51
|
Sehgal A, Irvine KM, Hume DA. Functions of macrophage colony-stimulating factor (CSF1) in development, homeostasis, and tissue repair. Semin Immunol 2021; 54:101509. [PMID: 34742624 DOI: 10.1016/j.smim.2021.101509] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Macrophage colony-stimulating factor (CSF1) is the primary growth factor required for the control of monocyte and macrophage differentiation, survival, proliferation and renewal. Although the cDNAs encoding multiple isoforms of human CSF1 were cloned in the 1980s, and recombinant proteins were available for testing in humans, CSF1 has not yet found substantial clinical application. Here we present an overview of CSF1 biology, including evolution, regulation and functions of cell surface and secreted isoforms. CSF1 is widely-expressed, primarily by cells of mesenchymal lineages, in all mouse tissues. Cell-specific deletion of a floxed Csf1 allele in mice indicates that local CSF1 production contributes to the maintenance of tissue-specific macrophage populations but is not saturating. CSF1 in the circulation is controlled primarily by receptor-mediated clearance by macrophages in liver and spleen. Administration of recombinant CSF1 to humans or animals leads to monocytosis and expansion of tissue macrophage populations and growth of the liver and spleen. In a wide variety of tissue injury models, CSF1 administration promotes monocyte infiltration, clearance of damaged cells and repair. We suggest that CSF1 has therapeutic potential in regenerative medicine.
Collapse
Affiliation(s)
- Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
52
|
Omidkhah N, Ghodsi R. NO-HDAC dual inhibitors. Eur J Med Chem 2021; 227:113934. [PMID: 34700268 DOI: 10.1016/j.ejmech.2021.113934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022]
Abstract
HDAC inhibitors and NO donors have both demonstrated independently broad therapeutic potential in a variety of diseases. Borretto et al. presented the topic of NO-HDAC dual inhibitors for the first time in 2013 as an attractive new topic. Here we collected the general structure of all synthesized NO-HDAC dual inhibitors, lead compounds, synthesis methods and biological features of the most potent dual NO-HDAC inhibitor in each category with the intention of assisting in the synthesis and optimization of new drug-like compounds for diverse diseases. Based on studies done so far, NO-HDAC dual inhibitors have displayed satisfactory results against wound healing (3), heart hypertrophy (3), inflammatory, cardiovascular, neuromuscular illnesses (11a-11e) and cancer (6a-6o, 9a-9d, 10a-10d, 16 and 17). NO-HDAC dual inhibitors can have high therapeutic potential for various diseases due to their new properties, NO properties, HDAC inhibitor properties and also due to the effects of NO on HDAC enzymes.
Collapse
Affiliation(s)
- Negar Omidkhah
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
53
|
Geiger M, Schoenebeck JJ, Schneider RA, Schmidt MJ, Fischer MS, Sánchez-Villagra MR. Exceptional Changes in Skeletal Anatomy under Domestication: The Case of Brachycephaly. Integr Org Biol 2021; 3:obab023. [PMID: 34409262 PMCID: PMC8366567 DOI: 10.1093/iob/obab023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/06/2021] [Accepted: 07/08/2021] [Indexed: 01/17/2023] Open
Abstract
"Brachycephaly" is generally considered a phenotype in which the facial part of the head is pronouncedly shortened. While brachycephaly is characteristic for some domestic varieties and breeds (e.g., Bulldog, Persian cat, Niata cattle, Anglo-Nubian goat, Middle White pig), this phenotype can also be considered pathological. Despite the superficially similar appearance of "brachycephaly" in such varieties and breeds, closer examination reveals that "brachycephaly" includes a variety of different cranial modifications with likely different genetic and developmental underpinnings and related with specific breed histories. We review the various definitions and characteristics associated with brachycephaly in different domesticated species. We discern different types of brachycephaly ("bulldog-type," "katantognathic," and "allometric" brachycephaly) and discuss morphological conditions related to brachycephaly, including diseases (e.g., brachycephalic airway obstructive syndrome). Further, we examine the complex underlying genetic and developmental processes and the culturally and developmentally related reasons why brachycephalic varieties may or may not be prevalent in certain domesticated species. Knowledge on patterns and mechanisms associated with brachycephaly is relevant for domestication research, veterinary and human medicine, as well as evolutionary biology, and highlights the profound influence of artificial selection by humans on animal morphology, evolution, and welfare.
Collapse
Affiliation(s)
- M Geiger
- Paleontological Institute and Museum, University of Zurich,
Karl-Schmid-Str. 4, 8006 Zurich, Switzerland
| | - J J Schoenebeck
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University
of Edinburgh, Easter Bush Campus, Midlothian EH25
9RG, UK
| | - R A Schneider
- Department of Orthopaedic Surgery, University of California at San
Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA
94143-0514, USA
| | - M J Schmidt
- Clinic for Small Animals—Neurosurgery, Neuroradiology and Clinical
Neurology, Justus Liebig University Giessen, Frankfurter Str.
114, 35392 Giessen, Germany
| | - M S Fischer
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller
University Jena, Erbertstr. 1, 07743 Jena,
Germany
| | - M R Sánchez-Villagra
- Paleontological Institute and Museum, University of Zurich,
Karl-Schmid-Str. 4, 8006 Zurich, Switzerland
| |
Collapse
|
54
|
Berdowski WM, Sanderson LE, van Ham TJ. The multicellular interplay of microglia in health and disease: lessons from leukodystrophy. Dis Model Mech 2021; 14:dmm048925. [PMID: 34282843 PMCID: PMC8319551 DOI: 10.1242/dmm.048925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Microglia are highly dynamic cells crucial for developing and maintaining lifelong brain function and health through their many interactions with essentially all cellular components of the central nervous system. The frequent connection of microglia to leukodystrophies, genetic disorders of the white matter, has highlighted their involvement in the maintenance of white matter integrity. However, the mechanisms that underlie their putative roles in these processes remain largely uncharacterized. Microglia have also been gaining attention as possible therapeutic targets for many neurological conditions, increasing the demand to understand their broad spectrum of functions and the impact of their dysregulation. In this Review, we compare the pathological features of two groups of genetic leukodystrophies: those in which microglial dysfunction holds a central role, termed 'microgliopathies', and those in which lysosomal or peroxisomal defects are considered to be the primary driver. The latter are suspected to have notable microglia involvement, as some affected individuals benefit from microglia-replenishing therapy. Based on overlapping pathology, we discuss multiple ways through which aberrant microglia could lead to white matter defects and brain dysfunction. We propose that the study of leukodystrophies, and their extensively multicellular pathology, will benefit from complementing analyses of human patient material with the examination of cellular dynamics in vivo using animal models, such as zebrafish. Together, this will yield important insight into the cell biological mechanisms of microglial impact in the central nervous system, particularly in the development and maintenance of myelin, that will facilitate the development of new, and refinement of existing, therapeutic options for a range of brain diseases.
