51
|
Casella A, Panitch A, Leach JK. Endogenous Electric Signaling as a Blueprint for Conductive Materials in Tissue Engineering. Bioelectricity 2021; 3:27-41. [PMID: 34476376 PMCID: PMC8370482 DOI: 10.1089/bioe.2020.0027] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bioelectricity plays an important role in cell behavior and tissue modulation, but is understudied in tissue engineering research. Endogenous electrical signaling arises from the transmembrane potential inherent to all cells and contributes to many cell behaviors, including migration, adhesion, proliferation, and differentiation. Electrical signals are also involved in tissue development and repair. Synthetic and natural conductive materials are under investigation for leveraging endogenous electrical signaling cues in tissue engineering applications due to their ability to direct cell differentiation, aid in maturing electroactive cell types, and promote tissue functionality. In this review, we provide a brief overview of bioelectricity and its impact on cell behavior, report recent literature using conductive materials for tissue engineering, and discuss opportunities within the field to improve experimental design when using conductive substrates.
Collapse
Affiliation(s)
- Alena Casella
- Department of Biomedical Engineering, University of California, Davis, Davis, California, USA
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, Davis, Davis, California, USA
- Department of Surgery and UC Davis Health, Sacramento, California, USA
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, California, USA
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, California, USA
| |
Collapse
|
52
|
Ferson ND, Uhl AM, Andrew JS. Piezoelectric and Magnetoelectric Scaffolds for Tissue Regeneration and Biomedicine: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:229-241. [PMID: 32866097 DOI: 10.1109/tuffc.2020.3020283] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electric fields are ubiquitous throughout the body, playing important role in a multitude of biological processes including osteo-regeneration, cell signaling, nerve regeneration, cardiac function, and DNA replication. An increased understanding of the role of electric fields in the body has led to the development of devices for biomedical applications that incorporate electromagnetic fields as an intrinsically novel functionality (e.g., bioactuators, biosensors, cardiac/neural electrodes, and tissues scaffolds). However, in the majority of the aforementioned devices, an implanted power supply is necessary for operation, and therefore requires highly invasive procedures. Thus, the ability to apply electric fields in a minimally invasive manner to remote areas of the body remains a critical and unmet need. Here, we report on the potential of magnetoelectric (ME)-based composites to overcome this challenge. ME materials are capable of producing localized electric fields in response to an applied magnetic field, which the body is permeable to. Yet, the use of ME materials for biomedical applications is just beginning to be explored. Here, we present on the potential of ME materials to be utilized in biomedical applications. This will be presented alongside current state-of-the-art for in vitro and in vivo electrical stimulation of cells and tissues. We will discuss key findings in the field, while also identifying challenges, such as the synthesis and characterization of biocompatible ME materials, challenges in experimental design, and opportunities for future research that would lead to the increased development of ME biomaterials and their applications.
Collapse
|
53
|
Panda AK, K R, Gebrekrstos A, Bose S, Markandeya YS, Mehta B, Basu B. Tunable Substrate Functionalities Direct Stem Cell Fate toward Electrophysiologically Distinguishable Neuron-like and Glial-like Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:164-185. [PMID: 33356098 DOI: 10.1021/acsami.0c17257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Engineering cellular microenvironment on a functional platform using various biophysical cues to modulate stem cell fate has been the central theme in regenerative engineering. Among the various biophysical cues to direct stem cell differentiation, the critical role of physiologically relevant electric field (EF) stimulation was established in the recent past. The present study is the first to report the strategy to switch EF-mediated differentiation of human mesenchymal stem cells (hMSCs) between neuronal and glial pathways, using tailored functional properties of the biomaterial substrate. We have examined the combinatorial effect of substrate functionalities (conductivity, electroactivity, and topography) on the EF-mediated stem cell differentiation on polyvinylidene-difluoride (PVDF) nanocomposites in vitro, without any biochemical inducers. The functionalities of PVDF have been tailored using conducting nanofiller (multiwall-carbon nanotube, MWNT) and piezoceramic (BaTiO3, BT) by an optimized processing approach (melt mixing-compression molding-rolling). The DC conductivity of PVDF nanocomposites was tuned from ∼10-11 to ∼10-4 S/cm and the dielectric constant from ∼10 to ∼300. The phenotypical changes and genotypical expression of hMSCs revealed the signatures of early differentiation toward neuronal pathway on rolled-PVDF/MWNT and late differentiation toward glial lineage on rolled-PVDF/BT/MWNT. Moreover, we were able to distinguish the physiological properties of differentiated neuron-like and glial-like cells using membrane depolarization and mechanical stimulation. The excitability of the EF-stimulated hMSCs was also determined using whole-cell patch-clamp recordings. Mechanistically, the roles of intracellular reactive oxygen species (ROS), Ca2+ oscillations, and synaptic and gap junction proteins in directing the cellular fate have been established. Therefore, the present work critically unveils complex yet synergistic interaction of substrate functional properties to direct EF-mediated differentiation toward neuron-like and glial-like cells, with distinguishable electrophysiological responses.
Collapse
Affiliation(s)
- Asish Kumar Panda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Ravikumar K
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Amanuel Gebrekrstos
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Yogananda S Markandeya
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Bhupesh Mehta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
54
|
Fernandes MM, Martins P, Correia DM, Carvalho EO, Gama FM, Vazquez M, Bran C, Lanceros-Mendez S. Magnetoelectric Polymer-Based Nanocomposites with Magnetically Controlled Antimicrobial Activity. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Margarida M. Fernandes
- Centre of Physics, University of Minho, Braga 4710-057, Portugal
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Pedro Martins
- Centre of Physics, University of Minho, Braga 4710-057, Portugal
| | - Daniela M. Correia
- Centre of Physics, University of Minho, Braga 4710-057, Portugal
- Centre of Chemistry, University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
| | - Estela O. Carvalho
- Centre of Physics, University of Minho, Braga 4710-057, Portugal
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Francisco M. Gama
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Manuel Vazquez
- Instituto de Ciencia de Materiales de Madrid, ICMM, CSIC, Madrid 28049, Spain
| | - Cristina Bran
- Instituto de Ciencia de Materiales de Madrid, ICMM, CSIC, Madrid 28049, Spain
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
55
|
Gelmi A, Schutt CE. Stimuli-Responsive Biomaterials: Scaffolds for Stem Cell Control. Adv Healthc Mater 2021; 10:e2001125. [PMID: 32996270 PMCID: PMC11468740 DOI: 10.1002/adhm.202001125] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/18/2020] [Indexed: 12/28/2022]
Abstract
Stem cell fate is closely intertwined with microenvironmental and endogenous cues within the body. Recapitulating this dynamic environment ex vivo can be achieved through engineered biomaterials which can respond to exogenous stimulation (including light, electrical stimulation, ultrasound, and magnetic fields) to deliver temporal and spatial cues to stem cells. These stimuli-responsive biomaterials can be integrated into scaffolds to investigate stem cell response in vitro and in vivo, and offer many pathways of cellular manipulation: biochemical cues, scaffold property changes, drug release, mechanical stress, and electrical signaling. The aim of this review is to assess and discuss the current state of exogenous stimuli-responsive biomaterials, and their application in multipotent stem cell control. Future perspectives in utilizing these biomaterials for personalized tissue engineering and directing organoid models are also discussed.
Collapse
Affiliation(s)
- Amy Gelmi
- School of ScienceCollege of Science, Engineering and HealthRMIT UniversityMelbourneVIC3001Australia
| | - Carolyn E. Schutt
- Department of Biomedical EngineeringKnight Cancer Institute Cancer Early Detection Advanced Research Center (CEDAR)Oregon Health and Science UniversityPortlandOR97201USA
| |
Collapse
|
56
|
Guillot-Ferriols M, Rodríguez-Hernández J, Correia D, Carabineiro S, Lanceros-Méndez S, Gómez Ribelles J, Gallego Ferrer G. Poly(vinylidene) fluoride membranes coated by heparin/collagen layer-by-layer, smart biomimetic approaches for mesenchymal stem cell culture. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111281. [DOI: 10.1016/j.msec.2020.111281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 02/08/2023]
|
57
|
Tang B, Shen X, Yang Y, Xu Z, Yi J, Yao Y, Cao M, Zhang Y, Xia H. Enhanced cellular osteogenic differentiation on CoFe 2O 4/P(VDF-TrFE) nanocomposite coatings under static magnetic field. Colloids Surf B Biointerfaces 2020; 198:111473. [PMID: 33250417 DOI: 10.1016/j.colsurfb.2020.111473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 01/15/2023]
Abstract
Cellular responses can be regulated and manipulated through combining stimuli-responsive biomaterial with external stimulus. In this present, the magneto-responsive CoFe2O4/P(VDF-TrFE) nanocomposite coatings were designed to understand cell behaviors of preosteoblasts, as well as get insight into the underlying mechanism of osteogenic differentiation under static magnetic field (SMF). CoFe2O4/P(VDF-TrFE) nanocomposite coatings with differential magnetic property (low, medium and high magnetization) were prepared by incorporation of different mass fraction of CoFe2O4 nanoparticles (6%, 13 %, 20 %) into P(VDF-TrFE) matrix. Cell experiments indicated that all nanocomposite coatings with the assistance of SMF could promote the cell attachment, proliferation and osteogenic differentiation of MC3T3-E1 cells. Among different nanocomposite coatings, low magnetization coating (6%) showed a higher ALP activity and gene expression of Runx2, Col-I, OCN. Molecular biology assays demonstrated that the combination of nanocomposite coatings and SMF could significantly up-regulate the expression level of α2β1 integrin and p-ERK. Whereas, the addition of inhibitor U0126 down-regulated sharply the expression level of p-ERK, which indicated that cellular osteogenic differentiation of MC3T3-E1 cells was governed through α2β1 integrin-mediated MEK/ERK signaling pathways during CoFe2O4/P(VDF-TrFE) nanocomposite coatings were combined with SMF. This work provided a promising strategy to enhance cellular osteogenic differentiation through a remote-control manner, which exhibited great potential in the application of bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Bolin Tang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China.
| | - Xiaojun Shen
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Yaru Yang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Zhi Xu
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China.
| | - Jie Yi
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Yongbo Yao
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Miao Cao
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Yalin Zhang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Hongqin Xia
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| |
Collapse
|
58
|
Marques-Almeida T, Cardoso VF, Gama M, Lanceros-Mendez S, Ribeiro C. Patterned Piezoelectric Scaffolds for Osteogenic Differentiation. Int J Mol Sci 2020; 21:E8352. [PMID: 33171761 PMCID: PMC7672637 DOI: 10.3390/ijms21218352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/02/2023] Open
Abstract
The morphological clues of scaffolds can determine cell behavior and, therefore, the patterning of electroactive polymers can be a suitable strategy for bone tissue engineering. In this way, this work reports on the influence of poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) electroactive micropatterned scaffolds on the proliferation and differentiation of bone cells. For that, micropatterned P(VDF-TrFE) scaffolds were produced by lithography in the form of arrays of lines and hexagons and then tested for cell proliferation and differentiation of pre-osteoblast cell line. Results show that more anisotropic surface microstructures promote bone differentiation without the need of further biochemical stimulation. Thus, the combination of specific patterns with the inherent electroactivity of materials provides a promising platform for bone regeneration.
