51
|
Jneid B, Rouaix A, Féraudet-Tarisse C, Simon S. SipD and IpaD induce a cross-protection against Shigella and Salmonella infections. PLoS Negl Trop Dis 2020; 14:e0008326. [PMID: 32463817 PMCID: PMC7282677 DOI: 10.1371/journal.pntd.0008326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/09/2020] [Accepted: 04/26/2020] [Indexed: 01/05/2023] Open
Abstract
Salmonella and Shigella species are food- and water-borne pathogens that are responsible for enteric infections in both humans and animals and are still the major cause of morbidity and mortality in the emerging countries. The existence of multiple Salmonella and Shigella serotypes as well as the emergence of strains resistant to antibiotics require the development of broadly protective therapies. Those bacteria utilize a Type III Secretion System (T3SS), necessary for their pathogenicity. The structural proteins composing the T3SS are common to all virulent Salmonella and Shigella spp., particularly the needle-tip proteins SipD (Salmonella) and IpaD (Shigella). We investigated the immunogenicity and protective efficacy of SipD and IpaD administered by intranasal and intragastric routes, in a mouse model of Salmonella enterica serotype Typhimurium (S. Typhimurium) intestinal challenge. Robust IgG (in all immunization routes) and IgA (in intranasal and oral immunization routes) antibody responses were induced against both proteins. Mice immunized with SipD or IpaD were protected against lethal intestinal challenge with S. Typhimurium or Shigella flexneri (100 Lethal Dose 50%). We have shown that SipD and IpaD are able to induce a cross-protection in a murine model of infection by Salmonella and Shigella. We provide the first demonstration that Salmonella and Shigella T3SS SipD and IpaD are promising antigens for the development of a cross-protective Salmonella-Shigella vaccine. These results open the way to the development of cross-protective therapeutic molecules.
Collapse
Affiliation(s)
- Bakhos Jneid
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Audrey Rouaix
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Cécile Féraudet-Tarisse
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Stéphanie Simon
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
52
|
Wu Y, Hu Q, Dehinwal R, Rakov AV, Grams N, Clemens EC, Hofmann J, Okeke IN, Schifferli DM. The Not so Good, the Bad and the Ugly: Differential Bacterial Adhesion and Invasion Mediated by Salmonella PagN Allelic Variants. Microorganisms 2020; 8:microorganisms8040489. [PMID: 32235448 PMCID: PMC7232170 DOI: 10.3390/microorganisms8040489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 11/21/2022] Open
Abstract
While advances in genomic sequencing have highlighted significant strain variability between and within Salmonella serovars, only a few protein variants have been directly related to evolutionary adaptation for survival, such as host specificity or differential virulence. The current study investigated whether allelic variation of the Salmonella adhesin/invasin PagN influences bacterial interaction with their receptors. The Salmonella enterica, subspecies enterica serovar Typhi (S. Typhi) allelic variant of PagN was found to bind significantly better to different enterocytes as well as to the extracellular matrix protein laminin than did the major Salmonella enterica, subspecies enterica serovar Typhimurium (S. Typhimurium) allele. The two alleles differed at amino acid residues 49 and 109 in two of the four predicted PagN surface loops, and residue substitution analysis revealed that a glutamic acid at residue 49 increased the adhesive and invasive properties of S. Typhi PagN. PagN sequence comparisons from 542 Salmonella strains for six representative S. enterica serovars and S. diarizonae further supported the role of glutamic acid at residues 49 and 109 in optimizing adhesion to cells and laminin, as well as for cell invasion. In summary, this study characterized unique residues in allelic variants of a virulence factor that participates in the colonization and invasive properties of different Salmonella stains, subspecies and serovars.
Collapse
Affiliation(s)
- Yanping Wu
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104, USA; (Y.W.); (R.D.); (A.V.R.); (N.G.)
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Qiaoyun Hu
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104, USA; (Y.W.); (R.D.); (A.V.R.); (N.G.)
| | - Ruchika Dehinwal
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104, USA; (Y.W.); (R.D.); (A.V.R.); (N.G.)
| | - Alexey V. Rakov
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104, USA; (Y.W.); (R.D.); (A.V.R.); (N.G.)
| | - Nicholas Grams
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104, USA; (Y.W.); (R.D.); (A.V.R.); (N.G.)
| | - Erin C. Clemens
- Department of Biology, Haverford College, Haverford, PA 19041, USA; (E.C.C.); (J.H.); (I.N.O.)
| | - Jennifer Hofmann
- Department of Biology, Haverford College, Haverford, PA 19041, USA; (E.C.C.); (J.H.); (I.N.O.)
| | - Iruka N. Okeke
- Department of Biology, Haverford College, Haverford, PA 19041, USA; (E.C.C.); (J.H.); (I.N.O.)
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan 200284, Oyo State, Nigeria
| | - Dieter M. Schifferli
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104, USA; (Y.W.); (R.D.); (A.V.R.); (N.G.)
- Correspondence:
| |
Collapse
|
53
|
Röder J, Hensel M. Presence of SopE and mode of infection result in increased
Salmonella
‐containing vacuole damage and cytosolic release during host cell infection by
Salmonella enterica. Cell Microbiol 2020; 22:e13155. [DOI: 10.1111/cmi.13155] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Jennifer Röder
- Abteilung MikrobiologieUniversitat Osnabruck Osnabrück Germany
| | - Michael Hensel
- Abteilung MikrobiologieUniversitat Osnabruck Osnabrück Germany
- CellNanOs – Center for Cellular Nanoanalytics, Fachbereich Biologie/ChemieUniversität Osnabrück Osnabrück Germany
| |
Collapse
|
54
|
Kaur D, Mukhopadhaya A. Outer membrane protein OmpV mediates Salmonella enterica serovar typhimurium adhesion to intestinal epithelial cells via fibronectin and α1β1 integrin. Cell Microbiol 2020; 22:e13172. [PMID: 32017350 DOI: 10.1111/cmi.13172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
Abstract
Salmonella typhimurium is an invasive Gram-negative enteric bacterium, which causes salmonellosis, a type of gastroenteritis in humans and typhoid-like symptoms in mice. Upon entering through the contaminated food and water, S. typhimurium adheres, colonises, and invades intestinal epithelial cells (IECs) of the small intestine. In this study, we have shown that upon deletion of the outer membrane protein OmpV, there is a significant decrease in adherence of S. typhimurium to the IECs, indicating that OmpV is an important adhesin of S. typhimurium. Further, our study showed that OmpV binds to the extracellular matrix component fibronectin and signals through α1β1 integrin receptor on the IECs and OmpV-mediated activation of α1β1, resulting in the activation of focal adhesion kinase and F-actin modulation. Actin modulation is crucial for bacterial invasion. To the best of our knowledge, this is the first report of an adhesin mediated its effect through integrin in S. typhimurium. Further, we have observed a decrease in pathogenicity in terms of increased LD50 dose, lesser bacterial numbers in stool, and less colonisation of bacteria in different organs of mice infected with Δompv mutant compared with the wild-type bacteria, thus confirming the crucial role of OmpV in the pathogenesis of S. typhimurium.
Collapse
Affiliation(s)
- Deepinder Kaur
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sahibzada Ajit Singh Nagar, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sahibzada Ajit Singh Nagar, India
| |
Collapse
|
55
|
Schierstaedt J, Grosch R, Schikora A. Agricultural production systems can serve as reservoir for human pathogens. FEMS Microbiol Lett 2020; 366:5715908. [PMID: 31981360 DOI: 10.1093/femsle/fnaa016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Food-borne diseases are a threat to human health and can cause severe economic losses. Nowadays, in a growing and increasingly interconnected world, food-borne diseases need to be dealt with in a global manner. In order to tackle this issue, it is essential to consider all possible entry routes of human pathogens into the production chain. Besides the post-harvest handling of the fresh produce itself, also the prevention of contamination in livestock and agricultural soils are of particular importance. While the monitoring of human pathogens and intervening measures are relatively easy to apply in livestock and post-harvest, the investigation of the prevention strategies in crop fields is a challenging task. Furthermore, crop fields are interconnected with livestock via fertilizers and feed; therefore, a poor hygiene management can cause cross-contamination. In this review, we highlight the possible contamination of crop plants by bacterial human pathogens via the rhizosphere, their interaction with the plant and possible intervention strategies. Furthermore, we discuss critical issues and questions that are still open.