Collapse
Affiliation(s)
| | | | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
55
|
Arreola MA, Soni N, Crapser JD, Hohsfield LA, Elmore MRP, Matheos DP, Wood MA, Swarup V, Mortazavi A, Green KN. Microglial dyshomeostasis drives perineuronal net and synaptic loss in a CSF1R +/- mouse model of ALSP, which can be rescued via CSF1R inhibitors. SCIENCE ADVANCES 2021; 7:eabg1601. [PMID: 34433559 PMCID: PMC8386924 DOI: 10.1126/sciadv.abg1601] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/02/2021] [Indexed: 06/02/2023]
Abstract
Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia is an autosomal dominant neurodegenerative disease caused by mutations in colony-stimulating factor 1 receptor (CSF1R). We sought to identify the role of microglial CSF1R haploinsufficiency in mediating pathogenesis. Using an inducible Cx3cr1 CreERT2/+-Csf1r +/fl system, we found that postdevelopmental, microglia-specific Csf1r haploinsufficiency resulted in reduced expression of homeostatic microglial markers. This was associated with loss of presynaptic surrogates and the extracellular matrix (ECM) structure perineuronal nets. Similar phenotypes were observed in constitutive global Csf1r haploinsufficient mice and could be reversed/prevented by microglia elimination in adulthood. As microglial elimination is unlikely to be clinically feasible for extended durations, we treated adult CSF1R+/- mice at different disease stages with a microglia-modulating dose of the CSF1R inhibitor PLX5622, which prevented microglial dyshomeostasis along with synaptic- and ECM-related deficits. These data highlight microglial dyshomeostasis as a driver of pathogenesis and show that CSF1R inhibition can mitigate these phenotypes.
Collapse
Affiliation(s)
- Miguel A Arreola
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Neelakshi Soni
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Joshua D Crapser
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Lindsay A Hohsfield
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Monica R P Elmore
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Dina P Matheos
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
56
|
Guo L, Ikegawa S. From HDLS to BANDDOS: fast-expanding phenotypic spectrum of disorders caused by mutations in CSF1R. J Hum Genet 2021; 66:1139-1144. [PMID: 34135456 DOI: 10.1038/s10038-021-00942-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
Colony-stimulating factor 1 receptor (CSF1R) plays key roles in the development and function of the cells in the monocyte/macrophage lineage, including microglia and osteoclasts. It is well known that mono-allelic mutations of CSF1R cause hereditary diffuse leukoencephalopathy with spheroids (HDLS, OMIM # 221820), an adult-onset progressive neurodegenerative disorder. Recently, a more severe phenotypic spectrum has been identified in individuals with bi-allelic mutations of CSF1R. In addition to leukoencephalopathy of earlier onset than HDLS, the new disease shows brain malformations and skeletal dysplasia compatible with dysosteosclerosis (DOS), thus named "brain abnormalities, neurodegeneration, and dysosteosclerosis" (BANDDOS, OMIM # 618476). In addition, some individuals with bi-allelic missense mutations of CSF1R have been found to present with incomplete BANDDOS where skeletal dysplasia is absent. In this review, we summarize the monogenic disorders caused by mutations in CSF1R and their mutational spectra, and propose a dose-dependent model to explain the complex genotype-phenotype association.
Collapse
Affiliation(s)
- Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| |
Collapse
|
57
|
|
58
|
Keshvari S, Caruso M, Teakle N, Batoon L, Sehgal A, Patkar OL, Ferrari-Cestari M, Snell CE, Chen C, Stevenson A, Davis FM, Bush SJ, Pridans C, Summers KM, Pettit AR, Irvine KM, Hume DA. CSF1R-dependent macrophages control postnatal somatic growth and organ maturation. PLoS Genet 2021; 17:e1009605. [PMID: 34081701 PMCID: PMC8205168 DOI: 10.1371/journal.pgen.1009605] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/15/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Homozygous mutation of the Csf1r locus (Csf1rko) in mice, rats and humans leads to multiple postnatal developmental abnormalities. To enable analysis of the mechanisms underlying the phenotypic impacts of Csf1r mutation, we bred a rat Csf1rko allele to the inbred dark agouti (DA) genetic background and to a Csf1r-mApple reporter transgene. The Csf1rko led to almost complete loss of embryonic macrophages and ablation of most adult tissue macrophage populations. We extended previous analysis of the Csf1rko phenotype to early postnatal development to reveal impacts on musculoskeletal development and proliferation and morphogenesis in multiple organs. Expression profiling of 3-week old wild-type (WT) and Csf1rko livers identified 2760 differentially expressed genes associated with the loss of macrophages, severe hypoplasia, delayed hepatocyte maturation, disrupted lipid metabolism and the IGF1/IGF binding protein system. Older Csf1rko rats developed severe hepatic steatosis. Consistent with the developmental delay in the liver Csf1rko rats had greatly-reduced circulating IGF1. Transfer of WT bone marrow (BM) cells at weaning without conditioning repopulated resident macrophages in all organs, including microglia in the brain, and reversed the mutant phenotypes enabling long term survival and fertility. WT BM transfer restored osteoclasts, eliminated osteopetrosis, restored bone marrow cellularity and architecture and reversed granulocytosis and B cell deficiency. Csf1rko rats had an elevated circulating CSF1 concentration which was rapidly reduced to WT levels following BM transfer. However, CD43hi non-classical monocytes, absent in the Csf1rko, were not rescued and bone marrow progenitors remained unresponsive to CSF1. The results demonstrate that the Csf1rko phenotype is autonomous to BM-derived cells and indicate that BM contains a progenitor of tissue macrophages distinct from hematopoietic stem cells. The model provides a unique system in which to define the pathways of development of resident tissue macrophages and their local and systemic roles in growth and organ maturation.