Collapse
Affiliation(s)
- Teresa Marques-Almeida
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (T.M.-A.); (V.F.C.)
- CEB, Centro de Engenharia Biológica, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal;
| | - Vanessa F. Cardoso
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (T.M.-A.); (V.F.C.)
- CMEMS-UMinho, Campus de Azurém, Universidade do Minho, 4800-058 Guimarães, Portugal
| | - Miguel Gama
- CEB, Centro de Engenharia Biológica, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal;
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Clarisse Ribeiro
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (T.M.-A.); (V.F.C.)
- CEB, Centro de Engenharia Biológica, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal;
| |
Collapse
|
59
|
Zheng T, Huang Y, Zhang X, Cai Q, Deng X, Yang X. Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration. J Mater Chem B 2020; 8:10221-10256. [PMID: 33084727 DOI: 10.1039/d0tb01601b] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The process of bone tissue repair and regeneration is complex and requires a variety of physiological signals, including biochemical, electrical and mechanical signals, which collaborate to ensure functional recovery. The inherent piezoelectric properties of bone tissues can convert mechanical stimulation into electrical effects, which play significant roles in bone maturation, remodeling and reconstruction. Electroactive materials, including conductive materials, piezoelectric materials and electret materials, can simulate the physiological and electrical microenvironment of bone tissue, thereby promoting bone regeneration and reconstruction. In this paper, the structures and performances of different types of electroactive materials and their applications in the field of bone repair and regeneration are reviewed, particularly by providing the results from in vivo evaluations using various animal models. Their advantages and disadvantages as bone repair materials are discussed, and the methods for tuning their performances are also described, with the aim of providing an up-to-date account of the proposed topics.
Collapse
Affiliation(s)
- Tianyi Zheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
60
|
Castro N, Ribeiro S, Fernandes MM, Ribeiro C, Cardoso V, Correia V, Minguez R, Lanceros‐Mendez S. Physically Active Bioreactors for Tissue Engineering Applications. ACTA ACUST UNITED AC 2020; 4:e2000125. [DOI: 10.1002/adbi.202000125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/15/2020] [Indexed: 01/09/2023]
Affiliation(s)
- N. Castro
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures University of the Basque Country UPV/EHU Science Park Leioa E‐48940 Spain
| | - S. Ribeiro
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- Centre of Molecular and Environmental Biology (CBMA) University of Minho Campus de Gualtar Braga 4710‐057 Portugal
| | - M. M. Fernandes
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- CEB – Centre of Biological Engineering University of Minho Braga 4710‐057 Portugal
| | - C. Ribeiro
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- CEB – Centre of Biological Engineering University of Minho Braga 4710‐057 Portugal
| | - V. Cardoso
- CMEMS‐UMinho Universidade do Minho Campus de Azurém Guimarães 4800‐058 Portugal
| | - V. Correia
- Algoritmi Research Centre University of Minho Campus de Azurém Guimarães 4800‐058 Portugal
| | - R. Minguez
- Department of Graphic Design and Engineering Projects University of the Basque Country UPV/EHU Bilbao E‐48013 Spain
| | - S. Lanceros‐Mendez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures University of the Basque Country UPV/EHU Science Park Leioa E‐48940 Spain
- IKERBASQUE Basque Foundation for Science Bilbao E‐48013 Spain
| |
Collapse
|
61
|
Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:922. [PMID: 32974298 PMCID: PMC7471872 DOI: 10.3389/fbioe.2020.00922] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
This review article addresses the various aspects of nano-biomaterials used in or being pursued for the purpose of promoting bone regeneration. In the last decade, significant growth in the fields of polymer sciences, nanotechnology, and biotechnology has resulted in the development of new nano-biomaterials. These are extensively explored as drug delivery carriers and as implantable devices. At the interface of nanomaterials and biological systems, the organic and synthetic worlds have merged over the past two decades, forming a new scientific field incorporating nano-material design for biological applications. For this field to evolve, there is a need to understand the dynamic forces and molecular components that shape these interactions and influence function, while also considering safety. While there is still much to learn about the bio-physicochemical interactions at the interface, we are at a point where pockets of accumulated knowledge can provide a conceptual framework to guide further exploration and inform future product development. This review is intended as a resource for academics, scientists, and physicians working in the field of orthopedics and bone repair.
Collapse
Affiliation(s)
- Joseph G. Lyons
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Mark A. Plantz
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Silvia Minardi
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| |
Collapse
|
62
|
Chu YC, Lim J, Hwang WH, Lin YX, Wang JL. Piezoelectric stimulation by ultrasound facilitates chondrogenesis of mesenchymal stem cells. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:EL58. [PMID: 32752766 DOI: 10.1121/10.0001590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A cellular stimulation device utilizing an AT-cut quartz coverslip mounted on an ultrasonic live imaging chamber is developed to investigate the effect of piezoelectric stimulation. Two types of chambers deliver ultrasound at intensities ranging from 1 to 20 mW/cm2 to mesenchymal stem cells (MSCs) seeded on the quartz coverslip. The quartz coverslip imposes additionally localized electric charges as it vibrates with the stimulation. The device was applied to explore whether piezoelectric stimulation can facilitate chondrogenesis of MSCs. The results suggest piezoelectric stimulation drove clustering of MSCs and consequently facilitated chondrogenesis of MSCs without the use of differentiation media.
Collapse
Affiliation(s)
- Ya-Cherng Chu
- Department of Biomedical Engineering, National Taiwan University, Taipei, , , , ,
| | - Jormay Lim
- Department of Biomedical Engineering, National Taiwan University, Taipei, , , , ,
| | - Wen-Hao Hwang
- Department of Biomedical Engineering, National Taiwan University, Taipei, , , , ,
| | - Yu-Xuan Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei, , , , ,
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, National Taiwan University, Taipei, , , , ,
| |
Collapse
|
63
|
Castro N, Fernandes MM, Ribeiro C, Correia V, Minguez R, Lanceros-Méndez S. Magnetic Bioreactor for Magneto-, Mechano- and Electroactive Tissue Engineering Strategies. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3340. [PMID: 32545551 PMCID: PMC7349750 DOI: 10.3390/s20123340] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/15/2023]
Abstract
Biomimetic bioreactor systems are increasingly being developed for tissue engineering applications, due to their ability to recreate the native cell/tissue microenvironment. Regarding bone-related diseases and considering the piezoelectric nature of bone, piezoelectric scaffolds electromechanically stimulated by a bioreactor, providing the stimuli to the cells, allows a biomimetic approach and thus, mimicking the required microenvironment for effective growth and differentiation of bone cells. In this work, a bioreactor has been designed and built allowing to magnetically stimulate magnetoelectric scaffolds and therefore provide mechanical and electrical stimuli to the cells through magnetomechanical or magnetoelectrical effects, depending on the piezoelectric nature of the scaffold. While mechanical bioreactors need direct application of the stimuli on the scaffolds, the herein proposed magnetic bioreactors allow for a remote stimulation without direct contact with the material. Thus, the stimuli application (23 mT at a frequency of 0.3 Hz) to cells seeded on the magnetoelectric, leads to an increase in cell viability of almost 30% with respect to cell culture under static conditions. This could be valuable to mimic what occurs in the human body and for application in immobilized patients. Thus, special emphasis has been placed on the control, design and modeling parameters governing the bioreactor as well as its functional mechanism.
Collapse
Affiliation(s)
- Nelson Castro
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain;
| | - Margarida M. Fernandes
- Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.M.F.); (C.R.)
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Clarisse Ribeiro
- Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.M.F.); (C.R.)
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Vítor Correia
- Algoritmi Research Centre, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal;
| | - Rikardo Minguez
- Department of Graphic Design and Engineering Projects, University of the Basque Country, E-48013 Bilbao, Spain
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain;
- IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain
| |
Collapse
|
64
|
Ribeiro S, Ribeiro C, Carvalho EO, Tubio CR, Castro N, Pereira N, Correia V, Gomes AC, Lanceros-Méndez S. Magnetically Activated Electroactive Microenvironments for Skeletal Muscle Tissue Regeneration. ACS APPLIED BIO MATERIALS 2020; 3:4239-4252. [DOI: 10.1021/acsabm.0c00315] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sylvie Ribeiro
- Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Clarisse Ribeiro
- Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Estela O. Carvalho
- Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Carmen R. Tubio
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Nelson Castro
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Nelson Pereira
- Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centro Algoritmi, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Vitor Correia
- Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centro Algoritmi, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Andreia C. Gomes
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
65
|
Smith M, Chalklen T, Lindackers C, Calahorra Y, Howe C, Tamboli A, Bax DV, Barrett DJ, Cameron RE, Best SM, Kar-Narayan S. Poly-l-Lactic Acid Nanotubes as Soft Piezoelectric Interfaces for Biology: Controlling Cell Attachment via Polymer Crystallinity. ACS APPLIED BIO MATERIALS 2020; 3:2140-2149. [PMID: 32337501 PMCID: PMC7175596 DOI: 10.1021/acsabm.0c00012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
It has become increasingly evident that the mechanical and electrical environment of a cell is crucial in determining its function and the subsequent behavior of multicellular systems. Platforms through which cells can directly interface with mechanical and electrical stimuli are therefore of great interest. Piezoelectric materials are attractive in this context because of their ability to interconvert mechanical and electrical energy, and piezoelectric nanomaterials, in particular, are ideal candidates for tools within mechanobiology, given their ability to both detect and apply small forces on a length scale that is compatible with cellular dimensions. The choice of piezoelectric material is crucial to ensure compatibility with cells under investigation, both in terms of stiffness and biocompatibility. Here, we show that poly-l-lactic acid nanotubes, grown using a melt-press template wetting technique, can provide a "soft" piezoelectric interface onto which human dermal fibroblasts readily attach. Interestingly, by controlling the crystallinity of the nanotubes, the level of attachment can be regulated. In this work, we provide detailed nanoscale characterization of these nanotubes to show how differences in stiffness, surface potential, and piezoelectric activity of these nanotubes result in differences in cellular behavior.
