51
|
Novikov NM, Zolotaryova SY, Gautreau AM, Denisov EV. Mutational drivers of cancer cell migration and invasion. Br J Cancer 2021; 124:102-114. [PMID: 33204027 PMCID: PMC7784720 DOI: 10.1038/s41416-020-01149-0] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Genomic instability and mutations underlie the hallmarks of cancer-genetic alterations determine cancer cell fate by affecting cell proliferation, apoptosis and immune response, and increasing data show that mutations are involved in metastasis, a crucial event in cancer progression and a life-threatening problem in cancer patients. Invasion is the first step in the metastatic cascade, when tumour cells acquire the ability to move, penetrate into the surrounding tissue and enter lymphatic and blood vessels in order to disseminate. A role for genetic alterations in invasion is not universally accepted, with sceptics arguing that cellular motility is related only to external factors such as hypoxia, chemoattractants and the rigidity of the extracellular matrix. However, increasing evidence shows that mutations might trigger and accelerate the migration and invasion of different types of cancer cells. In this review, we summarise data from published literature on the effect of chromosomal instability and genetic mutations on cancer cell migration and invasion.
Collapse
Affiliation(s)
- Nikita M Novikov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Sofia Y Zolotaryova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alexis M Gautreau
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| |
Collapse
|
52
|
Jardim DL, Millis SZ, Ross JS, Woo MS, Ali SM, Kurzrock R. Cyclin Pathway Genomic Alterations Across 190,247 Solid Tumors: Leveraging Large-Scale Data to Inform Therapeutic Directions. Oncologist 2021; 26:e78-e89. [PMID: 32885893 PMCID: PMC7794175 DOI: 10.1634/theoncologist.2020-0509] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND We describe the landscape of cyclin and interactive gene pathway alterations in 190,247 solid tumors. METHODS Using comprehensive genomic profiling (315 genes, >500× coverage), samples were analyzed for alterations in activating/sensitizing cyclin genes (CDK4 amplification, CDK6 amplification, CCND1, CCND2, CCND3, CDKN2B [loss], CDKN2A [loss], SMARCB1), hormone genes (estrogen receptor 1 [ESR1], androgen receptor [AR]), and co-alterations in genes leading to cyclin inhibitor therapeutic resistance (RB1 and CCNE1). RESULTS Alterations in at least one cyclin activating/sensitizing gene occurred in 24% of malignancies. Tumors that frequently harbored at least one cyclin alteration were brain gliomas (47.1%), esophageal (40.3%) and bladder cancer (37.9%), and mesotheliomas (37.9%). The most frequent alterations included CDKN2A (13.9%) and CDKN2B loss (12.5%). Examples of unique patterns of alterations included CCND1 amplification in breast cancer (17.3%); CDK4 alterations in sarcomas (12%); CCND2 in testicular cancer (23.4%), and SMARCB1 mutations in kidney cancer (3% overall, 90% in malignant rhabdoid tumors). Alterations in resistance genes RB1 and CCNE1 affected 7.2% and 3.6% of samples. Co-occurrence analysis demonstrated a lower likelihood of concomitant versus isolated alterations in cyclin activating/sensitizing and resistance genes (odds ratio [OR], 0.35; p < .001), except in colorectal, cervical, and small intestine cancers. AR and cyclin activating/sensitizing alterations in prostate cancer co-occurred more frequently (vs. AR alterations and wild-type cyclin activating/sensitizing alterations) (OR, 1.79; p < .001) as did ESR1 and cyclin activating/sensitizing alterations in breast (OR, 1.62; p < .001) and cervical cancer (OR, 4.08; p = .04) (vs. ESR1 and cyclin wild-type activating/sensitizing alterations). CONCLUSION Cyclin pathway alterations vary according to tumor type/histology, informing opportunities for targeted therapy, including for rare cancers. IMPLICATIONS FOR PRACTICE Cyclin pathway genomic abnormalities are frequent in human solid tumors, with substantial variation according to tumor site and histology. Opportunities for targeted therapy emerge with comprehensive profiling of this pathway.
Collapse
Affiliation(s)
- Denis L. Jardim
- Department of Clinical Oncology, Hospital Sirio LibanesSão PauloBrazil
| | | | | | | | | | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of CaliforniaSan DiegoCaliforniaUSA
| |
Collapse
|
53
|
Computational analysis of TP53 vs. CTNNB1 mutations in hepatocellular carcinoma suggests distinct cancer subtypes with differential gene expression profiles and chromatin states. Comput Biol Chem 2020; 89:107404. [PMID: 33096424 DOI: 10.1016/j.compbiolchem.2020.107404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/09/2020] [Accepted: 10/11/2020] [Indexed: 12/24/2022]
Abstract
Genetic variations are important drivers of carcinogenesis. It is extremely important to identify molecular distinctions between patients of the same disease for effective cancer treatment. This study aims to understand cellular and molecular differences between hepatocellular carcinoma patients carrying TP53 or CTNNB1 mutations, which could possess clinical significance. For this purpose, DNA sequencing and mRNA expression data for hepatocellular carcinoma patients were analyzed. Differentially expressed genes and the cellular processes that they are involved in were determined for TP53/CTNNB1-altered patient groups. We found that the mutations of TP53/CTNNB1 genes in the patient cohort was almost mutually exclusive and gene expression profiling in these subgroups were unique. Gene Ontology (GO) enrichment analysis of the differentially expressed genes identified several important cellular processes. In line with this, selected histone variants, histone chaperons, as well as the binding partners of TP53/CTNNB1 showed distinct enrichment levels. TP53/CTNNB1-altered patient groups laso showed different prognostic outcomes and tumor infiltration levels. In conclusion, our results strongly imply differential chromatin states and transcriptional regulation in relation to the mutational status of TP53 vs. CTNNB1, suggesting that these genes might be inducing different cellular pathways involving distinct chromatin environments during the course of carcinogenesis.
Collapse
|
54
|
Chiacchiarini M, Trocchianesi S, Besharat ZM, Po A, Ferretti E. Role of tissue and circulating microRNAs and DNA as biomarkers in medullary thyroid cancer. Pharmacol Ther 2020; 219:107708. [PMID: 33091426 DOI: 10.1016/j.pharmthera.2020.107708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Medullary thyroid carcinoma (MTC) is a rare neuroendocrine tumor comprising hereditary or sporadic form with frequent mutations in the rearranged during transfection (RET) or RAS genes. Diagnosis is based on the presence of thyroid tumor mass with altered levels of calcitonin (Ctn) and carcinoembryonal antigen (CEA) in the serum and/or in the cytological smears from fine needle aspiration biopsies. Treatment consists of total thyroidectomy, followed by tyrosine kinase inhibitors (TKi) in case of disease persistence. During TKi treatment, Ctn and CEA levels can fluctuate regardless of tumor volume, metastasis or response to therapy. Research for more reliable non-invasive biomarkers in MTC is still underway. In this context, circulating nucleic acids, namely circulating microRNAs (miRNAs) and cell free DNA (cfDNA), have been evaluated by different research groups. Aiming to shed light on whether miRNAs and cfDNA are suitable as MTC biomarkers we searched three different databases, PubMed, Scopus, WOS and reviewed the literature. We classified 83 publications fulfilling our search criteria and summarized the results. We report data on miRNAs and cfDNA that can be evaluated for validation in independent studies and clinical application.
Collapse
Affiliation(s)
| | - Sofia Trocchianesi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Agnese Po
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
55
|
Martínez-Jiménez F, Muiños F, Sentís I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, Mularoni L, Pich O, Bonet J, Kranas H, Gonzalez-Perez A, Lopez-Bigas N. A compendium of mutational cancer driver genes. Nat Rev Cancer 2020; 20:555-572. [PMID: 32778778 DOI: 10.1038/s41568-020-0290-x] [Citation(s) in RCA: 677] [Impact Index Per Article: 135.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
A fundamental goal in cancer research is to understand the mechanisms of cell transformation. This is key to developing more efficient cancer detection methods and therapeutic approaches. One milestone towards this objective is the identification of all the genes with mutations capable of driving tumours. Since the 1970s, the list of cancer genes has been growing steadily. Because cancer driver genes are under positive selection in tumorigenesis, their observed patterns of somatic mutations across tumours in a cohort deviate from those expected from neutral mutagenesis. These deviations, which constitute signals of positive selection, may be detected by carefully designed bioinformatics methods, which have become the state of the art in the identification of driver genes. A systematic approach combining several of these signals could lead to a compendium of mutational cancer genes. In this Review, we present the Integrative OncoGenomics (IntOGen) pipeline, an implementation of such an approach to obtain the compendium of mutational cancer drivers. Its application to somatic mutations of more than 28,000 tumours of 66 cancer types reveals 568 cancer genes and points towards their mechanisms of tumorigenesis. The application of this approach to the ever-growing datasets of somatic tumour mutations will support the continuous refinement of our knowledge of the genetic basis of cancer.
Collapse
Affiliation(s)
- Francisco Martínez-Jiménez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Inés Sentís
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jordi Deu-Pons
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Iker Reyes-Salazar
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Arnedo-Pac
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Loris Mularoni
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oriol Pich
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jose Bonet
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Hanna Kranas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
56
|
Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription Factors in Cancer Development and Therapy. Cancers (Basel) 2020. [PMID: 32824207 DOI: 10.339/cancers12082296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multi-step process and requires constitutive expression/activation of transcription factors (TFs) for growth and survival. Many of the TFs reported so far are critical for carcinogenesis. These include pro-inflammatory TFs, hypoxia-inducible factors (HIFs), cell proliferation and epithelial-mesenchymal transition (EMT)-controlling TFs, pluripotency TFs upregulated in cancer stem-like cells, and the nuclear receptors (NRs). Some of those, including HIFs, Myc, ETS-1, and β-catenin, are multifunctional and may regulate multiple other TFs involved in various pro-oncogenic events, including proliferation, survival, metabolism, invasion, and metastasis. High expression of some TFs is also correlated with poor prognosis and chemoresistance, constituting a significant challenge in cancer treatment. Considering the pivotal role of TFs in cancer, there is an urgent need to develop strategies targeting them. Targeting TFs, in combination with other chemotherapeutics, could emerge as a better strategy to target cancer. So far, targeting NRs have shown promising results in improving survival. In this review, we provide a comprehensive overview of the TFs that play a central role in cancer progression, which could be potential therapeutic candidates for developing specific inhibitors. Here, we also discuss the efforts made to target some of those TFs, including NRs.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
57
|
Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription Factors in Cancer Development and Therapy. Cancers (Basel) 2020; 12:cancers12082296. [PMID: 32824207 PMCID: PMC7464564 DOI: 10.3390/cancers12082296] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multi-step process and requires constitutive expression/activation of transcription factors (TFs) for growth and survival. Many of the TFs reported so far are critical for carcinogenesis. These include pro-inflammatory TFs, hypoxia-inducible factors (HIFs), cell proliferation and epithelial-mesenchymal transition (EMT)-controlling TFs, pluripotency TFs upregulated in cancer stem-like cells, and the nuclear receptors (NRs). Some of those, including HIFs, Myc, ETS-1, and β-catenin, are multifunctional and may regulate multiple other TFs involved in various pro-oncogenic events, including proliferation, survival, metabolism, invasion, and metastasis. High expression of some TFs is also correlated with poor prognosis and chemoresistance, constituting a significant challenge in cancer treatment. Considering the pivotal role of TFs in cancer, there is an urgent need to develop strategies targeting them. Targeting TFs, in combination with other chemotherapeutics, could emerge as a better strategy to target cancer. So far, targeting NRs have shown promising results in improving survival. In this review, we provide a comprehensive overview of the TFs that play a central role in cancer progression, which could be potential therapeutic candidates for developing specific inhibitors. Here, we also discuss the efforts made to target some of those TFs, including NRs.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
58
|
Romero-Medina MC, Venuti A, Melita G, Robitaille A, Ceraolo MG, Pacini L, Sirand C, Viarisio D, Taverniti V, Gupta P, Scalise M, Indiveri C, Accardi R, Tommasino M. Human papillomavirus type 38 alters wild-type p53 activity to promote cell proliferation via the downregulation of integrin alpha 1 expression. PLoS Pathog 2020; 16:e1008792. [PMID: 32813746 PMCID: PMC7458291 DOI: 10.1371/journal.ppat.1008792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/31/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022] Open
Abstract
Tumor suppressors can exert pro-proliferation functions in specific contexts. In the beta human papillomavirus type 38 (HPV38) experimental model, the viral proteins E6 and E7 promote accumulation of a wild-type (WT) p53 form in human keratinocytes (HKs), promoting cellular proliferation. Inactivation of p53 by different means strongly decreases the proliferation of HPV38 E6/E7 HKs. This p53 form is phosphorylated at S392 by the double-stranded RNA-dependent protein kinase PKR, which is highly activated by HPV38. PKR-mediated S392 p53 phosphorylation promotes the formation of a p53/DNMT1 complex, which inhibits expression of integrin alpha 1 (ITGA1), a repressor of epidermal growth factor receptor (EGFR) signaling. Ectopic expression of ITGA1 in HPV38 E6/E7 HKs promotes EGFR degradation, inhibition of cellular proliferation, and cellular death. Itga1 expression was also inhibited in the skin of HPV38 transgenic mice that have an elevated susceptibility to UV-induced skin carcinogenesis. In summary, these findings reveal the existence of a specific WT p53 form that displays pro-proliferation properties.
