51
|
Cell surface remodeling by plasmin: a new function for an old enzyme. J Biomed Biotechnol 2012; 2012:564259. [PMID: 23097597 PMCID: PMC3477900 DOI: 10.1155/2012/564259] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/01/2012] [Indexed: 12/23/2022] Open
Abstract
Plasmin, one of the most potent and reactive serine proteases, is involved in various physiological processes, including embryo development, thrombolysis, wound healing and cancer progression. The proteolytic activity of plasmin is tightly regulated through activation of its precursor, plasminogen, only at specific times and in defined locales as well as through inhibition of active plasmin by its abundant natural inhibitors. By exploiting the plasminogen activating system and overexpressing distinct components of the plasminogen activation cascade, such as pro-uPA, uPAR and plasminogen receptors, malignant cells can enhance the generation of plasmin which in turn, modifies the tumor microenvironment to sustain cancer progression. While plasmin-mediated degradation and modification of extracellular matrix proteins, release of growth factors and cytokines from the stroma as well as activation of several matrix metalloproteinase zymogens, all have been a focus of cancer research studies for decades, the ability of plasmin to cleave transmembrane molecules and thereby to generate functionally important cleaved products which induce outside-in signal transduction, has just begun to receive sufficient attention. Herein, we highlight this relatively understudied, but important function of the plasmin enzyme as it is generated de novo at the interface between cross-talking cancer and host cells.
Collapse
|
52
|
Abstract
Fibronectin and laminin are clinically relevant plasmin receptors in the eye. Located at the vitreoretinal interface, they are cleaved by ocriplasmin (Microplasmin, ThromboGenics, Iselin, NJ), a novel ophthalmic medication. A series of clinical trials to study ocriplasmin for the treatment of vitreoretinal diseases such as vitreomacular traction, macular hole, and exudative age-related macular degeneration are underway. The results are promising and may impact patient care.
Collapse
|
53
|
Zhuo J, Tan EH, Yan B, Tochhawng L, Jayapal M, Koh S, Tay HK, Maciver SK, Hooi SC, Salto-Tellez M, Kumar AP, Goh YC, Lim YC, Yap CT. Gelsolin induces colorectal tumor cell invasion via modulation of the urokinase-type plasminogen activator cascade. PLoS One 2012; 7:e43594. [PMID: 22927998 PMCID: PMC3424201 DOI: 10.1371/journal.pone.0043594] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
Gelsolin is a cytoskeletal protein which participates in actin filament dynamics and promotes cell motility and plasticity. Although initially regarded as a tumor suppressor, gelsolin expression in certain tumors correlates with poor prognosis and therapy-resistance. In vitro, gelsolin has anti-apoptotic and pro-migratory functions and is critical for invasion of some types of tumor cells. We found that gelsolin was highly expressed at tumor borders infiltrating into adjacent liver tissues, as examined by immunohistochemistry. Although gelsolin contributes to lamellipodia formation in migrating cells, the mechanisms by which it induces tumor invasion are unclear. Gelsolin's influence on the invasive activity of colorectal cancer cells was investigated using overexpression and small interfering RNA knockdown. We show that gelsolin is required for invasion of colorectal cancer cells through matrigel. Microarray analysis and quantitative PCR indicate that gelsolin overexpression induces the upregulation of invasion-promoting genes in colorectal cancer cells, including the matrix-degrading urokinase-type plasminogen activator (uPA). Conversely, gelsolin knockdown reduces uPA levels, as well as uPA secretion. The enhanced invasiveness of gelsolin-overexpressing cells was attenuated by treatment with function-blocking antibodies to either uPA or its receptor uPAR, indicating that uPA/uPAR activity is crucial for gelsolin-dependent invasion. In summary, our data reveals novel functions of gelsolin in colorectal tumor cell invasion through its modulation of the uPA/uPAR cascade, with potentially important roles in colorectal tumor dissemination to metastatic sites.
Collapse
Affiliation(s)
- Jingli Zhuo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ee Hong Tan
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Benedict Yan
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Lalchhandami Tochhawng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Manikandan Jayapal
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shiuan Koh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hwee Kee Tay
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Sutherland K. Maciver
- Department of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Manuel Salto-Tellez
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, United Kingdom
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Yaw Chong Goh
- Department of Surgery, Singapore General Hospital, Singapore, Singapore
| | - Yaw Chyn Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pathology, National University Hospital, Singapore, Singapore
- * E-mail: (CTY); (YCL)
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail: (CTY); (YCL)
| |
Collapse
|
54
|
MMP2 and acrosin are major proteinases associated with the inner acrosomal membrane and may cooperate in sperm penetration of the zona pellucida during fertilization. Cell Tissue Res 2012; 349:881-95. [PMID: 22729485 PMCID: PMC3429778 DOI: 10.1007/s00441-012-1429-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/04/2012] [Indexed: 01/07/2023]
Abstract
Sperm-zona pellucida (ZP) penetration during fertilization is a process that most likely involves enzymatic digestion of this extracellular coat by spermatozoa. Since the inner acrosomal membrane (IAM) is the leading edge of spermatozoa during penetration and proteins required for secondary binding of sperm to the zona are present on it, the IAM is the likely location of these enzymes. The objectives of this study were to identify and characterize proteinases present on the IAM, confirm their localization and provide evidence for their role in fertilization. Gelatin zymography of detergent extracts of the IAM revealed bands of enzymatic activity identified as serine and matrix metallo-proteinases (MMPs). Specific inhibitors to MMPs revealed that MMP activity was due to MMP2. Immunoblotting determined that the serine protease activity on the zymogram was due to acrosin and also confirmed the MMP2 activity. Immunogold labeling of spermatozoa at the electron microscope level showed that acrosin and MMP2 were confined to the apical and principal segments of the acrosome in association with the IAM, confirming our IAM isolation technique. Immunohistochemical examination of acrosin and MMP2 during spermiogenesis showed that both proteins originate in the acrosomic granule during the Golgi phase and later redistribute to the acrosomal membrane. Anti-MMP2 antibodies and inhibitors incorporated into in vitro fertilization media significantly decreased fertilization rates. This is the first study to demonstrate that MMP2 and acrosin are associated with the IAM and introduces the possibility of their cooperation in enzymatic digestion of the ZP during penetration.
Collapse
|
55
|
Ferrer M, Xu W, Oko R. The composition, protein genesis and significance of the inner acrosomal membrane of eutherian sperm. Cell Tissue Res 2012; 349:733-48. [PMID: 22592626 DOI: 10.1007/s00441-012-1433-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/11/2012] [Indexed: 11/28/2022]
Abstract
As a consequence of the acrosomal reaction during fertilization, the inner acrosomal membrane (IAM) becomes exposed and forms the leading edge of the sperm for adhesive binding to and subsequent penetration of the zona-pellucida (ZP) of the metaphase-II-arrested oocyte. A premise of this review is that the IAM of spermatozoa anchors receptors and enzymes (on its extracellular side) that are required for sperm attachment to and penetration of the ZP. We propose a sperm cell fractionation strategy that allows for direct access to proteins bound to the extracellular side of the IAM. We review the types of integral and peripheral IAM proteins that have been found by this approach and that have been implicated in ZP recognition and lysis. We also propose a scheme for the origin and assembly of these proteins within the developing acrosome during spermiogenesis. During development, the extravesicular side of the membrane of the acrosomic vesicle is coated by peripheral proteins that transport and bind this secretory vesicle to the spermatid nucleus. The part of the membrane that binds to the nucleus becomes the IAM, while its extravesicular protein coat, which is retained between the IAM and the nuclear envelope of spermatozoa becomes the subacrosomal layer of the perinuclear theca (SAL-PT). Another premise of this review is that the IAM of spermatozoa is bound with proteins (on its intracellular side), namely the SAL-PT proteins, which hold the clue to the mechanism of acrosomal-nuclear docking. We propose a sperm cell fractionation strategy that allows for direct access to SAL-PT proteins. We then review the types of SAL-PT proteins that have been found by this approach and that have been implicated in transporting and binding the acrosome to the sperm nucleus.
Collapse
Affiliation(s)
- Marvin Ferrer
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
56
|
Sullivan BP, Kassel KM, Jone A, Flick MJ, Luyendyk JP. Fibrin(ogen)-independent role of plasminogen activators in acetaminophen-induced liver injury. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2321-9. [PMID: 22507835 DOI: 10.1016/j.ajpath.2012.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 01/19/2012] [Accepted: 02/23/2012] [Indexed: 02/01/2023]
Abstract
Hepatic fibrin(ogen) has been noted to occur after acetaminophen (APAP)-induced liver injury in mice. Deficiency in plasminogen activator inhibitor-1 (PAI-1), an endogenous inhibitor of fibrinolysis, increases APAP-induced liver injury in mice. However, the roles of fibrinogen and fibrinolysis in APAP-induced liver injury are not known. We tested the hypothesis that hepatic fibrin(ogen) deposition reduces severity of APAP-induced liver injury. APAP-induced (300 mg/kg) liver injury in mice was accompanied by thrombin generation, consumption of plasma fibrinogen, and deposition of hepatic fibrin. Neither fibrinogen depletion with ancrod nor complete fibrinogen deficiency [via knockout of the fibrinogen alpha chain gene (Fbg(-/-))] affected APAP-induced liver injury. PAI-1 deficiency (PAI-1(-/-)) increased APAP-induced liver injury and hepatic fibrin deposition 6 hours after APAP administration, which was followed by marked hemorrhage at 24 hours. As in PAI-1(-/-) mice, administration of recombinant tissue plasminogen activator (tenecteplase, 5 mg/kg) worsened APAP-induced liver injury and hemorrhage in wild-type mice. In contrast, APAP-induced liver injury was reduced in both plasminogen-deficient mice and in wild-type mice treated with tranexamic acid, an inhibitor of plasminogen activation. Activation of matrix metalloproteinase 9 (MMP-9) paralleled injury, but MMP-9 deficiency did not affect APAP-induced liver injury. The results indicate that fibrin(ogen) does not contribute to development of APAP-induced liver injury and suggest rather that plasminogen activation contributes to APAP-induced liver injury.
Collapse
Affiliation(s)
- Bradley P Sullivan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | | | |
Collapse
|
57
|
Phipps KD, Surette AP, O'Connell PA, Waisman DM. Plasminogen receptor S100A10 is essential for the migration of tumor-promoting macrophages into tumor sites. Cancer Res 2012; 71:6676-83. [PMID: 22042827 DOI: 10.1158/0008-5472.can-11-1748] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Macrophages are critical drivers of tumor growth, invasion, and metastasis. Movement of macrophages into tumors requires the activity of cell surface proteases such as plasmin. In this study, we offer genetic evidence that plasminogen receptor S100A10 is essential for recruitment of macrophages to the tumor site. Growth of murine Lewis lung carcinomas or T241 fibrosarcomas was dramatically reduced in S100A10-deficient mice compared with wild-type mice. The tumor growth deficit corresponded with a decrease in macrophage density that could be rescued by intraperitoneal injection of wild-type but not S100A10-deficient macrophages. Notably, macrophages of either genotype could rescue tumor growth if they were injected into the tumor itself, establishing that S100A10 was required specifically for the migratory capability needed for tumor homing. Conversely, selective depletion of macrophages from wild-type mice phenocopied the tumor growth deficit seen in S100A10-deficient mice. Together, our findings show that S100A10 is essential and sufficient for macrophage migration to tumor sites, and they define a novel rate-limiting step in tumor progression.