Collapse
Affiliation(s)
- Jasper Schierstaedt
- Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Rita Grosch
- Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Adam Schikora
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| |
Collapse
|
56
|
Stress-induced adaptations in Salmonella: A ground for shaping its pathogenesis. Microbiol Res 2019; 229:126311. [DOI: 10.1016/j.micres.2019.126311] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022]
|
57
|
Mechesso AF, Yixian Q, Park SC. Methyl gallate and tylosin synergistically reduce the membrane integrity and intracellular survival of Salmonella Typhimurium. PLoS One 2019; 14:e0221386. [PMID: 31490973 PMCID: PMC6730861 DOI: 10.1371/journal.pone.0221386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/07/2019] [Indexed: 11/18/2022] Open
Abstract
Nymphaea tetragona Georgi (Nymphaceae) is traditionally used in Asia for the treatment of diarrhea, dysentery and fever. The plant contains various active compounds, including methyl gallate (MG) which are reported to inhibit bacterial virulence mechanisms. This study aimed to evaluate the alterations on viability, membrane potential and integrity of Salmonella enterica Serovar Typhimurium exposed to MG in combination with Tylosin (Ty), which is relatively inactive against Gram-negative bacteria, but it is commonly used as a feed additive in livestock. Besides, the effects of sub-inhibitory concentrations of the combination (MT) on the interaction between S. Typhimurium and the host cell, as well as on the indirect host responses, were characterized. Flow cytometry, confocal and electron microscopic examinations were undertaken to determine the effects of MT on S. Typhimurium. The impacts of sub-inhibitory concentrations of MT on biofilm formation, as well as on the adhesion, invasion and intracellular survival of S. Typhimurium were assessed. The result demonstrated significant damage to the bacterial membrane, leakage of cell contents and a reduction in the membrane potential when treated with MT. Sub-inhibitory concentrations of MT significantly reduced (P < 0.05) the biofilm-forming, adhesive and invasive abilities of S. Typhimurium. Exposure to MT drastically reduced the bacterial count in macrophages. Up-regulation of interleukin (IL)-6, IL-8 and IL-10 cytokine genes were detected in intestinal epithelial cells pre-treated with MT. This report is the first to describe the effects of MT against S. Typhimurium. The result indicates a synergistic interaction between MG and Ty against S. Typhimurium. Therefore, the combination may be a promising option to combat S. Typhimurium in swine and, indirectly, safeguard the health of the public.
Collapse
Affiliation(s)
- Abraham Fikru Mechesso
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, South Korea
| | - Quah Yixian
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, South Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, South Korea
- * E-mail:
| |
Collapse
|
58
|
|
59
|
Prasertsee T, Chuammitri P, Deeudom M, Chokesajjawatee N, Santiyanont P, Tadee P, Nuangmek A, Tadee P, Sheppard SK, Pascoe B, Patchanee P. Core genome sequence analysis to characterize Salmonella enterica serovar Rissen ST469 from a swine production chain. Int J Food Microbiol 2019; 304:68-74. [PMID: 31174037 DOI: 10.1016/j.ijfoodmicro.2019.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/02/2019] [Accepted: 05/25/2019] [Indexed: 02/02/2023]
Abstract
Salmonella enterica subsp. enterica serotype Rissen is the predominant serotype found in Thai pork production and can be transmitted to humans through contamination of the food chain. This study was conducted to investigate the genetic relationships between serovar Rissen isolates from all levels of the pork production chain and evaluate the ability of the in silico antimicrobial resistance (AMR) genotypes to predict the phenotype of serovar Rissen. A total of 38 serovar Rissen isolates were tested against eight antibiotic agents by a disk diffusion method and the whole genomes of all isolates were sequenced to detect AMR genetic elements using the ResFinder database.A total of 86.84% of the isolates were resistant to tetracycline, followed by ampicillin (78.96%) and sulfonamide-trimethoprim (71.05%). Resistance to more than one antimicrobial agent was observed in 78.95% of the isolates, with the most common pattern showing resistance to ampicillin, chloramphenicol, streptomycin, sulfonamide-trimethoprim, and tetracycline. The results of genotypic AMR indicated that 89.47% of the isolates carried tet(A), 84.22% carried blaTEM-1B, 78.95% carried sul3, and 78.95% carried dfrA12. The genotypic prediction of phenotypic resistance resulted in a mean sensitivity of 97.45% and specificity of 75.48%. Analysis by core genome multilocus sequence typing (cgMLST) demonstrated that the Salmonella isolates from various sources and different locations shared many of the same core genome loci. This implies that serovar Rissen has infected every stage of the pork production process and that contamination can occur in every part of the production chain.
Collapse
Affiliation(s)
- Teerarat Prasertsee
- Graduate Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phongsakorn Chuammitri
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Manu Deeudom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipa Chokesajjawatee
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Pannita Santiyanont
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Pakpoom Tadee
- Integrative Research Center for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Aniroot Nuangmek
- Graduate Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phacharaporn Tadee
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai 50290, Thailand
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, BA2 7BA, United Kingdom; Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, BA2 7BA, United Kingdom; Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Prapas Patchanee
- Integrative Research Center for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
60
|
Weiner A, Enninga J. The Pathogen–Host Interface in Three Dimensions: Correlative FIB/SEM Applications. Trends Microbiol 2019; 27:426-439. [DOI: 10.1016/j.tim.2018.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
|
61
|
Suh S, Jo A, Traore MA, Zhan Y, Coutermarsh‐Ott SL, Ringel‐Scaia VM, Allen IC, Davis RM, Behkam B. Nanoscale Bacteria-Enabled Autonomous Drug Delivery System (NanoBEADS) Enhances Intratumoral Transport of Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801309. [PMID: 30775227 PMCID: PMC6364498 DOI: 10.1002/advs.201801309] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/28/2018] [Indexed: 05/04/2023]
Abstract
Cancer drug delivery remains a formidable challenge due to systemic toxicity and inadequate extravascular transport of nanotherapeutics to cells distal from blood vessels. It is hypothesized that, in absence of an external driving force, the Salmonella enterica serovar Typhimurium could be exploited for autonomous targeted delivery of nanotherapeutics to currently unreachable sites. To test the hypothesis, a nanoscale bacteria-enabled autonomous drug delivery system (NanoBEADS) is developed in which the functional capabilities of the tumor-targeting S. Typhimurium VNP20009 are interfaced with poly(lactic-co-glycolic acid) nanoparticles. The impact of nanoparticle conjugation is evaluated on NanoBEADS' invasion of cancer cells and intratumoral transport in 3D tumor spheroids in vitro, and biodistribution in a mammary tumor model in vivo. It is found that intercellular (between cells) self-replication and translocation are the dominant mechanisms of bacteria intratumoral penetration and that nanoparticle conjugation does not impede bacteria's intratumoral transport performance. Through the development of new transport metrics, it is demonstrated that NanoBEADS enhance nanoparticle retention and distribution in solid tumors by up to a remarkable 100-fold without requiring any externally applied driving force or control input. Such autonomous biohybrid systems could unlock a powerful new paradigm in cancer treatment by improving the therapeutic index of chemotherapeutic drugs and minimizing systemic side effects.