Collapse
Affiliation(s)
- Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Melanie Caruso
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Ngari Teakle
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Lena Batoon
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Omkar L. Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Michelle Ferrari-Cestari
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Cameron E. Snell
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Qld, Australia
| | - Alex Stevenson
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Felicity M. Davis
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Clare Pridans
- Centre for Inflammation Research and Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Allison R. Pettit
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Katharine M. Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
- * E-mail: (KMI); (DAH)
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
- * E-mail: (KMI); (DAH)
| |
Collapse
|
59
|
Hume DA, Caruso M, Keshvari S, Patkar OL, Sehgal A, Bush SJ, Summers KM, Pridans C, Irvine KM. The Mononuclear Phagocyte System of the Rat. THE JOURNAL OF IMMUNOLOGY 2021; 206:2251-2263. [PMID: 33965905 DOI: 10.4049/jimmunol.2100136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
The laboratory rat continues to be the model of choice for many studies of physiology, behavior, and complex human diseases. Cells of the mononuclear phagocyte system (MPS; monocytes, macrophages, and dendritic cells) are abundant residents in every tissue in the body and regulate postnatal development, homeostasis, and innate and acquired immunity. Recruitment and proliferation of MPS cells is an essential component of both initiation and resolution of inflammation. The large majority of current knowledge of MPS biology is derived from studies of inbred mice, but advances in technology and resources have eliminated many of the advantages of the mouse as a model. In this article, we review the tools available and the current state of knowledge of development, homeostasis, regulation, and diversity within the MPS of the rat.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Melanie Caruso
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Omkar L Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Stephen J Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Clare Pridans
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
60
|
Hughes LD, Wang Y, Meli AP, Rothlin CV, Ghosh S. Decoding Cell Death: From a Veritable Library of Babel to Vade Mecum? Annu Rev Immunol 2021; 39:791-817. [PMID: 33902311 DOI: 10.1146/annurev-immunol-102819-072601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Programmed cell death (PCD) is a requisite feature of development and homeostasis but can also be indicative of infections, injuries, and pathologies. In concordance with these heterogeneous contexts, an array of disparate effector responses occur downstream of cell death and its clearance-spanning tissue morphogenesis, homeostatic turnover, host defense, active dampening of inflammation, and tissue repair. This raises a fundamental question of how a single contextually appropriate response ensues after an event of PCD. To explore how complex inputs may together tailor the specificity of the resulting effector response, here we consider (a) the varying contexts during which different cell death modalities are observed, (b) the nature of the information that can be passed on by cell corpses, and (c) the ways by which efferocyte populations synthesize signals from dying cells with those from the surrounding microenvironment.
Collapse
Affiliation(s)
- Lindsey D Hughes
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , ,
| | - Yaqiu Wang
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , ,
| | - Alexandre P Meli
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , ,
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , , .,Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA;
| | - Sourav Ghosh
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; .,Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
61
|
Chenouard V, Remy S, Tesson L, Ménoret S, Ouisse LH, Cherifi Y, Anegon I. Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Front Genet 2021; 12:615491. [PMID: 33959146 PMCID: PMC8093876 DOI: 10.3389/fgene.2021.615491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The rat has been extensively used as a small animal model. Many genetically engineered rat models have emerged in the last two decades, and the advent of gene-specific nucleases has accelerated their generation in recent years. This review covers the techniques and advances used to generate genetically engineered rat lines and their application to the development of rat models more broadly, such as conditional knockouts and reporter gene strains. In addition, genome-editing techniques that remain to be explored in the rat are discussed. The review also focuses more particularly on two areas in which extensive work has been done: human genetic diseases and immune system analysis. Models are thoroughly described in these two areas and highlight the competitive advantages of rat models over available corresponding mouse versions. The objective of this review is to provide a comprehensive description of the advantages and potential of rat models for addressing specific scientific questions and to characterize the best genome-engineering tools for developing new projects.
Collapse
Affiliation(s)
- Vanessa Chenouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- genOway, Lyon, France
| | - Séverine Remy
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Laurent Tesson
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Séverine Ménoret
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | | | - Ignacio Anegon
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| |
Collapse
|
62
|
Wei Y, Ma M, Lin S, Li X, Shu Y, Wang Z, Zhou Y, Hu B, Cheng B, Duan S, Huang X, Xu H, Zhang YW, Zheng H. Proteolytic Shedding of Human Colony-Stimulating Factor 1 Receptor and its implication. J Cell Mol Med 2021; 25:4516-4521. [PMID: 33783963 PMCID: PMC8093967 DOI: 10.1111/jcmm.16474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 01/14/2021] [Accepted: 03/01/2021] [Indexed: 01/02/2023] Open
Abstract
Both Colony‐stimulating factor 1 receptor (CSF1R) and triggering receptor expressed on myeloid cells‐2 (TREM2) are trans‐membrane receptors and are expressed in the brain primarily by microglia. Mutations in these two microglia‐expressed genes associated with neurodegenerative disease have recently been grouped under the term “microgliopathy”. Several literatures have indicated that CSF1R and TREM2 encounters a stepwise shedding and TREM2 variants impair or accelerate the processing. However, whether CSF1R variant affects the shedding of CSF1R remains elusive. Here, plasmids containing human CSF1R or TREM2 were transiently transfected into the human embryonic kidney (HEK) 293T cells. Using Western Blot and/or ELISA assay, we demonstrated that, similar to those of TREM2, an N‐terminal fragment (NTF) shedding of CSF1R ectodomain and a subsequent C‐terminal fragment (CTF) of CSF1R intra‐membrane were generated by a disintegrin and metalloprotease (ADAM) family member and by γ‐secretase, respectively. And the shedding was inhibited by treatment with Batimastat, an ADAM inhibitor, or DAPT or compound E, a γ‐secretase inhibitor. Importantly, we show that the cleaved fragments, both extracellular domain and intracellular domain of a common disease associated I794T variant, were decreased significantly. Together, our studies demonstrate a stepwise approach of human CSF1R cleavage and contribute to understand the pathogenicity of CSF1R I794T variant in adult‐onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). These studies also suggest that the cleaved ectodomain fragment released from CSF1R may be proposed as a diagnostic biomarker for ALSP.