Collapse
Affiliation(s)
- Kyle D Phipps
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
58
|
Findeisen P, Neumaier M. Functional protease profiling for diagnosis of malignant disease. Proteomics Clin Appl 2011; 6:60-78. [PMID: 22213637 DOI: 10.1002/prca.201100058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/27/2011] [Accepted: 10/19/2011] [Indexed: 12/24/2022]
Abstract
Clinical proteomic profiling by mass spectrometry (MS) aims at uncovering specific alterations within mass profiles of clinical specimens that are of diagnostic value for the detection and classification of various diseases including cancer. However, despite substantial progress in the field, the clinical proteomic profiling approaches have not matured into routine diagnostic applications so far. Their limitations are mainly related to high-abundance proteins and their complex processing by a multitude of endogenous proteases thus making rigorous standardization difficult. MS is biased towards the detection of low-molecular-weight peptides. Specifically, in serum specimens, the particular fragments of proteolytically degraded proteins are amenable to MS analysis. Proteases are known to be involved in tumour progression and tumour-specific proteases are released into the blood stream presumably as a result of invasive progression and metastasis. Thus, the determination of protease activity in clinical specimens from patients with malignant disease can offer diagnostic and also therapeutic options. The identification of specific substrates for tumour proteases in complex biological samples is challenging, but proteomic screens for proteases/substrate interactions are currently experiencing impressive progress. Such proteomic screens include peptide-based libraries, differential isotope labelling in combination with MS, quantitative degradomic analysis of proteolytically generated neo-N-termini, monitoring the degradation of exogenous reporter peptides with MS, and activity-based protein profiling. In the present article, we summarize and discuss the current status of proteomic techniques to identify tumour-specific protease-substrate interactions for functional protease profiling. Thereby, we focus on the potential diagnostic use of the respective approaches.
Collapse
Affiliation(s)
- Peter Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
59
|
Gaide Chevronnay HP, Selvais C, Emonard H, Galant C, Marbaix E, Henriet P. Regulation of matrix metalloproteinases activity studied in human endometrium as a paradigm of cyclic tissue breakdown and regeneration. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:146-56. [PMID: 21982799 DOI: 10.1016/j.bbapap.2011.09.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 09/18/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
Abstract
When abundant and activated, matrix metalloproteinases (MMPs, or matrixins) degrade most, if not all, constituents of the extracellular matrix (ECM). The resulting massive tissue breakdown is best exemplified in humans by the menstrual lysis and shedding of the endometrium, the mucosa lining the uterus. After menstruation, MMP activity needs to be tightly controlled as the endometrium regenerates and differentiates to avoid abnormal tissue breakdown while allowing tissue repair and fine remodelling to accommodate implantation of a blastocyst. This paper reviews how MMPs are massively present and activated in the endometrium at menstruation, and how their activity is tightly controlled at other phases of the cycle. Progesterone represses expression of many but not all MMPs. Its withdrawal triggers focal expression of MMPs specifically in the areas undergoing lysis, an effect mediated by local cytokines such as interleukin-1α, LEFTY-2, tumour necrosis factor-α and others. MMP-3 is selectively expressed at that time and activates proMMP-9, otherwise present in latent form throughout the cycle. In addition, a large number of neutrophils loaded with MMPs are recruited at menstruation through induction of chemokines, such as interleukin-8. At the secretory phase, progesterone repression of MMPs is mediated by transforming growth factor-β. Tissue inhibitors of metalloproteinases (TIMPs) are abundant at all phases of the cycle to prevent any undue MMP activity, but are likely overwhelmed at menstruation. At other phases of the cycle, MMPs can elude TIMP inhibition as exemplified by recruitment of active MMP-7 to the plasma membrane of epithelial cells, allowing processing of membrane-associated growth factors needed for epithelial repair and proliferation. Finally, receptor-mediated endocytosis through low density lipoprotein receptor-related protein-1 (LRP-1) efficiently clears MMP-2 and -9 at the proliferative and secretory phases. This mechanism is probably essential to prevent any excessive ECM degradation by the active form of MMP-2 that is permanently present. However, shedding of the ectodomain of LRP-1 specifically at menstruation prevents endocytosis of MMPs allowing full degradation of the ECM. Thus endometrial MMPs are regulated at the levels of transcription, release from infiltrating neutrophils, activation, binding to the cell membrane, inhibition by TIMPs and endocytic clearance by LRP-1. This allows tight control during endometrial growth and differentiation but results in a burst of activity for menstrual tissue breakdown. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
|
60
|
Walsh LA, Damjanovski S. IGF-1 increases invasive potential of MCF 7 breast cancer cells and induces activation of latent TGF-β1 resulting in epithelial to mesenchymal transition. Cell Commun Signal 2011; 9:10. [PMID: 21535875 PMCID: PMC3104381 DOI: 10.1186/1478-811x-9-10] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 05/02/2011] [Indexed: 11/18/2022] Open
Abstract
Introduction TGF-β signaling has been extensively studied in many developmental contexts, amongst which is its ability to induce epithelial to mesenchymal transitions (EMT). EMTs play crucial roles during embryonic development and have also come under intense scrutiny as a mechanism through which breast cancers progress to become metastatic. Interestingly, while the molecular hallmarks of EMT progression (loss of cell adhesion, nuclear localization of β-catenin) are straightforward, the cellular signaling cascades that result in an EMT are numerous and diverse. Furthermore, most studies describing the biological effects of TGF-β have been performed using high concentrations of active, soluble TGF-β, despite the fact that TGF-β is produced and secreted as a latent complex. Methods MCF-7 breast cancer cells treated with recombinant IGF-1 were assayed for metalloproteinase activity and invasiveness through a matrigel coated transwell invasion chamber. IGF-1 treatments were then followed by the addition of latent-TGF-β1 to determine if elevated levels of IGF-1 together with latent-TGF-β1 could cause EMT. Results Results showed that IGF-1 - a molecule known to be elevated in breast cancer is a regulator of matrix metalloproteinase activity (MMP) and the invasive potential of MCF-7 breast cancer cells. The effects of IGF-1 appear to be mediated through signals transduced via the PI3K and MAPK pathways. In addition, increased IGF-1, together with latent TGF-β1 and active MMPs result in EMT. Conclusions Taken together our data suggest a novel a link between IGF-1 levels, MMP activity, TGF-β signaling, and EMT in breast cancer cells.
Collapse
Affiliation(s)
- Logan A Walsh
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| | | |
Collapse
|
61
|
Leksa V, Loewe R, Binder B, Schiller HB, Eckerstorfer P, Forster F, Soler-Cardona A, Ondrovičová G, Kutejová E, Steinhuber E, Breuss J, Drach J, Petzelbauer P, Binder BR, Stockinger H. Soluble M6P/IGF2R Released by TACE Controls Angiogenesis via Blocking Plasminogen Activation. Circ Res 2011; 108:676-85. [DOI: 10.1161/circresaha.110.234732] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rationale:
The urokinase plasminogen activator (uPA) system is among the most crucial pericellular proteolytic systems associated with the processes of angiogenesis. We previously identified an important regulator of the uPA system in the mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R).
Objective:
Here, we wanted to clarify whether and how did the soluble form of M6P/IGF2R (sM6P/IGF2R) contribute to modulation of the uPA system.
Methods and Results:
By using specific inhibitors and RNA interference, we show that the tumor necrosis factor α convertase (TACE, ADAM-17) mediates the release of the ectodomain of M6P/IGF2R from human endothelial cells. We demonstrate further that sM6P/IGF2R binds plasminogen (Plg) and thereby prevents Plg from binding to the cell surface and uPA, ultimately inhibiting in this manner Plg activation. Furthermore, peptide 18-36 derived from the Plg-binding site of M6P/IGF2R mimics sM6P/IGF2R in the inhibition of Plg activation and blocks cancer cell invasion in vitro, endothelial cell invasion in vivo, and tumor growth in vivo.
Conclusions:
The interaction of sM6P/IGF2R with Plg may be an important regulatory mechanism to inhibit migration of cells using the uPA/uPAR system.
Collapse
Affiliation(s)
- Vladimir Leksa
- From the Molecular Immunology Unit (V.L., B.B., H.B.S., P.E., F.F., E.S., H.S.), Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Austria; Institute of Molecular Biology (V.L., G.O., E.K.), Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Dermatology (R.L., A.S.-C., P.B.), Medical University of Vienna, Austria; Department of Vascular Biology and Thrombosis Research (J.B., B.R.B.), Center for
| | - Robert Loewe
- From the Molecular Immunology Unit (V.L., B.B., H.B.S., P.E., F.F., E.S., H.S.), Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Austria; Institute of Molecular Biology (V.L., G.O., E.K.), Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Dermatology (R.L., A.S.-C., P.B.), Medical University of Vienna, Austria; Department of Vascular Biology and Thrombosis Research (J.B., B.R.B.), Center for
| | - Brigitte Binder
- From the Molecular Immunology Unit (V.L., B.B., H.B.S., P.E., F.F., E.S., H.S.), Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Austria; Institute of Molecular Biology (V.L., G.O., E.K.), Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Dermatology (R.L., A.S.-C., P.B.), Medical University of Vienna, Austria; Department of Vascular Biology and Thrombosis Research (J.B., B.R.B.), Center for
| | - Herbert B. Schiller
- From the Molecular Immunology Unit (V.L., B.B., H.B.S., P.E., F.F., E.S., H.S.), Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Austria; Institute of Molecular Biology (V.L., G.O., E.K.), Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Dermatology (R.L., A.S.-C., P.B.), Medical University of Vienna, Austria; Department of Vascular Biology and Thrombosis Research (J.B., B.R.B.), Center for
| | - Paul Eckerstorfer
- From the Molecular Immunology Unit (V.L., B.B., H.B.S., P.E., F.F., E.S., H.S.), Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Austria; Institute of Molecular Biology (V.L., G.O., E.K.), Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Dermatology (R.L., A.S.-C., P.B.), Medical University of Vienna, Austria; Department of Vascular Biology and Thrombosis Research (J.B., B.R.B.), Center for
| | - Florian Forster
- From the Molecular Immunology Unit (V.L., B.B., H.B.S., P.E., F.F., E.S., H.S.), Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Austria; Institute of Molecular Biology (V.L., G.O., E.K.), Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Dermatology (R.L., A.S.-C., P.B.), Medical University of Vienna, Austria; Department of Vascular Biology and Thrombosis Research (J.B., B.R.B.), Center for
| | - Ana Soler-Cardona
- From the Molecular Immunology Unit (V.L., B.B., H.B.S., P.E., F.F., E.S., H.S.), Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Austria; Institute of Molecular Biology (V.L., G.O., E.K.), Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Dermatology (R.L., A.S.-C., P.B.), Medical University of Vienna, Austria; Department of Vascular Biology and Thrombosis Research (J.B., B.R.B.), Center for
| | - Gabriela Ondrovičová
- From the Molecular Immunology Unit (V.L., B.B., H.B.S., P.E., F.F., E.S., H.S.), Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Austria; Institute of Molecular Biology (V.L., G.O., E.K.), Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Dermatology (R.L., A.S.-C., P.B.), Medical University of Vienna, Austria; Department of Vascular Biology and Thrombosis Research (J.B., B.R.B.), Center for
| | - Eva Kutejová
- From the Molecular Immunology Unit (V.L., B.B., H.B.S., P.E., F.F., E.S., H.S.), Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Austria; Institute of Molecular Biology (V.L., G.O., E.K.), Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Dermatology (R.L., A.S.-C., P.B.), Medical University of Vienna, Austria; Department of Vascular Biology and Thrombosis Research (J.B., B.R.B.), Center for