Collapse
Affiliation(s)
- Maria Carmen Romero-Medina
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Assunta Venuti
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Giusi Melita
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Alexis Robitaille
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Maria Grazia Ceraolo
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Laura Pacini
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Cecilia Sirand
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Daniele Viarisio
- Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Valerio Taverniti
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Purnima Gupta
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Rosita Accardi
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Massimo Tommasino
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| |
Collapse
|
59
|
Barczak W, Jin L, Carr SM, Munro S, Ward S, Kanapin A, Samsonova A, La Thangue NB. PRMT5 promotes cancer cell migration and invasion through the E2F pathway. Cell Death Dis 2020; 11:572. [PMID: 32709847 PMCID: PMC7382496 DOI: 10.1038/s41419-020-02771-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 12/31/2022]
Abstract
The pRb-E2F pathway is a critical point of regulation in the cell cycle and loss of control of the pathway is a hallmark of cancer. E2F1 is the major target through which pRb exerts its effects and arginine methylation by PRMT5 plays a key role in dictating E2F1 activity. Here we have explored the functional role of the PRMT5-E2F1 axis and highlight its influence on different aspects of cancer cell biology including viability, migration, invasion and adherence. Through a genome-wide expression analysis, we identified a distinct set of genes under the control of PRMT5 and E2F1, including some highly regulated genes, which influence cell migration, invasio and adherence through a PRMT5-dependent mechanism. Most significantly, a coincidence was apparent between the expression of PRMT5 and E2F1 in human tumours, and elevated levels of PRMT5 and E2F1 correlated with poor prognosis disease. Our results suggest a causal relationship between PRMT5 and E2F1 in driving the malignant phenotype and thereby highlight an important pathway for therapeutic intervention.
Collapse
Affiliation(s)
- Wojciech Barczak
- Laboratory of Cancer Biology Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Li Jin
- Laboratory of Cancer Biology Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Simon Mark Carr
- Laboratory of Cancer Biology Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Shonagh Munro
- Argonaut Therapeutics Ltd Magdalen Centre, Oxford Science Park, Oxford, OX4 4GA, UK
| | - Samuel Ward
- Argonaut Therapeutics Ltd Magdalen Centre, Oxford Science Park, Oxford, OX4 4GA, UK
| | - Alexander Kanapin
- Centre for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Anastasia Samsonova
- Centre for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Nicholas B La Thangue
- Laboratory of Cancer Biology Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.
| |
Collapse
|
60
|
Loebenstein M, Thorup J, Cortes D, Clasen-Linde E, Hutson JM, Li R. Cryptorchidism, gonocyte development, and the risks of germ cell malignancy and infertility: A systematic review. J Pediatr Surg 2020; 55:1201-1210. [PMID: 31327540 DOI: 10.1016/j.jpedsurg.2019.06.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/18/2019] [Accepted: 06/28/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND/AIM Cryptorchidism, or undescended testis (UDT) occurs in 1%-4% of newborn males and leads to a risk of infertility and testicular malignancy. Recent research suggests that infertility and malignancy in UDT may be caused by abnormal development of the neonatal germ cells, or gonocytes, which normally transform into spermatogonial stem cells (SSC) or undergo apoptosis during minipuberty at 2-6 months in humans (2-6 days in mice). We aimed to identify the current knowledge on how UDT is linked to infertility and malignancy. METHODS Here we review the literature from 1995 to the present to assess the possible causes of infertility and malignancy in UDT, from both human studies and animal models. RESULTS Both the morphological steps and many of the genes involved in germ cell development are now characterized, but the factors involved in gonocyte transformation and apoptosis in both normal and cryptorchid testes are not fully identified. During minipuberty there is evidence for the hypothalamic-pituitary axis stimulating gonocyte transformation, but without known direct control by LH and androgen, although FSH may have a role. An arrested gonocyte maybe the origin of later malignancy at least in syndromic cryptorchid testes in humans, which is consistent with the recent finding that gonocytes are normally absent in a rodent model of congenital cryptorchidism, where malignancy has not been reported. CONCLUSION The results of this review strengthen the view that malignancy and infertility in men with previous UDT may be caused by abnormalities in germ cell development during minipuberty. TYPE OF STUDY Systematic review (secondary, filtered) LEVEL OF EVIDENCE: Level I.
Collapse
Affiliation(s)
- Moshe Loebenstein
- Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Australia
| | - Jorgen Thorup
- Department of Paediatric Surgery, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dina Cortes
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Section of Endocrinology, Department of Pediatrics, Copenhagen University Hospital Hvidovre, Denmark
| | - Erik Clasen-Linde
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Denmark
| | - John M Hutson
- Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Australia; Department of Urology, The Royal Children's Hospital, Melbourne, Australia
| | - Ruili Li
- Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Australia.
| |
Collapse
|
61
|
Kohlmeyer JL, Kaemmer CA, Pulliam C, Maharjan CK, Samayoa AM, Major HJ, Cornick KE, Knepper-Adrian V, Khanna R, Sieren JC, Leidinger MR, Meyerholz DK, Zamba KD, Weimer JM, Dodd RD, Darbro BW, Tanas MR, Quelle DE. RABL6A Is an Essential Driver of MPNSTs that Negatively Regulates the RB1 Pathway and Sensitizes Tumor Cells to CDK4/6 Inhibitors. Clin Cancer Res 2020; 26:2997-3011. [PMID: 32086342 PMCID: PMC7299809 DOI: 10.1158/1078-0432.ccr-19-2706] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/20/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Malignant peripheral nerve sheath tumors (MPNST) are deadly sarcomas that lack effective therapies. In most MPNSTs, the retinoblastoma (RB1) tumor suppressor is disabled by hyperactivation of cyclin-dependent kinases (CDK), commonly through loss of CDK-inhibitory proteins such as p27(Kip1). RABL6A is an inhibitor of RB1 whose role in MPNSTs is unknown. To gain insight into MPNST development and establish new treatment options, we investigated RABL6A-RB1 signaling and CDK inhibitor-based therapy in MPNSTs. EXPERIMENTAL DESIGN We examined patient-matched MPNSTs and precursor lesions by RNA sequencing (RNA-Seq) and IHC. Molecular and biological effects of silencing RABL6A and/or p27 in MPNST lines and normal human Schwann cells were determined. Tumor-suppressive effects of CDK inhibitors were measured in MPNST cells and orthotopic tumors. RESULTS RABL6A was dramatically upregulated in human MPNSTs compared with precursor lesions, which correlated inversely with p27 levels. Silencing RABL6A caused MPNST cell death and G1 arrest that coincided with p27 upregulation, CDK downregulation, and RB1 activation. The growth-suppressive effects of RABL6A loss, and its regulation of RB1, were largely rescued by p27 depletion. Importantly, reactivation of RB1 using a CDK4/6 inhibitor (palbociclib) killed MPNST cells in vitro in an RABL6A-dependent manner and suppressed MPNST growth in vivo. Low-dose combination of drugs targeting multiple RB1 kinases (CDK4/6, CDK2) had enhanced antitumorigenic activity associated with potential MPNST cell redifferentiation. CONCLUSIONS RABL6A is a new driver of MPNST pathogenesis that acts in part through p27-RB1 inactivation. Our results suggest RB1 targeted therapy with multiple pathway drugs may effectively treat MPNSTs.
Collapse
Affiliation(s)
- Jordan L Kohlmeyer
- Molecular Medicine Graduate Program, University of Iowa, Iowa City, Iowa
- The Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Courtney A Kaemmer
- The Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Casey Pulliam
- Human Toxicology Graduate Program, University of Iowa, Iowa City, Iowa
| | - Chandra K Maharjan
- The Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | | | - Heather J Major
- Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | | | | | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | | | | | | | - K D Zamba
- Department of Biostatistics, University of Iowa, Iowa City, Iowa
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota
| | - Rebecca D Dodd
- Molecular Medicine Graduate Program, University of Iowa, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | | | - Munir R Tanas
- Department of Pathology, University of Iowa, Iowa City, Iowa
| | - Dawn E Quelle
- Molecular Medicine Graduate Program, University of Iowa, Iowa City, Iowa.
- The Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
- Department of Pathology, University of Iowa, Iowa City, Iowa
| |
Collapse
|
62
|
Yu J, Chen S, Niu Y, Liu M, Zhang J, Yang Z, Gao P, Wang W, Han X, Sun G. Functional Significance and Therapeutic Potential of miRNA-20b-5p in Esophageal Squamous Cell Carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:315-331. [PMID: 32622332 PMCID: PMC7334444 DOI: 10.1016/j.omtn.2020.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 05/15/2020] [Indexed: 12/26/2022]
Abstract
Novel therapies tailored to the molecular composition mechanism of esophageal squamous cell carcinoma (ESCC) are needed to improve patient survival. miR-20b-5p expression was significantly upregulated in cancerous tissues and associated with lymph node metastasis, clinical stage, and overall survival (OS). An analysis of the methylation status of the miR-20b-5p gene indicated that the hypomethylation of the CpG sites located upstream of the miR-20b-5p gene in the ESCC tissues was more frequent than in the adjacent normal tissues, and the methylation status of miR-20b-5p correlated inversely with its expression levels. Notably, a series of gain- and loss-of-function assays elucidated that miR-20b-5p promoted ESCC cell proliferation, migration, and invasion both in vitro and in vivo. Luciferase reporter assays, western blot, and qRT-PCR revealed that RB1 and TP53INP1 were the direct targets of miR-20b-5p. Moreover, the effects of ectopic miR-20b-5p expression were abrogated by RB1 and TP53INP1 overexpression. In contrast, the effects of miR-20b-5p depletion were impaired by RB1 and TP53INP1 knockdown. Treatment with a miR-20b-5p antagomir dramatically increased tumor growth and inhibited RB1 and TP53INP1 protein expression in nude mice. This work provided novel insights on the molecular mechanism of ESCC and further provided suggestions for therapy development.