Collapse
Affiliation(s)
- Michael Smith
- Department of Materials Science &
Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K.
| | - Thomas Chalklen
- Department of Materials Science &
Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K.
| | - Cathrin Lindackers
- Department of Materials Science &
Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K.
| | - Yonatan Calahorra
- Department of Materials Science &
Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K.
| | - Caitlin Howe
- Department of Materials Science &
Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K.
| | - Alkausil Tamboli
- Department of Materials Science &
Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K.
| | - Daniel V. Bax
- Department of Materials Science &
Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K.
| | - David J. Barrett
- Department of Materials Science &
Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K.
| | - Ruth E. Cameron
- Department of Materials Science &
Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K.
| | - Serena M. Best
- Department of Materials Science &
Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K.
| | - Sohini Kar-Narayan
- Department of Materials Science &
Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K.
| |
Collapse
|
66
|
Bu S, Yan S, Wang R, Xia P, Zhang K, Li G, Yin J. In Situ Precipitation of Cluster and Acicular Hydroxyapatite onto Porous Poly(γ-benzyl-l-glutamate) Microcarriers for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12468-12477. [PMID: 32091198 DOI: 10.1021/acsami.9b22559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bone tissue engineering scaffold based on microcarriers provides an effective approach for the repair of irregular bone defects. The implantation of microcarriers by injection can reduce surgical trauma and fill various irregular shaped bone defects. Microcarriers with porous structure and osteogenic properties have shown great potential in promoting the repair of bone defects. In this study, two kinds of hydroxyapatite/poly-(γ-benzyl-l-glutamate) (HA/PBLG) microcarriers were constructed by emulsion/in situ precipitation method and their structures and properties were studied. First, PBLG porous microcarriers were prepared by an emulsion method. Surface carboxylation of PBLG microcarriers was performed to promote the deposition of HA on PBLG microcarriers. Next, the modified porous PBLG microcarriers were used as the matrix, combined with the in situ precipitation method; the cluster HA and acicular HA were precipitated onto the surface of porous microcarriers in the presence of ammonia water and tri(hydroxymethyl)aminomethane (Tris) solution, respectively. The micromorphology, composition, and element distribution of the two kinds of microcarriers were characterized by TEM, SEM, and AFM. Adipose stem cells (ADSCs) were cultured on the cluster HA/PBLG and acicular HA/PBLG microcarriers, respectively. ADSCs could grow and proliferate normally on both kinds of microcarriers wherein the acicular HA/PBLG microcarriers were more favorable for early cell adhesion and showed a beneficial effect on mineralization and osteogenic differentiation of ADSCs. Successful healing of a rabbit femur defect verified the bone regeneration ability of acicular HA/PBLG microcarriers.
Collapse
Affiliation(s)
- Shuai Bu
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Shifeng Yan
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Ruanfeng Wang
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Pengfei Xia
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Kunxi Zhang
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Guifei Li
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Jingbo Yin
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| |
Collapse
|
67
|
Sengupta P, Ghosh A, Bose N, Mukherjee S, Roy Chowdhury A, Datta P. A comparative assessment of poly(vinylidene fluoride)/conducting polymer electrospun nanofiber membranes for biomedical applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.49115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Pavel Sengupta
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology Howrah West Bengal India
| | - Aritri Ghosh
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology Howrah West Bengal India
| | - Navonil Bose
- Department of PhysicsSupreme Knowledge Foundation Group of Institutions Mankundu Hooghly India
| | - Sampad Mukherjee
- Department of PhysicsIndian Institute of Engineering Science and Technology Shibpur Howrah India
| | - Amit Roy Chowdhury
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology Howrah West Bengal India
- Department of Aerospace Engineering and Applied MechanicsIndian Institute of Engineering Science and Technology Howrah West Bengal India
| | - Pallab Datta
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology Howrah West Bengal India
| |
Collapse
|
68
|
Ribeiro S, Puckert C, Ribeiro C, Gomes AC, Higgins MJ, Lanceros-Méndez S. Surface Charge-Mediated Cell-Surface Interaction on Piezoelectric Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:191-199. [PMID: 31825193 DOI: 10.1021/acsami.9b17222] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell-material interactions play an essential role in the development of scaffold-based tissue engineering strategies. Cell therapies are still limited in treating injuries when severe damage causes irreversible loss of muscle cells. Electroactive biomaterials and, in particular, piezoelectric materials offer new opportunities for skeletal muscle tissue engineering since these materials have demonstrated suitable electroactive microenvironments for tissue development. In this study, the influence of the surface charge of piezoelectric poly(vinylidene fluoride) (PVDF) on cell adhesion was investigated. The cytoskeletal organization of C2C12 myoblast cells grown on different PVDF samples was studied by immunofluorescence staining, and the interactions between single live cells and PVDF were analyzed using an atomic force microscopy (AFM) technique termed single-cell force spectroscopy. It was demonstrated that C2C12 myoblast cells seeded on samples with net surface charge present a more elongated morphology, this effect being dependent on the surface charge but independent of the poling direction (negative or positive surface charge). It was further shown that the cell deadhesion forces of individual C2C12 cells were higher on PVDF samples with an overall negative surface charge (8.92 ± 0.45 nN) compared to those on nonpoled substrates (zero overall surface charge) (4.06 ± 0.20 nN). These findings explicitly demonstrate that the polarization/surface charge is an important parameter to determine cell fate as it affects C2C12 cell adhesion, which in turn will influence cell behavior, namely, cell proliferation and differentiation.
Collapse
Affiliation(s)
- Sylvie Ribeiro
- Centro/Departamento de Física , Universidade do Minho , 4710-057 Braga , Portugal
| | - Christina Puckert
- ARC Centre for Electromaterials Science (ACES), Innovation Campus , University of Wollongong , Squires Way , Wollongong , NSW 2500 , Australia
| | - Clarisse Ribeiro
- Centro/Departamento de Física , Universidade do Minho , 4710-057 Braga , Portugal
| | | | - Michael J Higgins
- ARC Centre for Electromaterials Science (ACES), Innovation Campus , University of Wollongong , Squires Way , Wollongong , NSW 2500 , Australia
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures , UPV/EHU Science Park , 48940 Leioa , Spain
- IKERBASQUE , Basque Foundation for Science , 48013 Bilbao , Spain
| |
Collapse
|
69
|
Wang W, Li J, Liu H, Ge S. Advancing Versatile Ferroelectric Materials Toward Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2003074. [PMID: 33437585 PMCID: PMC7788502 DOI: 10.1002/advs.202003074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Indexed: 05/08/2023]
Abstract
Ferroelectric materials (FEMs), possessing piezoelectric, pyroelectric, inverse piezoelectric, nonlinear optic, ferroelectric-photovoltaic, and many other properties, are attracting increasing attention in the field of biomedicine in recent years. Because of their versatile ability of interacting with force, heat, electricity, and light to generate electrical, mechanical, and optical signals, FEMs are demonstrating their unique advantages for biosensing, acoustics tweezer, bioimaging, therapeutics, tissue engineering, as well as stimulating biological functions. This review summarizes the current-available FEMs and their state-of-the-art fabrication techniques, as well as provides an overview of FEMs-based applications in the field of biomedicine. Challenges and prospects for future development of FEMs for biomedical applications are also outlined.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinan250012China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinan250012China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250013China
| | - Shaohua Ge
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinan250012China
| |
Collapse
|
70
|
Azadian E, Arjmand B, Ardeshirylajimi A, Hosseinzadeh S, Omidi M, Khojasteh A. Polyvinyl alcohol modified polyvinylidene fluoride-graphene oxide scaffold promotes osteogenic differentiation potential of human induced pluripotent stem cells. J Cell Biochem 2019; 121:3185-3196. [PMID: 31886565 DOI: 10.1002/jcb.29585] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022]
Abstract
Tissue engineering is fast becoming a key approach in bone medicine studies. Designing the ideally desirable combination of stem cells and scaffolds are at the hurt of efforts for producing implantable bone substitutes. Clinical application of stem cells could be associated with serious limitations, and engineering scaffolds that are able to imitate the important features of extracellular matrix is a major area of challenges within the field. In this study, electrospun scaffolds of polyvinylidene fluoride (PVDF), PVDF-graphene oxide (GO), PVDF-polyvinyl alcohol (PVA) and PVDF-PVA-GO were fabricated to study the osteogenic differentiation potential of human induced pluripotent stem cells (iPSCs) while cultured on fabricated scaffolds. Scanning electron microscopy study, viability assay, relative gene expression analysis, immunocytochemistry, alkaline phosphates activity, and calcium content assays confirmed that the osteogenesis rate of hiPSCs cultured on PVDF-PVA-Go is significantly higher than other scaffolds. Here, we showed that the biocompatible, nontoxic, flexible, piezoelectric, highly porous and interconnected three-dimensional structure of electrospun PVDF-PVA-Go scaffold in combination with hiPSCs (as the stem cells with significant advantageous in comparison to other types) makes them a highly promising scaffold-stem cell system for bone remodeling medicine. There was no evidence for the superiority of PVDF-GO or PVDF-PVA scaffold for osteogenesis, compared to each other; however both of them showed better potentials as to PVDF scaffold.