| | - Eva Steinhuber
- From the Molecular Immunology Unit (V.L., B.B., H.B.S., P.E., F.F., E.S., H.S.), Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Austria; Institute of Molecular Biology (V.L., G.O., E.K.), Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Dermatology (R.L., A.S.-C., P.B.), Medical University of Vienna, Austria; Department of Vascular Biology and Thrombosis Research (J.B., B.R.B.), Center for
| | - Johannes Breuss
- From the Molecular Immunology Unit (V.L., B.B., H.B.S., P.E., F.F., E.S., H.S.), Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Austria; Institute of Molecular Biology (V.L., G.O., E.K.), Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Dermatology (R.L., A.S.-C., P.B.), Medical University of Vienna, Austria; Department of Vascular Biology and Thrombosis Research (J.B., B.R.B.), Center for
| | - Johannes Drach
- From the Molecular Immunology Unit (V.L., B.B., H.B.S., P.E., F.F., E.S., H.S.), Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Austria; Institute of Molecular Biology (V.L., G.O., E.K.), Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Dermatology (R.L., A.S.-C., P.B.), Medical University of Vienna, Austria; Department of Vascular Biology and Thrombosis Research (J.B., B.R.B.), Center for
| | - Peter Petzelbauer
- From the Molecular Immunology Unit (V.L., B.B., H.B.S., P.E., F.F., E.S., H.S.), Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Austria; Institute of Molecular Biology (V.L., G.O., E.K.), Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Dermatology (R.L., A.S.-C., P.B.), Medical University of Vienna, Austria; Department of Vascular Biology and Thrombosis Research (J.B., B.R.B.), Center for
| | - Bernd R. Binder
- From the Molecular Immunology Unit (V.L., B.B., H.B.S., P.E., F.F., E.S., H.S.), Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Austria; Institute of Molecular Biology (V.L., G.O., E.K.), Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Dermatology (R.L., A.S.-C., P.B.), Medical University of Vienna, Austria; Department of Vascular Biology and Thrombosis Research (J.B., B.R.B.), Center for
| | - Hannes Stockinger
- From the Molecular Immunology Unit (V.L., B.B., H.B.S., P.E., F.F., E.S., H.S.), Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Austria; Institute of Molecular Biology (V.L., G.O., E.K.), Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Dermatology (R.L., A.S.-C., P.B.), Medical University of Vienna, Austria; Department of Vascular Biology and Thrombosis Research (J.B., B.R.B.), Center for
| |
Collapse
|
62
|
Abstract
Matrix metalloproteinases (MMPs) are part of a superfamily of metal-requiring proteases that play important roles in tissue remodeling by breaking down proteins in the extracellular matrix that provides structural support for cells. The intricate balance in protease/anti-protease stoichiometry is a contributing factor in a number of diseases. Melatonin possesses multifunctional bioactivities including antioxidative, anti-inflammatory, endocrinologic and behavioral effects. As melatonin affects the redox status of tissues, the association of reactive oxygen species (ROS) with tissue injury under different circumstances may be mitigated by melatonin. Redox signaling is expanding into all areas of basic and clinical sciences, and this timely review focuses on the topic of regulation of MMP activities by melatonin. This is a rapidly growing field. Accumulating evidence indicates that oxidative stress plays an important role in regulating the activities of MMPs that are involved in various cellular processes such as cellular proliferation, angiogenesis, apoptosis, invasion and metastasis. This review offers sections on MMPs, melatonin, major physiological and pathophysiological conditions in the context to MMPs, followed by redox signaling mechanisms that are known to influence the cellular processes. Finally, we discuss the emerging molecular mechanisms relevant to regulatory actions of melatonin on the activities of MMPs. The possibility that melatonin might have therapeutic significance via regulation of MMPs may be a novel approach in the treatment of some diseases.
Collapse
Affiliation(s)
- Snehasikta Swarnakar
- Department of Physiology, Drug Development Diagnostic and Biotechnology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, India.
| | | | | | | |
Collapse
|
63
|
Park J, Seo JY, Ha H. Plasminogen activator inhibitor-1 antisense oligodeoxynucleotides abrogate mesangial fibronectin accumulation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:385-90. [PMID: 21311679 DOI: 10.4196/kjpp.2010.14.6.385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 10/30/2010] [Accepted: 11/06/2010] [Indexed: 11/15/2022]
Abstract
Excessive extracellular matrix (ECM) accumulation is the main feature of chronic renal disease including diabetic nephropathy. Plasminogen activator inhibitor (PAI)-1 is known to play an important role in renal ECM accumulation in part through suppression of plasmin generation and matrix metalloproteinase (MMP) activation. The present study examined the effect of PAI-1 antisense oligodeoxynucleotide (ODN) on fibronectin upregulation and plasmin/MMP suppression in primary mesangial cells cultured under high glucose (HG) or transforming growth factor (TGF)-β1, major mediators of diabetic renal ECM accumulation. Growth arrested and synchronized rat primary mesangial cells were transfected with 1 µM phosphorothioate-modified antisense or control mis-match ODN for 24 hours with cationic liposome and then stimulated with 30 mM D-glucose or 2 ng/ml TGF-β1. PAI-1 or fibronectin protein was measured by Western blot analysis. Plasmin activity was determined using a synthetic fluorometric plasmin substrate and MMP-2 activity analyzed using zymography. HG and TGF-β1 significantly increased PAI-1 and fibronectin protein expression as well as decreased plasmin and MMP-2 activity. Transient transfection of mesangial cells with PAI-1 antisense ODN, but not mis-match ODN, effectively reversed basal as well as HG- and TGF-β1-induced suppression of plasmin and MMP-2 activity. Both basal and upregulated fibronectin secretion were also inhibited by PAI-1 antisense ODN. These data confirm that PAI-1 plays an important role in ECM accumulation in diabetic mesangium through suppression of protease activity and suggest that PAI-1 antisense ODN would be an effective therapeutic strategy for prevention of renal fibrosis including diabetic nephropathy.
Collapse
Affiliation(s)
- Jehyun Park
- Department of Bioinspired Science, Division of Life and Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-752, Korea
| | | | | |
Collapse
|
64
|
Koo BH, Han JH, Yeom YI, Kim DS. Thrombin-dependent MMP-2 activity is regulated by heparan sulfate. J Biol Chem 2010; 285:41270-9. [PMID: 21041295 DOI: 10.1074/jbc.m110.171595] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Like most metalloproteases, matrix metalloprotease 2 (MMP-2) is synthesized as a zymogen. MMP-2 propeptide plays a role in inhibition of catalytic activity through a cysteine-zinc ion pairing, disruption of which results in full enzyme activation. A variety of proteases have been shown to be involved in the activation of pro-MMP-2, including metalloproteases and serine proteases. In the previous study we showed that MMP-2 activation occurred via specific cleavages of the propeptide by thrombin followed by intermolecular autoproteolytic processing for full enzymatic activity. Thrombin also degraded MMP-2, but this degradation was reduced greatly under cell-associated conditions with a concomitant increase in activation, prompting us to elucidate the molecular mechanisms underlying thrombin-mediated MMP-2 activation. In the present study we demonstrate that heparan sulfate is essential for thrombin-mediated activation of pro-MMP-2. Binding of heparan sulfate to thrombin is primarily responsible for this activation process, presumably through conformational changes at the active site. Furthermore, interaction of MMP-2 with exosites 1 and 2 of thrombin is crucial for thrombin-mediated MMP-2 degradation, and inhibition of this interaction by heparan sulfate or hirudin fragment results in a decrease in MMP-2 degradation. Finally, we demonstrated interaction between exosite 1 and hemopexin-like domain of MMP-2, suggesting a regulatory role of hemopexin-like domain in MMP-2 degradation. Taken together, our experimental data suggest a novel regulatory mechanism of thrombin-dependent MMP-2 enzymatic activity by heparan sulfate proteoglycans.
Collapse
Affiliation(s)
- Bon-Hun Koo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea.
| | | | | | | |
Collapse
|
65
|
Lorentz KM, Kontos S, Frey P, Hubbell JA. Engineered aprotinin for improved stability of fibrin biomaterials. Biomaterials 2010; 32:430-8. [PMID: 20864171 DOI: 10.1016/j.biomaterials.2010.08.109] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 08/30/2010] [Indexed: 01/06/2023]
Abstract
Fibrin has been long used clinically for hemostasis and sealing, yet extension of use in other applications has been limited due to its relatively rapid resorption in vivo, even with addition of aprotinin or other protease inhibitors. We report an engineered aprotinin variant that can be immobilized within fibrin and thus provide extended longevity. When recombinantly fused to a transglutaminase substrate domain from α(2)-plasmin inhibitor (α(2)PI(1-8)), the resulting variant, aprotinin-α(2)PI(1-8), was covalently crosslinked into fibrin matrices during normal thrombin/factor XIIIa-mediated polymerization. Challenge with physiological plasmin concentrations revealed that aprotinin-α(2)PI(1-8)-containing matrices retained 78% of their mass after 3 wk, whereas matrices containing wild type (WT) aprotinin degraded completely within 1 wk. Plasmin challenge of commercial sealants Omrixil and Tisseel, supplemented with aprotinin-α(2)PI(1-8) or WT aprotinin, showed extended longevity as well. When seeded with human dermal fibroblasts, aprotinin-α(2)PI(1-8)-supplemented matrices supported cell growth for at least 33% longer than those containing WT aprotinin. Subcutaneously implanted matrices containing aprotinin-α(2)PI(1-8) were detectable in mice for more than twice as long as those containing WT aprotinin. We conclude that our engineered recombinant aprotinin variant can confer extended longevity to fibrin matrices more effectively than WT aprotinin in vitro and in vivo.
Collapse
Affiliation(s)
- Kristen M Lorentz
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | |
Collapse
|
66
|
Minami E, Castellani C, Malchodi L, Deem J, Bertko K, Meznarich J, Dishmon M, Murry CE, Stempien-Otero A. The role of macrophage-derived urokinase plasminogen activator in myocardial infarct repair: urokinase attenuates ventricular remodeling. J Mol Cell Cardiol 2010; 49:516-24. [PMID: 20380835 PMCID: PMC3041515 DOI: 10.1016/j.yjmcc.2010.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 03/29/2010] [Accepted: 03/29/2010] [Indexed: 02/05/2023]
Abstract
Cardiac plasmin activity is increased following myocardial ischemia. To test the hypothesis that macrophage-derived uPA is a key mediator of repair following myocardial infarction, we performed myocardial infarction on mice with macrophage-specific over-expression of uPA (SR-uPA mice). SR-uPA(+/0) mice and wild-type littermates were sacrificed at 5 days or 4 weeks after infarction and cardiac content of macrophages, collagen, and myofibroblasts was quantified. Cardiac function and dimensions were assessed by echocardiography at baseline and at 4 weeks post-infarction. At 4 weeks after myocardial infarction, macrophage counts were increased in SR-uPA(+/0) mice in the infarct (13.1 vs. 4.9%, P<0.001) and distant uninfarcted regions (5.9 vs. 2.4%, P<0.001). Infarct scar was thicker in SR-uPA(+/0) mice (0.54+/-0.03 mm vs. 0.45+/-0.03 mm, P<0.05) and infarct cardiac collagen content was increased (72.4+/-3.3% vs. 63.0+/-3.6%, P<0.06). Functionally, these changes resulted in mildly improved fractional shortening in SR-uPA(+/0) mice compared to controls (24.6+/-1.68 vs. 19.8+/-1.3%, P=0.03). At 5 days after infarction there was increased collagen content in the scar without increases in macrophages or myofibroblasts. To understand the mechanisms by which macrophage-derived uPA increases collagen, cardiac fibroblasts were treated with macrophage-conditioned medium or plasmin and expression of ColIalpha1 measured by qPCR. Conditioned media from SR-uPA(+/0) or plasmin-treated non-transgenic macrophages but not plasmin alone increased collagen expression in isolated cardiac fibroblasts. We hypothesize that plasmin generation in the heart in response to injury may induce activation of macrophages to a profibrotic phenotype to allow rapid formation of collagenous scar.