Collapse
Affiliation(s)
- Yue Wei
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.,Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Menghui Ma
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.,Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Sheng Lin
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.,Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yue Shu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.,Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Ziwei Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhang Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Banglian Hu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Baoying Cheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Shengshun Duan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaohua Huang
- Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.,Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China.,Shenzhen Research Institute, Xiamen University, Shenzhen, China
| |
Collapse
|
63
|
Kındış E, Simsek-Kiper PÖ, Koşukcu C, Taşkıran EZ, Göçmen R, Utine E, Haliloğlu G, Boduroğlu K, Alikaşifoğlu M. Further expanding the mutational spectrum of brain abnormalities, neurodegeneration, and dysosteosclerosis: A rare disorder with neurologic regression and skeletal features. Am J Med Genet A 2021; 185:1888-1896. [PMID: 33749994 DOI: 10.1002/ajmg.a.62179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 12/29/2022]
Abstract
Colony stimulating factor 1 receptor (CSF1R, MIM# 164770) encodes a tyrosine-kinase receptor playing an important role in development of osteoclasts and microglia. Heterozygous CSF1R variants have been known to cause hereditary diffuse leukoencephalopathy with spheroids (HDLS, MIM# 221820), an adult-onset leukoencephalopathy characterized by loss of motor functions and cognitive decline. Recently, a new phenotype characterized by brain abnormalities, neurodegeneration, and dysosteosclerosis (BANDDOS) with biallelic CSF1R pathogenic variants in the etiology has been described. BANDDOS differs from HDLS by early-onset neurodegenerative changes with additional structural brain abnormalities and skeletal findings resembling dysosteosclerosis (DOS). Described skeletal findings of the disease are highly variable ranging from absence of a skeletal phenotype and milder Pyle disease-like to osteopetrosis and DOS. To date, only a few patients carrying biallelic CSF1R variants have been reported. In this clinical report, we describe three siblings with variable skeletal findings along with neurological symptoms ranging from mild to severe in whom exome sequencing revealed a novel homozygous splice site variant in canonical splice donor site of intron 21 adjacent to an exon, which encoding part of kinase domain of CSF1R along with a review of the literature.
Collapse
Affiliation(s)
- Erdem Kındış
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Can Koşukcu
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Ekim Z Taşkıran
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Rahşan Göçmen
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Eda Utine
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Göknur Haliloğlu
- Department of Pediatric Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Koray Boduroğlu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Alikaşifoğlu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
64
|
Pridans C, Irvine KM, Davis GM, Lefevre L, Bush SJ, Hume DA. Transcriptomic Analysis of Rat Macrophages. Front Immunol 2021; 11:594594. [PMID: 33633725 PMCID: PMC7902030 DOI: 10.3389/fimmu.2020.594594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat is widely used as a model for human diseases. Many of these diseases involve monocytes and tissue macrophages in different states of activation. Whilst methods for in vitro differentiation of mouse macrophages from embryonic stem cells (ESC) and bone marrow (BM) are well established, these are lacking for the rat. The gene expression profiles of rat macrophages have also not been characterised to the same extent as mouse. We have established the methodology for production of rat ESC-derived macrophages and compared their gene expression profiles to macrophages obtained from the lung and peritoneal cavity and those differentiated from BM and blood monocytes. We determined the gene signature of Kupffer cells in the liver using rats deficient in macrophage colony stimulating factor receptor (CSF1R). We also examined the response of BM-derived macrophages to lipopolysaccharide (LPS). The results indicate that many, but not all, tissue-specific adaptations observed in mice are conserved in the rat. Importantly, we show that unlike mice, rat macrophages express the CSF1R ligand, colony stimulating factor 1 (CSF1).
Collapse
Affiliation(s)
- Clare Pridans
- Centre for Inflammation Research, University of Edinburgh Centre for Inflammation Research, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Katharine M. Irvine
- Mater Research Institute Mater Research Institute – University of Queensland, Brisbane, QLD, Australia
| | - Gemma M. Davis
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Lucas Lefevre
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, University of Oxford, Headington, United Kingdom
| | - David A. Hume
- Mater Research Institute Mater Research Institute – University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
65
|
Mintz J, Vedenko A, Rosete O, Shah K, Goldstein G, Hare JM, Ramasamy R, Arora H. Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics. Vaccines (Basel) 2021; 9:94. [PMID: 33513777 PMCID: PMC7912608 DOI: 10.3390/vaccines9020094] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a short-lived, ubiquitous signaling molecule that affects numerous critical functions in the body. There are markedly conflicting findings in the literature regarding the bimodal effects of NO in carcinogenesis and tumor progression, which has important consequences for treatment. Several preclinical and clinical studies have suggested that both pro- and antitumorigenic effects of NO depend on multiple aspects, including, but not limited to, tissue of generation, the level of production, the oxidative/reductive (redox) environment in which this radical is generated, the presence or absence of NO transduction elements, and the tumor microenvironment. Generally, there are four major categories of NO-based anticancer therapies: NO donors, phosphodiesterase inhibitors (PDE-i), soluble guanylyl cyclase (sGC) activators, and immunomodulators. Of these, NO donors are well studied, well characterized, and also the most promising. In this study, we review the current knowledge in this area, with an emphasis placed on the role of NO as an anticancer therapy and dysregulated molecular interactions during the evolution of cancer, highlighting the strategies that may aid in the targeting of cancer.
Collapse
Affiliation(s)
- Joel Mintz
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA;
| | - Anastasia Vedenko
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
| | - Omar Rosete
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Khushi Shah
- College of Arts and Sciences, University of Miami, Miami, FL 33146, USA;
| | - Gabriella Goldstein
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Joshua M. Hare
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Himanshu Arora
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
66
|
Patkar OL, Caruso M, Teakle N, Keshvari S, Bush SJ, Pridans C, Belmer A, Summers KM, Irvine KM, Hume DA. Analysis of homozygous and heterozygous Csf1r knockout in the rat as a model for understanding microglial function in brain development and the impacts of human CSF1R mutations. Neurobiol Dis 2021; 151:105268. [PMID: 33450391 PMCID: PMC7941205 DOI: 10.1016/j.nbd.2021.105268] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations in the human CSF1R gene have been associated with dominant and recessive forms of neurodegenerative disease. Here we describe the impacts of Csf1r mutation in the rat on development of the brain. Diffusion imaging indicated small reductions in major fiber tracts that may be associated in part with ventricular enlargement. RNA-seq profiling revealed a set of 105 microglial markers depleted in all brain regions of the Csf1rko rats. There was no evidence of region or sex-specific expression of microglia-associated transcripts. Other than the microglial signature, Csf1rko had no effect on any neuronal or region-specific transcript cluster. Expression of markers of oligodendrocytes, astrocytes, dopaminergic neurons and Purkinje cells was minimally affected. However, there were defects in dendritic arborization of doublecortin-positive neurogenic precursors and expression of poly-sialylated neural cell adhesion molecule (PS-NCAM) in the dentate gyrus of the hippocampus. Heterozygous Csf1rko rats had no detectable brain phenotype. We conclude that most brain developmental processes occur normally in the absence of microglia and that CSF1R haploinsufficiency is unlikely to cause leukoencephalopathy.