Collapse
Affiliation(s)
- Esmaeel Azadian
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahar Arjmand
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Ardeshirylajimi
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Omidi
- Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, Wisconsin
| | - Arash Khojasteh
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
71
|
Wang L, Wu S, Cao G, Fan Y, Dunne N, Li X. Biomechanical studies on biomaterial degradation and co-cultured cells: mechanisms, potential applications, challenges and prospects. J Mater Chem B 2019; 7:7439-7459. [PMID: 31539007 DOI: 10.1039/c9tb01539f] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Biomechanics contains a wide variety of research fields related to biology and mechanics. Actually, to better study or develop a tissue-engineered system, it is now widely recognized that there is no complete nor meaningful study without considering biomechanical factors and the cell response or adaptation to biomechanics. In that respect, this review will focus on not only the influence of biomechanics in biomaterial degradation and co-cultured cells, based on current major frontier research findings, but also the challenges and prospects in biomechanical research. Particularly, through the elaboration of certain typical forces affecting biomaterial degradation and celluar functions, this paper tries to reveal the possible mechanisms, and thus provide ideas on how to design or optimize co-culture systems and apply external forces for proper cell and tissue engineering. Furthermore, while emphasizing the importance of the mechanical control of the cell phenotype and fate, it is expected that these achievements can pave the way to materials-based therapies for different pathological conditions, including diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Shuai Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
72
|
Ahmadi N, Kharaziha M, Labbaf S. Core-shell fibrous membranes of PVDF-Ba 0.9Ca 0.1TiO 3/PVA with osteogenic and piezoelectric properties for bone regeneration. ACTA ACUST UNITED AC 2019; 15:015007. [PMID: 31694002 DOI: 10.1088/1748-605x/ab5509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The goal of this research was to promote the bioactivity and osteogenic characteristics of polyvinylidene fluoride(PVDF) fibrous membrane, while preserving its piezoelectric property for bone regeneration. In this regard, core-shell fibrous membrane of PVDF-Ba0.9Ca0.1TiO3/polyvinyl alcohol(PVA) was developed via emulsion electrospinning approach. While PVA was in the outer layer of fibers with thickness of 53 ± 18 nm, the Ba0.9Ca0.1TiO3 nanoparticles was uniformly dispersed in the PVDF core. The formation of PVA shell resulted in significant improvement of its hydrophilicity (3 times) and degradation rate, while piezoelectricity did noticeably modulate. In addition, incorporation of Ba0.9Ca0.1TiO3 nanopowder remarkably improved bioactivity, protein adsorption and mechanical properties of PVDF/PVA fibrous membranes. Finally, the osteogenic differentiation of mesenchymal stem cells on the nanocomposite fibrous membranes, in the absence of osteogenic supplements, was also observed. Overall, the results confirmed the promising potential of PVDF-Ba0.9Ca0.1TiO3/PVA fibrous membrane containing 1-2 wt% nanopowder for bone regeneration.
Collapse
Affiliation(s)
- Narges Ahmadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | | |
Collapse
|
73
|
Fernandes MM, Correia DM, Ribeiro C, Castro N, Correia V, Lanceros-Mendez S. Bioinspired Three-Dimensional Magnetoactive Scaffolds for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45265-45275. [PMID: 31682095 DOI: 10.1021/acsami.9b14001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bone tissue repair strategies are gaining increasing relevance due to the growing incidence of bone disorders worldwide. Biochemical stimulation is the most commonly used strategy for cell regeneration, while the application of physical cues, including magnetic, mechanical, or electrical fields, is a promising, however, scarcely investigated field. This work reports on novel magnetoactive three-dimensional (3D) porous scaffolds suitable for effective proliferation of osteoblasts in a biomimetic microenvironment. This physically active microenvironment is developed through the bone-mimicking structure of the scaffold combined with the physical stimuli provided by a magnetic custom-made bioreactor on a magnetoresponsive scaffold. Scaffolds are obtained through the development of nanocomposites comprised of a piezoelectric polymer, poly(vinylidene fluoride) (PVDF), and magnetostrictive particles of CoFe2O4, using a solvent casting method guided by the overlapping of nylon template structures with three different fiber diameter sizes (60, 80, and 120 μm), thus generating 3D scaffolds with different pore sizes. The magnetoactive composites show a structure very similar to trabecular bone with pore sizes that range from 5 to 20 μm, owing to the inherent process of crystallization of PVDF with the nanoparticles (NPs), interconnected with bigger pores, formed after removing the nylon templates. It is found that the materials crystallize in the electroactive β-phase of PVDF and promote the proliferation of preosteoblasts through the application of magnetic stimuli. This phenomenon is attributed to both local magnetomechanical and magnetoelectric response of the scaffolds, which induce a proper cellular mechano- and electro-transduction process.
Collapse
Affiliation(s)
- Margarida M Fernandes
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , Braga 4710-057 , Portugal
- Centre of Physics , University of Minho , Braga 4710-057 , Portugal
| | - Daniela M Correia
- Centre of Physics , University of Minho , Braga 4710-057 , Portugal
- Centro de Química , Universidade de Trás-os-Montes e Alto Douro , Vila Real 5001-801 , Portugal
| | - Clarisse Ribeiro
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , Braga 4710-057 , Portugal
- Centre of Physics , University of Minho , Braga 4710-057 , Portugal
| | - Nelson Castro
- BCMaterials, Basque Center for Materials, Applications and Nanostructures , UPV/EHU Science Park , Leioa 48940 , Spain
| | - Vitor Correia
- Centro Algoritmi , Universidade do Minho , Guimarães 4800-058 , Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures , UPV/EHU Science Park , Leioa 48940 , Spain
- Ikerbasque, Basque Foundation for Science , Bilbao 48013 , Spain
| |
Collapse
|
74
|
Yadav HOS, Kuo AT, Urata S, Shinoda W. Effects of Packing Density and Chain Length on the Surface Hydrophobicity of Thin Films Composed of Perfluoroalkyl Acrylate Chains: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14316-14323. [PMID: 31596100 DOI: 10.1021/acs.langmuir.9b02656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A good understanding of the surface hydrophobicity of fluorinated materials is useful for their application as coating materials. The present study investigates the surface hydrophobicity of perfluoroalkyl acrylate (PFA) thin films using molecular dynamics simulations. Surface hydrophobicity is characterized by examining the contact angle of a water droplet on PFA surfaces and the cavity formation free energy in the vicinity of the surface. It is found that the calculated microscopic contact angles are in good agreement with the experimental results and partially capture the difference in the hydrophobicity of the surface arising from the variation of packing density and side chain length of PFA. The variations of cavity formation free energy in the vicinity of the surface elucidate that the surface hydrophobicity is mainly governed by the packing density rather than the chain length of PFA. The hydrophobicity generally increases with decreasing the packing density to some extent and then turns to decrease as further reducing the packing density. At higher packing density, the surface hydrophobicity slightly decreases with increasing the chain length, while at the lower packing density, the surface hydrophobicity is increased when chain length of PFA is longer than six carbons. Furthermore, we found that the influence of packing density on the surface hydrophobicity is directly related to the variation of the surface roughness and chain flexibility, that is, the surface hydrophobicity increases with increase in the surface roughness, while the chain flexibility plays a secondary role in the enhancement by affecting the stability of water staying near the interface. The study provides a significant insight into the local hydrophobicity and microscopic structure of the PFA surfaces, which would be useful for the application of surface modification.
Collapse
Affiliation(s)
- Hari O S Yadav
- Department of Materials Chemistry , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| | - An-Tsung Kuo
- Innovative Technology Laboratories , AGC Inc. , Yokohama , Kanagawa 230-0045 , Japan
| | - Shingo Urata
- Innovative Technology Laboratories , AGC Inc. , Yokohama , Kanagawa 230-0045 , Japan
| | - Wataru Shinoda
- Department of Materials Chemistry , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| |
Collapse
|
75
|
Morales-Román RM, Guillot-Ferriols M, Roig-Pérez L, Lanceros-Mendez S, Gallego-Ferrer G, Gómez Ribelles JL. Freeze-extraction microporous electroactive supports for cell culture. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
76
|
Tariverdian T, Behnamghader A, Brouki Milan P, Barzegar-Bafrooei H, Mozafari M. 3D-printed barium strontium titanate-based piezoelectric scaffolds for bone tissue engineering. CERAMICS INTERNATIONAL 2019; 45:14029-14038. [DOI: 10.1016/j.ceramint.2019.04.102] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
77
|
Ahn J, Lim J, Jusoh N, Lee J, Park TE, Kim Y, Kim J, Jeon NL. 3D Microfluidic Bone Tumor Microenvironment Comprised of Hydroxyapatite/Fibrin Composite. Front Bioeng Biotechnol 2019; 7:168. [PMID: 31380359 PMCID: PMC6653063 DOI: 10.3389/fbioe.2019.00168] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/01/2019] [Indexed: 01/04/2023] Open
Abstract
Bone is one of the most common sites of cancer metastasis, as its fertile microenvironment attracts tumor cells. The unique mechanical properties of bone extracellular matrix (ECM), mainly composed of hydroxyapatite (HA) affect a number of cellular responses in the tumor microenvironment (TME) such as proliferation, migration, viability, and morphology, as well as angiogenic activity, which is related to bone metastasis. In this study, we engineered a bone-mimetic microenvironment to investigate the interactions between the TME and HA using a microfluidic platform designed for culturing tumor cells in 3D bone-mimetic composite of HA and fibrin. We developed a bone metastasis TME model from colorectal cancer (SW620) and gastric cancer (MKN74) cells, which has very poor prognosis but rarely been investigated. The microfluidic platform enabled straightforward formation of 3D TME composed the hydrogel and multiple cell types. This facilitated monitoring of the effect of HA concentration and culture time on the TME. In 3D bone mimicking culture, we found that HA rich microenvironment affects cell viability, proliferation and cancer cell cytoplasmic volume in a manner dependent on the different metastatic cancer cell types and culture duration indicating the spatial heterogeneity (different origin of metastatic cancer) and temporal heterogeneity (growth time of cancer) of TME. We also found that both SW620 and MKN72 cells exhibited significantly reduced migration at higher HA concentration in our platform indicating inhibitory effect of HA in both cancer cells migration. Next, we quantitatively analyzed angiogenic sprouts induced by paracrine factors that secreted by TME and showed paracrine signals from tumor and stromal cell with a high HA concentration resulted in the formation of fewer sprouts. Finally we reconstituted vascularized TME allowing direct interaction between angiogenic sprouts and tumor-stroma microspheroids in a bone-mimicking microenvironment composing a tunable HA/fibrin composite. Our multifarious approach could be applied to drug screening and mechanistic studies of the metastasis, growth, and progression of bone tumors.