Collapse
Affiliation(s)
- Elina Minami
- University of Washington School of Medicine, Division of Cardiology, Seattle, WA
| | - Chiara Castellani
- University of Padua, Division of Cardiovascular Pathology, Padua, Italy
| | - Laura Malchodi
- University of Washington School of Medicine, Division of Cardiology, Seattle, WA
| | - Jennifer Deem
- University of Washington, Department of Pathology, Seattle, WA
| | - Kate Bertko
- University of Washington School of Medicine, Division of Cardiology, Seattle, WA
| | - Jessica Meznarich
- University of Washington School of Medicine, Division of Cardiology, Seattle, WA
| | - Monja Dishmon
- University of Washington, Department of Pathology, Seattle, WA
| | | | - April Stempien-Otero
- University of Washington School of Medicine, Division of Cardiology, Seattle, WA
| |
Collapse
|
67
|
Vrooman LA, Young KA. Ovarian matrix metalloproteinases are differentially regulated during the estrous cycle but not during short photoperiod induced regression in Siberian hamsters (Phodopus sungorus). Reprod Biol Endocrinol 2010; 8:79. [PMID: 20579366 PMCID: PMC2913988 DOI: 10.1186/1477-7827-8-79] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 06/25/2010] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are implicated as mediators for ovarian remodeling events, and are involved with ovarian recrudescence during seasonal breeding cycles in Siberian hamsters. However, involvement of these proteases as the photoinhibited ovary undergoes atrophy and regression had not been assessed. We hypothesized that 1) MMPs and their tissue inhibitors, the TIMPs would be present and differentially regulated during the normal estrous cycle in Siberian hamsters, and that 2) MMP/TIMP mRNA and protein levels would increase as inhibitory photoperiod induced ovarian degeneration. METHODS MMP-2, -9, -14 and TIMP-1 and -2 mRNA and protein were examined in the stages of estrous (proestrus [P], estrus [E], diestrus I [DI], and diestrus II [DII]) in Siberian hamsters, as well as after exposure to 3, 6, 9, and 12 weeks of inhibitory short photoperiod (SD). RESULTS MMP-9 exhibited a 1.6-1.8 fold decrease in mRNA expression in DII (p<0.05), while all other MMPs and TIMPs tested showed no significant difference in mRNA expression in the estrous cycle. Extent of immunostaining for MMP-2 and -9 peaked in P and E then significantly declined in DI and DII (p<0.05). Extent of immunostaining for MMP-14, TIMP-1, and TIMP-2 was significantly more abundant in P, E, and DI than in DII (p<0.05). Localization of the MMPs and TIMPs had subtle differences, but immunostaining was predominant in granulosa and theca cells, with significant differences noted in staining intensity between preantral follicles, antral follicles, corpora lutea, and stroma classifications. No significant changes were observed in MMP and TIMP mRNA or extent of protein immunostaining with exposure to 3, 6, 9, or 12 weeks of SD, however protein was present and was localized to follicular and luteal steroidogenic cells. CONCLUSIONS Although MMPs appear to be involved in the normal ovarian estrus cycle at the protein level in hamsters, those examined in the present study are unlikely to be key players in the slow atrophy of tissue as seen in Siberian hamster ovarian regression.
Collapse
Affiliation(s)
- Lisa A Vrooman
- Reproductive Biology Group, Department of Biological Sciences, California State University, Long Beach, Long Beach, CA 90840, USA
- Current Address: Center for Reproductive Biology, PO Box 647521, Washington State University, Pullman, WA 99164-7521, USA
| | - Kelly A Young
- Reproductive Biology Group, Department of Biological Sciences, California State University, Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
68
|
Gaultier A, Hollister M, Reynolds I, Hsieh EH, Gonias SL. LRP1 regulates remodeling of the extracellular matrix by fibroblasts. Matrix Biol 2010; 29:22-30. [PMID: 19699300 PMCID: PMC2818094 DOI: 10.1016/j.matbio.2009.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 08/04/2009] [Accepted: 08/11/2009] [Indexed: 10/25/2022]
Abstract
Low density lipoprotein receptor-related protein (LRP1) is an endocytic receptor for diverse proteases, protease inhibitors, and other plasma membrane proteins, including the urokinase receptor (uPAR). LRP1 also functions in cell-signaling and regulates gene expression. The goal of this study was to determine whether LRP1 regulates remodeling of provisional extracellular matrix (ECM) by fibroblasts. To address this problem, we utilized an in vitro model in which type I collagen was reconstituted and overlaid with fibronectin. Either the collagen or fibronectin was fluorescently-labeled. ECM remodeling by fibroblasts deficient in LRP1, uPAR, or MT1-MMP was studied. MT1-MMP was required for efficient remodeling of the deep collagen layer but not involved in fibronectin remodeling. Instead, fibronectin was remodeled by a system that required urokinase-type plasminogen activator (uPA), uPAR, and exogenously-added plasminogen. LRP1 markedly inhibited fibronectin remodeling by regulating cell-surface uPAR and plasminogen activation. LRP1 also regulated remodeling of the deep collagen layer but not by controlling MT1-MMP. Instead, LRP1 deficiency or inhibition de-repressed a secondary pathway for collagen remodeling, which was active in MT1-MMP-deficient cells but not in uPAR-deficient cells. These results demonstrate that LRP1 regulates ECM remodeling principally by repressing pathways that require plasminogen activation by uPA in association with uPAR.
Collapse
Affiliation(s)
- Alban Gaultier
- Department of Pathology, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
69
|
Koizumi M, Momoeda M, Hiroi H, Nakazawa F, Nakae H, Ohno T, Yano T, Taketani Y. Inhibition of proteases involved in embryo implantation by cholesterol sulfate. Hum Reprod 2009; 25:192-7. [DOI: 10.1093/humrep/dep370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
70
|
Messaritou G, East L, Roghi C, Isacke CM, Yarwood H. Membrane type-1 matrix metalloproteinase activity is regulated by the endocytic collagen receptor Endo180. J Cell Sci 2009; 122:4042-8. [PMID: 19861500 DOI: 10.1242/jcs.044305] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The molecular interactions leading to organised, controlled extracellular matrix degradation are of central importance during growth, development and tissue repair, and when deregulated contribute to disease processes including cancer cell invasion. There are two major pathways for collagen degradation: one dependent on secreted and membrane-bound collagenases, the other on receptor-mediated collagen internalisation and intracellular processing. Despite the established importance of both pathways, the functional interaction between them is largely unknown. We demonstrate here, that the collagen internalisation receptor Endo180 (also known as CD280, uPARAP, MRC2) is a novel regulator of membrane-bound matrix metalloproteinase (MT1-MMP) activity, MT1-MMP-dependent MMP-2 activation and urokinase plasminogen activator (uPA) activity. We show close correlation between Endo180 expression, collagen accumulation and regulation of MT1-MMP cell-surface localisation and activity. We directly demonstrate, using collagen inhibition studies and non-collagen-binding mutants of Endo180, that the molecular mechanism underlying this regulation is the ability of Endo180 to bind and/or internalise collagens, rather than by acting as an interaction partner for pro-uPA and its receptor uPAR. These studies strongly support a functional interaction between two distinct collagen degradation pathways, define a novel mechanism regulating MT1-MMP activity and might have important implications for organised collagen clearance in the pericellular environment.
Collapse
Affiliation(s)
- Georgia Messaritou
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | | | | | | | | |
Collapse
|
71
|
Koo BH, Park MY, Jeon OH, Kim DS. Regulatory mechanism of matrix metalloprotease-2 enzymatic activity by factor Xa and thrombin. J Biol Chem 2009; 284:23375-85. [PMID: 19581306 DOI: 10.1074/jbc.m109.036848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloprotease (MMP)-2 plays a key role in many biological and pathological processes related to cell migration, invasion, and mitogenesis. MMP-2 is synthesized as a zymogen that is activated through either a conformational change or proteolysis of the propeptide. Several activating enzymes for pro-MMP-2 have been proposed, including metalloproteases and serine proteases. The mechanism of pro-MMP-2 activation by metalloproteases is well established, and the most studied activation mechanism involves cleavage of the propeptide by membrane type 1-MMP (MT1-MMP). In contrast, serine protease activation has not been thoroughly studied, although studies suggest that MT1-MMP may be involved in activation by thrombin and plasmin. Here, we demonstrate that factor Xa mediates MT1-MMP-independent processing of pro-MMP-2 in vascular smooth muscle cells and endothelial cells. Factor Xa and thrombin directly cleaved the propeptide on the carboxyl terminal sides of the Arg(98) and Arg(101) residues, whereas plasmin only cleaved the propeptide downstream of Arg(101). Moreover, processed MMP-2 showed enzymatic activity that was enhanced by intermolecular autoproteolytic processing at the Asn(109)-Tyr peptide bond. In addition to its role in activation, factor Xa rapidly degraded MMP-2, thereby restricting excessive MMP-2 activity. Thrombin also degraded MMP-2, but the degradation was reduced greatly under cell-associated conditions, resulting in an increase in processed MMP-2. Overall, factor Xa and thrombin regulate MMP-2 enzymatic activity through its activation and degradation. Thus, the net enzymatic activity results from a balance between MMP-2 activation and degradation.
Collapse
Affiliation(s)
- Bon-Hun Koo
- National Research Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 134 Sinchon-Dong Seodaemun-Gu, Seoul 120-749, Korea
| | | | | | | |
Collapse
|
72
|
Agis H, Kandler B, Fischer MB, Watzek G, Gruber R. Activated platelets increase fibrinolysis of mesenchymal progenitor cells. J Orthop Res 2009; 27:972-80. [PMID: 19030175 DOI: 10.1002/jor.20819] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bone regeneration is initiated by the formation of a blood clot. Activated platelets within this fibrin-rich matrix release signaling molecules that can attract mesenchymal progenitor cells. To gain insight into the cellular mechanism by which activated platelets can support the immigration of mesenchymal progenitors, we have tested the hypothesis that platelet-released signaling molecules increase the capacity of bone marrow stromal cells (BMSC) to activate plasminogen. We report herein that platelet-released supernatants (PRS) elevate total urokinase-type plasminogen activator (uPA) and total plasminogen activator inhibitor-1 (PAI-1) levels in BMSC, as assessed by immunoassay. Quantitative polymerase chain reaction showed an upregulation of uPA, uPA receptor, and PAI-1. Zymography and kinetic analysis based on casein hydrolysis revealed enhanced activity of cell-associated uPA upon exposure of BMSC to PRS. Inhibiting c-Jun N-terminal kinase (JNK) and phosphatidylinositol 3-kinase (PI3K) signaling reduced uPA production and decreased plasminogen activation. Corresponding Western blot analysis showed increased phosphorylation of JNK and AKT in BMSC treated with PRS. These results suggest that activated platelets can enhance the plasminogen activation capacity of mesenchymal progenitors through the stimulation of uPA production, requiring JNK and PI3K/AKT signaling. By this mechanism platelets may contribute to the organization of the blood clot during bone regeneration.