Collapse
Affiliation(s)
- SeungBeum Suh
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| | - Ami Jo
- Department of Chemical EngineeringMacromolecules Innovation InstituteVirginia TechBlacksburgVA24061USA
| | - Mahama A. Traore
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| | - Ying Zhan
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| | | | | | - Irving C. Allen
- Department of Biomedical Sciences and PathobiologyVirginia TechBlacksburgVA24061USA
| | - Richey M. Davis
- Department of Chemical EngineeringMacromolecules Innovation InstituteVirginia TechBlacksburgVA24061USA
| | - Bahareh Behkam
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
- Macromolecules Innovation InstituteSchool of Biomedical Engineering & SciencesVirginia TechBlacksburgVA24061USA
| |
Collapse
|
62
|
Gal-Mor O. Persistent Infection and Long-Term Carriage of Typhoidal and Nontyphoidal Salmonellae. Clin Microbiol Rev 2019; 32:e00088-18. [PMID: 30487167 PMCID: PMC6302356 DOI: 10.1128/cmr.00088-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ability of pathogenic bacteria to affect higher organisms and cause disease is one of the most dramatic properties of microorganisms. Some pathogens can establish transient colonization only, but others are capable of infecting their host for many years or even for a lifetime. Long-term infection is called persistence, and this phenotype is fundamental for the biology of important human pathogens, including Helicobacter pylori, Mycobacterium tuberculosis, and Salmonella enterica Both typhoidal and nontyphoidal serovars of the species Salmonella enterica can cause persistent infection in humans; however, as these two Salmonella groups cause clinically distinct diseases, the characteristics of their persistent infections in humans differ significantly. Here, following a general summary of Salmonella pathogenicity, host specificity, epidemiology, and laboratory diagnosis, I review the current knowledge about Salmonella persistence and discuss the relevant epidemiology of persistence (including carrier rate, duration of shedding, and host and pathogen risk factors), the host response to Salmonella persistence, Salmonella genes involved in this lifestyle, as well as genetic and phenotypic changes acquired during prolonged infection within the host. Additionally, I highlight differences between the persistence of typhoidal and nontyphoidal Salmonella strains in humans and summarize the current gaps and limitations in our understanding, diagnosis, and curing of persistent Salmonella infections.
Collapse
Affiliation(s)
- Ohad Gal-Mor
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
63
|
Abstract
Bacteria, life living at microscale, can spread only by thermal fluctuation. However, the ability of directional movement, such as swimming by rotating flagella, gliding over surfaces via mobile cell-surface adhesins, and actin-dependent movement, could be useful for thriving through searching more favorable environments, and such motility is known to be related to pathogenicity. Among diverse migration mechanisms, perhaps flagella-dependent motility would be used by most species. The bacterial flagellum is a molecular nanomachine comprising a helical filament and a basal motor, which is fueled by an electrochemical gradient of cation across the cell membrane (ion motive force). Many species, such as Escherichia coli, possess flagella on the outside of the cell body, whereas flagella of spirochetes reside within the periplasmic space. Flagellar filaments or helical spirochete bodies rotate like a screw propeller, generating propulsive force. This review article describes the current knowledge of the structure and operation mechanism of the bacterial flagellum, and flagella-dependent motility in highly viscous environments.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University
| |
Collapse
|
64
|
Mooney JP, Galloway LJ, Riley EM. Malaria, anemia, and invasive bacterial disease: A neutrophil problem? J Leukoc Biol 2018; 105:645-655. [PMID: 30570786 PMCID: PMC6487965 DOI: 10.1002/jlb.3ri1018-400r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022] Open
Abstract
Invasive bacterial disease is well described in immunocompromised hosts, including those with malaria infection. One bacterial infection frequently observed in children with Plasmodium falciparum infection is nontyphoidal salmonella (NTS) infection, in which a typically intestinal infection becomes systemic with serious, often fatal, consequences. In this review, we consider the role of malaria‐induced immunoregulatory responses in tipping the balance from tissue homeostasis during malaria infection to risk of invasive NTS. Also, neutrophils are crucial in the clearance of NTS but their ability to mount an oxidative burst and kill intracellular Salmonella is severely compromised during, and for some time after, an acute malaria infection. Here, we summarize the evidence linking malaria and invasive NTS infections; describe the role of neutrophils in clearing NTS infections; review evidence for neutrophil dysfunction in malaria infections; and explore roles of heme oxygenase‐1, IL‐10, and complement in mediating this dysfunction. Finally, given the epidemiological evidence that low density, subclinical malaria infections pose a risk for invasive NTS infections, we consider whether the high prevalence of such infections might underlie the very high incidence of invasive bacterial disease across much of sub‐Saharan Africa.
Collapse
Affiliation(s)
- Jason P Mooney
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Lauren J Galloway
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Eleanor M Riley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
65
|
Chowdhury R, Das S, Ta A, Das S. Epithelial invasion by Salmonella Typhi using STIV-Met interaction. Cell Microbiol 2018; 21:e12982. [PMID: 30426648 DOI: 10.1111/cmi.12982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022]
Abstract
Typhoid is a life-threatening febrile illness that affects ~24.2 million people worldwide and is caused by the intracellular bacteria Salmonella Typhi (S. Typhi). Intestinal epithelial invasion by S. Typhi is essential for the establishment of successful infection and is traditionally believed to depend on Salmonella pathogenicity island 1-encoded type 3 secretion system 1 (T3SS-1). We had previously reported that bacterial outer membrane protein T2942/STIV functions as a standalone invasin and contributes to the pathogenesis of S. Typhi by promoting epithelial invasion independent of T3SS-1 (Cell Microbiol, 2015). Here, we show that STIV, by using its 20-amino-acid extracellular loop, interacts with receptor tyrosine kinase, Met, of host intestinal epithelial cells. This interaction leads to Met phosphorylation and activation of a downstream signalling cascade, involving Src, phosphatidylinositol 3-kinase/Akt, and Rac1, which culminates into localized actin polymerisation and bacterial engulfment by the cell. Inhibition of Met tyrosine kinase activity severely limited intestinal invasion and systemic infection by S. Typhi in vivo, highlighting the importance of this invasion pathway in disease progression. This is the first report elucidating the mechanism of T3SS-1-independent epithelial invasion of S. Typhi, and this crucial host-pathogen interaction may be targeted therapeutically to restrict pathogenesis.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sayan Das
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Atri Ta
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Santasabuj Das
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
66
|
Birhanu BT, Park NH, Lee SJ, Hossain MA, Park SC. Inhibition of Salmonella Typhimurium adhesion, invasion, and intracellular survival via treatment with methyl gallate alone and in combination with marbofloxacin. Vet Res 2018; 49:101. [PMID: 30286813 PMCID: PMC6389159 DOI: 10.1186/s13567-018-0597-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/23/2018] [Indexed: 12/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium infects intestinal epithelia and macrophages, which is prevented by inhibiting adhesion and cell invasion. This study aimed to investigate the role of methyl gallate (MG) in adhesion, invasion, and intracellular survival of Salmonella Typhimurium in Caco-2 and RAW 264.7 cells via a gentamicin protection assay, confocal microscopy, and quantitative reverse-transcription polymerase chain reaction. MG (30 µg/mL) inhibited adhesion and invasion of Salmonella Typhimurium by 54.01% and 60.5% in RAW 264.7 cells, respectively. The combination of MG with sub-minimum inhibitory concentration (MIC) of marbofloxacin (MRB) inhibited the adhesion, invasion, and intracellular survival by 70.49%, 67.36%, and 74%, respectively. Confocal microscopy further revealed reductions in bacterial count in Caco-2 cells treated with MG alone or with sub-MIC of MRB. Furthermore, MG alone or in combination with sub-MIC of MRB decreased the motility of Salmonella Typhimurium. Quorum sensing genes including sdiA, srgE, and rck were downregulated by 52.8%, 61.7%, and 22.2%, respectively. Moreover, rac-1 was downregulated by 56.9% and 71.9% for MG alone and combined with sub-MIC of MRB, respectively, in mammalian cells. Furthermore, MG downregulated virulence genes of Salmonella Typhimurium including cheY, ompD, sipB, lexA, and ompF by 59.6%, 60.2%, 20.5%, 31.4%, and 16.2%, respectively. Together, the present results indicate that MG alone or in combination with a sub-MIC of MRB effectively inhibited the adhesion, invasion, and intracellular survival of Salmonella Typhimurium in vitro by downregulating quorum sensing and virulence genes.