Collapse
Affiliation(s)
- Jiarui Yu
- School of Clinical Medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China; Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Siyuan Chen
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Yi Niu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Meiyue Liu
- School of Clinical Medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China; Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Jie Zhang
- Department of pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Zhao Yang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Peng Gao
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Wei Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Xiaochen Han
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China.
| | - Guogui Sun
- School of Clinical Medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China; Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China.
| |
Collapse
|
63
|
Ge JY, Shu S, Kwon M, Jovanović B, Murphy K, Gulvady A, Fassl A, Trinh A, Kuang Y, Heavey GA, Luoma A, Paweletz C, Thorner AR, Wucherpfennig KW, Qi J, Brown M, Sicinski P, McDonald TO, Pellman D, Michor F, Polyak K. Acquired resistance to combined BET and CDK4/6 inhibition in triple-negative breast cancer. Nat Commun 2020; 11:2350. [PMID: 32393766 PMCID: PMC7214447 DOI: 10.1038/s41467-020-16170-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
BET inhibitors are promising therapeutic agents for the treatment of triple-negative breast cancer (TNBC), but the rapid emergence of resistance necessitates investigation of combination therapies and their effects on tumor evolution. Here, we show that palbociclib, a CDK4/6 inhibitor, and paclitaxel, a microtubule inhibitor, synergize with the BET inhibitor JQ1 in TNBC lines. High-complexity DNA barcoding and mathematical modeling indicate a high rate of de novo acquired resistance to these drugs relative to pre-existing resistance. We demonstrate that the combination of JQ1 and palbociclib induces cell division errors, which can increase the chance of developing aneuploidy. Characterizing acquired resistance to combination treatment at a single cell level shows heterogeneous mechanisms including activation of G1-S and senescence pathways. Our results establish a rationale for further investigation of combined BET and CDK4/6 inhibition in TNBC and suggest novel mechanisms of action for these drugs and new vulnerabilities in cells after emergence of resistance.
Collapse
Affiliation(s)
- Jennifer Y Ge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA
| | - Shaokun Shu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Mijung Kwon
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 120-750, Korea
| | - Bojana Jovanović
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Eli and Edythe L. Broad Institute, Cambridge, MA, 02142, USA
| | - Katherine Murphy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Anushree Gulvady
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Anne Trinh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanan Kuang
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Grace A Heavey
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Adrienne Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Cloud Paweletz
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Aaron R Thorner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA
| | - Jun Qi
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Thomas O McDonald
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Franziska Michor
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Eli and Edythe L. Broad Institute, Cambridge, MA, 02142, USA.
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA.
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
- Eli and Edythe L. Broad Institute, Cambridge, MA, 02142, USA.
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
64
|
Kim YS, Jung J, Jeong H, Oh HE, Lee JH, Lee ES, Choi JW. Protein expression profiles and prognostic value of E2F family members in clear cell renal cell carcinoma. Pathol Res Pract 2020; 216:152880. [PMID: 32089412 DOI: 10.1016/j.prp.2020.152880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022]
Abstract
The derangement of the cell cycle facilitates uncontrolled cell proliferation and acquisition of genetic alterations favorable for malignancy. However, the protein expression profiles of E2 F family cell cycle regulators in clear cell renal cell carcinoma (ccRCC) have not yet been thoroughly investigated. In this study, we aimed to examine the protein expression profiles and prognostic value of E2 F1, E2 F3, and E2 F4 in ccRCC cases. The immunohistochemical expression of E2 F1, E2 F3, and E2 F4 was quantitatively scored in 180 ccRCC tumor tissues and 79 normal kidney tissues. The prognostic implications of these E2 F members were determined. We found that ccRCC tumor cells showed higher nuclear expression of E2 F1, E2 F3 and E2 F4 than normal kidney samples. High E2 F1 and E2 F3 expression in tumor cells was associated with poor prognostic factors of ccRCC, whereas high E2 F4 correlated with beneficial prognostic factors. High expression of E2 F1 and E2 F3 in tumor cells was correlated with a poor overall and recurrence-free survival, while high E2 F4 expression did not. In conclusion, E2 F1, E2 F3 and E2 F4 may function as oncogenes during tumorigenesis of ccRCC, although they contribute to the progression of ccRCC in different ways. Additional studies are required to clarify the conflicting role of E2 F4 in the tumor evolution of ccRCC.
Collapse
Affiliation(s)
- Young-Sik Kim
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Jiyoon Jung
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Hoiseon Jeong
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Hwa Eun Oh
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Eung Seok Lee
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Jung-Woo Choi
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
65
|
Chakraborty G, Armenia J, Mazzu YZ, Nandakumar S, Stopsack KH, Atiq MO, Komura K, Jehane L, Hirani R, Chadalavada K, Yoshikawa Y, Khan NA, Chen Y, Abida W, Mucci LA, Lee GSM, Nanjangud GJ, Kantoff PW. Significance of BRCA2 and RB1 Co-loss in Aggressive Prostate Cancer Progression. Clin Cancer Res 2019; 26:2047-2064. [PMID: 31796516 DOI: 10.1158/1078-0432.ccr-19-1570] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Previous sequencing studies revealed that alterations of genes associated with DNA damage response (DDR) are enriched in men with metastatic castration-resistant prostate cancer (mCRPC). BRCA2, a DDR and cancer susceptibility gene, is frequently deleted (homozygous and heterozygous) in men with aggressive prostate cancer. Here we show that patients with prostate cancer who have lost a copy of BRCA2 frequently lose a copy of tumor suppressor gene RB1; importantly, for the first time, we demonstrate that co-loss of both genes in early prostate cancer is sufficient to induce a distinct biology that is likely associated with worse prognosis. EXPERIMENTAL DESIGN We prospectively investigated underlying molecular mechanisms and genomic consequences of co-loss of BRCA2 and RB1 in prostate cancer. We used CRISPR-Cas9 and RNAi-based methods to eliminate these two genes in prostate cancer cell lines and subjected them to in vitro studies and transcriptomic analyses. We developed a 3-color FISH assay to detect genomic deletions of BRCA2 and RB1 in prostate cancer cells and patient-derived mCRPC organoids. RESULTS In human prostate cancer cell lines (LNCaP and LAPC4), loss of BRCA2 leads to the castration-resistant phenotype. Co-loss of BRCA2-RB1 in human prostate cancer cells induces an epithelial-to-mesenchymal transition, which is associated with invasiveness and a more aggressive disease phenotype. Importantly, PARP inhibitors attenuate cell growth in human mCRPC-derived organoids and human CRPC cells harboring single-copy loss of both genes. CONCLUSIONS Our findings suggest that early identification of this aggressive form of prostate cancer offers potential for improved outcomes with early introduction of PARP inhibitor-based therapy.See related commentary by Mandigo and Knudsen, p. 1784.
Collapse
Affiliation(s)
- Goutam Chakraborty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua Armenia
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ying Z Mazzu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Subhiksha Nandakumar
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Konrad H Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mohammad O Atiq
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kazumasa Komura
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Urology, Osaka Medical College, Osaka, Japan
| | - Lina Jehane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rahim Hirani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kalyani Chadalavada
- Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yuki Yoshikawa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nabeela A Khan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Gwo-Shu Mary Lee
- Department of Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gouri J Nanjangud
- Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
66
|
Shao X, Lv N, Liao J, Long J, Xue R, Ai N, Xu D, Fan X. Copy number variation is highly correlated with differential gene expression: a pan-cancer study. BMC MEDICAL GENETICS 2019; 20:175. [PMID: 31706287 PMCID: PMC6842483 DOI: 10.1186/s12881-019-0909-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cancer is a heterogeneous disease with many genetic variations. Lines of evidence have shown copy number variations (CNVs) of certain genes are involved in development and progression of many cancers through the alterations of their gene expression levels on individual or several cancer types. However, it is not quite clear whether the correlation will be a general phenomenon across multiple cancer types. METHODS In this study we applied a bioinformatics approach integrating CNV and differential gene expression mathematically across 1025 cell lines and 9159 patient samples to detect their potential relationship. RESULTS Our results showed there is a close correlation between CNV and differential gene expression and the copy number displayed a positive linear influence on gene expression for the majority of genes, indicating that genetic variation generated a direct effect on gene transcriptional level. Another independent dataset is utilized to revalidate the relationship between copy number and expression level. Further analysis show genes with general positive linear influence on gene expression are clustered in certain disease-related pathways, which suggests the involvement of CNV in pathophysiology of diseases. CONCLUSIONS This study shows the close correlation between CNV and differential gene expression revealing the qualitative relationship between genetic variation and its downstream effect, especially for oncogenes and tumor suppressor genes. It is of a critical importance to elucidate the relationship between copy number variation and gene expression for prevention, diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Xin Shao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ning Lv
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jie Liao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinbo Long
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rui Xue
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ni Ai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Donghang Xu
- Department of Pharmacy, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Xiaohui Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
67
|
Chang HY, Koh VCY, Md Nasir ND, Ng CCY, Guan P, Thike AA, Teh BT, Tan PH. MED12, TERT and RARA in fibroepithelial tumours of the breast. J Clin Pathol 2019; 73:51-56. [DOI: 10.1136/jclinpath-2019-206208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022]
Abstract
Fibroepithelial tumours are biphasic neoplasms of the breast comprising the common benign fibroadenomas and the less common phyllodes tumours (PTs), which have recurrent potential. PTs are classified into benign, borderline or malignant, based on five histopathological criteria, with malignant PTs having the highest metastatic capability. Accurate diagnosis can be challenging due to the subjective assessment of histopathological parameters. Fibroadenomas bear morphological similarities to benign PTs, while borderline and malignant PTs can sometimes be difficult to distinguish from other spindle cell tumours of the breast. From clonality studies to whole-genome sequencing, much research has been conducted to elucidate the molecular pathogenesis of fibroepithelial tumours, which, in turn, have allowed leveraging the findings for diagnostic applications, including grading of PTs. The most noteworthy discovery was of recurrent MED12 mutations in both fibroadenomas and PTs. Subsequent studies also uncovered relatively frequent genetic mutations in TERT promoter and RARA. A customised panel of 16 most frequently mutated genes in fibroepithelial tissues has been compiled previously and has contributed to resolving a few diagnostic dilemmas. This review will introduce the 16 genes and focus on the top three that are most frequently mutated in fibroepithelial tumours: MED12, TERT, and RARA.
Collapse
|
68
|
Phosphoproteomic and Kinomic Signature of Clinically Aggressive Grade I (1.5) Meningiomas Reveals RB1 Signaling as a Novel Mediator and Biomarker. Clin Cancer Res 2019; 26:193-205. [PMID: 31615938 DOI: 10.1158/1078-0432.ccr-18-0641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/17/2018] [Accepted: 10/10/2019] [Indexed: 11/16/2022]
|
69
|
Gonzalez-Molina J, Gramolelli S, Liao Z, Carlson JW, Ojala PM, Lehti K. MMP14 in Sarcoma: A Regulator of Tumor Microenvironment Communication in Connective Tissues. Cells 2019; 8:cells8090991. [PMID: 31466240 PMCID: PMC6770050 DOI: 10.3390/cells8090991] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Sarcomas are deadly malignant tumors of mesenchymal origin occurring at all ages. The expression and function of the membrane-type matrix metalloproteinase MMP14 is closely related to the mesenchymal cell phenotype, and it is highly expressed in most sarcomas. MMP14 regulates the activity of multiple extracellular and plasma membrane proteins, influencing cell–cell and cell–extracellular matrix (ECM) communication. This regulation mediates processes such as ECM degradation and remodeling, cell invasion, and cancer metastasis. Thus, a comprehensive understanding of the biology of MMP14 in sarcomas will shed light on the mechanisms controlling the key processes in these diseases. Here, we provide an overview of the function and regulation of MMP14 and we discuss their relationship with clinical and pre-clinical MMP14 data in both adult and childhood sarcomas.