Collapse
Affiliation(s)
- Omkar L Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Melanie Caruso
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Ngari Teakle
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Stephen J Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, Edinburgh, UK and Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, UK
| | - Arnauld Belmer
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
67
|
Kaur S, Sehgal A, Wu AC, Millard SM, Batoon L, Sandrock CJ, Ferrari-Cestari M, Levesque JP, Hume DA, Raggatt LJ, Pettit AR. Stable colony-stimulating factor 1 fusion protein treatment increases hematopoietic stem cell pool and enhances their mobilisation in mice. J Hematol Oncol 2021; 14:3. [PMID: 33402221 PMCID: PMC7786999 DOI: 10.1186/s13045-020-00997-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background Prior chemotherapy and/or underlying morbidity commonly leads to poor mobilisation of hematopoietic stem cells (HSC) for transplantation in cancer patients. Increasing the number of available HSC prior to mobilisation is a potential strategy to overcome this deficiency. Resident bone marrow (BM) macrophages are essential for maintenance of niches that support HSC and enable engraftment in transplant recipients. Here we examined potential of donor treatment with modified recombinant colony-stimulating factor 1 (CSF1) to influence the HSC niche and expand the HSC pool for autologous transplantation. Methods We administered an acute treatment regimen of CSF1 Fc fusion protein (CSF1-Fc, daily injection for 4 consecutive days) to naive C57Bl/6 mice. Treatment impacts on macrophage and HSC number, HSC function and overall hematopoiesis were assessed at both the predicted peak drug action and during post-treatment recovery. A serial treatment strategy using CSF1-Fc followed by granulocyte colony-stimulating factor (G-CSF) was used to interrogate HSC mobilisation impacts. Outcomes were assessed by in situ imaging and ex vivo standard and imaging flow cytometry with functional validation by colony formation and competitive transplantation assay. Results CSF1-Fc treatment caused a transient expansion of monocyte-macrophage cells within BM and spleen at the expense of BM B lymphopoiesis and hematopoietic stem and progenitor cell (HSPC) homeostasis. During the recovery phase after cessation of CSF1-Fc treatment, normalisation of hematopoiesis was accompanied by an increase in the total available HSPC pool. Multiple approaches confirmed that CD48−CD150+ HSC do not express the CSF1 receptor, ruling out direct action of CSF1-Fc on these cells. In the spleen, increased HSC was associated with expression of the BM HSC niche macrophage marker CD169 in red pulp macrophages, suggesting elevated spleen engraftment with CD48−CD150+ HSC was secondary to CSF1-Fc macrophage impacts. Competitive transplant assays demonstrated that pre-treatment of donors with CSF1-Fc increased the number and reconstitution potential of HSPC in blood following a HSC mobilising regimen of G-CSF treatment. Conclusion These results indicate that CSF1-Fc conditioning could represent a therapeutic strategy to overcome poor HSC mobilisation and subsequently improve HSC transplantation outcomes.
Collapse
Affiliation(s)
- Simranpreet Kaur
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Anuj Sehgal
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Andy C Wu
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Susan M Millard
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Lena Batoon
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Cheyenne J Sandrock
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Michelle Ferrari-Cestari
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Jean-Pierre Levesque
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - David A Hume
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Liza J Raggatt
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Allison R Pettit
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia.
| |
Collapse
|
68
|
Munro DAD, Bradford BM, Mariani SA, Hampton DW, Vink CS, Chandran S, Hume DA, Pridans C, Priller J. CNS macrophages differentially rely on an intronic Csf1r enhancer for their development. Development 2020; 147:147/23/dev194449. [PMID: 33323375 PMCID: PMC7758622 DOI: 10.1242/dev.194449] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/26/2020] [Indexed: 12/29/2022]
Abstract
The central nervous system hosts parenchymal macrophages, known as microglia, and non-parenchymal macrophages, collectively termed border-associated macrophages (BAMs). Microglia, but not BAMs, were reported to be absent in mice lacking a conserved Csf1r enhancer: the fms-intronic regulatory element (FIRE). However, it is unknown whether FIRE deficiency also impacts BAM arrival and/or maintenance. Here, we show that macrophages in the ventricular system of the brain, including Kolmer's epiplexus macrophages, are absent in Csf1rΔFIRE/ΔFIRE mice. Stromal choroid plexus BAMs are also considerably reduced. During normal development, we demonstrate that intracerebroventricular macrophages arrive from embryonic day 10.5, and can traverse ventricular walls in embryonic slice cultures. In Csf1rΔFIRE/ΔFIRE embryos, the arrival of both primitive microglia and intracerebroventricular macrophages was eliminated, whereas the arrival of cephalic mesenchyme and stromal choroid plexus BAMs was only partially restricted. Our results provide new insights into the development and regulation of different CNS macrophage populations. Summary: Deletion of the fms-intronic regulatory element of Csf1r in mouse disrupts the engraftment and maintenance of central nervous system macrophages in a compartment-specific manner.
Collapse
Affiliation(s)
- David A D Munro
- UK Dementia Research Institute at The University of Edinburgh, Chancellor's Building, Edinburgh EH16 4SB, UK
| | - Barry M Bradford
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Samanta A Mariani
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - David W Hampton
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh EH16 4SB, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Chris S Vink
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute at The University of Edinburgh, Chancellor's Building, Edinburgh EH16 4SB, UK.,Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh EH16 4SB, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, UK.,Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh EH16 4SB, UK
| | - David A Hume
- Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba Q4102, Australia
| | - Clare Pridans
- The University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.,Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Josef Priller
- UK Dementia Research Institute at The University of Edinburgh, Chancellor's Building, Edinburgh EH16 4SB, UK .,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, UK.,Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
69
|
Han J, Sarlus H, Wszolek ZK, Karrenbauer VD, Harris RA. Microglial replacement therapy: a potential therapeutic strategy for incurable CSF1R-related leukoencephalopathy. Acta Neuropathol Commun 2020; 8:217. [PMID: 33287883 PMCID: PMC7720517 DOI: 10.1186/s40478-020-01093-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
CSF1R-related leukoencephalopathy is an adult-onset leukoencephalopathy with axonal spheroids and pigmented glia caused by colony stimulating factor 1 receptor (CSF1R) gene mutations. The disease has a global distribution and currently has no cure. Individuals with CSF1R-related leukoencephalopathy variably present clinical symptoms including cognitive impairment, progressive neuropsychiatric and motor symptoms. CSF1R is predominantly expressed on microglia within the central nervous system (CNS), and thus CSF1R-related leukoencephalopathy is now classified as a CNS primary microgliopathy. This urgent unmet medical need could potentially be addressed by using microglia-based immunotherapies. With the rapid recent progress in the experimental microglial research field, the replacement of an empty microglial niche following microglial depletion through either conditional genetic approaches or pharmacological therapies (CSF1R inhibitors) is being studied. Furthermore, hematopoietic stem cell transplantation offers an emerging means of exchanging dysfunctional microglia with the aim of reducing brain lesions, relieving clinical symptoms and prolonging the life of patients with CSF1R-related leukoencephalopathy. This review article introduces recent advances in microglial biology and CSF1R-related leukoencephalopathy. Potential therapeutic strategies by replacing microglia in order to improve the quality of life of CSF1R-related leukoencephalopathy patients will be presented.