Collapse
Affiliation(s)
- Jungho Ahn
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jungeun Lim
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Norhana Jusoh
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea.,Faculty of Engineering, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Jungseub Lee
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | - Tae-Eun Park
- Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States.,Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, United States.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, South Korea
| | - Noo Li Jeon
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea.,Division of WCU (World Class University) Multiscale Mechanical Design, Seoul National University, Seoul, South Korea.,Seoul National University Institute of Advanced Machines and Design, Seoul, South Korea.,Institute of Bioengineering, Seoul National University, Seoul, South Korea
| |
Collapse
|
78
|
Li Y, Liao C, Tjong SC. Electrospun Polyvinylidene Fluoride-Based Fibrous Scaffolds with Piezoelectric Characteristics for Bone and Neural Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E952. [PMID: 31261995 PMCID: PMC6669491 DOI: 10.3390/nano9070952] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 02/07/2023]
Abstract
Polyvinylidene fluoride (PVDF) and polyvinylidene fluoride-trifluoroethylene (P(VDF-TrFE) with excellent piezoelectricity and good biocompatibility are attractive materials for making functional scaffolds for bone and neural tissue engineering applications. Electrospun PVDF and P(VDF-TrFE) scaffolds can produce electrical charges during mechanical deformation, which can provide necessary stimulation for repairing bone defects and damaged nerve cells. As such, these fibrous mats promote the adhesion, proliferation and differentiation of bone and neural cells on their surfaces. Furthermore, aligned PVDF and P(VDF-TrFE) fibrous mats can enhance neurite growth along the fiber orientation direction. These beneficial effects derive from the formation of electroactive, polar β-phase having piezoelectric properties. Polar β-phase can be induced in the PVDF fibers as a result of the polymer jet stretching and electrical poling during electrospinning. Moreover, the incorporation of TrFE monomer into PVDF can stabilize the β-phase without mechanical stretching or electrical poling. The main drawbacks of electrospinning process for making piezoelectric PVDF-based scaffolds are their small pore sizes and the use of highly toxic organic solvents. The small pore sizes prevent the infiltration of bone and neuronal cells into the scaffolds, leading to the formation of a single cell layer on the scaffold surfaces. Accordingly, modified electrospinning methods such as melt-electrospinning and near-field electrospinning have been explored by the researchers to tackle this issue. This article reviews recent development strategies, achievements and major challenges of electrospun PVDF and P(VDF-TrFE) scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
79
|
Ogueri KS, Jafari T, Escobar Ivirico JL, Laurencin CT. POLYMERIC BIOMATERIALS FOR SCAFFOLD-BASED BONE REGENERATIVE ENGINEERING. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 5:128-154. [PMID: 31423461 PMCID: PMC6697158 DOI: 10.1007/s40883-018-0072-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/28/2018] [Indexed: 10/28/2022]
Abstract
Reconstruction of large bone defects resulting from trauma, neoplasm, or infection is a challenging problem in reconstructive surgery. The need for bone grafting has been increasing steadily partly because of our enhanced capability to salvage limbs after major bone loss. Engineered bone graft substitutes can have advantages such as lack of antigenicity, high availability, and varying properties depending on the applications chosen for use. These favorable attributes have contributed to the rise of scaffold-based polymeric tissue regeneration. Critical components in the scaffold-based polymeric regenerative engineering approach often include 1. The existence of biodegradable polymeric porous structures with properties selected to promote tissue regeneration and while providing appropriate mechanical support during tissue regeneration. 2. Cellular populations that can influence and enhance regeneration. 3. The use of growth and morphogenetic factors which can influence cellular migration, differentiation and tissue regeneration in vivo. Biodegradable polymers constitute an attractive class of biomaterials for the development of scaffolds due to their flexibility in chemistry and their ability to produce biocompatible degradation products. This paper presents an overview of polymeric scaffold-based bone tissue regeneration and reviews approaches as well as the particular roles of biodegradable polymers currently in use.
Collapse
Affiliation(s)
- Kenneth S. Ogueri
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Tahereh Jafari
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jorge L. Escobar Ivirico
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T. Laurencin
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
80
|
Tandon B, Kamble P, Olsson RT, Blaker JJ, Cartmell SH. Fabrication and Characterisation of Stimuli Responsive Piezoelectric PVDF and Hydroxyapatite-Filled PVDF Fibrous Membranes. Molecules 2019; 24:E1903. [PMID: 31108899 PMCID: PMC6571942 DOI: 10.3390/molecules24101903] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 11/18/2022] Open
Abstract
Poly(vinylidene fluoride) has attracted interest from the biomaterials community owing to its stimuli responsive piezoelectric property and promising results for application in the field of tissue engineering. Here, solution blow spinning and electrospinning were employed to fabricate PVDF fibres and the variation in resultant fibre properties assessed. The proportion of piezoelectric β-phase in the solution blow spun fibres was higher than electrospun fibres. Fibre production rate was circa three times higher for solution blow spinning compared to electrospinning for the conditions explored. However, the solution blow spinning method resulted in higher fibre variability between fabricated batches. Fibrous membranes are capable of generating different cellular response depending on fibre diameter. For this reason, electrospun fibres with micron and sub-micron diameters were fabricated, along with successful inclusion of hydroxyapatite particles to fabricate stimuli responsive bioactive fibres.
Collapse
Affiliation(s)
- Biranche Tandon
- School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
- Bio-Active Materials Group, School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
| | - Prashant Kamble
- School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
| | - Richard T Olsson
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Teknikringen 56, SE-10044 Stockholm, Sweden.
| | - Jonny J Blaker
- School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
- Bio-Active Materials Group, School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
| | - Sarah H Cartmell
- School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
81
|
Almouemen N, Kelly HM, O'Leary C. Tissue Engineering: Understanding the Role of Biomaterials and Biophysical Forces on Cell Functionality Through Computational and Structural Biotechnology Analytical Methods. Comput Struct Biotechnol J 2019; 17:591-598. [PMID: 31080565 PMCID: PMC6502738 DOI: 10.1016/j.csbj.2019.04.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/26/2019] [Accepted: 04/13/2019] [Indexed: 12/13/2022] Open
Abstract
Within the past 25 years, tissue engineering (TE) has grown enormously as a science and as an industry. Although classically concerned with the recapitulation of tissue and organ formation in our body for regenerative medicine, the evolution of TE research is intertwined with progress in other fields through the examination of cell function and behaviour in isolated biomimetic microenvironments. As such, TE applications now extend beyond the field of tissue regeneration research, operating as a platform for modifiable, physiologically-representative in vitro models with the potential to improve the translation of novel therapeutics into the clinic through a more informed understanding of the relevant molecular biology, structural biology, anatomy, and physiology. By virtue of their biomimicry, TE constructs incorporate features of extracellular macrostructure, molecular adhesive moieties, and biomechanical properties, converging with computational and structural biotechnology advances. Accordingly, this mini-review serves to contextualise TE for the computational and structural biotechnology reader and provides an outlook on how the disciplines overlap with respect to relevant advanced analytical applications.
Collapse
Affiliation(s)
- Nour Almouemen
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Helena M. Kelly
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Cian O'Leary
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
82
|
Wang W, Junior JRP, Nalesso PRL, Musson D, Cornish J, Mendonça F, Caetano GF, Bártolo P. Engineered 3D printed poly(ɛ-caprolactone)/graphene scaffolds for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:759-770. [PMID: 30948113 DOI: 10.1016/j.msec.2019.03.047] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022]
Abstract
Scaffolds are important physical substrates for cell attachment, proliferation and differentiation. Multiple factors could influence the optimal design of scaffolds for a specific tissue, such as the geometry, the materials used to modulate cell proliferation and differentiation, its biodegradability and biocompatibility. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes. Previous studies of human adipose-derived stem cells (hADSCs) seeded on poly(ε-caprolactone) (PCL)/graphene scaffolds have proved that the addition of small concentrations of graphene to PCL scaffolds improves cell proliferation. Based on such results, this paper further investigates, for the first time, both in vitro and in vivo characteristics of 3D printed PCL/graphene scaffolds. Scaffolds were evaluated from morphological, biological and short term immune response points of view. Results show that the produced scaffolds induce an acceptable level of immune response, suggesting high potential for in vivo applications. Finally, the scaffolds were used to treat a rat calvaria critical size defect with and without applying micro electrical stimulation (10 μA). Quantification of connective and new bone tissue formation and the levels of ALP, RANK, RANKL, OPG were considered. Results show that the use of scaffolds containing graphene and electrical stimulation seems to increase cell migration and cell influx, leading to new tissue formation, well-organized tissue deposition and bone remodelling.
Collapse
Affiliation(s)
- Weiguang Wang
- School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK
| | | | - Paulo Roberto Lopes Nalesso
- Graduate Program in Biomedical Sciences, Hermínio Ometto University Centre, Araras 13607339, Sao Paulo, Brazil
| | - David Musson
- Bone and Joint Research Group, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Jillian Cornish
- Bone and Joint Research Group, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Fernanda Mendonça
- Graduate Program in Biomedical Sciences, Hermínio Ometto University Centre, Araras 13607339, Sao Paulo, Brazil
| | - Guilherme Ferreira Caetano
- Graduate Program in Biomedical Sciences, Hermínio Ometto University Centre, Araras 13607339, Sao Paulo, Brazil
| | - Paulo Bártolo
- School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
83
|
Przekora A. Current Trends in Fabrication of Biomaterials for Bone and Cartilage Regeneration: Materials Modifications and Biophysical Stimulations. Int J Mol Sci 2019; 20:E435. [PMID: 30669519 PMCID: PMC6359292 DOI: 10.3390/ijms20020435] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of engineering of biomaterials is to fabricate implantable biocompatible scaffold that would accelerate regeneration of the tissue and ideally protect the wound against biodevice-related infections, which may cause prolonged inflammation and biomaterial failure. To obtain antimicrobial and highly biocompatible scaffolds promoting cell adhesion and growth, materials scientists are still searching for novel modifications of biomaterials. This review presents current trends in the field of engineering of biomaterials concerning application of various modifications and biophysical stimulation of scaffolds to obtain implants allowing for fast regeneration process of bone and cartilage as well as providing long-lasting antimicrobial protection at the site of injury. The article describes metal ion and plasma modifications of biomaterials as well as post-surgery external stimulations of implants with ultrasound and magnetic field, providing accelerated regeneration process. Finally, the review summarizes recent findings concerning the use of piezoelectric biomaterials in regenerative medicine.