Collapse
Affiliation(s)
- Jordi Gonzalez-Molina
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden.
- Department of Oncology-Pathology, Karolinska Institutet, 17176 Stockholm, Sweden.
| | - Silvia Gramolelli
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Zehuan Liao
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Joseph W Carlson
- Department of Oncology-Pathology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Päivi M Ojala
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Section of Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London W2 1NY, UK
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden.
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
70
|
Li Y, Zhang L, Shan Y, Jia C, Xu Y. CDK4/6 inhibitor protects chemerin-induced human granulosa-lutein cells from apoptosis by inhibiting the p53/p21 waf pathway. Mol Reprod Dev 2019; 86:1561-1568. [PMID: 31339188 DOI: 10.1002/mrd.23241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/05/2019] [Indexed: 11/05/2022]
Abstract
Dysregulation of the cell cycle is common in human tumorigenesis. Therefore, CDK4/6 inhibitors targeting the cell cycle have been developed, and their antiapoptotic effects have been highly correlated with potential clinical therapies. The aim of this study was to identify the regulatory effect of the CDK4/6 inhibitor palbociclib on chemerin-induced apoptosis of immortalized human granulosa-lutein (hGL) cells and to elucidate its fundamental mechanism of action. Palbociclib enhanced antioxidative enzyme generation and diminished ROS generation in hGL cells. Furthermore, we found that palbociclib suppressed chemerin-induced apoptotic protein expression, reversing the Bcl-2/Bax ratio and inhibiting the p53/p21 waf pathway. Eventually, palbociclib decreased the level of cleaved caspase-3 and -9, hindering the apoptosis of hGL cells. In general, the antiapoptotic efficacy of palbociclib could be attributed in part to the modulation of the mitochondrial apoptotic pathway in hGL cells.
Collapse
Affiliation(s)
- Ying Li
- Department of Neonatology, First Hospital, Jilin University, Changchun, China
| | - Lili Zhang
- Department of Ultrasonography, First Hospital, Jilin University, Changchun, China
| | - Yanhong Shan
- Department of Obstetrics, First Hospital, Jilin University, Changchun, China
| | - Chunshu Jia
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Ying Xu
- Department of Nephrology, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
71
|
Roworth AP, Carr SM, Liu G, Barczak W, Miller RL, Munro S, Kanapin A, Samsonova A, La Thangue NB. Arginine methylation expands the regulatory mechanisms and extends the genomic landscape under E2F control. SCIENCE ADVANCES 2019; 5:eaaw4640. [PMID: 31249870 PMCID: PMC6594773 DOI: 10.1126/sciadv.aaw4640] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
E2F is a family of master transcription regulators involved in mediating diverse cell fates. Here, we show that residue-specific arginine methylation (meR) by PRMT5 enables E2F1 to regulate many genes at the level of alternative RNA splicing, rather than through its classical transcription-based mechanism. The p100/TSN tudor domain protein reads the meR mark on chromatin-bound E2F1, allowing snRNA components of the splicing machinery to assemble with E2F1. A large set of RNAs including spliced variants associate with E2F1 by virtue of the methyl mark. By focusing on the deSUMOylase SENP7 gene, which we identified as an E2F target gene, we establish that alternative splicing is functionally important for E2F1 activity. Our results reveal an unexpected consequence of arginine methylation, where reader-writer interplay widens the mechanism of control by E2F1, from transcription factor to regulator of alternative RNA splicing, thereby extending the genomic landscape under E2F1 control.
Collapse
Affiliation(s)
- Alice Poppy Roworth
- Laboratory of Cancer Biology, Department of Oncology, Medical Sciences Division, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Simon Mark Carr
- Laboratory of Cancer Biology, Department of Oncology, Medical Sciences Division, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Geng Liu
- Laboratory of Cancer Biology, Department of Oncology, Medical Sciences Division, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Wojciech Barczak
- Laboratory of Cancer Biology, Department of Oncology, Medical Sciences Division, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Rebecca Louise Miller
- Laboratory of Cancer Biology, Department of Oncology, Medical Sciences Division, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Shonagh Munro
- Laboratory of Cancer Biology, Department of Oncology, Medical Sciences Division, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Alexander Kanapin
- Institute of Translational Biomedicine, St. Petersburg University, St. Petersburg 199034, Russia
| | - Anastasia Samsonova
- Institute of Translational Biomedicine, St. Petersburg University, St. Petersburg 199034, Russia
| | - Nicholas B. La Thangue
- Laboratory of Cancer Biology, Department of Oncology, Medical Sciences Division, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
72
|
Abstract
The cyclin-dependent kinase (CDK)-RB-E2F axis forms the core transcriptional machinery driving cell cycle progression, dictating the timing and fidelity of genome replication and ensuring genetic material is accurately passed through each cell division cycle. The ultimate effectors of this axis are members of a family of eight distinct E2F genes encoding transcriptional activators and repressors. E2F transcriptional activity is tightly regulated throughout the cell cycle via transcriptional and translational regulation, post-translational modifications, protein degradation, binding to cofactors and subcellular localization. Alterations in one or more key components of this axis (CDKs, cyclins, CDK inhibitors and the RB family of proteins) occur in virtually all cancers and result in heightened oncogenic E2F activity, leading to uncontrolled proliferation. In this Review, we discuss the activities of E2F proteins with an emphasis on the newest atypical E2F family members, the specific and redundant functions of E2F proteins, how misexpression of E2F transcriptional targets promotes cancer and both current and developing therapeutic strategies being used to target this oncogenic pathway.
Collapse
Affiliation(s)
- Lindsey N Kent
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Gustavo Leone
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
73
|
Bergholtz H, Lien TG, Ursin G, Holmen MM, Helland Å, Sørlie T, Haakensen VD. A Longitudinal Study of the Association between Mammographic Density and Gene Expression in Normal Breast Tissue. J Mammary Gland Biol Neoplasia 2019; 24:163-175. [PMID: 30613869 DOI: 10.1007/s10911-018-09423-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022] Open
Abstract
High mammographic density (MD) is associated with a 4-6 times increase in breast cancer risk. For post-menopausal women, MD often decreases over time, but little is known about the underlying biological mechanisms. MD reflects breast tissue composition, and may be associated with microenvironment subtypes previously identified in tumor-adjacent normal tissue. Currently, these subtypes have not been explored in normal breast tissue. We obtained biopsies from breasts of healthy women at two different time points several years apart and performed microarray gene expression analysis. At time point 1, 65 samples with both MD and gene expression were available. At time point 2, gene expression and MD data were available from 17 women, of which 11 also had gene expression data available from the first time point. We validated findings from our previous study; negative correlation between RBL1 and MD in post-menopausal women, indicating involvement of the TGFβ pathway. We also found that breast tissue samples from women with a large decrease in MD sustained higher expression of genes in the histone family H4. In addition, we explored the previously defined active and inactive microenvironment subtypes and demonstrated that normal breast samples of the active subtype had characteristics similar to the claudin-low breast cancer subtype. Breast biopsies from healthy women are challenging to obtain, but despite a limited sample size, we have identified possible mechanisms relevant for changes in breast biology and MD over time that may be of importance for breast cancer risk and tumor initiation.
Collapse
Affiliation(s)
- Helga Bergholtz
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Tonje Gulbrandsen Lien
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Giske Ursin
- Cancer Registry of Norway, Oslo, Norway
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- University of Southern California, Los Angeles, CA, USA
| | - Marit Muri Holmen
- Department of Radiology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Therese Sørlie
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomarkers CCBIO, Dep. of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Vilde Drageset Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
74
|
Zhong XP, Kan A, Ling YH, Lu LH, Mei J, Wei W, Li SH, Guo RP. NCKAP1 improves patient outcome and inhibits cell growth by enhancing Rb1/p53 activation in hepatocellular carcinoma. Cell Death Dis 2019; 10:369. [PMID: 31068575 PMCID: PMC6506474 DOI: 10.1038/s41419-019-1603-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/06/2019] [Accepted: 04/12/2019] [Indexed: 02/05/2023]
Abstract
In our previous report, we identified miR-34c-3p as an independent factor contributing to the carcinogenesis of hepatocellular carcinoma (HCC) by targeting NCK Associated Protein 1 (NCKAP1). NCKAP1 has been known to promote the malignancy of cancer cells by disrupting the structural stability of WAS protein family member 1 (WASF1) and is correlated with poor prognosis of patients in several cancer types. Our results, however, show that NCKAP1 is correlated with a favorable outcome in HCC patients. The underlying mechanism of this contradictory phenomenon is unknown. The current study was designed to explore the mechanism of NCKAP1 in HCC. As a result, clinicopathological correlations and results from in vivo and in vitro models indicated that NCKAP1 was a tumor suppressor gene. Cell cycle analysis suggested that NCKAP1 inhibit cells from entering G2/M phase. Western blot analysis showed that WASF1 was barely expressed in HCC cell lines compared to that of breast cancer cell lines, which serve as positive controls. Furthermore, Rb1 and p53 expression was upregulated in cell lines overexpressing NCKAP1. Expression of several cell cycle regulating proteins also varied in the HCC cell lines. In conclusion, although previous studies have identified NCKAP1 as a cell invasion promoter by binding to WASF1, we found that NCKAP1 is a tumor suppress gene that modulates the cell cycle of HCC cell lines by targeting Rb1/p53 regulation.
Collapse
Affiliation(s)
- Xiao-Ping Zhong
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Anna Kan
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yi-Hong Ling
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Liang-He Lu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Jie Mei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Wei Wei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Shao-Hua Li
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| | - Rong-Ping Guo
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| |
Collapse
|
75
|
Wang Z, Li J, Wang Y, Liu Q. CDK4/6 inhibitor protects against myocardial cells apoptosis by inhibiting RB phosphorylation in H9c2 cells. Biochem Biophys Res Commun 2019; 509:949-953. [PMID: 30642631 DOI: 10.1016/j.bbrc.2019.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
Abstract
Cell cycle dysregulation is typical in human cancers, and CDK4/6 inhibitors targeting cell cycle have potential antiapoptosis effect. The aim of this work is to identify the regulatory effect of Palbociclib on apoptosis of H9c2 cells induced by high glucose (HG) and to elucidate the fundamental mechanisms. It was observed that Palbociclib decreased intracellular ROS production, augmented mitochondrial membrane potential and hindered apoptosis of H9c2 cells. Palbociclib increased the Bcl-2/Bax ratio, diminished the expressions of Bax and cleaved-caspase-3, and affected the RB phosphorylation and p53 expression. Altogether, the anti-apoptotic efficacy of Palbociclib could be attributed in part to the modulation of the mitochondria apoptotic pathway.