Collapse
Affiliation(s)
- Hermann Agis
- Department of Oral Surgery, Medical University of Vienna, Währingerstrasse 25a, 1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
73
|
Affara NI, Andreu P, Coussens LM. Delineating protease functions during cancer development. Methods Mol Biol 2009; 539:1-32. [PMID: 19377975 DOI: 10.1007/978-1-60327-003-8_1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Much progress has been made in understanding how matrix remodeling proteases, including metalloproteinases, serine proteases, and cysteine cathepsins, functionally contribute to cancer development. In addition to modulating extracellular matrix metabolism, proteases provide a significant protumor advantage to developing neoplasms through their ability to modulate bioavailability of growth and proangiogenic factors, regulation of bioactive chemokines and cytokines, and processing of cell-cell and cell-matrix adhesion molecules. Although some proteases directly regulate these events, it is now evident that some proteases indirectly contribute to cancer development by regulating posttranslational activation of latent zymogens that then directly impart regulatory information. Thus, many proteases act in a cascade-like manner and exert their functionality as part of a proteolytic pathway rather than simply functioning individually. Delineating the cascade of enzymatic activities contributing to overall proteolysis during carcinogenesis may identify rate-limiting steps or pathways that can be targeted with anti-cancer therapeutics. This chapter highlights recent insights into the complexity of roles played by pericellular and intracellular proteases by examining mechanistic studies as well as the roles of individual protease gene functions in various organ-specific mouse models of cancer development, with an emphasis on intersecting proteolytic activities that amplify programming of tissues to foster neoplastic development.
Collapse
Affiliation(s)
- Nesrine I Affara
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
74
|
Copland IB, Lord-Dufour S, Cuerquis J, Coutu DL, Annabi B, Wang E, Galipeau J. Improved autograft survival of mesenchymal stromal cells by plasminogen activator inhibitor 1 inhibition. Stem Cells 2009; 27:467-477. [PMID: 19338064 DOI: 10.1634/stemcells.2008-0520] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stromal cells (MSCs) display robust reparative properties through their ability to limit apoptosis, enhance angiogenesis, and direct positive tissue remodeling. However, low in vivo survival of transplanted cells limits their overall effectiveness and significantly affects their clinical usage. Consequently, identifying strategies to improve cell survival in vivo are a priority. One explanation for their low survival is that MSCs are often transplanted into ischemic tissue, such as infarcted myocardium, where there is poor blood supply and low oxygen tension. Therefore, we examined how MSCs respond to a hypoxic, nutrient-poor stress environment to identify trophic factors that could be manipulated in advance of MSC transplantation. Combining microarray and proteomic screens we identified plasminogen activator inhibitor 1 (PAI-1) as one factor consistently upregulated in our in vitro ischemia-mimicking conditions. Subsequent genetic and chemical manipulation studies define PAI-1 as a negative regulator of MSC survival in vivo. Mechanistically, MSC-derived PAI-1 does not alter MSC survival through a plasmin-dependent mechanism but rather directly impacts on the adhesiveness of MSCs to their surrounding matrices. Thus we can conclude that post-transplantation, PAI-1 negatively impacts MSC survival by promoting anoikis via matrix detachment.
Collapse
Affiliation(s)
- Ian B Copland
- Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
75
|
Saygili E, Rana OR, Meyer C, Gemein C, Andrzejewski MG, Ludwig A, Weber C, Schotten U, Krüttgen A, Weis J, Schwinger RHG, Mischke K, Rassaf T, Kelm M, Schauerte P. The angiotensin–calcineurin–NFAT pathway mediates stretch-induced up-regulation of matrix metalloproteinases-2/-9 in atrial myocytes. Basic Res Cardiol 2009; 104:435-48. [DOI: 10.1007/s00395-008-0772-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 11/27/2008] [Indexed: 11/25/2022]
|
76
|
Plasmin-mediated processing of protein tyrosine phosphatase receptor type Z in the mouse brain. Neurosci Lett 2008; 442:208-12. [DOI: 10.1016/j.neulet.2008.07.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/24/2008] [Accepted: 07/11/2008] [Indexed: 01/06/2023]
|
77
|
The role of megsin, a serine protease inhibitor, in diabetic mesangial matrix accumulation. Kidney Int 2008; 74:768-74. [PMID: 18580857 DOI: 10.1038/ki.2008.302] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In diabetic nephropathy decreased activities of matrix metalloproteinase (MMP)-2, MMP-9 and plasmin contribute to mesangial matrix accumulation. Megsin, a novel member of the serine protease inhibitor superfamily, is predominantly expressed in mesangial cells and is up-regulated in diabetic nephropathy and its overexpression spontaneously induces progressive mesangial expansion in mice. High-glucose stimulated megsin mRNA expression in an in vivo model of type II diabetic nephropathy as well as in vitro in cultured mesangial cells. Megsin potentially inhibits total enzymatic activities of MMP-2 and -9 and plasmin, indicating decreased degradation of mesangial matrix. A specific monoclonal anti-megsin neutralizing antibody restored MMP activity in a transforming growth factor-beta independent manner. Our study suggests that the mesangial matrix accumulation caused by hyperglycemia in diabetes might be due at least in part to up-regulation of megsin which can inhibit plasmin and MMP activities.
Collapse
|
78
|
Ardito CM, Briggs CD, Crawford HC. Targeting of extracellular proteases required for the progression of pancreatic cancer. Expert Opin Ther Targets 2008; 12:605-19. [PMID: 18410243 DOI: 10.1517/14728222.12.5.605] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) is the fourth leading cause of cancer-related death in the United States. Its lethality is due, in large part, to its resistance to traditional chemotherapeutics. As a result, there is an enormous effort being put into basic research to identify proteins that are required for PDA progression so that they may be specifically targeted for therapy. OBJECTIVE To compile and analyze the evidence that suggests that extracellular proteases are significant contributors to PDA progression. METHODS We focus on three different extracellular protease subclasses expressed in PDA: metalloproteases, serine proteases and cathepsins. Based on data from PDA and other cancers, we suggest their probable roles in PDA. RESULTS/CONCLUSIONS Of the proteases expressed in PDA, many appear to have overlapping functions, based on the substrates they process, making therapeutics complicated. Two protease families most likely to have unique, critical functions during tumor progression, and therefore strong potential as therapeutic targets, are the a disintegrin and metalloproteases (ADAMs) and the cathepsins.
Collapse
Affiliation(s)
- Christine M Ardito
- Stony Brook University, Department of Pharmacological Sciences, BST 8-140, Stony Brook, NY 11794-8651, USA
| | | | | |
Collapse
|
79
|
Dedieu S, Langlois B, Devy J, Sid B, Henriet P, Sartelet H, Bellon G, Emonard H, Martiny L. LRP-1 silencing prevents malignant cell invasion despite increased pericellular proteolytic activities. Mol Cell Biol 2008; 28:2980-95. [PMID: 18316405 PMCID: PMC2293087 DOI: 10.1128/mcb.02238-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/20/2008] [Indexed: 12/22/2022] Open
Abstract
The scavenger receptor low-density lipoprotein receptor-related protein 1 (LRP-1) mediates the clearance of a variety of biological molecules from the pericellular environment, including proteinases which degrade the extracellular matrix in cancer progression. However, its accurate functions remain poorly explored and highly controversial. Here we show that LRP-1 silencing by RNA interference results in a drastic inhibition of cell invasion despite a strong stimulation of pericellular matrix metalloproteinase 2 and urokinase-type plasminogen activator proteolytic activities. Cell migration in both two and three dimensions is decreased by LRP-1 silencing. LRP-1-silenced carcinoma cells, which are characterized by major cytoskeleton rearrangements, display atypical overspread morphology with a lack of membrane extensions. LRP-1 silencing accelerates cell attachment, inhibits cell-substrate deadhesion, and induces the accumulation, at the cell periphery, of abundant talin-containing focal adhesion complexes deprived of FAK and paxillin. We conclude that in addition to its role in ligand binding and endocytosis, LRP-1 regulates cytoskeletal organization and adhesive complex turnover in malignant cells by modulating the focal complex composition, thereby promoting invasion.
Collapse
Affiliation(s)
- Stéphane Dedieu
- CNRS UMR MEOyC 6237, Laboratoire SiRMA (Signalisation des Récepteurs Matriciels), Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
Fibrosis is characterized by excessive accumulation of extracellular matrix (ECM) in basement membranes and interstitial tissues, resulting from increased synthesis or decreased degradation of ECM or both. The plasminogen activator/plasmin system plays an important role in ECM degradation, whereas the plasminogen activator inhibitor 1 (PAI-1) is a physiologic inhibitor of plasminogen activators. PAI-1 expression is increased in the lung fibrotic diseases and in experimental fibrosis models. The deletion of the PAI-1 gene reduces, whereas the overexpression of PAI-1 enhances, the susceptibility of animals to lung fibrosis induced by different stimuli, indicating an important role of PAI-1 in the development of lung fibrosis. Many growth factors, including transforming growth factor beta (TGF-beta) and tumor necrosis factor alpha (TNF-alpha), as well as other chemicals/agents, induce PAI-1 expression in cultured cells and in vivo. Reactive oxygen and nitrogen species (ROS/RNS) have been shown to mediate the induction of PAI-1 by many of these stimuli. This review summarizes some recent findings that help us to understand the role of PAI-1 in the development of lung fibrosis and ROS/RNS in the regulation of PAI-1 expression during fibrogenesis.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| |
Collapse
|
81
|
Thornton P, Pinteaux E, Allan SM, Rothwell NJ. Matrix metalloproteinase-9 and urokinase plasminogen activator mediate interleukin-1-induced neurotoxicity. Mol Cell Neurosci 2008; 37:135-42. [PMID: 17939964 DOI: 10.1016/j.mcn.2007.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 08/31/2007] [Accepted: 09/05/2007] [Indexed: 01/17/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases known to mediate acute neuronal injury, but it is unclear whether these proteases are induced by the primary insult or by inflammation associated with injury. We have reported recently that interleukin-1 (IL-1) induces neurotoxicity by an astrocyte-dependent mechanism. The aim of the present study was to test the hypothesis that MMPs mediate IL-1 neurotoxicity in rat, glial-neuronal cocultures. IL-1beta induced the release of astrocytic MMP-9 in cocultures, whilst an antagonist of MMP-9 inhibited IL-1beta-induced neuronal death. Urokinase plasminogen activator (uPA) was constitutively expressed on neuronal membrane fractions, and amiloride (an antagonist of uPA) or plasminogen activator inhibitor (PAI)-1 significantly reduced IL-1beta-induced neurotoxicity. Thus, neuronal uPA contributes to IL-1 neurotoxicity, and may be responsible for activating MMP-9 released from IL-1-primed astrocytes. In summary, IL-1-induced neurotoxicity is dependent on extracellular protease activity, and these mechanisms may contribute to neuronal cell death in CNS diseases.
Collapse
Affiliation(s)
- Peter Thornton
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
82
|
Ra HJ, Parks WC. Control of matrix metalloproteinase catalytic activity. Matrix Biol 2007; 26:587-96. [PMID: 17669641 PMCID: PMC2246078 DOI: 10.1016/j.matbio.2007.07.001] [Citation(s) in RCA: 449] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 06/28/2007] [Accepted: 07/02/2007] [Indexed: 02/08/2023]
Abstract
As their name implies, MMPs were first described as proteases that degrade extracellular matrix proteins, such as collagens, elastin, proteoglycans, and laminins. However, studies of MMP function in vivo have revealed that these proteinases act on a variety of extracellular protein substrates, often to activate latent forms of effector proteins, such as antimicrobial peptides and cytokines, or to alter protein function, such as shedding of cell-surface proteins. Because their substrates are diverse, MMPs are involved in variety of homeostatic functions, such as bone remodeling, wound healing, and several aspects of immunity. However, MMPs are also involved in a number of pathological processes, such as tumor progression, fibrosis, chronic inflammation, tissue destruction, and more. A key step in regulating MMP proteolysis is the conversion of the zymogen into an active proteinase. Several proMMPs are activated in the secretion pathway by furin proprotein convertases, but for most the activation mechanisms are largely not known. In this review, we discuss both authentic and potential mechanisms of proMMP activation.
