of Vpr. Here, we reveal that a chimeric protein composed of the nuclear localization signal of Vpr, glutathione S-transferase, and green fluorescent protein was localized at the nuclear envelope and then entered the nucleus upon addition of importin-alpha. An in vitro transport assay using a series of derivatives of importin-alpha demonstrated that the carboxyl terminus was required for this nuclear import process. We also showed that Vpr interacts with importin-alpha through alphaH1 and alphaH2; only the interaction via alphaH1 is indispensable for the nuclear entry of Vpr. These observations indicate that importin-alpha functions as a mediator for the nuclear entry of Vpr.
Collapse
Affiliation(s)
- Masakazu Kamata
- Retrovirus Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
87
|
Kamikubo Y, Sakaguchi N, Shikata K, Furuta M, Miyamoto Y, Imamoto N, Yoneda Y, Ogino K, Tachibana T. Specific Monoclonal Antibody Against Nuclear Import Factor, Importin α1/Rch1. ACTA ACUST UNITED AC 2004; 23:301-4. [PMID: 15672608 DOI: 10.1089/hyb.2004.23.301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Importin alpha1/Rch1, an importin alpha family member, mediates the nuclear import of karyophilic proteins. The present study reports on a monoclonal antibody (MAb) directed against mammalian importin alpha1/Rch1, which was produced by the hybridization of mouse myeloma cells with lymph node cells of an immunized rat. The MAb 1A6 specifically recognized importin alpha1/Rch1 among the importin alpha isoforms, as evidenced by Western blotting. Furthermore, 1A6 detected importin alpha1/Rch1 in HeLa cells by immunofluorescence. This MAb will be useful in immunolocalization and immunoblotting experiments, conducted on different tissue types, to determine the levels of expression of importin alpha1/Rch1 throughout development, as well as further analyses of the biological function and cellular dynamics of this protein.
Collapse
Affiliation(s)
- Yuji Kamikubo
- Department of Applied and Bioapplied Chemistry, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Thevenet L, Méjean C, Moniot B, Bonneaud N, Galéotti N, Aldrian-Herrada G, Poulat F, Berta P, Benkirane M, Boizet-Bonhoure B. Regulation of human SRY subcellular distribution by its acetylation/deacetylation. EMBO J 2004; 23:3336-45. [PMID: 15297880 PMCID: PMC514523 DOI: 10.1038/sj.emboj.7600352] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 07/08/2004] [Indexed: 11/08/2022] Open
Abstract
SRY, a Y chromosome-encoded DNA-binding protein, is required for testis organogenesis in mammals. Expression of the SRY gene in the genital ridge is followed by diverse early cell events leading to Sertoli cell determination/differentiation and subsequent sex cord formation. Little is known about SRY regulation and its mode of action during testis development, and direct gene targets for SRY are still lacking. In this study, we demonstrate that interaction of the human SRY with histone acetyltransferase p300 induces the acetylation of SRY both in vitro and in vivo at a single conserved lysine residue. We show that acetylation participates in the nuclear localisation of SRY by increasing SRY interaction with importin beta, while specific deacetylation by HDAC3 induces a cytoplasmic delocalisation of SRY. Finally, by analysing p300 and HDAC3 expression profiles during both human or mouse gonadal development, we suggest that acetylation and deacetylation of SRY may be important mechanisms for regulating SRY activity during mammalian sex determination.