Collapse
Affiliation(s)
- Zhenggui Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jing Li
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Quan Liu
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
76
|
Mughal MJ, Mahadevappa R, Kwok HF. DNA replication licensing proteins: Saints and sinners in cancer. Semin Cancer Biol 2018; 58:11-21. [PMID: 30502375 DOI: 10.1016/j.semcancer.2018.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
DNA replication is all-or-none process in the cell, meaning, once the DNA replication begins it proceeds to completion. Hence, to achieve maximum control of DNA replication, eukaryotic cells employ a multi-subunit initiator protein complex known as "pre-replication complex or DNA replication licensing complex (DNA replication LC). This complex involves multiple proteins which are origin-recognition complex family proteins, cell division cycle-6, chromatin licensing and DNA replication factor 1, and minichromosome maintenance family proteins. Higher-expression of DNA replication LC proteins appears to be an early event during development of cancer since it has been a common hallmark observed in a wide variety of cancers such as oesophageal, laryngeal, pulmonary, mammary, colorectal, renal, urothelial etc. However, the exact mechanisms leading to the abnormally high expression of DNA replication LC have not been clearly deciphered. Increased expression of DNA replication LC leads to licensing and/or firing of multiple origins thereby inducing replication stress and genomic instability. Therapeutic approaches where the reduction in the activity of DNA replication LC was achieved either by siRNA or shRNA techniques, have shown increased sensitivity of cancer cell lines towards the anti-cancer drugs such as cisplatin, 5-Fluorouracil, hydroxyurea etc. Thus, the expression level of DNA replication LC within the cell determines a cell's fate thereby creating a paradox where DNA replication LC acts as both "Saint" and "Sinner". With a potential to increase sensitivity to chemotherapy drugs, DNA replication LC proteins have prospective clinical importance in fighting cancer. Hence, in this review, we will shed light on importance of DNA replication LC with an aim to use DNA replication LC in diagnosis and prognosis of cancer in patients as well as possible therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Ravikiran Mahadevappa
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
77
|
Wang S, Liu J, Yang Y, Hao F, Zhang L. PlncRNA-1 is overexpressed in retinoblastoma and regulates retinoblastoma cell proliferation and motility through modulating CBR3. IUBMB Life 2018; 70:969-975. [PMID: 30096220 DOI: 10.1002/iub.1886] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 01/01/2023]
Abstract
PlncRNA-1 has been suggested to function as an oncogenic role in prostate cancer, colorectal cancer, hepatocellular carcinoma, esophageal squamous cell carcinoma, and gastric cancer. The expression pattern of PlncRNA-1 in retinoblastoma remained unknown. Therefore, the aim of this study was to explore the clinical significance of PlncRNA-1 in retinoblastoma patient and the biological function and molecular mechanism of PlncRNA-1 in regulating retinoblastoma cell proliferation, migration, and invasion. The results showed the level of PlncRNA-1 expression was obviously increased in retinoblastoma tissues and cell lines compared with compared with normal retina tissues and retina cell lines, respectively. Meanwhile, patients with advanced stage retinoblastoma had higher levels of PlncRNA-1 expression than patients with early stage retinoblastoma. There was an inverse correlation between PlncRNA-1 expression and CBR3 expression in retinoblastoma tissues, and PlncRNA-1 negatively regulated mRNA and protein expressions of CBR3. The in vitro experiments showed that down-regulation of PlncRNA-1 expression suppressed retinoblastoma cell proliferation, migration and invasion through up-regulating CBR3. In conclusion, PlncRNA-1 serves as an oncogenic lncRNA in regulating retinoblastoma cell proliferation, migration, and invasion through proliferation, migration, and invasion through up-regulating CBR3. © 2018 IUBMB Life, 70(10):969-975, 2018.
Collapse
Affiliation(s)
- Shuna Wang
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Jianwei Liu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yang Yang
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Fengqin Hao
- Clinical Medical College, Weifang Medical University, Weifang, Shandong, China
| | - Laixia Zhang
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
78
|
Worst TS, Weis CA, Stöhr R, Bertz S, Eckstein M, Otto W, Breyer J, Hartmann A, Bolenz C, Wirtz RM, Erben P. CDKN2A as transcriptomic marker for muscle-invasive bladder cancer risk stratification and therapy decision-making. Sci Rep 2018; 8:14383. [PMID: 30258198 PMCID: PMC6158275 DOI: 10.1038/s41598-018-32569-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
Deletions of the cell cycle control gene CDKN2A are described as progression markers of non-muscle invasive bladder cancer and to be associated with fibroblast growth factor 3 (FGFR3) mutations. The prognostic role of CDKN2A RNA expression in muscle invasive bladder cancer (MIBC) is under discussion. In 80 MIBC patients (m/f 60/20) who underwent radical cystectomy the expression of CDKN2A and FGFR3 was examined with qRT-PCR (test cohort). The MDA cohort (n = 57) and the TCGA cohort (n = 365) served for validation. The expression of drug target genes and TCGA molecular subtypes was correlated with CDKN2A expression. In the test cohort CDKN2Ahigh patients (n = 8; 10.0%) had a significantly shorter recurrence-free (p = 0.018) and disease-specific (p = 0.006) survival compared to the rest of the cohort. A similar stratification was seen in the validation cohorts (CDKN2Ahigh: n = 7, 12.3%, p = 0.001; n = 46, 12.6%, p = 0.011). In the TCGA cohort these patients had a comparably low expression of drug target genes. The expression of CDKN2A significantly differed among TGCA molecular subtypes. 71.7% of CDKN2Ahigh were TCGA basal squamous tumours but also show divergent molecular features compared to this group. In summary CDKN2A RNA expression-based risk stratification of MIBC allows the identification of a CDKN2Ahigh poor prognosis group with low expression of drug target genes.
Collapse
Affiliation(s)
- Thomas S Worst
- Department of Urology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Robert Stöhr
- Institute of Pathology, University of Erlangen-Nuremberg, Krankenhausstraße 8-10, 91054, Erlangen, Germany
| | - Simone Bertz
- Institute of Pathology, University of Erlangen-Nuremberg, Krankenhausstraße 8-10, 91054, Erlangen, Germany
| | - Markus Eckstein
- Institute of Pathology, University of Erlangen-Nuremberg, Krankenhausstraße 8-10, 91054, Erlangen, Germany
| | - Wolfgang Otto
- Department of Urology, University of Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Johannes Breyer
- Department of Urology, University of Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Arndt Hartmann
- Institute of Pathology, University of Erlangen-Nuremberg, Krankenhausstraße 8-10, 91054, Erlangen, Germany
| | - Christian Bolenz
- Department of Urology, University of Ulm, Prittwitzstraße 43, 89075, Ulm, Germany
| | - Ralph M Wirtz
- STRATIFYER Molecular Pathology GmbH, Werthmannstraße 1, 50935, Cologne, Germany
- Institute of Pathology at the St Elisabeth Hospital Köln-Hohenlind, Werthmannstraße 1, 50935, Cologne, Germany
| | - Philipp Erben
- Department of Urology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
79
|
Pereira SS, Monteiro MP, Bourdeau I, Lacroix A, Pignatelli D. MECHANISMS OF ENDOCRINOLOGY: Cell cycle regulation in adrenocortical carcinoma. Eur J Endocrinol 2018; 179:R95-R110. [PMID: 29773584 DOI: 10.1530/eje-17-0976] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/15/2018] [Indexed: 12/27/2022]
Abstract
Adrenocortical carcinomas (ACCs) are rather rare endocrine tumors that often have a poor prognosis. The reduced survival rate associated with these tumors is due to their aggressive biological behavior, combined with the scarcity of effective treatment options that are currently available. The recent identification of the genomic alterations present in ACC have provided further molecular mechanisms to develop consistent strategies for the diagnosis, prevention of progression and treatment of advanced ACCs. Taken together, molecular and genomic advances could be leading the way to develop personalized medicine in ACCs similarly to similar developments in lung or breast cancers. In this review, we focused our attention to systematically compile and summarize the alterations in the cell cycle regulation that were described so far in ACC as they are known to play a crucial role in cell differentiation and growth. We have divided the analysis according to the major transition phases of the cell cycle, G1 to S and G2 to M. We have analyzed the most extensively studied checkpoints: the p53/Rb1 pathway, CDC2/cyclin B and topoisomerases (TOPs). We reached the conclusion that the most important alterations having a potential application in clinical practice are the ones related to p53/Rb1 and TOP 2. We also present a brief description of on-going clinical trials based on molecular alterations in ACC. The drugs have targeted the insulin-like growth factor receptor 1, TOP 2, polo-like kinase1, cyclin-dependent kinase inhibitors, p53 reactivation and CDC25.
Collapse
Affiliation(s)
- Sofia S Pereira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Clinical and Experimental Endocrinology, Department of Anatomy, Multidisciplinary Unit for Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal
| | - Mariana P Monteiro
- Clinical and Experimental Endocrinology, Department of Anatomy, Multidisciplinary Unit for Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal
| | - Isabelle Bourdeau
- Endocrinology Division, Department of Medicine, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada
| | - André Lacroix
- Endocrinology Division, Department of Medicine, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada
| | - Duarte Pignatelli
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Department of Endocrinology, Hospital S. João, Porto, Portugal
| |
Collapse
|
80
|
Koutsi A, Vervesou EC. Diagnostic molecular techniques in haematology: recent advances. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:242. [PMID: 30069444 DOI: 10.21037/atm.2018.05.30] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hematopoietic disorders are often driven by genetic mutations and epigenetic alterations. New advanced technologies including next-generation sequencing, ultra-deep PCR and whole-genome and exome sequencing were proved very efficient in detecting several mutations implicated in the pathogenesis of hematological diseases. Emerging evidence indicates that genomic data can be useful in all aspects of clinical practice including diagnosis, prognosis and prediction of response to specific treatments, as well as in the development of novel targeted treatments for patients with hematological disorders.
Collapse
Affiliation(s)
- Aikaterini Koutsi
- Department of Hematology, Errikos Dunant Hospital Center, Athens, Greece
| | | |
Collapse
|
81
|
De Keuckelaere E, Hulpiau P, Saeys Y, Berx G, van Roy F. Nanos genes and their role in development and beyond. Cell Mol Life Sci 2018; 75:1929-1946. [PMID: 29397397 PMCID: PMC11105394 DOI: 10.1007/s00018-018-2766-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
Abstract
The hallmark of Nanos proteins is their typical (CCHC)2 zinc finger motif (zf-nanos). Animals have one to four nanos genes. For example, the fruit fly and demosponge have only one nanos gene, zebrafish and humans have three, and Fugu rubripes has four. Nanos genes are mainly known for their evolutionarily preserved role in germ cell survival and pluripotency. Nanos proteins have been reported to bind the C-terminal RNA-binding domain of Pumilio to form a post-transcriptional repressor complex. Several observations point to a link between the miRNA-mediated repression complex and the Nanos/Pumilio complex. Repression of the E2F3 oncogene product is, indeed, mediated by cooperation between the Nanos/Pumilio complex and miRNAs. Another important interaction partner of Nanos is the CCR4-NOT deadenylase complex. Besides the tissue-specific contribution of Nanos proteins to normal development, their ectopic expression has been observed in several cancer cell lines and various human cancers. An inverse correlation between the expression levels of human Nanos1 and Nanos3 and E-cadherin was observed in several cancer cell lines. Loss of E-cadherin, an important cell-cell adhesion protein, contributes to tumor invasion and metastasis. Overexpression of Nanos3 induces epithelial-mesenchymal transition in lung cancer cell lines partly by repressing E-cadherin. Other than some most interesting data from Nanos knockout mice, little is known about mammalian Nanos proteins, and further research is needed. In this review, we summarize the main roles of Nanos proteins and discuss the emerging concept of Nanos proteins as oncofetal antigens.
Collapse
Affiliation(s)
- Evi De Keuckelaere
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
- Molecular Cell Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Paco Hulpiau
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
- Molecular Cell Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Yvan Saeys
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281, S9, 9000, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frans van Roy
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium.