Collapse
Affiliation(s)
- Hyun-Jeong Ra
- Center for Lung Biology, University of Washington, Seattle, WA 98109, USA
| | | |
Collapse
|
83
|
Falcinelli E, Giannini S, Boschetti E, Gresele P. Platelets release active matrix metalloproteinase-2in vivoin humans at a site of vascular injury: lack of inhibition by aspirin. Br J Haematol 2007; 138:221-30. [PMID: 17593030 DOI: 10.1111/j.1365-2141.2007.06632.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When stimulated in vitro, human platelets release matrix metalloproteinase-2 (MMP-2) that, in turn, potentiates platelet activation. The present study investigated if MMP-2 is released from activated platelets in vivo in humans and whether aspirin inhibits this release. MMP-2 levels were measured by zymography, immunoblotting, flow-cytometry and an activity assay system, in plasma prepared from blood emerging from a skin wound inflicted for the measurement of the bleeding time (shed blood) and simultaneously from venous blood in 27 healthy human volunteers. In a subgroup, the same measurements were carried out before and 1 h after aspirin intake. MMP-2 was significantly higher in shed blood than in venous blood and increased progressively, consistent with ongoing platelet activation. A significant correlation was evident between platelet number and MMP-2 in shed blood; platelet MMP-2 content in shed blood was lower than that of platelets in venous blood. The level of active MMP-2 released by activated platelets in vivo was within the range of concentrations that potentiate platelet activation. Aspirin did not reduce MMP-2 release in vivo. In conclusion, MMP-2 is released from platelets in vivo in humans at a localised site of vessel wall damage in amounts sufficient to potentiate platelet aggregation; aspirin does not reduce this release.
Collapse
Affiliation(s)
- Emanuela Falcinelli
- Division of Internal and Cardiovascular Medicine, Department of Internal Medicine, University of Perugia, Perugia, Italy
| | | | | | | |
Collapse
|
84
|
Wang H, Zhang Y, Heuckeroth RO. Tissue-type plasminogen activator deficiency exacerbates cholestatic liver injury in mice. Hepatology 2007; 45:1527-37. [PMID: 17538930 DOI: 10.1002/hep.21613] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
UNLABELLED Recent studies demonstrating a role for plasminogen activator inhibitor (PAI)-1 in cholestatic liver disease in mice suggested that tissue-type plasminogen activator (tPA) or urokinase plasminogen activator (uPA) might be important after biliary tract obstruction. We now demonstrate that blocking tPA exacerbates liver injury after bile duct ligation (BDL). tPA deficient mice have increased bile infarcts, increased TUNEL positive cells, increased neutrophil infiltration, reduced hepatocyte proliferation and reduced ductular reaction 72 hours after BDL compared to wild type mice. In addition, the protective and proliferative effects of plasminogen activator inhibitor 1 (PAI-1) deficiency after BDL are dramatically blocked by the tPA inhibitor tPA-STOP. One potential mechanism for these effects is that both tPA deficiency and tPA-STOP reduce hepatocyte growth factor (HGF) activation and c-Met phosphorylation in the liver after BDL. In support of this hypothesis, HGF treatment reverses the effects of tPA deficiency in mice. Furthermore, preferential tPA activation in areas of injury after BDL might occur because fibrin accumulates in bile infarcts and activates tPA. CONCLUSION tPA inactivation accelerates liver injury after BDL and reduces HGF activation. These data suggest that strategies to increase HGF activation might be protective in liver diseases with biliary tract obstruction even without increased HGF production.
Collapse
Affiliation(s)
- Hongtao Wang
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
85
|
Pérez AV, Saravia P, Rucavado A, Sant'Ana CD, Soares AM, Gutiérrez JM. Local and systemic pathophysiological alterations induced by a serine proteinase from the venom of the snake Bothrops jararacussu. Toxicon 2007; 49:1063-9. [PMID: 17292935 DOI: 10.1016/j.toxicon.2006.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 12/06/2006] [Accepted: 12/11/2006] [Indexed: 11/20/2022]
Abstract
The local and systemic pathophysiological alterations induced by BjussuSP-I, a thrombin-like serine proteinase from the venom of the snake Bothrops jararacussu, were assessed in mice. BjussuSP-I induced a mild edema but no local myonecrosis or hemorrhage. It did not induce any microvascular alteration in the cremaster muscle. Intramuscular injection of BjussuSP-I promoted an increase in the expression of proMMP-9, but it did not induce the activation of proMMP-2 or proMMP-9 synthesized in muscle tissue injected with a myotoxic phospholipase A(2) homolog. BjussuSP-I induced defibrin(ogen)ation upon intravenous and intramuscular injections, with reduction in plasma fibrinogen concentration and increments in the levels of fibrin degradation products and D-dimer. When compared with animals having normal coagulation, mice defibrin(ogen)ated by BjussuSP-I developed a slightly larger hemorrhagic lesion in the skin when injected with metalloproteinase BaP1. Intravenous injection of sublethal doses of BjussuSP-I promoted a series of behavioral and motor changes similar to those previously described for 'gyroxin', i.e. opisthotonus and a circular body movement along the longitudinal axis.
Collapse
|
86
|
Iida J, Wilhelmson KL, Ng J, Lee P, Morrison C, Tam E, Overall CM, McCarthy JB. Cell surface chondroitin sulfate glycosaminoglycan in melanoma: role in the activation of pro-MMP-2 (pro-gelatinase A). Biochem J 2007; 403:553-63. [PMID: 17217338 PMCID: PMC1876388 DOI: 10.1042/bj20061176] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We previously reported that CS (chondroitin sulfate) GAG (glycosaminoglycan), expressed on MCSP (melanoma-specific CS proteoglycan), is important for regulating MT3-MMP [membrane-type 3 MMP (matrix metalloproteinase)]-mediated human melanoma invasion and gelatinolytic activity in vitro. In the present study, we sought to determine if CS can directly enhance MT3-MMP-mediated activation of pro-MMP-2. Co-immunoprecipitation studies suggest that MCSP forms a complex with MT3-MMP and MMP-2 on melanoma cell surface. When melanoma cells were treated with betaDX (p-nitro-beta-D-xylopyranoside) to inhibit coupling of CS on the core protein, both active form and proform of MMP-2 were no longer co-immunoprecipitated with either MCSP or MT3-MMP, suggesting a model in which CS directly binds to MMP-2 and presents the gelatinase to MT3-MMP to be activated. By using recombinant proteins, we determined that MT3-MMP directly activates pro-MMP-2 and that this activation requires the interaction of the C-terminal domain of pro-MMP-2 with MT3-MMP. Activation of pro-MMP-2 by suboptimal concentrations of MT3-MMP is also significantly enhanced in the presence of excess C4S (chondroitin 4-sulfate), whereas C6S (chondroitin 6-sulfate) or low-molecular-mass hyaluronan was ineffective. Affinity chromatography studies using CS isolated from aggrecan indicate that the catalytic domain of MT3-MMP and the C-terminal domain of MMP-2 directly bind to the GAG. Thus the direct binding of pro-MMP-2 with CS through the C-domain would present the catalytic domain of pro-MMP-2 to MT3-MMP, which facilitates the generation of the active form of MMP-2. These results suggest that C4S, which is expressed on tumour cell surface, can function to bind to pro-MMP-2 and facilitate its activation by MT3-MMP-expressing tumour cells to enhance invasion and metastasis.
Collapse
Affiliation(s)
- Joji Iida
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Leone AK, Chun JA, Koehler CL, Caranto J, King JM. Effect of proinflammatory cytokines, tumor necrosis factor-alpha and interferon-gamma on epithelial barrier function and matrix metalloproteinase-9 in Madin Darby canine kidney cells. Cell Physiol Biochem 2007; 19:99-112. [PMID: 17310104 DOI: 10.1159/000099198] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2006] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Elevated matrix metalloproteinase-9 production during inflammation may be deleterious to epithelial barrier function. Therefore we examined the effect of proinflammatory cytokines on the expression and regulation of matrix metalloproteinase-9 in a model renal epithelial cell system. Tight junctions limit diffusion between compartments and permit directional transport of solutes. Impairment of these junctional complexes by proteolysis may contribute to renal failure through loss of barrier function. METHODS The renal epithelial cell model, MDCK cells were employed to examine metalloproteinase activity and mRNA expression. Epithelial barrier function was determined using paracellular flux studies. RESULTS We found that matrix metalloproteinase-9 expression (MMP-9) and activity is markedly elevated in response to tumor necrosis factor-alpha exposure through a mitogen-activated protein kinase dependent pathway. The MMP-9 is predominately secreted into the apical compartment and elevated MMP-9 expression correlates with impaired cell barrier function that was restored using a specific inhibitor of MMP activity. Addition of recombinant MMP-9 to the apical compartment of MDCK cultures significantly elevated paracellular flux rate. CONCLUSIONS We provide direct evidence for a MMP-9-mediated mechanism that produces junctional disruption. Collectively, these findings support the hypothesis that impaired epithelial barrier function due to activation of tissue/matrix degrading mechanisms occurs in response to specific inflammatory cues.
Collapse
Affiliation(s)
- Amanda K Leone
- Southwestern Graduate School of Biomedical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, USA
| | | | | | | | | |
Collapse
|
88
|
Norwitz ER, Snegovskikh V, Schatz F, Foyouzi N, Rahman M, Buchwalder L, Lee HJ, Funai EF, Buhimschi CS, Buhimschi IA, Lockwood CJ. Progestin inhibits and thrombin stimulates the plasminogen activator/inhibitor system in term decidual stromal cells: implications for parturition. Am J Obstet Gynecol 2007; 196:382.e1-8. [PMID: 17403427 DOI: 10.1016/j.ajog.2007.02.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 02/20/2007] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Labor is associated with 'decidual activation' with increased proteolysis and extracellular matrix degradation. The balance between plasminogen activator inhibitor-1 (PAI-1) and urokinase (uPA) and tissue-type plasminogen activator (tPA) is an important determinant of proteolytic activity at the maternal-fetal interface. Thrombin released at the time of placental abruption (decidual hemorrhage) is known to promote decidual proteolysis and uterine contractions. This study investigates the separate and interactive effects of steroid hormones and thrombin on PAI-1, uPA, and tPA expression by term decidual cells (DCs). STUDY DESIGN Term DCs were isolated by enzymatic digestion, purified, and depleted of leukocytes. Cells were treated with estradiol (10(-8) mol [E2]), medroxyprogesterone acetate (10(-7) mol [MPA]), both, or vehicle for 7 days. After 24-hour incubation with or without thrombin (0.1-2.5 U/mL), levels of PAI-1, uPA, and tPA in conditioned supernatant were measured by specific ELISA and Western blotting. Levels of PAI-1 and uPA mRNA were measured by quantitative RT-PCR. RESULTS In the cultured term DCs, ELISA measurements indicated that basal output of PAI-1 was about 2 logs higher than that of either uPA or tPA (2.5 +/- 0.7 ng/mL per microg protein, 13.4 +/- 6.3 pg/mL per microg protein, and 25.4 +/- 10.8 pg/mL per microg protein, respectively). Although E2 alone did not affect PAI-1 output, MPA and E2+MPA significantly enhanced PAI-1 production (2.5 +/- 0.7 vs 8.2 +/- 2.0 ng/mL per microg protein for E2+MPA [3.3-fold]; P < .01). By contrast, uPA output was inhibited by exposure to MPA (13.4 +/- 6.3 vs 2.6 +/- 1.1 pg/mL per microg protein [0.2-fold]; P < .05), whereas tPA production was not affected by MPA. Thrombin did not significantly affect uPA and tPA production by term DCs. In contrast, in E2+MPA-treated term DCs, thrombin, a hemostatic proinflammatory cytokine, selectively increased PAI-1 output in a dose-dependent fashion, which could be blocked by the selective thrombin inhibitor, hirudin. Western blotting confirmed the effects of MPA and thrombin in elevating secreted levels of PAI-1. Unlike the increase in PAI-1 output elicited by thrombin, term DCs were unresponsive to either of the classic proinflammatory cytokines, TNFalpha or IL-1beta. Corresponding effects on PAI-1 mRNA levels were elicited by MPA and thrombin as seen for PAI-1 protein expression, suggesting that these up-regulatory effects are transcriptionally mediated. CONCLUSION Progestin enhanced PAI-1 and inhibited uPA expression by term DCs, which may explain in part the pregnancy-prolonging properties of progesterone as a consequence of inhibited proteolytic activity at the maternal-fetal interface. Thrombin augmented PAI-1 expression in the absence of increased uPA or tPA expression by term DCs, suggesting that abruption-associated decidual proteolysis and preterm labor is mediated primarily by thrombin-enhanced matrix metalloproteinase expression rather than an indirect effect on the plasminogen activator/inhibitor system.