Collapse
Affiliation(s)
- Laurie Thevenet
- Human Molecular Genetics Group, Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
| | - Catherine Méjean
- Human Molecular Genetics Group, Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
| | - Brigitte Moniot
- Human Molecular Genetics Group, Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
| | - Nathalie Bonneaud
- Human Molecular Genetics Group, Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
| | - Nathalie Galéotti
- Laboratoire de Génomique Fonctionnelle, CNRS UPR 2580, Montpellier, France
| | | | - Francis Poulat
- Human Molecular Genetics Group, Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
| | - Philippe Berta
- Human Molecular Genetics Group, Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
| | - Monsef Benkirane
- Laboratory of Molecular Virology, Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
| | - Brigitte Boizet-Bonhoure
- Human Molecular Genetics Group, Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
| |
Collapse
|
89
|
Yasuhara N, Takeda E, Inoue H, Kotera I, Yoneda Y. Importin alpha/beta-mediated nuclear protein import is regulated in a cell cycle-dependent manner. Exp Cell Res 2004; 297:285-93. [PMID: 15194443 DOI: 10.1016/j.yexcr.2004.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Indexed: 10/26/2022]
Abstract
Functional nuclear proteins are selectively imported into the nucleus by transport factors such as importins alpha and beta. The relationship between the efficiency of nuclear protein import and the cell cycle was measured using specific import substrates for the importin alpha/beta-mediated pathway. After the microinjection of SV40 T antigen nuclear localization signal (NLS)-containing substrates into the cytoplasm of synchronized culture cells at a certain phase of the cell cycle, the nuclear import of the substrates was measured kinetically. Cell cycle-dependent change in import efficiency, but not capacity, was found. That is, import efficiency was found low in the early S, G2/M, and M/G1 phases compared with other phases. In addition, we found that the extent of co-imunoprecipitation of importin alpha with importin beta from cell extracts was strongly associated with import efficiency. These results indicate that the importin alpha/beta-mediated nuclear import machinery is regulated in a cell cycle-dependent manner through the modulation of interaction modes between importins alpha and beta.
Collapse
Affiliation(s)
- Noriko Yasuhara
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
90
|
Qu Q, Sawa H, Suzuki T, Semba S, Henmi C, Okada Y, Tsuda M, Tanaka S, Atwood WJ, Nagashima K. Nuclear Entry Mechanism of the Human Polyomavirus JC Virus-like Particle. J Biol Chem 2004; 279:27735-42. [PMID: 15069063 DOI: 10.1074/jbc.m310827200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
JC virus (JCV) belongs to the polyomavirus family of double-stranded DNA viruses and causes progressive multifocal leukoencephalopathy in humans. Although transport of virions to the nucleus is an important step in JCV infection, the mechanism of this process has remained unclear. The outer shell of the JCV virion comprises the major capsid protein VP1, which possesses a putative nuclear localization signal (NLS), and virus-like particles (VLPs) consisting of recombinant VP1 exhibit a virion-like structure and physiological functions (cellular attachment and intracytoplasmic trafficking) similar to those of JCV virions. We have now investigated the mechanism of nuclear transport of JCV with the use of VLPs. Wild-type VLPs (wtVLPs) entered the nucleus of most HeLa or SVG cells. The virion structure of VLPs was preserved during transport to the nucleus as revealed by confocal microscopy of cells inoculated with fluorescein isothiocyanate-labeled wtVLPs containing packaged Cy3. The nuclear transport of wtVLPs in digitonin-permeabilized cells was dependent on the addition of importins alpha and beta and was prevented by wheat germ agglutinin or by antibodies to the nuclear pore complex. The nuclear entry of VLPs composed of VP1 with a mutated NLS was greatly inhibited, compared with that of wtVLPs, in both intact and permeabilized cells. Unlike wtVLPs, the mutant VLPs did not bind to importins alpha or beta. Limited proteolysis analysis revealed that the NLS of VP1 was exposed on the surface of wtVLPs. These results suggest that JCV VLPs bind to cellular importins via the NLS of VP1 and are transported into the nucleus through the nuclear pore complex.