Collapse
Affiliation(s)
- Agata Przekora
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, W. Chodzki 1 Street, 20-093 Lublin, Poland.
| |
Collapse
|
84
|
Ahn J, Lim J, Jusoh N, Lee J, Park TE, Kim Y, Kim J, Jeon NL. 3D Microfluidic Bone Tumor Microenvironment Comprised of Hydroxyapatite/Fibrin Composite. Front Bioeng Biotechnol 2019. [PMID: 31380359 DOI: 10.3389/fbioe.2019.00168/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Bone is one of the most common sites of cancer metastasis, as its fertile microenvironment attracts tumor cells. The unique mechanical properties of bone extracellular matrix (ECM), mainly composed of hydroxyapatite (HA) affect a number of cellular responses in the tumor microenvironment (TME) such as proliferation, migration, viability, and morphology, as well as angiogenic activity, which is related to bone metastasis. In this study, we engineered a bone-mimetic microenvironment to investigate the interactions between the TME and HA using a microfluidic platform designed for culturing tumor cells in 3D bone-mimetic composite of HA and fibrin. We developed a bone metastasis TME model from colorectal cancer (SW620) and gastric cancer (MKN74) cells, which has very poor prognosis but rarely been investigated. The microfluidic platform enabled straightforward formation of 3D TME composed the hydrogel and multiple cell types. This facilitated monitoring of the effect of HA concentration and culture time on the TME. In 3D bone mimicking culture, we found that HA rich microenvironment affects cell viability, proliferation and cancer cell cytoplasmic volume in a manner dependent on the different metastatic cancer cell types and culture duration indicating the spatial heterogeneity (different origin of metastatic cancer) and temporal heterogeneity (growth time of cancer) of TME. We also found that both SW620 and MKN72 cells exhibited significantly reduced migration at higher HA concentration in our platform indicating inhibitory effect of HA in both cancer cells migration. Next, we quantitatively analyzed angiogenic sprouts induced by paracrine factors that secreted by TME and showed paracrine signals from tumor and stromal cell with a high HA concentration resulted in the formation of fewer sprouts. Finally we reconstituted vascularized TME allowing direct interaction between angiogenic sprouts and tumor-stroma microspheroids in a bone-mimicking microenvironment composing a tunable HA/fibrin composite. Our multifarious approach could be applied to drug screening and mechanistic studies of the metastasis, growth, and progression of bone tumors.
Collapse
Affiliation(s)
- Jungho Ahn
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jungeun Lim
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Norhana Jusoh
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
- Faculty of Engineering, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Jungseub Lee
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | - Tae-Eun Park
- Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, South Korea
| | - Noo Li Jeon
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
- Division of WCU (World Class University) Multiscale Mechanical Design, Seoul National University, Seoul, South Korea
- Seoul National University Institute of Advanced Machines and Design, Seoul, South Korea
- Institute of Bioengineering, Seoul National University, Seoul, South Korea
| |
Collapse
|
85
|
Kao FC, Chiu PY, Tsai TT, Lin ZH. The application of nanogenerators and piezoelectricity in osteogenesis. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:1103-1117. [PMID: 32002085 PMCID: PMC6968561 DOI: 10.1080/14686996.2019.1693880] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/29/2019] [Accepted: 11/13/2019] [Indexed: 05/13/2023]
Abstract
Bone is a complex organ possessing both physicomechanical and bioelectrochemical properties. In the view of Wolff's Law, bone can respond to mechanical loading and is subsequently reinforced in the areas of stress. Piezoelectricity is one of several mechanical responses of the bone matrix that allows osteocytes, osteoblasts, osteoclasts, and osteoprogenitors to react to changes in their environment. The present review details how osteocytes convert external mechanical stimuli into internal bioelectrical signals and the induction of intercellular cytokines from the standpoint of piezoelectricity. In addition, this review introduces piezoelectric and triboelectric materials used as self-powered electrical generators to promote osteogenic proliferation and differentiation due to their electromechanical properties, which could promote the development of promising applications in tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Fu-Cheng Kao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ping-Yeh Chiu
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Zong-Hong Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
- CONTACT Zong-Hong Lin Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
86
|
Lembong J, Lerman MJ, Kingsbury TJ, Civin CI, Fisher JP. A Fluidic Culture Platform for Spatially Patterned Cell Growth, Differentiation, and Cocultures. Tissue Eng Part A 2018; 24:1715-1732. [PMID: 29845891 PMCID: PMC6302678 DOI: 10.1089/ten.tea.2018.0020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/24/2018] [Indexed: 01/09/2023] Open
Abstract
Stem cell cultures within perfusion bioreactors, while efficient in obtaining cell numbers, often lack the similarity to native tissues and consequently cell phenotype. We develop a three-dimensional (3D)-printed fluidic chamber for dynamic stem cell culture, with emphasis on control over flow and substrate curvature in a 3D environment, two physiologic features of native tissues. The chamber geometry, consisting of an array of vertical cylindrical pillars, facilitates actin-mediated localization of human mesenchymal stem cells (hMSCs) within ∼200 μm distance from the pillars, enabling spatial patterning of hMSCs and endothelial cells in cocultures and subsequent modulation of calcium signaling between these two essential cell types in the bone marrow microenvironment. Flow-enhanced osteogenic differentiation of hMSCs in growth media imposes spatial variations of alkaline phosphatase expression, which positively correlates with local shear stress. Proliferation of hMSCs is maintained within the chamber, exceeding the cell expansion in conventional static culture. The capability to manipulate cell spatial patterning, differentiation, and 3D tissue formation through geometry and flow demonstrates the culture chamber's relevant chemomechanical cues in stem cell microenvironments, thus providing an easy-to-implement tool to study interactions among substrate curvature, shear stress, and intracellular actin machinery in the tissue-engineered construct.
Collapse
Affiliation(s)
- Josephine Lembong
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
- NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Max J. Lerman
- NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland
- Surface and Trace Chemical Analysis Group, Materials Measurement Lab, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Tami J. Kingsbury
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Curt I. Civin
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
- NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| |
Collapse
|
87
|
Ribeiro S, Ribeiro T, Ribeiro C, Correia DM, Farinha JPS, Gomes AC, Baleizão C, Lanceros-Méndez S. Multifunctional Platform Based on Electroactive Polymers and Silica Nanoparticles for Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E933. [PMID: 30423943 PMCID: PMC6266809 DOI: 10.3390/nano8110933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
Abstract
Poly(vinylidene fluoride) nanocomposites processed with different morphologies, such as porous and non-porous films and fibres, have been prepared with silica nanoparticles (SiNPs) of varying diameter (17, 100, 160 and 300 nm), which in turn have encapsulated perylenediimide (PDI), a fluorescent molecule. The structural, morphological, optical, thermal, and mechanical properties of the nanocomposites, with SiNP filler concentration up to 16 wt %, were evaluated. Furthermore, cytotoxicity and cell proliferation studies were performed. All SiNPs are negatively charged independently of the pH and more stable from pH 5 upwards. The introduction of SiNPs within the polymer matrix increases the contact angle independently of the nanoparticle diameter. Moreover, the smallest ones (17 nm) also improve the PVDF Young's modulus. The filler diameter, physico-chemical, thermal and mechanical properties of the polymer matrix were not significantly affected. Finally, the SiNPs' inclusion does not induce cytotoxicity in murine myoblasts (C2C12) after 72 h of contact and proliferation studies reveal that the prepared composites represent a suitable platform for tissue engineering applications, as they allow us to combine the biocompatibility and piezoelectricity of the polymer with the possible functionalization and drug encapsulation and release of the SiNP.
Collapse
Grants
- (POCI-01-0145-FEDER-007569), POCI-01-0145-FEDER-028237 UID/BIO/04469, POCI-01-0145-FEDER-006684, NORTE-01-0145-FEDER-000004, SFRH/BD/111478/2015 (S.R.), SFRH/BPD/96707/2013 (T.R.), SFRH/BPD/90870/2012 (C.R.) and SFRH/BPD/121526/2016 (D.C). Fundação para a Ciência e a Tecnologia
- MAT2016-76039-C4-3-R (AEI/FEDER, UE) Ministerio de Economía, Industria y Competitividad, Gobierno de España
- ELKARTEK and HAZITEK Ekonomiaren Garapen eta Lehiakortasun Saila, Eusko Jaurlaritza
Collapse
Affiliation(s)
- Sylvie Ribeiro
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Tânia Ribeiro
- Centro de Química-Física Molecular and Institute of Nanosciences and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| | - Clarisse Ribeiro
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710 057 Braga, Portugal.
| | - Daniela M Correia
- Chemical Department and CQ-VR, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal.
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | - José P Sequeira Farinha
- Centro de Química-Física Molecular and Institute of Nanosciences and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Carlos Baleizão
- Centro de Química-Física Molecular and Institute of Nanosciences and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
88
|
Genchi GG, Sinibaldi E, Ceseracciu L, Labardi M, Marino A, Marras S, De Simoni G, Mattoli V, Ciofani G. Ultrasound-activated piezoelectric P(VDF-TrFE)/boron nitride nanotube composite films promote differentiation of human SaOS-2 osteoblast-like cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2421-2432. [DOI: 10.1016/j.nano.2017.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 01/20/2023]
|
89
|
Amaro L, Correia DM, Marques-Almeida T, Martins PM, Pérez L, Vilas JL, Botelho G, Lanceros-Mendez S, Ribeiro C. Tailored Biodegradable and Electroactive Poly(Hydroxybutyrate-Co-Hydroxyvalerate) Based Morphologies for Tissue Engineering Applications. Int J Mol Sci 2018; 19:ijms19082149. [PMID: 30042300 PMCID: PMC6121965 DOI: 10.3390/ijms19082149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 01/25/2023] Open
Abstract
Polymer-based piezoelectric biomaterials have already proven their relevance for tissue engineering applications. Furthermore, the morphology of the scaffolds plays also an important role in cell proliferation and differentiation. The present work reports on poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), a biocompatible, biodegradable, and piezoelectric biopolymer that has been processed in different morphologies, including films, fibers, microspheres, and 3D scaffolds. The corresponding magnetically active PHBV-based composites were also produced. The effect of the morphology on physico-chemical, thermal, magnetic, and mechanical properties of pristine and composite samples was evaluated, as well as their cytotoxicity. It was observed that the morphology does not strongly affect the properties of the pristine samples but the introduction of cobalt ferrites induces changes in the degree of crystallinity that could affect the applicability of prepared biomaterials. Young’s modulus is dependent of the morphology and also increases with the addition of cobalt ferrites. Both pristine and PHBV/cobalt ferrite composite samples are not cytotoxic, indicating their suitability for tissue engineering applications.