Collapse
Affiliation(s)
- Biruk Tesfaye Birhanu
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, 41566, South Korea
| | - Na-Hye Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, 41566, South Korea
| | - Seung-Jin Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, 41566, South Korea
| | - Md Akil Hossain
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, South Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, 41566, South Korea.
| |
Collapse
|
67
|
Forbester JL, Lees EA, Goulding D, Forrest S, Yeung A, Speak A, Clare S, Coomber EL, Mukhopadhyay S, Kraiczy J, Schreiber F, Lawley TD, Hancock REW, Uhlig HH, Zilbauer M, Powrie F, Dougan G. Interleukin-22 promotes phagolysosomal fusion to induce protection against Salmonella enterica Typhimurium in human epithelial cells. Proc Natl Acad Sci U S A 2018; 115:10118-10123. [PMID: 30217896 PMCID: PMC6176607 DOI: 10.1073/pnas.1811866115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intestinal epithelial cells (IECs) play a key role in regulating immune responses and controlling infection. However, the direct role of IECs in restricting pathogens remains incompletely understood. Here, we provide evidence that IL-22 primed intestinal organoids derived from healthy human induced pluripotent stem cells (hIPSCs) to restrict Salmonella enterica serovar Typhimurium SL1344 infection. A combination of transcriptomics, bacterial invasion assays, and imaging suggests that IL-22-induced antimicrobial activity is driven by increased phagolysosomal fusion in IL-22-pretreated cells. The antimicrobial phenotype was absent in hIPSCs derived from a patient harboring a homozygous mutation in the IL10RB gene that inactivates the IL-22 receptor but was restored by genetically complementing the IL10RB deficiency. This study highlights a mechanism through which the IL-22 pathway facilitates the human intestinal epithelium to control microbial infection.
Collapse
Affiliation(s)
- Jessica L Forbester
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom;
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Emily A Lees
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - David Goulding
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Sally Forrest
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Amy Yeung
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Anneliese Speak
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Eve L Coomber
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | | - Judith Kraiczy
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Fernanda Schreiber
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Trevor D Lawley
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Holm H Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
- Department of Paediatrics, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Matthias Zilbauer
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Fiona Powrie
- Translational Gastroenterology Unit, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
- Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford OX3 7FY, United Kingdom
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
68
|
Menanteau P, Kempf F, Trotereau J, Virlogeux-Payant I, Gitton E, Dalifard J, Gabriel I, Rychlik I, Velge P. Role of systemic infection, cross contaminations and super-shedders in Salmonella carrier state in chicken. Environ Microbiol 2018; 20:3246-3260. [PMID: 29921019 DOI: 10.1111/1462-2920.14294] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/20/2017] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
Carriage of Salmonella is often associated with a high level of bacterial excretion and generally occurs after a short systemic infection. However, we do not know whether this systemic infection is required or whether the carrier-state corresponds to continuous reinfection or real persistence in caecal tissue. The use of a Salmonella Enteritidis bamB mutant demonstrated that a carrier-state could be obtained in chicken in the absence of systemic infection. The development of a new infection model in isolator showed that a marked decrease in animal reinfection and host-to-host transmission between chicks led to a heterogeneity of S. Enteritidis excretion and colonization contrary to what was observed in cages. This heterogeneity of infection was characterized by the presence of super-shedders, which constantly disseminated Salmonella to the low-shedder chicks, mainly through airborne movements of contaminated dust particles. The presence of super-shedders, in the absence of host-to-host transmission, demonstrated that constant reinfection was not required to induce a carrier-state. Finally, our results suggest that low-shedder chicks do not have a higher capability to destroy Salmonella but instead can block initial Salmonella colonization. This new paradigm opens new avenues to improve understanding of the carrier-state mechanisms and to define new strategies to control Salmonella infections.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Pierrette Menanteau
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| | - Florent Kempf
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| | - Jérôme Trotereau
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| | | | - Edouard Gitton
- Plate-Forme d'Infectiologie Expérimentale, INRA, 37380, Nouzilly, France
| | - Julie Dalifard
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| | | | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Philippe Velge
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| |
Collapse
|
69
|
Gut AM, Vasiljevic T, Yeager T, Donkor ON. Salmonella infection - prevention and treatment by antibiotics and probiotic yeasts: a review. MICROBIOLOGY-SGM 2018; 164:1327-1344. [PMID: 30136920 DOI: 10.1099/mic.0.000709] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Global Salmonella infection, especially in developing countries, is a health and economic burden. The use of antibiotic drugs in treating the infection is proving less effective due to the alarming rise of antibiotic-resistant strains of Salmonella, the effects of antibiotics on normal gut microflora and antibiotic-associated diarrhoea, all of which bring a growing need for alternative treatments, including the use of probiotic micro-organisms. However, there are issues with probiotics, including their potential to be opportunistic pathogens and antibiotic-resistant carriers, and their antibiotic susceptibility if used as complementary therapy. Clinical trials, animal trials and in vitro investigations into the prophylactic and therapeutic efficacies of probiotics have demonstrated antagonistic properties against Salmonella and other enteropathogenic bacteria. Nonetheless, there is a need for further studies into the potential mechanisms, efficacy and mode of delivery of yeast probiotics in Salmonella infections. This review discusses Salmonella infections and treatment using antibiotics and probiotics.
Collapse
Affiliation(s)
- Abraham Majak Gut
- 1Institute for Sustainable Industries and Livable Cities, College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Todor Vasiljevic
- 1Institute for Sustainable Industries and Livable Cities, College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Thomas Yeager
- 2Institute for Sustainable Industries and Livable Cities, College of Engineering and Science, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Osaana N Donkor
- 1Institute for Sustainable Industries and Livable Cities, College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| |
Collapse
|
70
|
Al kraiem AA, Yang G, Al kraiem F, Chen T. Challenges associated with ceftriaxone resistance inSalmonella. FRONTIERS IN LIFE SCIENCE 2018. [DOI: 10.1080/21553769.2018.1491427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ayman Ahmad Al kraiem
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan People’s Republic of China
- Department of Biology, College of Science, Taibah University, Al Madinah Al Mounwwarah, Kingdom of Saudi Arabia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan People’s Republic of China
| | - Fahd Al kraiem
- Pilgrims City Hospital, Ministry of Health, Al Madinah Al Mounwwarah, Kingdom of Saudi Arabia
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
71
|
Roche SM, Holbert S, Trotereau J, Schaeffer S, Georgeault S, Virlogeux-Payant I, Velge P. Salmonella Typhimurium Invalidated for the Three Currently Known Invasion Factors Keeps Its Ability to Invade Several Cell Models. Front Cell Infect Microbiol 2018; 8:273. [PMID: 30148118 PMCID: PMC6095967 DOI: 10.3389/fcimb.2018.00273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/23/2018] [Indexed: 12/25/2022] Open
Abstract
To establish an infection, Salmonella has to interact with eukaryotic cells. Invasion of non-phagocytic cells (i.e., epithelial, fibroblast and endothelial cells) involves either a trigger or a zipper mechanism mediated by the T3SS-1 or the invasin Rck, respectively. Another outer membrane protein, PagN, was also implicated in the invasion. However, other unknown invasion factors have been previously suggested. Our goal was to evaluate the invasion capability of a Salmonella Typhimurium strain invalidated for the three known invasion factors. Non-phagocytic cell lines of several animal origins were tested in a gentamicin protection assay. In most cells, we observed a drastic decrease in the invasion rate between the wild-type and the triple mutant. However, in five cell lines, the triple mutant invaded cells at a similarly high level to the wild-type, suggesting the existence of unidentified invasion factors. For the wild-type and the triple mutant, scanning-electron microscopy, confocal imaging and use of biochemical inhibitors confirmed their cellular uptake and showed a zipper-like mechanism of internalization involving both clathrin- and non-clathrin-dependent pathways. Despite a functional T3SS-1, the wild-type bacteria seemed to use the same entry route as the mutant in our cell model. All together, these results demonstrate the existence of unknown Salmonella invasion factors, which require further characterization.