Collapse
Affiliation(s)
- Qiumin Qu
- Laboratory of Molecular and Cellular Pathology, Hokkaido University School of Medicine, and CREST, JST, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Yamada M, Mattaj IW, Yoneda Y. An ATP-dependent activity that releases RanGDP from NTF2. J Biol Chem 2004; 279:36228-34. [PMID: 15155737 DOI: 10.1074/jbc.m403101200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTPase Ran functions in several critical processes in eukaryotic cells including nuclear transport, nuclear envelope formation, and spindle formation. A RanGDP-binding protein, NTF2, facilitates translocation of RanGDP through the nuclear pore complex and also acts to stabilize RanGDP against nucleotide exchange. Here, we identify a novel activity that stimulates release of GDP from Ran in the presence of NTF2. Hydrolyzable ATP enhances the GDP dissociation activity, and this enhancement is inhibited by nonhydrolyzable ATP analogues. In contrast, neither hydrolyzable ATP nor nonhydrolyzable ATP analogues affect GDP dissociation from Ran catalyzed by recombinant RCC1 or inhibition of GDP dissociation from Ran by recombinant NTF2. The ATP-dependent RanGDP dissociation activity therefore has the properties of a RanGDP dissociation inhibitor (GDI) displacement factor (RanGDF) where the GDI is NTF2. A protein phosphatase inhibitor mixture stimulates the RanGDF activity, suggesting the activity is regulated by phosphorylation. We propose that the ATP-dependent NTF2 releasing factor may have a role in the RanGDP/GTP cycle.
Collapse
Affiliation(s)
- Masami Yamada
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | |
Collapse
|
92
|
Freedman ND, Yamamoto KR. Importin 7 and importin alpha/importin beta are nuclear import receptors for the glucocorticoid receptor. Mol Biol Cell 2004; 15:2276-86. [PMID: 15004228 PMCID: PMC404022 DOI: 10.1091/mbc.e03-11-0839] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 01/22/2004] [Accepted: 02/16/2004] [Indexed: 11/11/2022] Open
Abstract
The vertebrate glucocorticoid receptor (GR) is cytoplasmic without hormone and localizes to the nucleus after hormone binding. GR has two nuclear localization signals (NLS): NL1 is similar in sequence to the SV40 NLS; NL2 is poorly defined, residing in the ligand-binding domain. We found that GR displayed similar hormone-regulated compartmentalization in Saccharomyces cerevisiae and required the Sxm1 nuclear import receptor for NL2-mediated import. Two metazoan homologues of Sxm1, importin 7 and importin 8, bound both NL1 and NL2, whereas importin alpha selectively bound NL1. In an in vitro nuclear import assay, both importin 7 and the importin alpha-importin beta heterodimer could import a GR NL1 fragment. Under these conditions, full-length GR localized to nuclei in the presence but not absence of an unidentified component in cell extracts. Interestingly, importin 7, importin 8, and importin alpha bound GR even in the absence of hormone; thus, hormonal control of localization is exerted at a step downstream of import receptor binding.
Collapse
Affiliation(s)
- Neal D Freedman
- Department of Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, CA 94143-2280, USA
| | | |
Collapse
|
93
|
Schwindling SL, Noll A, Montenarh M, Götz C. Mutation of a CK2 phosphorylation site in cdc25C impairs importin α/β binding and results in cytoplasmic retention. Oncogene 2004; 23:4155-65. [PMID: 15064744 DOI: 10.1038/sj.onc.1207566] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
cdc25C is a phosphatase, which activates the mitosis-promoting factor cyclin B1/cdc2 by dephosphorylation, and thus triggers G(2)/M transition. The activity of cdc25C itself is controlled by phosphorylation of certain amino-acid residues, which among other things determines the subcellular localization of the enzyme. Here, we describe a new phosphorylation site at threonine 236 of cdc25C, which is phosphorylated by protein kinase CK2. This phosphorylation site is located near the nuclear localization signal (amino acids 239-245). We demonstrate that cdc25C interacts with importin beta and the importin alpha/beta heterodimer but not with importin alpha. We further found that a cdc25C phosphorylation mutant where threonine 236 was replaced by aspartic acid as well as cdc25C phosphorylated by CK2 binds importin beta or the importin alpha/beta heterodimer less efficiently than wild type or the corresponding alanine mutant. Furthermore, the cdc25C(T236D) shows a retarded uptake into the nucleus in a cell import assay. Inhibition of protein kinase CK2 enzyme activity in vivo resulted in an enhanced nuclear localization of cdc25C. Thus, phosphorylation of cdc25C at threonine 236 is an important signal for the retention of cdc25C in the cytoplasm.