Collapse
Affiliation(s)
- Jinming Han
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Solna, Sweden.
| | - Heela Sarlus
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Solna, Sweden
| | | | - Virginija Danylaité Karrenbauer
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| | - Robert A Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
70
|
Grabert K, Sehgal A, Irvine KM, Wollscheid-Lengeling E, Ozdemir DD, Stables J, Luke GA, Ryan MD, Adamson A, Humphreys NE, Sandrock CJ, Rojo R, Verkasalo VA, Mueller W, Hohenstein P, Pettit AR, Pridans C, Hume DA. A Transgenic Line That Reports CSF1R Protein Expression Provides a Definitive Marker for the Mouse Mononuclear Phagocyte System. THE JOURNAL OF IMMUNOLOGY 2020; 205:3154-3166. [DOI: 10.4049/jimmunol.2000835] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
|
71
|
Lelios I, Cansever D, Utz SG, Mildenberger W, Stifter SA, Greter M. Emerging roles of IL-34 in health and disease. J Exp Med 2020; 217:133604. [PMID: 31940023 PMCID: PMC7062519 DOI: 10.1084/jem.20190290] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/11/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Macrophages are part of the innate immune system and are present in every organ of the body. They fulfill critical roles in tissue homeostasis and development and are involved in various pathologies. An essential factor for the development, homeostasis, and function of mononuclear phagocytes is the colony stimulating factor-1 receptor (CSF-1R), which has two known ligands: CSF-1 and interleukin-34 (IL-34). While CSF-1 has been extensively studied, the biology and functions of IL-34 are only now beginning to be uncovered. In this review, we discuss recent advances of IL-34 biology in health and disease with a specific focus on mononuclear phagocytes.
Collapse
Affiliation(s)
- Iva Lelios
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Dilay Cansever
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastian G Utz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Wiebke Mildenberger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastian A Stifter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
72
|
Denny WA, Flanagan JU. Small-molecule CSF1R kinase inhibitors; review of patents 2015-present. Expert Opin Ther Pat 2020; 31:107-117. [PMID: 33108917 DOI: 10.1080/13543776.2021.1839414] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Colony stimulating factor 1 receptor (CSF-1R, also known as c-FMS kinase) is in the class III receptor tyrosine kinase family, along with c-Kit, Flt3 and PDGFRα. CSF-1/CSF-1R signaling promotes the differentiation and survival of myeloid progenitors into populations of monocytes, macrophages, dendritic cells and osteoclasts, as well as microglial cells and also recruits host macrophages to develop into tumor-associated macrophages (TAMs), which promote tumor progression and metastasis. AREAS COVERED In the last 5 years, and recently stimulated by the approval of pexidartinib (Turalio™, Daiichi Sankyo) in 2019 for the treatment of tenosynovial giant cell tumors, there has been a large increase in activity (both journal articles and patent applications) around small molecule inhibitors of CSF1R. Features of this work have been the surprising diversity of chemical classes shown to be potent and selective inhibitors, and the breadth of disease states (cancer, arthritis, and 'cytokine storm' syndromes) covered by CSF1R inhibitors. All these aspects are covered in the following sections. EXPERT OPINION The field has developed rapidly from 2014 to the present, with many different chemotypes proving to be potent inhibitors. The range of potential utilities of CSF1R inhibitors has also expanded to include dementia, ulcerative colitis/Crohn's disease, rheumatoid arthritis inflammation, and fibrosis.
Collapse
Affiliation(s)
- William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences and Maurice Wilkins Centre, University of Auckland , Auckland, New Zealand
| | - Jack U Flanagan
- Auckland Cancer Society Research Centre, School of Medical Sciences and Maurice Wilkins Centre, University of Auckland , Auckland, New Zealand.,Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, University of Auckland , Auckland, New Zealand
| |
Collapse
|
73
|
Summers KM, Bush SJ, Hume DA. Network analysis of transcriptomic diversity amongst resident tissue macrophages and dendritic cells in the mouse mononuclear phagocyte system. PLoS Biol 2020; 18:e3000859. [PMID: 33031383 PMCID: PMC7575120 DOI: 10.1371/journal.pbio.3000859] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/20/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
The mononuclear phagocyte system (MPS) is a family of cells including progenitors, circulating blood monocytes, resident tissue macrophages, and dendritic cells (DCs) present in every tissue in the body. To test the relationships between markers and transcriptomic diversity in the MPS, we collected from National Center for Biotechnology Information Gene Expression Omnibus (NCBI-GEO) a total of 466 quality RNA sequencing (RNA-seq) data sets generated from mouse MPS cells isolated from bone marrow, blood, and multiple tissues. The primary data were randomly downsized to a depth of 10 million reads and requantified. The resulting data set was clustered using the network analysis tool BioLayout. A sample-to-sample matrix revealed that MPS populations could be separated based upon tissue of origin. Cells identified as classical DC subsets, cDC1s and cDC2s, and lacking Fcgr1 (encoding the protein CD64) were contained within the MPS cluster, no more distinct than other MPS cells. A gene-to-gene correlation matrix identified large generic coexpression clusters associated with MPS maturation and innate immune function. Smaller coexpression gene clusters, including the transcription factors that drive them, showed higher expression within defined isolated cells, including monocytes, macrophages, and DCs isolated from specific tissues. They include a cluster containing Lyve1 that implies a function in endothelial cell (EC) homeostasis, a cluster of transcripts enriched in intestinal macrophages, and a generic lymphoid tissue cDC cluster associated with Ccr7. However, transcripts encoding Adgre1, Itgax, Itgam, Clec9a, Cd163, Mertk, Mrc1, Retnla, and H2-a/e (encoding class II major histocompatibility complex [MHC] proteins) and many other proposed macrophage subset and DC lineage markers each had idiosyncratic expression profiles. Coexpression of immediate early genes (for example, Egr1, Fos, Dusp1) and inflammatory cytokines and chemokines (tumour necrosis factor [Tnf], Il1b, Ccl3/4) indicated that all tissue disaggregation and separation protocols activate MPS cells. Tissue-specific expression clusters indicated that all cell isolation procedures also co-purify other unrelated cell types that may interact with MPS cells in vivo. Comparative analysis of RNA-seq and single-cell RNA-seq (scRNA-seq) data from the same lung cell populations indicated that MPS heterogeneity implied by global cluster analysis may be even greater at a single-cell level. This analysis highlights the power of large data sets to identify the diversity of MPS cellular phenotypes and the limited predictive value of surface markers to define lineages, functions, or subpopulations.