Collapse
Affiliation(s)
- Sylvie M. Roche
- ISP, Institut National de la Recherche Agronomique (INRA), UMR 1282, Université de Tours, Paris, France
| | - Sébastien Holbert
- ISP, Institut National de la Recherche Agronomique (INRA), UMR 1282, Université de Tours, Paris, France
| | - Jérôme Trotereau
- ISP, Institut National de la Recherche Agronomique (INRA), UMR 1282, Université de Tours, Paris, France
| | - Samantha Schaeffer
- ISP, Institut National de la Recherche Agronomique (INRA), UMR 1282, Université de Tours, Paris, France
- INSERM UMR 1162, Institut de Génétique Moléculaire, Paris, France
| | - Sonia Georgeault
- Plateforme des Microscopies, Université et CHRU de Tours, Tours, France
| | - Isabelle Virlogeux-Payant
- ISP, Institut National de la Recherche Agronomique (INRA), UMR 1282, Université de Tours, Paris, France
| | - Philippe Velge
- ISP, Institut National de la Recherche Agronomique (INRA), UMR 1282, Université de Tours, Paris, France
| |
Collapse
|
72
|
Mokracka J, Krzymińska S, Ałtunin D, Wasyl D, Koczura R, Dudek K, Dudek M, Chyleńska ZA, Ekner-Grzyb A. In vitro virulence characteristics of rare serovars of Salmonella enterica isolated from sand lizards (Lacerta agilis L.). Antonie van Leeuwenhoek 2018; 111:1863-1870. [PMID: 29779148 PMCID: PMC6153992 DOI: 10.1007/s10482-018-1079-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/31/2018] [Indexed: 01/24/2023]
Abstract
The aim of this study was to estimate virulence potential of Salmonella enterica strains colonizing the gut of free-living sand lizards (Lacerta agilis L.). The strains belonged to three Salmonella serovars: Abony, Schleissheim, and Telhashomer. Adhesion and invasion abilities of the strains were determined in quantitative assays using the gentamicin protection method. Induction of apoptosis was assessed using HeLa cell monolayers. PCR assays were used for detection of 26 virulence genes localised within mobile elements: pathogenicity islands, virulence plasmids, and prophage sequences. In vitro studies revealed that all strains had adhesion and invasion abilities to human epithelial cells. The isolates were cytotoxic and induced apoptosis of the cells. The serovars differed in the number of virulence-associated genes: up to 18 genes were present in Salmonella Schleissheim, 17 in Salmonella Abony, whereas as few as six genes were found in Salmonella Telhashomer. Generally, Salmonella Abony and Salmonella Schleissheim did not differ much in gene content connected with the presence SPI-1 to -5. All of the strains lacked genes localised within bacteriophages and plasmids. The presence of virulence-associated genes and in vitro pathogenicity assays suggest that Salmonella sp. strains originating from autochthonous, free-living lizards can potentially infect and cause disease in humans.
Collapse
Affiliation(s)
- Joanna Mokracka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznan, Poland.
| | - Sylwia Krzymińska
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznan, Poland
| | - Danił Ałtunin
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznan, Poland
| | - Dariusz Wasyl
- Department of Microbiology, National Veterinary Research Institute, Partyzantów 57, 24-100, Puławy, Poland
| | - Ryszard Koczura
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznan, Poland
| | - Krzysztof Dudek
- Department of Zoology, Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71 C, 60-625, Poznan, Poland
- HiProMine S.A., ul. Poznańska 8, 62-023, Robakowo, Poland
| | - Monika Dudek
- Laboratory of Neurobiology, Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71 C, 60-625, Poznan, Poland
| | - Zofia Anna Chyleńska
- Department of Nature Education and Conservation, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznan, Poland
| | - Anna Ekner-Grzyb
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznan, Poland
| |
Collapse
|
73
|
Multitalented EspB of enteropathogenic Escherichia coli (EPEC) enters cells autonomously and induces programmed cell death in human monocytic THP-1 cells. Int J Med Microbiol 2018; 308:387-404. [PMID: 29550166 DOI: 10.1016/j.ijmm.2018.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) subvert host cell signaling pathways by injecting effector proteins via a Type 3 Secretion System (T3SS). The T3SS-dependent EspB protein is a multi-functional effector protein, which contributes to adherence and translocator pore formation and after injection exhibits several intracellular activities. In addition, EspB is also secreted into the environment. Effects of secreted EspB have not been reported thus far. As a surrogate for secreted EspB we employed recombinant EspB (rEspB) derived from the prototype EPEC strain E2348/69 and investigated the interactions of the purified protein with different human epithelial and immune cells including monocytic THP-1 cells, macrophages, dendritic cells, U-937, epithelial T84, Caco-2, and HeLa cells. To assess whether these proteins might exert a cytotoxic effect we monitored the release of lactate dehydrogenase (LDH) as well as propidium iodide (PI) uptake. For comparison, we also investigated several homologs of EspB such as IpaD of Shigella, and SipC, SipD, SseB, and SseD of Salmonella as purified recombinant proteins. Interestingly, cytotoxicity was only observed in THP-1 cells and macrophages, whereas epithelial cells remained unaffected. Cell fractionation and immune fluorescence experiments showed that rEspB enters cells autonomously, which suggests that EspB might qualify as a novel cell-penetrating effector protein (CPE). Using specific organelle tracers and inhibitors of signaling pathways we found that rEspB destroys the mitochondrial membrane potential - an indication of programmed cell death induction in THP-1 cells. Here we show that EspB not only constitutes an essential part of the T3SS-nanomachine and contributes to the arsenal of injected effector proteins but, furthermore, that secreted (recombinant) EspB autonomously enters host cells and selectively induces cell death in immune cells.
Collapse
|
74
|
Chakroun I, Mahdhi A, Morcillo P, Cordero H, Cuesta A, Bakhrouf A, Mahdouani K, Esteban MÁ. Motility, biofilm formation, apoptotic effect and virulence gene expression of atypical Salmonella Typhimurium outside and inside Caco-2 cells. Microb Pathog 2018; 114:153-162. [DOI: 10.1016/j.micpath.2017.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/04/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022]
|
75
|
Mambu J, Virlogeux-Payant I, Holbert S, Grépinet O, Velge P, Wiedemann A. An Updated View on the Rck Invasin of Salmonella: Still Much to Discover. Front Cell Infect Microbiol 2017; 7:500. [PMID: 29276700 PMCID: PMC5727353 DOI: 10.3389/fcimb.2017.00500] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/20/2017] [Indexed: 11/29/2022] Open
Abstract
Salmonella is a facultative intracellular Gram-negative bacterium, responsible for a wide range of food- and water-borne diseases ranging from gastroenteritis to typhoid fever depending on hosts and serotypes. Salmonella thus represents a major threat to public health. A key step in Salmonella pathogenesis is the invasion of phagocytic and non-phagocytic host cells. To trigger its own internalization into non-phagocytic cells, Salmonella has developed different mechanisms, involving several invasion factors. For decades, it was accepted that Salmonella could only enter cells through a type three secretion system, called T3SS-1. Recent research has shown that this bacterium expresses outer membrane proteins, such as the Rck protein, which is able to induce Salmonella entry mechanism. Rck mimics natural host cell ligands and triggers engulfment of the bacterium by interacting with the epidermal growth factor receptor. Salmonella is thus able to use multiple entry pathways during the Salmonella infection process. However, it is unclear how and when Salmonella exploits the T3SS-1 and Rck entry mechanisms. As a series of reviews have focused on the T3SS-1, this review aims to describe the current knowledge and the limitations of our understanding of the Rck outer membrane protein. The regulatory cascade which controls Rck expression and the molecular mechanisms underlying Rck-mediated invasion into cells are summarized. The potential role of Rck-mediated invasion in Salmonella pathogenesis and the intracellular behavior of the bacteria following a Salmonella Rck-dependent entry are discussed.