- Molecular Cell Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
82
|
Wang G, Xiao L, Zhang M, Kamat AM, Siefker-Radtke A, Dinney CP, Czerniak B, Guo CC. Small cell carcinoma of the urinary bladder: a clinicopathological and immunohistochemical analysis of 81 cases. Hum Pathol 2018; 79:57-65. [PMID: 29763719 DOI: 10.1016/j.humpath.2018.05.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 12/27/2022]
Abstract
Small cell carcinoma (SmCC) of the bladder is a rare disease. We retrospectively studied a large series of bladder SmCC from a single institution. The patients included 69 men and 12 women with a mean age of 68 years. Most bladder SmCCs were presented at advanced stage, with tumors invading the muscularis propria and beyond (n = 77). SmCC was pure in 27 cases and mixed with other histologic types in 54 cases, including urothelial carcinoma (UC) (n = 32), UC in situ (n = 26), glandular (n = 14), micropapillary (n = 4), sarcomatoid (n = 4), squamous (n = 3), and plasmacytoid (n = 1) features. Most SmCCs expressed neuroendocrine markers synaptophysin (41/56), chromogranin (26/55), and CD56 (39/41); however, they did not express UC luminal markers CK20 (0/17), GATA3 (1/30), and uroplakin II (1/22). Some SmCCs showed focal expression of CK5/6 (9/25), a marker for the basal molecular subtype. Furthermore, expression of the retinoblastoma 1 (RB1) gene protein was lost in most of the bladder SmCCs (2/23). The patients' survival was significantly associated with cancer stage but did not show a significant difference between mixed and pure SmCCs. Compared with conventional UC at similar stages, SmCC had a worse prognosis only when patients developed metastatic diseases. In conclusion, bladder SmCC is an aggressive disease that is frequently present at an advanced stage. A fraction of SmCCs show a basal molecular subtype, which may underlie its good response to chemotherapy. Inactivation of the RB1 gene may be implicated in the oncogenesis of bladder SmCC.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li Xiao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Miao Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ashish M Kamat
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Arlene Siefker-Radtke
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Colin P Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Charles C Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
83
|
MiR-422a regulates cellular metabolism and malignancy by targeting pyruvate dehydrogenase kinase 2 in gastric cancer. Cell Death Dis 2018; 9:505. [PMID: 29725130 PMCID: PMC5938701 DOI: 10.1038/s41419-018-0564-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/28/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023]
Abstract
Increasing evidence indicates that dysregulation of microRNAs (miRNAs) plays a crucial role in human malignancies. Here, we showed that microRNA-422a (miR-422a) expression was dramatically downregulated in gastric cancer (GC) samples and cell lines compared with normal controls, and that its expression level was inversely related to tumor size and depth of infiltration. Functional studies revealed that the overexpression of miR-422a in GC tumor cells suppressed cell proliferation and migration, and drove a metabolic shift from aerobic glycolysis to oxidative phosphorylation. Mechanistic analysis suggested that miR-422a repressed pyruvate dehydrogenase kinase 2 (PDK2) to restore activity of the pyruvate dehydrogenase (PDH), the gatekeeping enzyme that catalyzes the decarboxylation of pyruvate to produce acetyl-CoA. Importantly, we further demonstrated that the mir-422a–PDK2 axis also influenced another metabolic pathway, de novo lipogenesis in cancer cells, and that it subsequently affected reactive oxygen species (ROS) and RB phosphorylation levels, ultimately resulting in cell cycle arrest in G1 phase. Our findings show that the miR-422a–PDK2 axis is an important mediator in metabolic reprogramming and a promising therapeutic target for antitumor treatment.
Collapse
|
84
|
Sandoval-Basilio J, González-González R, Bologna-Molina R, Isiordia-Espinoza M, Leija-Montoya G, Alcaraz-Estrada SL, Serafín-Higuera I, González-Ramírez J, Serafín-Higuera N. Epigenetic mechanisms in odontogenic tumors: A literature review. Arch Oral Biol 2018; 87:211-217. [PMID: 29310033 DOI: 10.1016/j.archoralbio.2017.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/23/2017] [Accepted: 12/28/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Epigenetic mechanisms, such as DNA methylation, regulate important biological processes as gene expression and it was suggested that these phenomena play important roles in the carcinogenesis and tumor biology. The aim of this review is to provide the current state of knowledge about epigenetic alterations, focusing mainly on DNA methylation, reported in odontogenic tumors. DESIGN Literatures were searched based in the combination of the following keywords: odontogenic tumors, epigenetics, DNA methylation, histone modifications, non-coding RNA, microRNA, DNA methyltransferases. Electronic databases (Medline/PubMed, Scopus and Web of Science) were screened. RESULTS The analysis of epigenetic alterations in different tumors has rapidly increased; however, limited information is available about epigenetic mechanisms involved in the formation of odontogenic tumors. DNA methylation is the most studied epigenetic modification in these tumors and the participation of non-coding RNA's in odontogenic tumors has been recently addressed. Differential expression of DNA methyltransferases, altered DNA methylation patterns and aberrant expression of non-coding RNA's were reported in odontogenic tumors. CONCLUSIONS Current studies suggest epigenetics as an emerging mechanism, possibly implicated in etiopathogenesis of odontogenic tumors. Deeper understanding of the epigenetic abnormalities in these tumors could show potential applications as biomarkers or therapeutic possibilities in the future.
Collapse
Affiliation(s)
| | | | - Ronell Bologna-Molina
- Departamento de Investigación, Facultad Odontología, Universidad de la República. (UDELAR), Montevideo, Uruguay
| | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
The retinoblastoma protein (pRb) plays a central role in the regulation of cell cycle by interaction with members of the E2F transcription factor family. As a tumor suppressor protein, pRb is frequently dysregulated in several major cancers. In addition to mutations, inactivation of pRb is also caused by epigenetic mechanisms including alterations of DNA methylation. There are three CpG islands located within the RB1 gene that encodes pRb that are closely associated with the regulation of pRb expression. Aberrant DNA methylation at the RB1 gene has been reported in sporadic retinoblastoma as well as other cancers including glioblastoma, hepatocellular carcinoma, and breast cancer. Recent studies have revealed that the RB1 gene is imprinted. Therefore, quantitative analysis is required to detect aberrations in DNA methylation associated with imprint deregulation. Pyrosequencing® is considered as the method of choice for quantitative and reproducible analysis of DNA methylation with single base resolution. In this chapter, we provide a detailed protocol for the quantitative analysis of RB1 gene methylation using bisulfite Pyrosequencing®.
Collapse
Affiliation(s)
- Sumadi Lukman Anwar
- Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ulrich Lehmann
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover, Germany.
| |
Collapse
|
86
|
Baez CF, Brandão Varella R, Villani S, Delbue S. Human Polyomaviruses: The Battle of Large and Small Tumor Antigens. Virology (Auckl) 2017; 8:1178122X17744785. [PMID: 29238174 PMCID: PMC5721967 DOI: 10.1177/1178122x17744785] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022] Open
Abstract
About 40 years ago, the large and small tumor antigens (LT-Ag and sT-Ag) of the polyomavirus (PyVs) simian vacuolating virus 40 have been identified and characterized. To date, it is well known that all the discovered human PyVs (HPyVs) encode these 2 multifunctional and tumorigenic proteins, expressed at viral replication early stage. The 2 T-Ags are able to transform cells both in vitro and in vivo and seem to play a distinct role in the pathogenesis of some tumors in humans. In addition, they are involved in viral DNA replication, transcription, and virion assembly. This short review focuses on the structural and functional features of the HPyVs’ LT-Ag and sT-Ag, with special attention to their transforming properties.
Collapse
Affiliation(s)
- Camila Freze Baez
- Department of Preventive Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Sonia Villani
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| |
Collapse
|
87
|
McNair C, Xu K, Mandigo AC, Benelli M, Leiby B, Rodrigues D, Lindberg J, Gronberg H, Crespo M, De Laere B, Dirix L, Visakorpi T, Li F, Feng FY, de Bono J, Demichelis F, Rubin MA, Brown M, Knudsen KE. Differential impact of RB status on E2F1 reprogramming in human cancer. J Clin Invest 2017; 128:341-358. [PMID: 29202480 DOI: 10.1172/jci93566] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/24/2017] [Indexed: 01/03/2023] Open
Abstract
The tumor suppressor protein retinoblastoma (RB) is mechanistically linked to suppression of transcription factor E2F1-mediated cell cycle regulation. For multiple tumor types, loss of RB function is associated with poor clinical outcome. RB action is abrogated either by direct depletion or through inactivation of RB function; however, the basis for this selectivity is unknown. Here, analysis of tumor samples and cell-free DNA from patients with advanced prostate cancer showed that direct RB loss was the preferred pathway of disruption in human disease. While RB loss was associated with lethal disease, RB-deficient tumors had no proliferative advantage and exhibited downstream effects distinct from cell cycle control. Mechanistically, RB loss led to E2F1 cistrome expansion and different binding specificity, alterations distinct from those observed after functional RB inactivation. Additionally, identification of protumorigenic transcriptional networks specific to RB loss that were validated in clinical samples demonstrated the ability of RB loss to differentially reprogram E2F1 in human cancers. Together, these findings not only identify tumor-suppressive functions of RB that are distinct from cell cycle control, but also demonstrate that the molecular consequence of RB loss is distinct from RB inactivation. Thus, these studies provide insight into how RB loss promotes disease progression, and identify new nodes for therapeutic intervention.
Collapse
Affiliation(s)
- Christopher McNair
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kexin Xu
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Amy C Mandigo
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Matteo Benelli
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Benjamin Leiby
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Daniel Rodrigues
- Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Gronberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mateus Crespo
- Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Bram De Laere
- Centre for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Luc Dirix
- Centre for Oncological Research, University of Antwerp, Antwerp, Belgium.,Department of Oncology, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
| | - Tapio Visakorpi
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere and Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Fugen Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Felix Y Feng
- Department of Radiation Oncology, Urology, and Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Johann de Bono
- Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Francesca Demichelis
- Centre for Integrative Biology, University of Trento, Trento, Italy.,Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian Hospital, New York, New York, USA
| | - Mark A Rubin
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian Hospital, New York, New York, USA.,Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, New York, USA
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Karen E Knudsen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
88
|
Gao P, Seebacher NA, Hornicek F, Guo Z, Duan Z. Advances in sarcoma gene mutations and therapeutic targets. Cancer Treat Rev 2017; 62:98-109. [PMID: 29190505 DOI: 10.1016/j.ctrv.2017.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022]
Abstract
Sarcomas are rare and complex malignancies that have been associated with a poor prognostic outcome. Over the last few decades, traditional treatment with surgery and/or chemotherapy has not significantly improved outcomes for most types of sarcomas. In recent years, there have been significant advances in the understanding of specific gene mutations that are important in driving the pathogenesis and progression of sarcomas. Identification of these new gene mutations, using next-generation sequencing and advanced molecular techniques, has revealed a range of potential therapeutic targets. This, in turn, may lead to the development of novel agents targeted to different sarcoma subtypes. In this review, we highlight the advances made in identifying sarcoma gene mutations, including those of p53, RB, PI3K and IDH genes, as well as novel therapeutic strategies aimed at utilizing these mutant genes. In addition, we discuss a number of preclinical studies and ongoing early clinical trials in sarcoma targeting therapies, as well as gene editing technology, which may provide a better choice for sarcoma patient management.