Collapse
Affiliation(s)
- Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
74
|
Obst J, Simon E, Martin-Estebane M, Pipi E, Barkwill LM, Gonzalez-Rivera I, Buchanan F, Prescott AR, Faust D, Fox S, Brownlees J, Taylor D, Perry VH, Nuthall H, Atkinson PJ, Karran E, Routledge C, Gomez-Nicola D. Inhibition of IL-34 Unveils Tissue-Selectivity and Is Sufficient to Reduce Microglial Proliferation in a Model of Chronic Neurodegeneration. Front Immunol 2020; 11:579000. [PMID: 33162994 PMCID: PMC7580706 DOI: 10.3389/fimmu.2020.579000] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/27/2020] [Indexed: 01/15/2023] Open
Abstract
The proliferation and activation of microglia, the resident macrophages in the brain, is a hallmark of many neurodegenerative diseases such as Alzheimer's disease (AD) and prion disease. Colony stimulating factor 1 receptor (CSF1R) is critically involved in regulating microglial proliferation, and CSF1R blocking strategies have been recently used to modulate microglia in neurodegenerative diseases. However, CSF1R is broadly expressed by many cell types and the impact of its inhibition on the innate immune system is still unclear. CSF1R can be activated by two independent ligands, CSF-1 and interleukin 34 (IL-34). Recently, it has been reported that microglia development and maintenance depend on IL-34 signaling. In this study, we evaluate the inhibition of IL-34 as a novel strategy to reduce microglial proliferation in the ME7 model of prion disease. Selective inhibition of IL-34 showed no effects on peripheral macrophage populations in healthy mice, avoiding the side effects observed after CSF1R inhibition on the systemic compartment. However, we observed a reduction in microglial proliferation after IL-34 inhibition in prion-diseased mice, indicating that microglia could be more specifically targeted by reducing IL-34. Overall, our results highlight the challenges of targeting the CSF1R/IL34 axis in the systemic and central compartments, important for framing any therapeutic effort to tackle microglia/macrophage numbers during brain disease.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/toxicity
- Antibodies, Neutralizing/pharmacology
- Antibodies, Neutralizing/toxicity
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Disease Models, Animal
- Genes, fms
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Interleukins/antagonists & inhibitors
- Interleukins/metabolism
- Mice, Inbred C57BL
- Mice, Transgenic
- Microglia/drug effects
- Microglia/metabolism
- Microglia/pathology
- Nerve Degeneration
- Prion Diseases/drug therapy
- Prion Diseases/metabolism
- Prion Diseases/pathology
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Juliane Obst
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Emilie Simon
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Maria Martin-Estebane
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Elena Pipi
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Liana M. Barkwill
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Ivette Gonzalez-Rivera
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Fergus Buchanan
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Dorte Faust
- Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Stevenage, United Kingdom
| | - Simon Fox
- Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Stevenage, United Kingdom
| | - Janet Brownlees
- Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Stevenage, United Kingdom
| | - Debra Taylor
- Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Stevenage, United Kingdom
| | - V. Hugh Perry
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Hugh Nuthall
- Eli Lilly Research Centre, Surrey, United Kingdom
| | - Peter J. Atkinson
- Eisai Limited, European Knowledge Centre, Hertfordshire, United Kingdom
| | - Eric Karran
- Abbvie, Foundational Neuroscience Centre, Cambridge, MA, United States
| | | | - Diego Gomez-Nicola
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
75
|
Mabbott NA, Bradford BM, Pal R, Young R, Donaldson DS. The Effects of Immune System Modulation on Prion Disease Susceptibility and Pathogenesis. Int J Mol Sci 2020; 21:E7299. [PMID: 33023255 PMCID: PMC7582561 DOI: 10.3390/ijms21197299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Prion diseases are a unique group of infectious chronic neurodegenerative disorders to which there are no cures. Although prion infections do not stimulate adaptive immune responses in infected individuals, the actions of certain immune cell populations can have a significant impact on disease pathogenesis. After infection, the targeting of peripherally-acquired prions to specific immune cells in the secondary lymphoid organs (SLO), such as the lymph nodes and spleen, is essential for the efficient transmission of disease to the brain. Once the prions reach the brain, interactions with other immune cell populations can provide either host protection or accelerate the neurodegeneration. In this review, we provide a detailed account of how factors such as inflammation, ageing and pathogen co-infection can affect prion disease pathogenesis and susceptibility. For example, we discuss how changes to the abundance, function and activation status of specific immune cell populations can affect the transmission of prion diseases by peripheral routes. We also describe how the effects of systemic inflammation on certain glial cell subsets in the brains of infected individuals can accelerate the neurodegeneration. A detailed understanding of the factors that affect prion disease transmission and pathogenesis is essential for the development of novel intervention strategies.
Collapse
Affiliation(s)
- Neil A. Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (B.M.B.); (R.P.); (R.Y.); (D.S.D.)
| | | | | | | | | |
Collapse
|
76
|
Karagianni AE, Lisowski ZM, Hume DA, Scott Pirie R. The equine mononuclear phagocyte system: The relevance of the horse as a model for understanding human innate immunity. Equine Vet J 2020; 53:231-249. [PMID: 32881079 DOI: 10.1111/evj.13341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/07/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
The mononuclear phagocyte system (MPS) is a family of cells of related function that includes bone marrow progenitors, blood monocytes and resident tissue macrophages. Macrophages are effector cells in both innate and acquired immunity. They are a major resident cell population in every organ and their numbers increase in response to proinflammatory stimuli. Their function is highly regulated by a wide range of agonists, including lymphokines, cytokines and products of microorganisms. Macrophage biology has been studied most extensively in mice, yet direct comparisons of rodent and human macrophages have revealed many functional differences. In this review, we provide an overview of the equine MPS, describing the variation in the function and phenotype of macrophages depending on their location and the similarities and differences between the rodent, human and equine immune response. We discuss the use of the horse as a large animal model in which to study macrophage biology and pathological processes shared with humans. Finally, following the recent update to the horse genome, facilitating further comparative analysis of regulated gene expression between the species, we highlight the importance of future transcriptomic macrophage studies in the horse, the findings of which may also be applicable to human as well as veterinary research.