Collapse
Affiliation(s)
- Julien Mambu
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Isabelle Virlogeux-Payant
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Sébastien Holbert
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Olivier Grépinet
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Philippe Velge
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Agnès Wiedemann
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| |
Collapse
|
76
|
Park KI, Lee MR, Oh TW, Kim KY, Ma JY. Antibacterial activity and effects of Colla corii asini on Salmonella typhimurium invasion in vitro and in vivo. Altern Ther Health Med 2017; 17:520. [PMID: 29202825 PMCID: PMC5715514 DOI: 10.1186/s12906-017-2020-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022]
Abstract
Background Salmonella enterica serovar Typhimurium is a foodborne pathogen that triggers inflammatory responses in the intestines of humans and livestock. Colla corii asini is a traditional medicine used to treat gynecologic and chronic diseases in Korea and China. However, the antibacterial activity of Colla corii asini has been unknown. In this study, we investigated the antibacterial activity and effects of Colla corii asini extract on Salmonella typhimurium invasion. Methods To tested for antibacterial effects of Colla corii asini extracts, we confirmed the agar diffusion using Luria solid broth medium. Also, we determined the MIC (minimum inhibitory concentration) and the MBC (minimum bactericidal concentration) value of the Colla corii asini ethanol extract (CEE) by using two-fold serial dilution methods. We evaluated the expression of salmonella invasion proteins including SipA, SipB and SipC by using Western blot and qPCR at the concentration of CEE without inhibition of bacterial growth. In vitro and vivo, we determined the inhibitory effect of invasion of S. typhimurium on CEE by using gentamicin assay and S. typhimurium-infected mice. Results CEE significantly inhibited the growth of Salmonella typhimurium in an agar diffuse assay and had an MIC of 0.78 mg/ml and an MBC of 1.56 mg/ml. Additionally, CEE reduced Salmonella typhimurium cell invasion via the inhibition of Salmonella typhimurium invasion proteins, such as SipA, SipB and SipC. Furthermore, CEE significantly suppressed invasion in the small intestines (ilea) of mice injected with Salmonella typhimurium. Conclusion These findings show that Colla corii asini exerts antibacterial activity and suppresses Salmonella typhimurium invasion in vitro and in vivo. Together, these findings demonstrate that Colla corii asini is a potentially useful therapeutic herbal medicine for treating salmonella-mediated diseases.
Collapse
|
77
|
Lam JGT, Vadia S, Pathak-Sharma S, McLaughlin E, Zhang X, Swanson J, Seveau S. Host cell perforation by listeriolysin O (LLO) activates a Ca 2+-dependent cPKC/Rac1/Arp2/3 signaling pathway that promotes Listeria monocytogenes internalization independently of membrane resealing. Mol Biol Cell 2017; 29:270-284. [PMID: 29187576 PMCID: PMC5996962 DOI: 10.1091/mbc.e17-09-0561] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 01/20/2023] Open
Abstract
Host cell invasion is an indispensable step for a successful infection by intracellular pathogens. Recent studies identified pathogen-induced host cell plasma membrane perforation as a novel mechanism used by diverse pathogens (Trypanosoma cruzi, Listeria monocytogenes, and adenovirus) to promote their internalization into target cells. It was concluded that T. cruzi and adenovirus damage the host cell plasma membrane to hijack the endocytic-dependent membrane resealing machinery, thereby invading the host cell. We studied L. monocytogenes and its secreted pore-forming toxin listeriolysin O (LLO) to identify key signaling events activated upon plasma membrane perforation that lead to bacterial internalization. Using various approaches, including fluorescence resonance energy transfer imaging, we found that the influx of extracellular Ca2+ subsequent to LLO-mediated plasma membrane perforation is required for the activation of a conventional protein kinase C (cPKC). cPKC is positioned upstream of Rac1 and the Arp2/3 complex, which activation leads to F-actin--dependent bacterial internalization. Inhibition of this pathway did not prevent membrane resealing, revealing that perforation-dependent L. monocytogenes endocytosis is distinct from the resealing machinery. These studies identified the LLO-dependent endocytic pathway of L. monocytogenes and support a novel model for pathogen uptake promoted by plasma membrane injury that is independent of membrane resealing.
Collapse
Affiliation(s)
- Jonathan G T Lam
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210.,Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - Stephen Vadia
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - Sarika Pathak-Sharma
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Eric McLaughlin
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210
| | - Joel Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5624
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210 .,Department of Microbiology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
78
|
Castanheira S, García-Del Portillo F. Salmonella Populations inside Host Cells. Front Cell Infect Microbiol 2017; 7:432. [PMID: 29046870 PMCID: PMC5632677 DOI: 10.3389/fcimb.2017.00432] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteria of the Salmonella genus cause diseases ranging from gastroenteritis to life-threatening typhoid fever and are among the most successful intracellular pathogens known. After the invasion of the eukaryotic cell, Salmonella exhibits contrasting lifestyles with different replication rates and subcellular locations. Although Salmonella hyper-replicates in the cytosol of certain host cell types, most invading bacteria remain within vacuoles in which the pathogen proliferates at moderate rates or persists in a dormant-like state. Remarkably, these cytosolic and intra-vacuolar intracellular lifestyles are not mutually exclusive and can co-exist in the same infected host cell. The mechanisms that direct the invading bacterium to follow the cytosolic or intra-vacuolar “pathway” remain poorly understood. In vitro studies show predominance of either the cytosolic or the intra-vacuolar population depending on the host cell type invaded by the pathogen. The host and pathogen factors controlling phagosomal membrane integrity and, as consequence, the egress into the cytosol, are intensively investigated. Other aspects of major interest are the host defenses that may affect differentially the cytosolic and intra-vacuolar populations and the strategies used by the pathogen to circumvent these attacks. Here, we summarize current knowledge about these Salmonella intracellular subpopulations and discuss how they emerge during the interaction of this pathogen with the eukaryotic cell.
Collapse
Affiliation(s)
- Sónia Castanheira
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
79
|
Young AM, Minson M, McQuate SE, Palmer AE. Optimized Fluorescence Complementation Platform for Visualizing Salmonella Effector Proteins Reveals Distinctly Different Intracellular Niches in Different Cell Types. ACS Infect Dis 2017; 3:575-584. [PMID: 28551989 PMCID: PMC5720895 DOI: 10.1021/acsinfecdis.7b00052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The bacterial pathogen Salmonella uses sophisticated type III secretion systems (T3SS) to translocate and deliver bacterial effector proteins into host cells to establish infection. Monitoring these important virulence determinants in the context of live infections is a key step in defining the dynamic interface between the host and pathogen. Here, we provide a modular labeling platform based on fluorescence complementation with split-GFP that permits facile tagging of new Salmonella effector proteins. We demonstrate enhancement of split-GFP complementation signals by manipulating the promoter or by multimerizing the fluorescent tag and visualize three effector proteins, SseF, SseG, and SlrP, that have never before been visualized over time during infection of live cells. Using this platform, we developed a methodology for visualizing effector proteins in primary macrophage cells for the first time and reveal distinct differences in the effector-defined intracellular niche between primary macrophage and commonly used HeLa and RAW cell lines.