Collapse
Affiliation(s)
- Errol R Norwitz
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520-8063, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Thevenard J, Floquet N, Ramont L, Prost E, Nuzillard JM, Dauchez M, Yezid H, Alix AJP, Maquart FX, Monboisse JC, Brassart-Pasco S. Structural and Antitumor Properties of the YSNSG Cyclopeptide Derived from Tumstatin. ACTA ACUST UNITED AC 2006; 13:1307-15. [PMID: 17185226 DOI: 10.1016/j.chembiol.2006.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 10/12/2006] [Accepted: 10/13/2006] [Indexed: 11/18/2022]
Abstract
We previously demonstrated that the NC1[alpha3(IV)185-191] CNYYSNS peptide inhibited in vivo tumor progression. The YSNS motif formed a beta turn crucial for biological activity. The aim of the present study was to design a YSNSG cyclopeptide with a constrained beta turn on the YSNS residues more stable than CNYYSNS. By nuclear magnetic resonance and molecular modeling, we demonstrated that the YSNSG cyclopeptide actually adopted the expected beta-turn conformation. It promoted melanoma cell adhesion and prevented their adhesion to the native peptide. It inhibited in vitro cell proliferation and migration through Matrigel by downregulating proteolytic cascades. Moreover, intraperitoneal administration of the YSNSG cyclopeptide inhibited melanoma progression far more efficiently than the native peptide. The increased solubility and stability at low pH of the YSNSG cyclopeptide suggest this peptide as a potent antitumor therapeutic agent.
Collapse
Affiliation(s)
- Jessica Thevenard
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR 6198, IFR 53 Biomolécules, Université de Reims Champagne-Ardenne, 51095 Reims, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Morrison CJ, Overall CM. TIMP Independence of Matrix Metalloproteinase (MMP)-2 Activation by Membrane Type 2 (MT2)-MMP Is Determined by Contributions of Both the MT2-MMP Catalytic and Hemopexin C Domains. J Biol Chem 2006; 281:26528-39. [PMID: 16825197 DOI: 10.1074/jbc.m603331200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The important and distinct contribution that membrane type 2 (MT2)-matrix metalloproteinase (MMP) makes to physiological and pathological processes is now being recognized. This contribution may be mediated in part through MMP-2 activation by MT2-MMP. Using Timp2-/- cells, we previously demonstrated that MT2-MMP activates MMP-2 to the fully active form in a pathway that is TIMP-2-independent but MMP-2 hemopexin carboxyl (C) domain-dependent. In this study cells expressing MT2-MMP as well as chimera proteins in which the C-terminal half of MT2-MMP and MT1-MMP were exchanged showed that the MT2-MMP catalytic domain has a higher propensity than that of MT1-MMP to initiate cleavage of the MMP-2 prodomain in the absence of TIMP-2. Although we demonstrate that MT2-MMP is a weak collagenase, this first activation cleavage was enhanced by growing the cells in type I collagen gels. The second activation cleavage to generate fully active MMP-2 was specifically enhanced by a soluble factor expressed by Timp2-/- cells and was MT2-MMP hemopexin C domain-dependent; however, the RGD sequence within this domain was not involved. Interestingly, in the presence of TIMP-2, a MT2-MMP.MMP-2 trimolecular complex formed, but activation was not enhanced. Similarly, TIMP-3 did not promote MT2-MMP-mediated MMP-2 activation but inhibited activation at higher concentrations. This study demonstrates the influence that both the catalytic and hemopexin C domains of MT2-MMP exert in determining TIMP independence in MMP-2 activation. In tissues or pathologies characterized by low TIMP-2 expression, this pathway may represent an alternative means of rapidly generating low levels of active MMP-2.
Collapse
Affiliation(s)
- Charlotte J Morrison
- Centre for Blood Research and Department of Oral Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
91
|
English JL, Kassiri Z, Koskivirta I, Atkinson SJ, Di Grappa M, Soloway PD, Nagase H, Vuorio E, Murphy G, Khokha R. Individual Timp deficiencies differentially impact pro-MMP-2 activation. J Biol Chem 2006; 281:10337-46. [PMID: 16469749 DOI: 10.1074/jbc.m512009200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) have emerged as key enzymes in tumor cell biology. The importance of MT1-MMP, in particular, is highlighted by its ability to activate pro-MMP-2 at the cell surface through the formation of a trimolecular complex comprised of MT1-MMP/tissue inhibitor of metalloproteinase-2 (TIMP-2)/pro-MMP-2. TIMPs 1-4 are physiological MMP inhibitors with distinct roles in the regulation of pro-MMP-2 processing. Here, we have shown that individual Timp deficiencies differentially affect MMP-2 processing using primary mouse embryonic fibroblasts (MEFs). Timp-3 deficiency accelerated pro-MMP-2 activation in response to both cytochalasin D and concanavalin A. Exogenous TIMP-2 and N-TIMP-3 inhibited this activation, whereas TIMP-3 containing matrix from wild-type MEFs did not rescue the enhanced MMP-2 activation in Timp-3(-/-) cells. Increased processing of MMP-2 did not arise from increased expression of MT1-MMP, MT2-MMP, or MT3-MMP or altered expression of TIMP-2 and MMP-2. To test whether increased MMP-2 processing in Timp-3(-/-) MEFs is dependent on TIMP-2, double deficient Timp-2(-/-)/-3(-/-) MEFs were used. In these double deficient cells, the cleavage of pro-MMP-2 to its intermediate form was substantially increased, but the subsequent cleavage of intermediate-MMP-2 to fully active form, although absent in Timp-2(-/-) MEFs, was detectable with combined Timp-2(-/-)/-3(-/-) deficiency. TIMP-4 associates with MMP-2 and MT1-MMP in a manner similar to TIMP-3, but its deletion had no effect on pro-MMP-2 processing. Thus, TIMP-3 provides an inherent regulation over the kinetics of pro-MMP-2 processing, serving at a level distinct from that of TIMP-2 and TIMP-4.
Collapse
Affiliation(s)
- Jane L English
- Ontario Cancer Institute, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Rolland Y, Demeule M, Béliveau R. Melanotransferrin stimulates t-PA-dependent activation of plasminogen in endothelial cells leading to cell detachment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:393-401. [PMID: 16713448 DOI: 10.1016/j.bbamcr.2006.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 03/20/2006] [Accepted: 03/21/2006] [Indexed: 01/08/2023]
Abstract
Tissue plasminogen activator (t-PA) is an extracellular serine protease that converts the proenzyme plasminogen into the broad-spectrum substrate serine protease, plasmin. Plasmin, one of the most potent pro-angiogenic factors, is a key element in fibrinolysis, cell migration, tissue remodeling and tumor invasion. In the present investigation, we assessed the impact of the truncated form of soluble melanotransferrin (sMTf) on plasminogen activation by t-PA and subsequent endothelial cell detachment. Co-treatment of human endothelial microvessel cells with plasminogen, t-PA and sMTf significantly increased plasmin formation and activity in the culture medium. Plasmin generated in the presence of sMTf also led to a 30% reduction in fibronectin detection within cell lysates and to a 9-fold increase within the corresponding cell medium. Moreover, the presence of sMTf increases EC detachment by 6-fold compared to cells treated only with plasminogen and t-PA. Although the addition of alpha(2)-antiplasmin completely prevented plasmin formation and EC detachment, epigallocatechin gallate, GM6001 and a specific antibody directed against MMP-2 prevented cellular detachment without interfering with plasminogen activation. Overall, these data suggest that the anti-angiogenic properties of sMTf may result from local overstimulation of plasminogen activation by t-PA, thus leading to subsequent degradation of the Fn matrix and EC detachment.
Collapse
Affiliation(s)
- Yannève Rolland
- Laboratoire de Médecine Moléculaire, Service d'Hémato-Oncologie, Hôpital Ste-Justine-UQAM, C.P. 8888, Succursale Centre-ville, Montréal, Québec, Canada H3C 3P8
| | | | | |
Collapse
|
93
|
Gandorfer A, Kampik A. Intravitreal plasmin injection activates endogenous matrix metalloproteinase-2 in rabbit and human vitreous. Am J Ophthalmol 2006; 141:784-5; author reply 785. [PMID: 16564844 DOI: 10.1016/j.ajo.2005.12.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 12/22/2005] [Indexed: 11/25/2022]
|
94
|
Wang FQ, So J, Reierstad S, Fishman DA. Vascular endothelial growth factor-regulated ovarian cancer invasion and migration involves expression and activation of matrix metalloproteinases. Int J Cancer 2006; 118:879-88. [PMID: 16152587 DOI: 10.1002/ijc.21421] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vascular endothelial growth factor (VEGF) expression is elevated in primary ovarian tumors and metastases. We examined the effect of VEGF on epithelial ovarian cancer (EOC) in vitro invasion and migration and underlying mechanisms. Using the Matrigel invasion assay and colloidal gold phagokinetic track assay, we found that VEGF induced EOC DOV13 invasion and migration in a matrix metalloproteinase (MMP)-dependent manner. Using Western blotting, we show that VEGF, at 20-80 ng/ml, induced secretion of pro-MMP-7 and pro-MMP-9 and activation of pro-MMP-2 in DOV13 conditioned medium in a concentration-dependent manner. However, gelatinolytic activity and total MMP-7 protein in DOV13 conditioned medium reached the maximum upon VEGF treatment at 20-40 ng/ml and decreased at higher-concentration VEGF treatment (80 ng/ml), as shown by DQ-gelatin degradation assay and ELISA. In addition to the effect on MMP secretion/activation, VEGF stimulated secretion of TIMP-2; and blocking TIMP-2 activity by an anti-TIMP-2 MAb significantly increased VEGF (80 ng/ml)-induced DOV13 invasion (p < 0.05), suggesting that VEGF may regulate MMP-2 activity in DOV13 conditioned medium through TIMP-2. Using real-time PCR, we found that VEGF, at 20 ng/ml, significantly increased the expression of VEGFR-1 and VEGFR-2 by approximately 4-fold and 31-fold, respectively, compared to untreated control (p < 0.05). However, the inducing effect of VEGF on VEGFR-2 expression and the internal expression of VEGF121 in DOV13 cells decreased with increasing of VEGF concentration, suggesting the existence of a negative feedback regulatory mechanism. In summary, our results indicate that VEGF may regulate EOC invasion and migration through VEGFR-mediated secretion and activation of MMPs.