Collapse
Affiliation(s)
- Peng Gao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; UCLA Orthopaedic Surgery, Sarcoma Biology Laboratory, 615 Charles E Young Dr. South, Biomedical Sciences Research Building, Room 410, Los Angeles, CA 90095, USA
| | - Nicole A Seebacher
- UCLA Orthopaedic Surgery, Sarcoma Biology Laboratory, 615 Charles E Young Dr. South, Biomedical Sciences Research Building, Room 410, Los Angeles, CA 90095, USA
| | - Francis Hornicek
- UCLA Orthopaedic Surgery, Sarcoma Biology Laboratory, 615 Charles E Young Dr. South, Biomedical Sciences Research Building, Room 410, Los Angeles, CA 90095, USA
| | - Zheng Guo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhenfeng Duan
- UCLA Orthopaedic Surgery, Sarcoma Biology Laboratory, 615 Charles E Young Dr. South, Biomedical Sciences Research Building, Room 410, Los Angeles, CA 90095, USA.
| |
Collapse
|
89
|
Krasnov GS, Puzanov GA, Kudryavtseva AV, Dmitriev AA, Beniaminov AD, Kondratieva TT, Senchenko VN. Differential expression of an ensemble of the key genes involved in cell-cycle regulation in lung cancer. Mol Biol 2017. [DOI: 10.1134/s0026893317050107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
90
|
A viral Sm-class RNA base-pairs with mRNAs and recruits microRNAs to inhibit apoptosis. Nature 2017; 550:275-279. [PMID: 28976967 DOI: 10.1038/nature24034] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/22/2017] [Indexed: 01/17/2023]
Abstract
Viruses express several classes of non-coding RNAs; the functions and mechanisms by which most of these act are unknown. Herpesvirus saimiri, a γ-herpesvirus that establishes latency in the T cells of New World primates and has the ability to cause aggressive leukaemias and lymphomas in non-natural hosts, expresses seven small nuclear uracil-rich non-coding RNAs (called HSURs) in latently infected cells. These HSURs associate with Sm proteins, and share biogenesis and structural features with cellular Sm-class small nuclear RNAs. One of these HSURs (HSUR2) base-pairs with two host cellular microRNAs (miR-142-3p and miR-16) but does not affect their abundance or activity, which suggests that its interactions with them perform alternative functions. Here we show that HSUR2 also base-pairs with mRNAs in infected cells. We combined in vivo psoralen-mediated RNA-RNA crosslinking and high-throughput sequencing to identify the mRNAs targeted by HSUR2, which include mRNAs that encode retinoblastoma and factors involved in p53 signalling and apoptosis. We show that HSUR2 represses the expression of target mRNAs and that base-pairing between HSUR2 and miR-142-3p and miR-16 is essential for this repression, suggesting that HSUR2 recruits these two cellular microRNAs to its target mRNAs. Furthermore, we show that HSUR2 uses this mechanism to inhibit apoptosis. Our results uncover a role for this viral Sm-class RNA as a microRNA adaptor in the regulation of gene expression that follows precursor mRNA processing.
Collapse
|
91
|
Xu XL, Li Z, Liu A, Fan X, Hu DN, Qi DL, Chitty DW, Jia R, Qui J, Wang JQ, Sharaf J, Zou J, Weiss R, Huang H, Joseph WJ, Ng L, Rosen R, Shen B, Reid MW, Forrest D, Abramson DH, Singer S, Cobrinik D, Jhanwar SC. SKP2 Activation by Thyroid Hormone Receptor β2 Bypasses Rb-Dependent Proliferation in Rb-Deficient Cells. Cancer Res 2017; 77:6838-6850. [PMID: 28972075 DOI: 10.1158/0008-5472.can-16-3299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/29/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022]
Abstract
Germline RB1 mutations strongly predispose humans to cone precursor-derived retinoblastomas and strongly predispose mice to pituitary tumors, yet shared cell type-specific circuitry that sensitizes these different cell types to the loss of RB1 has not been defined. Here we show that the cell type-restricted thyroid hormone receptor isoform TRβ2 sensitizes to RB1 loss in both settings by antagonizing the widely expressed and tumor-suppressive TRβ1. TRβ2 promoted expression of the E3 ubiquitin ligase SKP2, a critical factor for RB1-mutant tumors, by enabling EMI1/FBXO5-dependent inhibition of SKP2 degradation. In RB1 wild-type neuroblastoma cells, endogenous Rb or ectopic TRβ2 was required to sustain SKP2 expression as well as cell viability and proliferation. These results suggest that in certain contexts, Rb loss enables TRβ1-dependent suppression of SKP2 as a safeguard against RB1-deficient tumorigenesis. TRβ2 counteracts TRβ1, thus disrupting this safeguard and promoting development of RB1-deficient malignancies. Cancer Res; 77(24); 6838-50. ©2017 AACR.
Collapse
Affiliation(s)
- Xiaoliang L Xu
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York.,Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York.,Zhongshan Ophthalmic Center, Zhongshan University, Guangzhou, P.R. China.,New York Eye and Ear Infirmary, New York Medical College, New York, New York
| | - Zhengke Li
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.,Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California
| | - Aihong Liu
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Dan-Ning Hu
- New York Eye and Ear Infirmary, New York Medical College, New York, New York
| | - Dong-Lai Qi
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - David W Chitty
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Renbing Jia
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Jianping Qui
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Justin Q Wang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jake Sharaf
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jun Zou
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Rebecca Weiss
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Hongyan Huang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Walter J Joseph
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lily Ng
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Richard Rosen
- New York Eye and Ear Infirmary, New York Medical College, New York, New York
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California
| | - Mark W Reid
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Douglas Forrest
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - David H Abramson
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Samuel Singer
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - David Cobrinik
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.
| | - Suresh C Jhanwar
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York. .,Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
92
|
Liu F, Cai Y, Rong X, Chen J, Zheng D, Chen L, Zhang J, Luo R, Zhao P, Ruan J. MiR-661 promotes tumor invasion and metastasis by directly inhibiting RB1 in non small cell lung cancer. Mol Cancer 2017; 16:122. [PMID: 28716024 PMCID: PMC5514511 DOI: 10.1186/s12943-017-0698-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/11/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Aberrant microRNA expression has been implicated in metastasis of cancers. MiR-661 accelerates proliferation and invasion of breast cancer and ovarian cancer, while impedes that of glioma. Its role in non small cell lung cancer (NSCLC) and underlying mechanism are worthy elucidation. METHODS Expression of miR-661 was measured with real-time PCR in both NSCLC tissues and cell lines. The effects of miR-661 on migration, invasion and metastasis capacity of NSCLC were evaluated using wound healing, transwell assay and animal models. Dual reporter luciferase assay and complementary experiments were performed to validate RB1 as a direct target of miR-661 for participation in the progression of NSCLC. RESULTS MiR-661 was upregulated in NSCLC tissues as compared to paired adjacent tissues and associated with shorter overall survival. Furthermore, miR-661 promoted proliferation, migration and metastasis of NSCLC. Then, we identified RB1 as a direct target of miR-661 through which miR-661 affected EMT process and metastasis of NSCLC. RB1 interacted with E2F1 and both could mediate EMT process in NSCLC. CONCLUSION MiR-661 promotes metastasis of NSCLC through RB/E2F1 signaling and EMT events, thus may serves as a negative prognostic factor and possible target for treatment of NSCLC patient.
Collapse
Affiliation(s)
- Feiye Liu
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315 China
| | - Yanjun Cai
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315 China
- Center for Geriatrics, General Hospital of Guangzhou Military Command of People’s Liberation Army, Guangdong, 510010 China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern medical University, Guangdong, 510515 China
| | - Jinzhang Chen
- Department of Oncology, Nanfang Hospital, Southern medical University, Guangdong, 510515 China
| | - Dayong Zheng
- Department of Oncology, Nanfang Hospital, Southern medical University, Guangdong, 510515 China
| | - Lu Chen
- Center for Geriatrics, General Hospital of Guangzhou Military Command of People’s Liberation Army, Guangdong, 510010 China
| | - Junyi Zhang
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315 China
| | - Rongcheng Luo
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315 China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003 China
| | - Jian Ruan
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315 China
| |
Collapse
|
93
|
Fox MD, Xiao L, Zhang M, Kamat AM, Siefker-Radtke A, Zhang L, Dinney CP, Czerniak B, Guo CC. Plasmacytoid Urothelial Carcinoma of the Urinary Bladder: A Clinicopathologic and Immunohistochemical Analysis of 49 Cases. Am J Clin Pathol 2017; 147:500-506. [PMID: 28371875 DOI: 10.1093/ajcp/aqx029] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Plasmacytoid urothelial carcinoma (PUC) of the bladder is a rare histologic variant. We retrospectively analyzed a large series of bladder PUC from a single institution. METHODS The patients consisted of 44 men and five women with a mean age of 62 years (range, 45-86 years). RESULTS PUC was pure in 23 cases and mixed with other histologic types in 26 cases. All PUCs diffusely invaded the bladder wall. Most PUCs lacked immunoreactivity for the retinoblastoma (RB) gene protein (12/32) and E-cadherin (8/30). Of the 44 patients with follow-up information, 25 died of PUC at a mean of 23 months, whereas 19 patients were alive at a mean of 22 months. CONCLUSIONS Our findings support that bladder PUC is a highly aggressive disease. The lack of E-cadherin expression in PUCs may underlie the distinct discohesive histologic appearance, and abnormal function of the RB gene may be implicated in the development of PUC.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Zhang
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston
| | | | | | | |
Collapse
|
94
|
Tang J, Xie Y, Xu X, Yin Y, Jiang R, Deng L, Tan Z, Gangarapu V, Tang J, Sun B. Bidirectional transcription of Linc00441 and RB1 via H3K27 modification-dependent way promotes hepatocellular carcinoma. Cell Death Dis 2017; 8:e2675. [PMID: 28300839 PMCID: PMC5386573 DOI: 10.1038/cddis.2017.81] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/16/2017] [Accepted: 01/24/2017] [Indexed: 02/07/2023]
Abstract
The retinoblastoma gene (RB1), a known tumor-suppressor gene (TSG), was decreased in multiple cancers including hepatocellular carcinoma (HCC). Here we focused on the bidirectional transcripted long noncoding RNA (Linc00441) with neighbor gene RB1 to investigate whether Linc00441 is involved in the suppression of RB1 in HCC. We found that aberrant upregulated intranuclear Linc00441 was reversely correlated with RB1 expression in human HCC samples. The gain- and loss-of-function investigation revealed that Linc00441 could promote the proliferation of HCC cells in vitro and in vivo with an apoptosis suppression and cell cycle rearrangement. Furthermore, RNA pull-down assay indicated the decreased level of RB1 induced by Linc00441 was associated with the incidental methylation by DNMT3A recruited by Linc00441. On the contrary, the transcription factor (TCF-4) enhanced H3K27 acetylation and direct transcription factor for Linc00441 was responsible for the upregulation of Linc00441 in HCC. In conclusion, the epigenetic interaction between Linc00441 and bidirectional transcripted neighbor RB1 may be a de novo theory cutting-point for the inactivation of RB1 in HCC and may serve as targeting site for tumor therapy in the future.
Collapse
Affiliation(s)
- Junwei Tang
- Liver Transplantation Center, The First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yu Xie
- Liver Transplantation Center, The First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaoliang Xu
- Liver Transplantation Center, The First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yin Yin
- Liver Transplantation Center, The First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Runqiu Jiang
- Liver Transplantation Center, The First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lei Deng
- Liver Transplantation Center, The First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhongming Tan
- Liver Transplantation Center, The First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Venkatanarayana Gangarapu
- Liver Transplantation Center, The First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Beicheng Sun
- Liver Transplantation Center, The First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
95
|
Li J, Liu J, Liang Z, He F, Yang L, Li P, Jiang Y, Wang B, Zhou C, Wang Y, Ren Y, Yang J, Zhang J, Luo Z, Vaziri C, Liu P. Simvastatin and Atorvastatin inhibit DNA replication licensing factor MCM7 and effectively suppress RB-deficient tumors growth. Cell Death Dis 2017; 8:e2673. [PMID: 28300827 PMCID: PMC5386551 DOI: 10.1038/cddis.2017.46] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/13/2022]
Abstract
Loss or dysfunction of tumor suppressor retinoblastoma (RB) is a common feature in various tumors, and contributes to cancer cell stemness and drug resistance to cancer therapy. However, the strategy to suppress or eliminate Rb-deficient tumor cells remains unclear. In the present study, we accidentally found that reduction of DNA replication licensing factor MCM7 induced more apoptosis in RB-deficient tumor cells than in control tumor cells. Moreover, after a drug screening and further studies, we demonstrated that statin drug Simvastatin and Atorvastatin were able to inhibit MCM7 and RB expressions. Further study showed that Simvastatin and Atorvastatin induced more chromosome breaks and gaps of Rb-deficient tumor cells than control tumor cells. In vivo results showed that Simvastatin and Atorvastatin significantly suppressed Rb-deficient tumor growth than control in xenograft mouse models. The present work demonstrates that ‘old' lipid-lowering drugs statins are novel weapons against RB-deficient tumors due to their effects on suppressing MCM7 protein levels.