Collapse
Affiliation(s)
- Alexandra M. Young
- Department of Chemistry and Biochemistry, BioFrontiers Institute, UCB 596, 3415 Colorado Ave, University of Colorado, Boulder, CO 80303
| | - Michael Minson
- Department of Chemistry and Biochemistry, BioFrontiers Institute, UCB 596, 3415 Colorado Ave, University of Colorado, Boulder, CO 80303
| | - Sarah E. McQuate
- Department of Chemistry and Biochemistry, BioFrontiers Institute, UCB 596, 3415 Colorado Ave, University of Colorado, Boulder, CO 80303
| | - Amy E. Palmer
- Department of Chemistry and Biochemistry, BioFrontiers Institute, UCB 596, 3415 Colorado Ave, University of Colorado, Boulder, CO 80303
| |
Collapse
|
80
|
Young AM, Palmer AE. Methods to Illuminate the Role of Salmonella Effector Proteins during Infection: A Review. Front Cell Infect Microbiol 2017; 7:363. [PMID: 28848721 PMCID: PMC5554337 DOI: 10.3389/fcimb.2017.00363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022] Open
Abstract
Intracellular bacterial pathogens like Salmonella enterica use secretion systems, such as the Type III Secretion System, to deliver virulence factors into host cells in order to invade and colonize these cells. Salmonella virulence factors include a suite of effector proteins that remodel the host cell to facilitate bacterial internalization, replication, and evasion of host immune surveillance. A number of diverse and innovative approaches have been used to identify and characterize the role of effector proteins during infection. Recent techniques for studying infection using single cell and animal models have illuminated the contribution of individual effector proteins in infection. This review will highlight the techniques applied to study Salmonella effector proteins during infection. It will describe how different approaches have revealed mechanistic details for effectors in manipulating host cellular processes including: the dynamics of effector translocation into host cells, cytoskeleton reorganization, membrane trafficking, gene regulation, and autophagy.
Collapse
Affiliation(s)
- Alexandra M Young
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado BoulderBoulder, CO, United States
| | - Amy E Palmer
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado BoulderBoulder, CO, United States
| |
Collapse
|
81
|
Pucciarelli MG, García-Del Portillo F. Salmonella Intracellular Lifestyles and Their Impact on Host-to-Host Transmission. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mtbp-0009-2016. [PMID: 28730976 PMCID: PMC11687531 DOI: 10.1128/microbiolspec.mtbp-0009-2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Indexed: 12/11/2022] Open
Abstract
More than a century ago, infections by Salmonella were already associated with foodborne enteric diseases with high morbidity in humans and cattle. Intestinal inflammation and diarrhea are hallmarks of infections caused by nontyphoidal Salmonella serovars, and these pathologies facilitate pathogen transmission to the environment. In those early times, physicians and microbiologists also realized that typhoid and paratyphoid fever caused by some Salmonella serovars could be transmitted by "carriers," individuals outwardly healthy or at most suffering from some minor chronic complaint. In his pioneering study of the nontyphoidal serovar Typhimurium in 1967, Takeuchi published the first images of intracellular bacteria enclosed by membrane-bound vacuoles in the initial stages of the intestinal epithelium penetration. These compartments, called Salmonella-containing vacuoles, are highly dynamic phagosomes with differing biogenesis depending on the host cell type. Single-cell studies involving real-time imaging and gene expression profiling, together with new approaches based on genetic reporters sensitive to growth rate, have uncovered unprecedented heterogeneous responses in intracellular bacteria. Subpopulations of intracellular bacteria displaying fast, reduced, or no growth, as well as cytosolic and intravacuolar bacteria, have been reported in both in vitro and in vivo infection models. Recent investigations, most of them focused on the serovar Typhimurium, point to the selection of persisting bacteria inside macrophages or following an autophagy attack in fibroblasts. Here, we discuss these heterogeneous intracellular lifestyles and speculate on how these disparate behaviors may impact host-to-host transmissibility of Salmonella serovars.
Collapse
Affiliation(s)
- M Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
82
|
Arya G, Holtslander R, Robertson J, Yoshida C, Harris J, Parmley J, Nichani A, Johnson R, Poppe C. Epidemiology, Pathogenesis, Genoserotyping, Antimicrobial Resistance, and Prevention and Control of Non-Typhoidal Salmonella Serovars. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0057-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
83
|
Jneid B, Moreau K, Plaisance M, Rouaix A, Dano J, Simon S. Role of T3SS-1 SipD Protein in Protecting Mice against Non-typhoidal Salmonella Typhimurium. PLoS Negl Trop Dis 2016; 10:e0005207. [PMID: 27992422 PMCID: PMC5167260 DOI: 10.1371/journal.pntd.0005207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/25/2016] [Indexed: 11/24/2022] Open
Abstract
Background Salmonella enterica species are enteric pathogens that cause severe diseases ranging from self-limiting gastroenteritis to enteric fever and sepsis in humans. These infectious diseases are still the major cause of morbidity and mortality in low-income countries, especially in children younger than 5 years and immunocompromised adults. Vaccines targeting typhoidal diseases are already marketed, but none protect against non-typhoidal Salmonella. The existence of multiple non-typhoidal Salmonella serotypes as well as emerging antibiotic resistance highlight the need for development of a broad-spectrum protective vaccine. All Salmonella spp. utilize two type III Secretion Systems (T3SS 1 and 2) to initiate infection, allow replication in phagocytic cells and induce systemic disease. T3SS-1, which is essential to invade epithelial cells and cross the barrier, forms an extracellular needle and syringe necessary to inject effector proteins into the host cell. PrgI and SipD form, respectively, the T3SS-1 needle and the tip complex at the top of the needle. Because they are common and highly conserved in all virulent Salmonella spp., they might be ideal candidate antigens for a subunit-based, broad-spectrum vaccine. Principal Findings We investigated the immunogenicity and protective efficacy of PrgI and SipD administered by subcutaneous, intranasal and oral routes, alone or combined, in a mouse model of Salmonella intestinal challenge. Robust IgG (in all immunization routes) and IgA (in intranasal and oral immunization routes) antibody responses were induced against both proteins, particularly SipD. Mice orally immunized with SipD alone or SipD combined with PrgI were protected against lethal intestinal challenge with Salmonella Typhimurium (100 Lethal Dose 50%) depending on antigen, route and adjuvant. Conclusions and Significance Salmonella T3SS SipD is a promising antigen for the development of a protective Salmonella vaccine, and could be developed for vaccination in tropical endemic areas to control infant mortality. Salmonella are bacteria responsible for a high global burden of invasive diseases, especially in South and South-East Asia (mainly enteric fever due to Salmonella Typhi) and sub-Saharan Africa (mainly invasive Non-Typhoidal Salmonella, iNTS). This iNTS disease has emerged as a prominent cause of systemic infection in children and immunocompromised African adults, with an associated case fatality of 20–25%. Because licensed vaccines only protect against enteric fever, there is a crucial need to develop a new broad-spectrum vaccine effective against enteric fever and iNTS that can be administered safely to children under 2 years old. The virulence of Salmonella depends on two type III secretion systems (T3SS-1 and T3SS-2) necessary for invasion, replication, intracellular survival and dissemination of the bacteria. Two structural proteins of T3SS-1 (essential for crossing the epithelial barrier) are highly conserved among Salmonella spp. and might be good candidates for a broad-spectrum vaccine. The current study describes the protective effect elicited by these proteins in a murine model. A specific immune response was generated against our antigens and provided protection against Salmonella Typhimurium oral infection. Such a candidate vaccine offers promising perspectives to control Salmonella diseases.
Collapse
Affiliation(s)
- Bakhos Jneid
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Karine Moreau
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marc Plaisance
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Audrey Rouaix
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Julie Dano
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Stéphanie Simon
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
84
|
Abstract
For the important foodborne pathogen Salmonella enterica to cause disease or persist in pigs, it has evolved an intricate set of interactions between itself, the host, and the indigenous microflora of the host. S. enterica must evade the host's immune system and must also overcome colonization resistance mediated by the pig's indigenous microflora. The inflammatory response against S. enterica provides the bacteria with unique metabolites and is thus exploited by S. enterica for competitive advantage. During infection, changes in the composition of the indigenous microflora occur that have been associated with a breakdown in colonization resistance. Healthy pigs that are low-level shedders of S. enterica also exhibit alterations in their indigenous microflora similar to those in ill animals. Here we review the literature on the interactions that occur between swine, S. enterica, and the indigenous microflora and discuss methods to reduce or prevent colonization of pigs with S. enterica.