Collapse
Affiliation(s)
- Anna E Karagianni
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Zofia M Lisowski
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - David A Hume
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, QLD, Australia
| | - R Scott Pirie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
77
|
Green KN, Crapser JD, Hohsfield LA. To Kill a Microglia: A Case for CSF1R Inhibitors. Trends Immunol 2020; 41:771-784. [PMID: 32792173 PMCID: PMC7484341 DOI: 10.1016/j.it.2020.07.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Microglia, the brain's immune sentinels, have garnered much attention in recent years. Researchers have begun to identify the manifold roles that these cells play in the central nervous system (CNS), and this work has been greatly facilitated by microglial depletion paradigms. The varying degrees of spatiotemporal manipulation afforded by such techniques allow microglial ablation before, during, and/or following insult, injury, or disease. We review the major methods of microglial depletion, including toxin-based, genetic, and pharmacological approaches, which differ in key factors including depletion onset, duration, and off-target effects. We conclude that pharmacological CSF1R inhibitors afford the most extensive versatility in manipulating microglia, making them ideal candidates for future studies investigating microglial function in health and disease.
Collapse
Affiliation(s)
- Kim N Green
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA.
| | - Joshua D Crapser
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Lindsay A Hohsfield
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
78
|
Bush SJ, McCulloch MEB, Lisowski ZM, Muriuki C, Clark EL, Young R, Pridans C, Prendergast JGD, Summers KM, Hume DA. Species-Specificity of Transcriptional Regulation and the Response to Lipopolysaccharide in Mammalian Macrophages. Front Cell Dev Biol 2020; 8:661. [PMID: 32793601 PMCID: PMC7386301 DOI: 10.3389/fcell.2020.00661] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/01/2020] [Indexed: 02/02/2023] Open
Abstract
Mammalian macrophages differ in their basal gene expression profiles and response to the toll-like receptor 4 (TLR4) agonist, lipopolysaccharide (LPS). In human macrophages, LPS elicits a temporal cascade of transient gene expression including feed forward activators and feedback regulators that limit the response. Here we present a transcriptional network analysis of the response of sheep bone marrow-derived macrophages (BMDM) to LPS based upon RNA-seq at 0, 2, 4, 7, and 24 h post-stimulation. The analysis reveals a conserved transcription factor network with humans, and rapid induction of feedback regulators that constrain the response at every level. The gene expression profiles of sheep BMDM at 0 and 7 h post LPS addition were compared to similar data obtained from goat, cow, water buffalo, horse, pig, mouse and rat BMDM. This comparison was based upon identification of 8,200 genes annotated in all species and detected at >10TPM in at least one sample. Analysis of expression of transcription factors revealed a conserved transcriptional millieu associated with macrophage differentiation and LPS response. The largest co-expression clusters, including genes encoding cell surface receptors, endosome-lysosome components and secretory activity, were also expressed in all species and the combined dataset defines a macrophage functional transcriptome. All of the large animals differed from rodents in lacking inducible expression of genes involved in arginine metabolism and nitric oxide production. Instead, they expressed inducible transporters and enzymes of tryptophan and kynurenine metabolism. BMDM from all species expressed high levels of transcripts encoding transporters and enzymes involved in glutamine metabolism suggesting that glutamine is a major metabolic fuel. We identify and discuss transcripts that were uniquely expressed or regulated in rodents compared to large animals including ACOD1, CXC and CC chemokines, CD163, CLEC4E, CPM, CSF1, CSF2, CTSK, MARCO, MMP9, SLC2A3, SLC7A7, and SUCNR1. Conversely, the data confirm the conserved regulation of multiple transcripts for which there is limited functional data from mouse models and knockouts. The data provide a resource for functional annotation and interpretation of loci involved in susceptibility to infectious and inflammatory disease in humans and large animal species.
Collapse
Affiliation(s)
- Stephen J. Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | | | - Zofia M. Lisowski
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Charity Muriuki
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Emily L. Clark
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Rachel Young
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Clare Pridans
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
79
|
Deczkowska A, Weiner A, Amit I. The Physiology, Pathology, and Potential Therapeutic Applications of the TREM2 Signaling Pathway. Cell 2020; 181:1207-1217. [DOI: 10.1016/j.cell.2020.05.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/15/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
|
80
|
Stewart TA, Hughes K, Hume DA, Davis FM. Developmental Stage-Specific Distribution of Macrophages in Mouse Mammary Gland. Front Cell Dev Biol 2019; 7:250. [PMID: 31709255 PMCID: PMC6821639 DOI: 10.3389/fcell.2019.00250] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Mammary gland development begins in the embryo and continues throughout the reproductive life of female mammals. Tissue macrophages (Mϕs), dependent on signals from the Mϕ colony stimulating factor 1 receptor (CSF1R), have been shown to regulate the generation, regression and regeneration of this organ, which is central for mammalian offspring survival. However, the distribution of Mϕs in the pre- and post-natal mammary gland, as it undergoes distinct phases of development and regression, is unknown or has been inferred from immunostaining of thin tissue sections. Here, we used optical tissue clearing and 3-dimensional imaging of mammary tissue obtained from Csf1r-EGFP mice. Whilst tissue Mϕs were observed at all developmental phases, their abundance, morphology, localization and association with luminal and basal epithelial cells exhibited stage-specific differences. Furthermore, sexual dimorphism was observed at E14.5, when the male mammary bud is severed from the overlying epidermis. These findings provide new insights into the localization and possible functions of heterogeneous tissue Mϕ populations in mammogenesis.
Collapse
Affiliation(s)
- Teneale A. Stewart
- Faculty of Medicine, Mater Research Institute-The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David A. Hume
- Faculty of Medicine, Mater Research Institute-The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Felicity M. Davis
- Faculty of Medicine, Mater Research Institute-The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|