Collapse
Affiliation(s)
- Luís Amaro
- Center/Department of Physics, Universidade do Minho, 4710-057 Braga, Portugal.
| | - Daniela M Correia
- Center/Department of Chemistry, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | | | - Pedro M Martins
- Center/Department of Physics, Universidade do Minho, 4710-057 Braga, Portugal.
- Center/Department of Chemistry, Universidade do Minho, 4710-057 Braga, Portugal.
| | - Leyre Pérez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
- Macromolecular Chemistry Research Group (labquimac), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - José L Vilas
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
- Macromolecular Chemistry Research Group (labquimac), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Gabriela Botelho
- Center/Department of Chemistry, Universidade do Minho, 4710-057 Braga, Portugal.
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| | - Clarisse Ribeiro
- Center/Department of Physics, Universidade do Minho, 4710-057 Braga, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
90
|
Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater 2018; 73:1-20. [PMID: 29673838 DOI: 10.1016/j.actbio.2018.04.026] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/19/2018] [Accepted: 04/15/2018] [Indexed: 12/14/2022]
Abstract
The process of bone repair and regeneration requires multiple physiological cues including biochemical, electrical and mechanical - that act together to ensure functional recovery. Myriad materials have been explored as bioactive scaffolds to deliver these cues locally to the damage site, amongst these piezoelectric materials have demonstrated significant potential for tissue engineering and regeneration, especially for bone repair. Piezoelectric materials have been widely explored for power generation and harvesting, structural health monitoring, and use in biomedical devices. They have the ability to deform with physiological movements and consequently deliver electrical stimulation to cells or damaged tissue without the need of an external power source. Bone itself is piezoelectric and the charges/potentials it generates in response to mechanical activity are capable of enhancing bone growth. Piezoelectric materials are capable of stimulating the physiological electrical microenvironment, and can play a vital role to stimulate regeneration and repair. This review gives an overview of the association of piezoelectric effect with bone repair, and focuses on state-of-the-art piezoelectric materials (polymers, ceramics and their composites), the fabrication routes to produce piezoelectric scaffolds, and their application in bone repair. Important characteristics of these materials from the perspective of bone tissue engineering are highlighted. Promising upcoming strategies and new piezoelectric materials for this application are presented. STATEMENT OF SIGNIFICANCE Electrical stimulation/electrical microenvironment are known effect the process of bone regeneration by altering the cellular response and are crucial in maintaining tissue functionality. Piezoelectric materials, owing to their capability of generating charges/potentials in response to mechanical deformations, have displayed great potential for fabricating smart stimulatory scaffolds for bone tissue engineering. The growing interest of the scientific community and compelling results of the published research articles has been the motivation of this review article. This article summarizes the significant progress in the field with a focus on the fabrication aspects of piezoelectric materials. The review of both material and cellular aspects on this topic ensures that this paper appeals to both material scientists and tissue engineers.
Collapse
|
91
|
Ning C, Zhou Z, Tan G, Zhu Y, Mao C. Electroactive polymers for tissue regeneration: Developments and perspectives. Prog Polym Sci 2018; 81:144-162. [PMID: 29983457 PMCID: PMC6029263 DOI: 10.1016/j.progpolymsci.2018.01.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human body motion can generate a biological electric field and a current, creating a voltage gradient of -10 to -90 mV across cell membranes. In turn, this gradient triggers cells to transmit signals that alter cell proliferation and differentiation. Several cell types, counting osteoblasts, neurons and cardiomyocytes, are relatively sensitive to electrical signal stimulation. Employment of electrical signals in modulating cell proliferation and differentiation inspires us to use the electroactive polymers to achieve electrical stimulation for repairing impaired tissues. Electroactive polymers have found numerous applications in biomedicine due to their capability in effectively delivering electrical signals to the seeded cells, such as biosensing, tissue regeneration, drug delivery, and biomedical implants. Here we will summarize the electrical characteristics of electroactive polymers, which enables them to electrically influence cellular function and behavior, including conducting polymers, piezoelectric polymers, and polyelectrolyte gels. We will also discuss the biological response to these electroactive polymers under electrical stimulation. In particular, we focus this review on their applications in regenerating different tissues, including bone, nerve, heart muscle, cartilage and skin. Additionally, we discuss the challenges in tissue regeneration applications of electroactive polymers. We conclude that electroactive polymers have a great potential as regenerative biomaterials, due to their ability to stimulate desirable outcomes in various electrically responsive cells.
Collapse
Affiliation(s)
- Chengyun Ning
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhengnan Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Guoxin Tan
- Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5300, United States
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5300, United States
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
92
|
Zhang C, Liu W, Cao C, Zhang F, Tang Q, Ma S, Zhao J, Hu L, Shen Y, Chen L. Modulating Surface Potential by Controlling the β Phase Content in Poly(vinylidene fluoridetrifluoroethylene) Membranes Enhances Bone Regeneration. Adv Healthc Mater 2018; 7:e1701466. [PMID: 29675849 DOI: 10.1002/adhm.201701466] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/07/2018] [Indexed: 12/11/2022]
Abstract
Bioelectricity plays a vital role in living organisms. Although electrical stimulation is introduced in the field of bone regeneration, the concept of a dose-response relationship between surface potential and osteogenesis is not thoroughly studied. To optimize the osteogenic properties of different surface potentials, a flexible piezoelectric membrane, poly(vinylidene fluoridetrifluoroethylene) [P(VDF-TrFE)], is fabricated by annealing treatment to control its β phases. The surface potential and piezoelectric coefficients (d33 ) of the membranes can be regulated by increasing β phase contents. Compared with d33 = 20 pC N-1 (surface potential = -78 mV) and unpolarized membranes, bone marrow mesenchymal stem cells (BM-MSCs) cultured on the d33 = 10 pC N-1 (surface potential = -53 mV) membranes have better osteogenic properties. In vivo, d33 = 10 pC N-1 membranes result in rapid bone regeneration and complete mature bone-structure formation. BM-MSCs on d33 = 10 pC N-1 membranes have the lowest reactive oxygen species level and the highest mitochondrial membrane electric potential, implying that these membranes provide the best electrical qunantity for BM-MSCs' proliferation and energy metabolism. This study establishes an effective method to control the surface potential of P(VDF-Trfe) membranes and highlights the importance of optimized electrical stimulation in bone regeneration.
Collapse
Affiliation(s)
- Chenguang Zhang
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Wenwen Liu
- Department of Geriatric Dentistry; Peking University School and Hospital of Stomatology; Beijing 100081 China
| | - Cen Cao
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Fengyi Zhang
- Department of Geriatric Dentistry; Peking University School and Hospital of Stomatology; Beijing 100081 China
| | - Qingming Tang
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Siqin Ma
- Department of Geriatric Dentistry; Peking University School and Hospital of Stomatology; Beijing 100081 China
| | - JiaJia Zhao
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Li Hu
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Yang Shen
- State Key Laboratory of New Ceramics and Fine Processing; Department of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
| | - Lili Chen
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| |
Collapse
|
93
|
Tang B, Zhuang J, Wang L, Zhang B, Lin S, Jia F, Dong L, Wang Q, Cheng K, Weng W. Harnessing Cell Dynamic Responses on Magnetoelectric Nanocomposite Films to Promote Osteogenic Differentiation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7841-7851. [PMID: 29412633 DOI: 10.1021/acsami.7b19385] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The binding of cell integrins to proteins adsorbed on the material surface is a highly dynamic process critical for guiding cellular responses. However, temporal dynamic regulation of adsorbed proteins to meet the spatial conformation requirement of integrins for a certain cellular response remains a great challenge. Here, an active CoFe2O4/poly(vinylidene fluoride-trifluoroethylene) nanocomposite film, which was demonstrated to be an obvious surface potential variation (Δ V ≈ 93 mV) in response to the applied magnetic field intensity (0-3000 Oe), was designed to harness the dynamic binding of integrin-adsorbed proteins by in situ controlling of the conformation of adsorbed proteins. Experimental investigation and molecular dynamics simulation confirmed the surface potential-induced conformational change in the adsorbed proteins. Cells cultured on nanocomposite films indicated that cellular responses in different time periods (adhesion, proliferation, and differentiation) required distinct magnetic field intensity, and synthetically programming the preferred magnetic field intensity of each time period could further enhance the osteogenic differentiation through the FAK/ERK signaling pathway. This work therefore provides a distinct concept that dynamically controllable modulation of the material surface property fitting the binding requirement of different cell time periods would be more conducive to achieving the desired osteogenic differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lingqing Dong
- The Affiliated Stomatologic Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | | | | | | |
Collapse
|
94
|
Jacob J, More N, Kalia K, Kapusetti G. Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm Regen 2018; 38:2. [PMID: 29497465 PMCID: PMC5828134 DOI: 10.1186/s41232-018-0059-8] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/12/2018] [Indexed: 01/10/2023] Open
Abstract
Tissues like bone and cartilage are remodeled dynamically for their functional requirements by signaling pathways. The signals are controlled by the cells and extracellular matrix and transmitted through an electrical and chemical synapse. Scaffold-based tissue engineering therapies largely disturb the natural signaling pathways, due to their rigidity towards signal conduction, despite their therapeutic advantages. Thus, there is a high need of smart biomaterials, which can conveniently generate and transfer the bioelectric signals analogous to native tissues for appropriate physiological functions. Piezoelectric materials can generate electrical signals in response to the applied stress. Furthermore, they can stimulate the signaling pathways and thereby enhance the tissue regeneration at the impaired site. The piezoelectric scaffolds can act as sensitive mechanoelectrical transduction systems. Hence, it is applicable to the regions, where mechanical loads are predominant. The present review is mainly concentrated on the mechanism related to the electrical stimulation in a biological system and the different piezoelectric materials suitable for bone and cartilage tissue engineering.