Collapse
Affiliation(s)
- Sandra L Schwindling
- Universität des Saarlandes, Medizinische Biochemie und Molekularbiologie, Gebäude 44, D-66421 Homburg, Germany
| | | | | | | |
Collapse
|
94
|
Bremner KH, Seymour LW, Logan A, Read ML. Factors Influencing the Ability of Nuclear Localization Sequence Peptides To Enhance Nonviral Gene Delivery. Bioconjug Chem 2004; 15:152-61. [PMID: 14733595 DOI: 10.1021/bc034140k] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonviral gene delivery is limited by inefficient transfer of DNA from the cytoplasm to the nucleus. Nuclear localization sequence (NLS) peptides have been widely used to exploit intracellular transport mechanisms and promote nuclear uptake of DNA. However, the exact conditions to successfully utilize the properties of NLS peptides are still unclear. In the present study a panel of NLS peptides that bind different transport receptors were compared for their ability to enhance nonviral gene transfer. Several factors such as method of incorporating the NLS peptide, type of NLS peptide, DNA morphology, and proper characterization of NLS peptide/DNA conjugates were identified as important considerations in utilizing NLS peptides to enhance gene transfer. In particular, it was shown that a peptide derived from human T cell leukaemia virus type 1 (HTLV) was able to effectively condense DNA into discrete particles and mediate levels of transgene expression up to 32-fold greater than polylysine-based polyplexes. This is the first study to demonstrate efficient transfection mediated by an importin beta-binding peptide based on the HTLV sequence. Promising results were also achieved with a 7-fold increase in gene expression using a NLS peptide/DNA conjugate formed by site-specific linkage of an extended SV40 peptide via a peptide nucleic acid (PNA) clamp. Altogether, the results from this study should help to define the requirements for successful NLS-enhanced transfection.
Collapse
Affiliation(s)
- K Helen Bremner
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham, B15 2TH, UK
| | | | | | | |
Collapse
|
95
|
Sakaguchi N, Miyamoto Y, Yoneda Y, Ogino K, Tachibana T. Generation of a Rat Monoclonal Antibody Specific for Importinα3/Qip1. ACTA ACUST UNITED AC 2003; 22:397-400. [PMID: 14683601 DOI: 10.1089/153685903771797110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Importin alpha, which mediates the nuclear import of nuclear localization signal (NLS)-containing proteins, is a member of nuclear transport factors. Importin alpha binds directly NLS and functions as an adapter for accessing the importin beta-dependent import pathway. To date, several isoforms of importin alpha have been identified and classified into three subfamilies in higher eukaryotes. In this study, we report on the production of a rat monoclonal antibody (MAb) against importin alpha3/Qip1, a member of the importin alpha family, using a rat medial iliac lymph node method. The MAb 3D10 produced, reacted with both recombinant and endogenous importin alpha 3/Qip1. Immunoblotting analysis revealed that MAb 3D10 exclusively recognizes importin alpha3/Qip1 among members of the importin alpha family, in various mammalian cells.
Collapse
Affiliation(s)
- Naoko Sakaguchi
- Department of Applied & Bioapplied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | | | | | |
Collapse
|
96
|
Park SB, Ho TH, Reedy BM, Connolly MD, Standaert RF. Simple mimetics of a nuclear localization signal (NLS). Org Lett 2003; 5:2437-40. [PMID: 12841749 DOI: 10.1021/ol034640t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] Molecular modeling was used to design mimetics of the HIV-1 matrix protein nuclear localization signal (NLS) in which a scaffold of two resorcinol units joined by a diamide linker presents 3-aminopropyl ethers in place of lysine side chains. Prospective mimetics with linkers of 6, 8, 10, or 12 atoms were synthesized and compared in a competition assay for binding to the nuclear import receptor subunit karyopherin alpha, showing the 10-atom linker to be best and shorter ones ineffective.