Collapse
Affiliation(s)
- Juan Li
- Center for Translational Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jie Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zheyong Liang
- Center for Translational Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Fang He
- Center for Translational Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Lu Yang
- Center for Translational Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Pingping Li
- Center for Translational Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yina Jiang
- Department of Pathology, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Can Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yu Ren
- Department of Breast Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jin Yang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jianmin Zhang
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo 14263, NY 14263, USA
| | - Zhijun Luo
- Department of Biochemistry, Boston University School of Medicine, Boston 02118, MA, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
96
|
Kent LN, Bae S, Tsai SY, Tang X, Srivastava A, Koivisto C, Martin CK, Ridolfi E, Miller GC, Zorko SM, Plevris E, Hadjiyannis Y, Perez M, Nolan E, Kladney R, Westendorp B, de Bruin A, Fernandez S, Rosol TJ, Pohar KS, Pipas JM, Leone G. Dosage-dependent copy number gains in E2f1 and E2f3 drive hepatocellular carcinoma. J Clin Invest 2017; 127:830-842. [PMID: 28134624 DOI: 10.1172/jci87583] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Disruption of the retinoblastoma (RB) tumor suppressor pathway, either through genetic mutation of upstream regulatory components or mutation of RB1 itself, is believed to be a required event in cancer. However, genetic alterations in the RB-regulated E2F family of transcription factors are infrequent, casting doubt on a direct role for E2Fs in driving cancer. In this work, a mutation analysis of human cancer revealed subtle but impactful copy number gains in E2F1 and E2F3 in hepatocellular carcinoma (HCC). Using a series of loss- and gain-of-function alleles to dial E2F transcriptional output, we have shown that copy number gains in E2f1 or E2f3b resulted in dosage-dependent spontaneous HCC in mice without the involvement of additional organs. Conversely, germ-line loss of E2f1 or E2f3b, but not E2f3a, protected mice against HCC. Combinatorial mapping of chromatin occupancy and transcriptome profiling identified an E2F1- and E2F3B-driven transcriptional program that was associated with development and progression of HCC. These findings demonstrate a direct and cell-autonomous role for E2F activators in human cancer.
Collapse
|
97
|
Wei PJ, Zhang D, Xia J, Zheng CH. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network. BMC Bioinformatics 2016; 17:467. [PMID: 28155630 PMCID: PMC5259866 DOI: 10.1186/s12859-016-1332-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Cancer is a complex disease which is characterized by the accumulation of genetic alterations during the patient's lifetime. With the development of the next-generation sequencing technology, multiple omics data, such as cancer genomic, epigenomic and transcriptomic data etc., can be measured from each individual. Correspondingly, one of the key challenges is to pinpoint functional driver mutations or pathways, which contributes to tumorigenesis, from millions of functional neutral passenger mutations. RESULTS In this paper, in order to identify driver genes effectively, we applied a generalized additive model to mutation profiles to filter genes with long length and constructed a new gene-gene interaction network. Then we integrated the mutation data and expression data into the gene-gene interaction network. Lastly, greedy algorithm was used to prioritize candidate driver genes from the integrated data. We named the proposed method Length-Net-Driver (LNDriver). CONCLUSIONS Experiments on three TCGA datasets, i.e., head and neck squamous cell carcinoma, kidney renal clear cell carcinoma and thyroid carcinoma, demonstrated that the proposed method was effective. Also, it can identify not only frequently mutated drivers, but also rare candidate driver genes.
Collapse
Affiliation(s)
- Pi-Jing Wei
- College of Electrical Engineering and Automation, Anhui University, Hefei, Anhui 230601 China
| | - Di Zhang
- College of Computer Science and Technology, Anhui University, Hefei, Anhui 230601 China
| | - Junfeng Xia
- Institute of Health Sciences, Anhui University, Hefei, Anhui 230601 China
| | - Chun-Hou Zheng
- College of Computer Science and Technology, Anhui University, Hefei, Anhui 230601 China
| |
Collapse
|
98
|
Brennan RC, Qaddoumi I, Billups CA, Kaluzny T, Furman WL, Wilson MW. Patients with retinoblastoma and chromosome 13q deletions have increased chemotherapy-related toxicities. Pediatr Blood Cancer 2016; 63:1954-8. [PMID: 27409525 PMCID: PMC5683082 DOI: 10.1002/pbc.26138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND A total of 5-10% of patients with retinoblastoma (RB) harbor deletion of the long arm (q) chromosome 13 (13q-). The treatment-related toxicities in this population have not been described. METHODS Sixty-eight RB patients on a single institutional protocol (RET5) from 2005 to 2010 were reviewed. Genetic screening identified 11 patients (seven female) with 13q-. Patients with early (Reese-Ellsworth [R-E] group I-III) disease (6/23 with 13q-) received eight courses of vincristine/carboplatin (VC). Patients with advanced (R-E group IV-V) bilateral disease (2/27 with 13q-) received two courses of vincristine/topotecan (VT) followed by nine courses of alternating VT/VC. Patients undergoing upfront enucleation received histopathology-based chemotherapy: intermediate risk (2/8 with 13q-) or high risk (1/10 with 13q-). Dose reductions were mandated for >7 day delay in two consecutive courses following hematologic toxicity. Grades 3 and 4 hematologic, infectious, and gastrointestinal toxicities were compared between RET5 patients with and without 13q-. RESULTS Demographics were similar between groups. When present, prolonged neutropenia (median 7 days, range 0-14 days) delayed chemotherapy and resulted in more frequent dose reductions among 13q- patients (5/11) than non-13q- patients (4/57) (P < 0.01). GI toxicity was similar between groups (5/11 13q- vs. 13/57 non-13q-; P = 0.14), but halted chemotherapy in one 13q- patient. Infectious complications and disease outcomes were similar between groups. At follow-up, all patients are alive (median 6.1 years, range 7.6 months-9.5 years). CONCLUSIONS 13q- RB patients had a higher incidence of neutropenia requiring chemotherapy dose reductions, but did not have increased treatment failure.
Collapse
Affiliation(s)
- RC Brennan
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA,Department of Pediatrics, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA,Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| | - I Qaddoumi
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA,Department of Pediatrics, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| | - CA Billups
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - T Kaluzny
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - WL Furman
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA,Department of Pediatrics, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| | - MW Wilson
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN, USA,Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA,Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| |
Collapse
|
99
|
Grubbs EG, Williams MD, Scheet P, Vattathil S, Perrier ND, Lee JE, Gagel RF, Hai T, Feng L, Cabanillas ME, Cote GJ. Role of CDKN2C Copy Number in Sporadic Medullary Thyroid Carcinoma. Thyroid 2016; 26:1553-1562. [PMID: 27610696 PMCID: PMC6453497 DOI: 10.1089/thy.2016.0224] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The cyclin-dependent-kinase inhibitors (CDKN)/retinoblastoma (RB1) pathway has been implicated as having a role in medullary thyroid carcinoma (MTC) tumorigenesis. CDKN2C loss has been associated with RET-mediated MTC in humans but with minimal phenotypic correlation provided. The objective of this study was to evaluate the association between tumor RET mutation status, CDKN2C loss, and aggressiveness of MTC in a cohort of patients with sporadic disease. METHODS Tumors from patients with sporadic MTC treated at a single institution were evaluated for somatic RETM918T mutation and CDKN2C copy number loss. These variables were compared to patient demographics, pathology detail, clinical course, and disease-specific and overall survival. RESULTS Sixty-two MTC cases with an initial surgery date ranging from 1983 to 2009 met the inclusion criteria, of whom 36 (58%) were male. The median age at initial surgery was 53 years (range 22-81 years). The median tumor size was 30 mm (range 6-145 mm) with 29 (57%) possessing extrathyroidal extension. Nodal and/or distant metastasis at presentation was found in 47/60 (78%) and 12/61 (20%) patients, respectively. Median follow-up time was 10.5 years (range 1.1-27.8 years) for the censored observations. The presence of CDKN2C loss was associated with worse M stage and overall AJCC stage. Median overall survival of patients with versus without CDKN2C loss was 4.14 [confidence interval (CI) 1.93-NA] versus 18.27 [CI 17.24-NA] years (p < 0.0001). Median overall survival of patients with a combined somatic RETM918T mutation and CDKN2C loss versus no somatic RETM918T mutation and CDKN2C loss versus somatic RETM918T mutation and CDKN2C 2N versus no somatic RETM918T mutation and CDKN2C 2N was 2.38 [CI 1.67-NA] years versus 10.81 [CI 2.46-NA] versus 17.24 [CI 9.82-NA] versus not reached [CI 13.46-NA] years (p < 0.0001). CONCLUSIONS The detection of somatic CDKN2C loss is associated with the presence of distant metastasis at presentation as well decreased overall survival, a relationship enhanced by concomitant RETM918T mutation. Further defining the genes involved in the progression of metastatic MTC will be an important step toward identifying pathways of disease progression and new therapeutic targets.
Collapse
Affiliation(s)
- Elizabeth G. Grubbs
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michelle D. Williams
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul Scheet
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Selina Vattathil
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nancy D. Perrier
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey E. Lee
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert F. Gagel
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tao Hai
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lei Feng
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria E. Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gilbert J. Cote
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
100
|
Nabavi N, Bennewith KL, Churg A, Wang Y, Collins CC, Mutti L. Switching off malignant mesothelioma: exploiting the hypoxic microenvironment. Genes Cancer 2016; 7:340-354. [PMID: 28191281 PMCID: PMC5302036 DOI: 10.18632/genesandcancer.124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/31/2016] [Indexed: 12/21/2022] Open
Abstract
Malignant mesotheliomas are aggressive, asbestos-related cancers with poor patient prognosis, typically arising in the mesothelial surfaces of tissues in pleural and peritoneal cavity. The relative unspecific symptoms of mesotheliomas, misdiagnoses, and lack of precise targeted therapies call for a more critical assessment of this disease. In the present review, we categorize commonly identified genomic aberrations of mesotheliomas into their canonical pathways and discuss targeting these pathways in the context of tumor hypoxia, a hallmark of cancer known to render solid tumors more resistant to radiation and most chemo-therapy. We then explore the concept that the intrinsic hypoxic microenvironment of mesotheliomas can be Achilles' heel for targeted, multimodal therapeutic intervention.
Collapse
Affiliation(s)
- Noushin Nabavi
- Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, BC, Canada
- Department of Urologic Sciences, University of British Columbia, BC, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, BC, Canada
| | - Kevin L. Bennewith
- Department of Integrative Oncology, BC Cancer Agency, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC, Canada
| | - Andrew Churg
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences, University of British Columbia, BC, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, BC, Canada
| | - Colin C. Collins
- Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, BC, Canada
- Department of Urologic Sciences, University of British Columbia, BC, Canada
| | - Luciano Mutti
- Italian Group for Research and Therapy for Mesothelioma (GIMe) & School of Environment and Life Sciences, University of Salford, Manchester, United Kingdom
| |
Collapse
|