Collapse
Affiliation(s)
- Jaicy Jacob
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, 380054 India
| | - Namdev More
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, 380054 India
| | - Kiran Kalia
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, 380054 India
| | - Govinda Kapusetti
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, 380054 India
| |
Collapse
|
95
|
Ribeiro C, Correia DM, Ribeiro S, Fernandes MM, Lanceros-Mendez S. Piezo- and Magnetoelectric Polymers as Biomaterials for Novel Tissue Engineering Strategies. ACTA ACUST UNITED AC 2018. [DOI: 10.1557/adv.2018.223] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
96
|
Cardoso VF, Correia DM, Ribeiro C, Fernandes MM, Lanceros-Méndez S. Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications. Polymers (Basel) 2018; 10:polym10020161. [PMID: 30966197 PMCID: PMC6415094 DOI: 10.3390/polym10020161] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/12/2022] Open
Abstract
Fluorinated polymers constitute a unique class of materials that exhibit a combination of suitable properties for a wide range of applications, which mainly arise from their outstanding chemical resistance, thermal stability, low friction coefficients and electrical properties. Furthermore, those presenting stimuli-responsive properties have found widespread industrial and commercial applications, based on their ability to change in a controlled fashion one or more of their physicochemical properties, in response to single or multiple external stimuli such as light, temperature, electrical and magnetic fields, pH and/or biological signals. In particular, some fluorinated polymers have been intensively investigated and applied due to their piezoelectric, pyroelectric and ferroelectric properties in biomedical applications including controlled drug delivery systems, tissue engineering, microfluidic and artificial muscle actuators, among others. This review summarizes the main characteristics, microstructures and biomedical applications of electroactive fluorinated polymers.
Collapse
Affiliation(s)
- Vanessa F Cardoso
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
- CMEMS-UMinho, Universidade do Minho, DEI, 4800-058 Guimaraes, Portugal.
| | - Daniela M Correia
- Departamento de Química e CQ-VR, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | - Clarisse Ribeiro
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Margarida M Fernandes
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
97
|
Sobreiro-Almeida R, Tamaño-Machiavello MN, Carvalho EO, Cordón L, Doria S, Senent L, Correia DM, Ribeiro C, Lanceros-Méndez S, Sabater I Serra R, Gomez Ribelles JL, Sempere A. Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates. Int J Mol Sci 2017; 18:ijms18112391. [PMID: 29137121 PMCID: PMC5713360 DOI: 10.3390/ijms18112391] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/22/2022] Open
Abstract
The aim of this work was to determine the influence of the biomaterial environment on human mesenchymal stem cell (hMSC) fate when cultured in supports with varying topography. Poly(vinylidene fluoride) (PVDF) culture supports were prepared with structures ranging between 2D and 3D, based on PVDF films on which PVDF microspheres were deposited with varying surface density. Maintenance of multipotentiality when cultured in expansion medium was studied by flow cytometry monitoring the expression of characteristic hMSCs markers, and revealed that cells were losing their characteristic surface markers on these supports. Cell morphology was assessed by scanning electron microscopy (SEM). Alkaline phosphatase activity was also assessed after seven days of culture on expansion medium. On the other hand, osteoblastic differentiation was monitored while culturing in osteogenic medium after cells reached confluence. Osteocalcin immunocytochemistry and alizarin red assays were performed. We show that flow cytometry is a suitable technique for the study of the differentiation of hMSC seeded onto biomaterials, giving a quantitative reliable analysis of hMSC-associated markers. We also show that electrosprayed piezoelectric poly(vinylidene fluoride) is a suitable support for tissue engineering purposes, as hMSCs can proliferate, be viable and undergo osteogenic differentiation when chemically stimulated.
Collapse
Affiliation(s)
- R Sobreiro-Almeida
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
| | - M N Tamaño-Machiavello
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - E O Carvalho
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
| | - L Cordón
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain.
| | - S Doria
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - L Senent
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain.
- Hematology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain.
| | - D M Correia
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
- Centro/Departamento de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - C Ribeiro
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - S Lanceros-Méndez
- BCMaterials, Parque Científico y Tecnológico de Bizkaia, 48160 Derio, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| | - R Sabater I Serra
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain.
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain.
| | - J L Gomez Ribelles
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain.
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain.
| | - A Sempere
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain.
- Hematology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain.
| |
Collapse
|
98
|
Farré R, Otero J, Almendros I, Navajas D. Bioengineered Lungs: A Challenge and An Opportunity. Arch Bronconeumol 2017; 54:31-38. [PMID: 29102342 DOI: 10.1016/j.arbres.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/28/2022]
Abstract
Lung biofabrication is a new tissue engineering and regenerative development aimed at providing organs for potential use in transplantation. Lung biofabrication is based on seeding cells into an acellular organ scaffold and on culturing them in an especial purpose bioreactor. The acellular lung scaffold is obtained by decellularizing a non-transplantable donor lung by means of conventional procedures based on application of physical, enzymatic and detergent agents. To avoid immune recipient's rejection of the transplanted bioengineered lung, autologous bone marrow/adipose tissue-derived mesenchymal stem cells, lung progenitor cells or induced pluripotent stem cells are used for biofabricating the bioengineered lung. The bioreactor applies circulatory perfusion and mechanical ventilation with physiological parameters to the lung during biofabrication. These physical stimuli to the organ are translated into the stem cell local microenvironment - e.g. shear stress and cyclic stretch - so that cells sense the physiological conditions in normally functioning mature lungs. After seminal proof of concept in a rodent model was published in 2010, the hypothesis that lungs can be biofabricated is accepted and intense research efforts are being devoted to the topic. The current experimental evidence obtained so far in animal tests and in ex vivo human bioengineered lungs suggests that the date of first clinical tests, although not immediate, is coming. Lung bioengineering is a disrupting concept that poses a challenge for improving our basic science knowledge and is also an opportunity for facilitating lung transplantation in future clinical translation.
Collapse
Affiliation(s)
- Ramon Farré
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Madrid, Spain; Institut Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain.
| | - Jordi Otero
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Isaac Almendros
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Madrid, Spain; Institut Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Daniel Navajas
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Madrid, Spain; Institut de Bioenginyeria de Catalunya, The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
99
|
Zhu S, Jing W, Hu X, Huang Z, Cai Q, Ao Y, Yang X. Time-dependent effect of electrical stimulation on osteogenic differentiation of bone mesenchymal stromal cells cultured on conductive nanofibers. J Biomed Mater Res A 2017; 105:3369-3383. [PMID: 28795778 DOI: 10.1002/jbm.a.36181] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/28/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022]
Abstract
Bone tissue engineering using bone mesenchymal stromal cells (BMSCs) is a multidisciplinary strategy that requires biodegradable scaffold, cell, various promoting cues to work simultaneously. Electrical stimulation (ES) is known able to promote osteogenic differentiation of BMSCs, but it is interesting to know how can it play the strongest promotion effect. To strengthen local ES on BMSCs, parallel-aligned conductive nanofibers were electrospun from the mixtures of poly(L-lactide) (PLLA) and multi-walled carbon nanotubes (MWCNTs), and used for cell culture. Osteogenic differentiation of BMSCs was conducted by applying ES (direct current, 1.5 V, 1.5 h/day) perpendicular to the fiber direction during the day 1-7, day 8-14, or day 15-21 period of the osteoinductive culture. In comparison with ES-free groups, bone-related markers and genes were found significantly up-regulated when ES was applied on BMSCs growing on nanofibers having higher conductivity. When the ES was applied at the earlier stage of osteoinductive culture, the promotion effect on osteogenic differentiation would be stronger. In the presence of a BMP blocker, the down-regulated expressions of bone-related genes were able to be slightly recovered by ES, especially when the ES was applied at the beginning of osteoinductive culture (i.e. day 1-7). The promotion effect generated by ES in the early stage was found sustainable to later stages of differentiation, while those ES applied at later stages of differentiation should have missed the optimal point. In other words, later ES was not so necessary in inducing the osteogenic differentiation of BMSCs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3369-3383, 2017.
Collapse
Affiliation(s)
- Siqi Zhu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Jing
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Zirong Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yingfang Ao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
100
|
Damaraju SM, Shen Y, Elele E, Khusid B, Eshghinejad A, Li J, Jaffe M, Arinzeh TL. Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials 2017; 149:51-62. [PMID: 28992510 DOI: 10.1016/j.biomaterials.2017.09.024] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/08/2017] [Accepted: 09/17/2017] [Indexed: 01/06/2023]
Abstract
The discovery of electric fields in biological tissues has led to efforts in developing technologies utilizing electrical stimulation for therapeutic applications. Native tissues, such as cartilage and bone, exhibit piezoelectric behavior, wherein electrical activity can be generated due to mechanical deformation. Yet, the use of piezoelectric materials have largely been unexplored as a potential strategy in tissue engineering, wherein a piezoelectric biomaterial acts as a scaffold to promote cell behavior and the formation of large tissues. Here we show, for the first time, that piezoelectric materials can be fabricated into flexible, three-dimensional fibrous scaffolds and can be used to stimulate human mesenchymal stem cell differentiation and corresponding extracellular matrix/tissue formation in physiological loading conditions. Piezoelectric scaffolds that exhibit low voltage output, or streaming potential, promoted chondrogenic differentiation and piezoelectric scaffolds with a high voltage output promoted osteogenic differentiation. Electromechanical stimulus promoted greater differentiation than mechanical loading alone. Results demonstrate the additive effect of electromechanical stimulus on stem cell differentiation, which is an important design consideration for tissue engineering scaffolds. Piezoelectric, smart materials are attractive as scaffolds for regenerative medicine strategies due to their inherent electrical properties without the need for external power sources for electrical stimulation.
Collapse
Affiliation(s)
- Sita M Damaraju
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Yueyang Shen
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Ezinwa Elele
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Boris Khusid
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Ahmad Eshghinejad
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Jiangyu Li
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Michael Jaffe
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Treena Livingston Arinzeh
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA.
| |
Collapse
|