Collapse
Affiliation(s)
- Feng-qiang Wang
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
95
|
Bassi DE, Fu J, Lopez de Cicco R, Klein-Szanto AJP. Proprotein convertases: "master switches" in the regulation of tumor growth and progression. Mol Carcinog 2005; 44:151-61. [PMID: 16167351 DOI: 10.1002/mc.20134] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proprotein convertases (PCs) are a group of Ca2+-dependent serine proteases that have homology to the endoproteases subtilisin (bacteria) and kexin (yeast). This group is comprised of less than a dozen members, known as furin/PACE, PC1/PC3, PC2, PC4, PACE4, PC5/PC6, PC7/PC8/LPC, SKI/S1P, and NARC-1/PCSK9. Four PCs (Furin, PACE4, PC5, and PC7) have been localized to several different tissues and epithelial or nervous system tumors. PCs activate their cognate substrates by limited proteolysis at the consensus sequence RXR/KR downward arrow. Many PC substrates are well known cancer-associated proteins such as growth factors, growth factor receptors, integrins, and matrix metalloproteases (MMPs). For example, IGF-1 and its receptor, TGF-beta, VEGF-C, and MT-MMPs have direct roles in tumor progression and metastasis. Furin, a well-studied member of the PC family, has been associated with enhanced invasion and proliferation in head and neck, breast, and lung cancer. Conversely, inhibition of PC activity by PDX or several PC pro-segments, resulted in reduced processing of these key cancer-related substrates in human squamous cell carcinomas (SCC), colon adenocarcinoma, and astrocytoma cell lines. In parallel to these changes in cell proliferation and invasiveness as well as metastatic ability were markedly impaired. By controlling the maturation/activation of key cancer-associated proteins, PCs act as "master switches" at different levels during tumor development and progression. The manifold effects of PCs, influencing tumor cell proliferation, motility, adhesiveness, and invasiveness, should be exploited by further developing competitive/inhibitory therapeutic strategies that would be able to neutralize simultaneously the most salient cancer cell properties.
Collapse
Affiliation(s)
- Daniel E Bassi
- Department of Pathology and Tumor Cell Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
96
|
Ayala A, Warejecka DJ, Vaughan KA, Twining SS, Yue BYJT. The fibrinolysis inhibitor alpha2-antiplasmin in the human cornea. Curr Eye Res 2005; 30:1097-103. [PMID: 16354623 DOI: 10.1080/02713680500403046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To determine whether the cornea contains and expresses, at the gene level, the major plasmin inhibitor alpha2-antiplasmin. METHODS Corneal sections were immunostained for alpha2-antiplasmin. Extracts of human corneal stroma, epithelium, and endothelium were subjected to immunodot blot and Western blot analysis. Total RNA and alpha2-antiplasmin specific primers were used for RT-PCR. The cDNA was sequenced. RESULTS Alpha2-antiplasmin was observed in all three corneal layers by immunolocalization and Western blots. The major alpha2-antiplasmin form observed in most extracts was the 70-kDa form. Total alpha2-antiplasmin was present at 0.119 +/- 0.014 microg/epithelium (n = 10) and 1.45 +/- 0.47 microg/stroma (n = 10). Alpha2-antiplasmin mRNA was detected in epithelial and stromal extracts and cultured human corneal stromal cells. The sequences of the PCR products were identical to that for human alpha2-antiplasmin. CONCLUSIONS Alpha2-antiplasmin and its mRNA are present in the cornea and may serve to regulate corneal plasmin activity.
Collapse
Affiliation(s)
- Aidee Ayala
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
97
|
Sharony R, Pintucci G, Saunders PC, Grossi EA, Baumann FG, Galloway AC, Mignatti P. Matrix metalloproteinase expression in vein grafts: role of inflammatory mediators and extracellular signal-regulated kinases-1 and -2. Am J Physiol Heart Circ Physiol 2005; 290:H1651-9. [PMID: 16284240 DOI: 10.1152/ajpheart.00530.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Matrix metalloproteinases (MMPs) play key roles in vascular remodeling. We characterized the role of inflammatory mediators and extracellular signal-regulated kinases (ERKs) in the control of arterialized vein graft expression of MMP-9, MMP-2, and membrane-type 1-MMP (MT1-MMP) and of the tissue inhibitor of metalloproteinases-2 (TIMP-2). For this purpose we used a canine model of jugular vein to carotid artery interposition graft and analyzed the vein grafts at various postoperative times (30 min to 28 days) using the contralateral vein as a control. To study the role of ERK-1/2, veins were incubated with the mitogen-activated protein kinase kinase (MEK-1/2) inhibitor UO126 for 30 min before being grafted. Vein graft extracts were analyzed for MMPs, TIMP-2, tumor necrosis factor-alpha (TNF-alpha), polymorphonuclear neutrophil (PMN) infiltration, myeloperoxidase (MPO), and thrombin activity, and for ERK-1/2 activation. Vein graft arterialization resulted in rapid and sustained (8 h to 28 days) upregulation of vein graft-associated MMP-9, MMP-2, MT1-MMP, thrombin activity, and TNF-alpha levels with concomitant TIMP-2 downregulation. MMP-2 activation preceded MT1-MMP upregulation. PMN infiltration and vein graft-associated MPO activity increased within hours after arterialization, indicating a prompt, local inflammatory response. In cultured smooth muscle cells, both thrombin and TNF-alpha upregulated MT1-MMP expression; however, only thrombin activated MMP-2. Inhibition of ERK-1/2 activation blocked arterialization-induced upregulation of MMP-2, MMP-9, and MT1-MMP. Thus, thrombin, inflammatory mediators, and activation of the ERK-1/2 pathway control MMP and TIMP-2 expression in arterialized vein grafts.
Collapse
Affiliation(s)
- Ram Sharony
- Depts. of Cardiothoracic Surgery, New York Univesity School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Vayalil PK, Olman M, Murphy-Ullrich JE, Postlethwait EM, Liu RM. Glutathione restores collagen degradation in TGF-beta-treated fibroblasts by blocking plasminogen activator inhibitor-1 expression and activating plasminogen. Am J Physiol Lung Cell Mol Physiol 2005; 289:L937-45. [PMID: 16258002 DOI: 10.1152/ajplung.00150.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transforming growth factor (TGF)-beta plays an important role in tissue fibrogenesis. We previously demonstrated that reduced glutathione (GSH) supplementation blocked collagen accumulation induced by TGF-beta in NIH-3T3 cells. In the present study, we show that supplementation of GSH restores the collagen degradation rate in TGF-beta-treated NIH-3T3 cells. Restoration of collagen degradation by GSH is associated with a reduction of type I plasminogen activator inhibitor (PAI)-1 expression/activity as well as recovery of the activities of cell/extracellular matrix-associated tissue-type plasminogen activator and plasmin. Furthermore, we find that NIH-3T3 cells constitutively express plasminogen mRNA and possess plasmin activity. Blockade of cell surface binding of plasminogen/plasminogen activation with tranexamic acid (TXA) or inhibition of plasmin activity with aprotinin significantly reduces the basal level of collagen degradation both in the presence or absence of exogenous plasminogen. Most importantly, addition of TXA or active PAI-1 almost completely eliminates the restorative effects of GSH on collagen degradation in TGF-beta treated cells. Together, our results suggest that the major mechanism by which GSH restores collagen degradation in TGF-beta-treated cells is through blocking PAI-1 expression, leading to increased PA/plasmin activity and consequent proteolytic degradation of collagens. This study provides mechanistic evidence for GSH's putative therapeutic effect in the treatment of fibrotic disorders.
Collapse
Affiliation(s)
- Praveen K Vayalil
- Dept. of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | |
Collapse
|
99
|
Takano A, Hirata A, Inomata Y, Kawaji T, Nakagawa K, Nagata S, Tanihara H. Intravitreal plasmin injection activates endogenous matrix metalloproteinase-2 in rabbit and human vitreous. Am J Ophthalmol 2005; 140:654-60. [PMID: 16140249 DOI: 10.1016/j.ajo.2005.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 04/04/2005] [Accepted: 04/05/2005] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate the effect of exogenous plasmin administration on the activity of endogenous matrix metalloproteinase-2 (MMP-2) in rabbit and human vitreous. DESIGN Experimental animal study and interventional case series. METHODS Human plasmin was injected into rabbit eyes. The active/pro-MMP-2 ratio in vitreous samples was calculated using the gelatin zymography. Scanning electron microscopy (SEM) was performed to observe the retinal surface. To evaluate the time course of MMP-2 activity, vitreous samples were collected after the injection of 0.5 IU of plasmin, and the active/pro-MMP-2 ratio was calculated in the same manner. Immunohistochemical analysis was performed to confirm the presence of MT1-MMP in the rabbit eye. Human vitreous samples obtained from vitreous surgeries were also used for similar studies. RESULTS The active/pro-MMP-2 ratios in the vitreous after the injection of 0.25 IU or 0.5 IU of plasmin were significantly higher than that of the control (P < .05). SEM demonstrated that plasmin-treated eyes showed a smooth retinal surface that was dose-dependent. Time course evaluation of the active/pro-MMP-2 ratio in the vitreous after the administration of 0.5 IU of plasmin found a significant difference between the 5 and 15 minutes data points compared with that seen for the control. Immunohistochemical study revealed the presence of MT1-MMP in the inner retina. In human samples, the active/pro-MMP-2 ratio after the plasmin injection was significantly higher than the ratio observed before injection. CONCLUSIONS Our results suggested that activation of endogenous MMP-2 by exogenous plasmin is associated with the induction of posterior vitreous detachment.
Collapse
Affiliation(s)
- Akiomi Takano
- Department of Ophthalmology and Visual Science, Kumamoto University Graduate School of Medical Sciences, Honjo, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
100
|
Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis. Clin Chim Acta 2005; 364:33-60. [PMID: 16139830 DOI: 10.1016/j.cca.2005.06.014] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 06/07/2005] [Accepted: 06/08/2005] [Indexed: 01/18/2023]
Abstract
Liver fibrosis represents a significant health problem worldwide of which no acceptable therapy exists. The most characteristic feature of liver fibrosis is excess deposition of type I collagen. A great deal of research has been performed to understand the molecular mechanisms responsible for the development of liver fibrosis. The activated hepatic stellate cell (HSC) is the primary cell type responsible for the excess production of collagen. Following a fibrogenic stimulus, HSCs change from a quiescent to an activated, collagen-producing cell. Numerous changes in gene expression are associated with HSC activation including the induction of several intracellular signaling cascades, which help maintain the activated phenotype and control the fibrogenic and proliferative state of the cell. Detailed analyses in understanding the molecular basis of collagen gene regulation have revealed a complex process offering the opportunity for multiple potential therapeutic strategies. However, further research is still needed to gain a better understanding of HSC activation and how this cell maintains its fibrogenic nature. In this review we describe many of the molecular events that occur following HSC activation and collagen gene regulation that contribute to the fibrogenic nature of these cells and provide a review of therapeutic strategies to treat this disease.
Collapse
Affiliation(s)
- Shigeki Tsukada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, NC 27599-7032, USA
| | | | | |
Collapse
|