Collapse
Affiliation(s)
- Seung Bum Park
- University of Illinois at Chicago, Department of Chemistry (M/C 111), 845 West Taylor Street, Room 4500, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
97
|
Hübner S, Bahr C, Gössmann H, Efthymiadis A, Drenckhahn D. Mitochondrial and nuclear localization of kanadaptin. Eur J Cell Biol 2003; 82:240-52. [PMID: 12800979 DOI: 10.1078/0171-9335-00308] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kanadaptin has originally been isolated as a kidney Cl-/HCO3- anion exchanger 1 (kAE1)-binding protein. Initial studies suggested, that in the kidney of the rabbit kanadaptin is expressed exclusively in all epithelial cells of the collecting duct. Transcripts of kanadaptin were also found in tissues not expressing kAE1, indicating additional roles for kanadaptin. With respect to this, we could recently demonstrate translocation of kanadaptin into the nucleus of mammalian cells in a nuclear localization sequence- and importin-dependent manner (Hübner et al., Biochem. J. 361, 287-296, 2002). In this study, we provide evidence, that kanadaptin is widely expressed in many tissues and that expression of kanadaptin in the mouse occurs early in embryonic development. In rat kidney we found the most intense immunofluorescence for kanadaptin in cells of the proximal tubule, consistent with the detection by in situ hybridization of high amounts of kanadaptin messenger RNA in proximal tubule cells. Immunostaining revealed localization of kanadaptin in two subcellular locations, nuclei and mitochondria. Whereas nuclear localization was demonstrated in virtually all cells, mitochondrial staining was restricted to certain cell types. Nuclear staining was only seen in cryosections, whereas mitochondrial staining was observed in both cryosections and semithin sections of freeze-dried plastic-embedded tissue. In the kidney mitochondrial staining was particularly prominent in proximal tubular epithelium. Most surprisingly, in the collecting duct epithelium (including acid-secreting intercalated cells) only negligible immunostaining, if at all, could be observed. Immunoelectron microscopy showed immunolabelling of the entire cross-sectional profile of mitochondria (matrix/inner membrane). Mitochondrial localization of kanadaptin was further documented by immunoblotting of mitochondria-enriched cellular fractions. Utilizing an interspecies heterokaryon assay, we could further demonstrate that kanadaptin has nuclear export activity. Thus, kanadaptin can be regarded to be a highly mobile nucleocytoplasmic shuttling and multilocalizing protein, but its role in mammalian cells remains still obscure.
Collapse
Affiliation(s)
- Stefan Hübner
- Institut für Anatomie und Zellbiologie, Universität Würzburg, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
98
|
Nagasaki T, Myohoji T, Tachibana T, Futaki S, Tamagaki S. Can nuclear localization signals enhance nuclear localization of plasmid DNA? Bioconjug Chem 2003; 14:282-6. [PMID: 12643737 DOI: 10.1021/bc025602h] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonviral vectors are safer and more cost-effective than viral vectors but are significantly less efficient, and thus, increasing the efficiency of nonviral vectors remains an important objective. One way to overcome this problem is by stimulating the nuclear localization of exogenous genes. Nuclear localization signals (NLSs) are known to be involved in the active transport of exogenous proteins and probes into the nucleus. However, stimulation of nuclear localization of plasmid DNA has yet to be confirmed completely. In the present study, we prepared plasmid DNA-NLS peptide conjugates and adjusted spacer length and number introduced in an attempt to increase transfection efficiency. In comparison to conjugates with unmodified plasmid DNA and short spacers, we found that NLS-plasmid DNA conjugates with covalent bonding by diazo coupling through PEG chain (MW 3400) stimulated complexation with the nuclear transport proteins importin alpha and importin beta. Evaluation of transfection showed higher expression efficiency with plasmid DNA-NLS peptide conjugates than with unmodified plasmids. However, evaluation of intracellular trafficking after microinjection into the cytoplasm showed plasmid DNA-NLS peptide conjugates only within the cytoplasm; there was no NLS-plasmid stimulation of nuclear localization. Our findings suggest that stimulation of plasmid nuclear localization cannot be achieved merely by changing spacer length or chemically modifying plasmid DNA-NLS peptide conjugates. An additional mechanism must be involved.
Collapse
Affiliation(s)
- Takeshi Nagasaki
- Department of Applied and Bioapplied Chemistry, Graduate School of Engineering, Osaka City University, SORST (JST), Japan.
| | | | | | | | | |
Collapse
|
99
|
Cabot RA, Prather RS. Cleavage stage porcine embryos may have differing developmental requirements for karyopherins alpha2 and alpha3. Mol Reprod Dev 2003; 64:292-301. [PMID: 12548662 DOI: 10.1002/mrd.10238] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Numerous cellular proteins are able to localize to the nucleus due to the fact that they possess a nuclear localization signal (NLS) in their amino acid sequence. Nuclear localization sequences recognized by the importin alpha/beta heterodimer are found in cellular proteins capable of performing many diverse functions, ranging from chromatin remodeling to cell cycle regulation. Evidence has been presented that suggests individual importin alpha homologues are present at varying levels in different adult tissues. Other data have shown that specific subsets of NLSs found in different cellular proteins are recognized by individual importin alpha homologues with varying affinities. This evidence led us to hypothesize that due to the specific cargoes they carry, the mammalian embryo has different developmental requirements for individual importin alpha homologues. The results of the studies presented here indicate that importin alpha/beta-mediated import occurs throughout early cleavage in the porcine embryo, as determined by a reporter protein microinjection assay, and that multiple importin alpha homologues are present throughout early cleavage, as determined by immunocytochemical analysis. An RNA interference approach was used in an attempt to determine the developmental requirements for specific importin alpha homologues during early cleavage in the porcine embryo. Results from this study showed that fertilized porcine embryos injected with double stranded RNA (dsRNA) corresponding to the importin alpha homologue karyopherin alpha3 had significantly fewer nuclei following four days of culture than did embryos injected with dsRNA for another importin alpha homologue, karyopherin alpha2, or two control groups. This is the first report indicating that mammalian embryos may have differential developmental requirements for specific nuclear trafficking pathways.
Collapse
Affiliation(s)
- Ryan A Cabot
- Department of Animal Sciences, University of Missouri, 162 Animal Science Research Center, Columbia, Missouri 65211, USA
| | | |
Collapse
|
100
|
Steggerda SM, Paschal BM. Regulation of nuclear import and export by the GTPase Ran. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 217:41-91. [PMID: 12019565 DOI: 10.1016/s0074-7696(02)17012-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on the control of nuclear import and export pathways by the small GTPase Ran. Transport of signal-containing cargo substrates is mediated by receptors that bind to the cargo proteins and RNAs and deliver them to the appropriate cellular compartment. Ran is an evolutionarily conserved member of the Ras superfamily that regulates all receptor-mediated transport between the nucleus and the cytoplasm. We describe the identification and characterization of the RanGTPase and its binding partners: the guanine nucleotide exchange factor, RanGEF; the GTPase activating protein, RanGAP; the soluble import and export receptors; Ran-binding domain-(RBD) containing proteins; and NTF2 and related factors.
Collapse
Affiliation(s)
- Susanne M Steggerda
- Center for Cell Signaling and Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville 22908, USA
| | | |
Collapse
|