Collapse
Affiliation(s)
- Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Chungnam, South Korea 31116;
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota 55108;
| |
Collapse
|
85
|
Zoaby N, Shainsky-Roitman J, Badarneh S, Abumanhal H, Leshansky A, Yaron S, Schroeder A. Autonomous bacterial nanoswimmers target cancer. J Control Release 2016; 257:68-75. [PMID: 27744036 DOI: 10.1016/j.jconrel.2016.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 12/18/2022]
Abstract
Injectable drug delivery systems that autonomously detect, propel towards, and ultimately treat the cancerous tissue, are the future of targeted medicine. Here, we developed a drug delivery system that swims autonomously towards cancer cells, where it releases a therapeutic cargo. This platform is based on viable bacteria, loaded with nanoparticles that contain the chemotherapeutic-antibiotic drug doxorubicin. The bacteria ferry across media and invade the cancer cells, increasing their velocity in the presence of nutrients that are present within the tumor microenvironment. Inside the cancer cells, doxorubicin is released from the nanoparticles, destroying the bacterial swimmer (antibiotic activity) and executing the therapeutic activity against the cancer cells (chemotherapeutic activity). This mode of delivery, where both the carrier and the cancer cell are destroyed, supports implementing nanoswimmers in drug delivery (Fig. 1).
Collapse
Affiliation(s)
- Nour Zoaby
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Janna Shainsky-Roitman
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Samah Badarneh
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Hanan Abumanhal
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Alex Leshansky
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Sima Yaron
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Avi Schroeder
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
86
|
Wiedemann A, Mijouin L, Ayoub MA, Barilleau E, Canepa S, Teixeira-Gomes AP, Le Vern Y, Rosselin M, Reiter E, Velge P. Identification of the epidermal growth factor receptor as the receptor for Salmonella Rck-dependent invasion. FASEB J 2016; 30:4180-4191. [PMID: 27609774 DOI: 10.1096/fj.201600701r] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/22/2016] [Indexed: 11/11/2022]
Abstract
The Salmonella Rck outer membrane protein binds to the cell surface, which leads to bacterial internalization via a Zipper mechanism. This invasion process requires induction of cellular signals, including phosphorylation of tyrosine proteins, and activation of c-Src and PI3K, which arises as a result of an interaction with a host cell surface receptor. In this study, epidermal growth factor receptor (EGFR) was identified as the cell signaling receptor required for Rck-mediated adhesion and internalization. First, Rck-mediated adhesion and internalization were shown to be altered when EGFR expression and activity were modulated. Then, immunoprecipitations were performed to demonstrate the Rck-EGFR interaction. Furthermore, surface plasmon resonance biosensor and homogeneous time-resolved fluorescence technologies were used to demonstrate the direct interaction of Rck with the extracellular domain of human EGFR. Finally, our study strongly suggests a noncompetitive binding of Rck and EGF to EGFR. Overall, these results demonstrate that Rck is able to bind to EGFR and thereby establish a tight adherence to provide a signaling cascade, which leads to internalization of Rck-expressing bacteria.-Wiedemann, A., Mijouin, L., Ayoub, M. A., Barilleau, E., Canepa, S., Teixeira-Gomes, A. P., Le Vern, Y., Rosselin, M., Reiter, E., Velge, P. Identification of the epidermal growth factor receptor as the receptor for Salmonella Rck-dependent invasion.
Collapse
Affiliation(s)
- Agnès Wiedemann
- Institut National de la Recherche Agronomique, Unités Mixtes de Recherche 1282, Infectiologie et Santé Publique, Nouzilly, France; .,Université François Rabelais de Tours, Unités Mixtes de Recherche 1282, Infectiologie et Santé Publique, Tours, France
| | - Lily Mijouin
- Institut National de la Recherche Agronomique, Unités Mixtes de Recherche 1282, Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais de Tours, Unités Mixtes de Recherche 1282, Infectiologie et Santé Publique, Tours, France
| | - Mohammed Akli Ayoub
- Institut National de la Recherche Agronomique, Unités Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 7247, Nouzilly, France.,L'Institut Français du Cheval et de L'Équitation, Nouzilly, France.,Le Studium Loire Valley Institute for Advanced Studies, Orléans, France; and
| | - Emilie Barilleau
- Institut National de la Recherche Agronomique, Unités Mixtes de Recherche 1282, Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais de Tours, Unités Mixtes de Recherche 1282, Infectiologie et Santé Publique, Tours, France
| | - Sylvie Canepa
- Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 7247, Nouzilly, France.,L'Institut Français du Cheval et de L'Équitation, Nouzilly, France.,Institut National de la Recherche Agronomique, Unités Mixtes de Recherche 85, Plate-forme d'Analyse Intégrative des Biomolécules, Nouzilly, France
| | - Ana Paula Teixeira-Gomes
- Institut National de la Recherche Agronomique, Unités Mixtes de Recherche 1282, Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais de Tours, Unités Mixtes de Recherche 1282, Infectiologie et Santé Publique, Tours, France.,Institut National de la Recherche Agronomique, Unités Mixtes de Recherche 85, Plate-forme d'Analyse Intégrative des Biomolécules, Nouzilly, France
| | - Yves Le Vern
- Institut National de la Recherche Agronomique, Unités Mixtes de Recherche 1282, Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais de Tours, Unités Mixtes de Recherche 1282, Infectiologie et Santé Publique, Tours, France.,Institut National de la Recherche Agronomique, Unités Mixtes de Recherche 85, Plate-forme d'Analyse Intégrative des Biomolécules, Nouzilly, France
| | - Manon Rosselin
- Institut National de la Recherche Agronomique, Unités Mixtes de Recherche 1282, Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais de Tours, Unités Mixtes de Recherche 1282, Infectiologie et Santé Publique, Tours, France
| | - Eric Reiter
- Institut National de la Recherche Agronomique, Unités Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 7247, Nouzilly, France.,L'Institut Français du Cheval et de L'Équitation, Nouzilly, France
| | - Philippe Velge
- Institut National de la Recherche Agronomique, Unités Mixtes de Recherche 1282, Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais de Tours, Unités Mixtes de Recherche 1282, Infectiologie et Santé Publique, Tours, France
| |
Collapse
|
87
|
Jemilehin FO, Ogunleye AO, Okunlade AO, Ajuwape ATP. Isolation of Salmonella species and some other gram negative bacteria from rats cohabitating with poultry in Ibadan, Oyo State, Nigeria. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajmr2015.7774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
88
|
Affiliation(s)
- Mark E Robarge
- Animal Disease Diagnostic Laboratory and Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907
| | | |
Collapse
|
89
|
He Y, Liu S, Kling DE, Leone S, Lawlor NT, Huang Y, Feinberg SB, Hill DR, Newburg DS. The human milk oligosaccharide 2'-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut 2016; 65:33-46. [PMID: 25431457 DOI: 10.1136/gutjnl-2014-307544] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/31/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND A major cause of enteric infection, Gram-negative pathogenic bacteria activate mucosal inflammation through lipopolysaccharide (LPS) binding to intestinal toll-like receptor 4 (TLR4). Breast feeding lowers risk of disease, and human milk modulates inflammation. OBJECTIVE This study tested whether human milk oligosaccharides (HMOSs) influence pathogenic Escherichia coli-induced interleukin (IL)-8 release by intestinal epithelial cells (IECs), identified specific proinflammatory signalling molecules modulated by HMOSs, specified the active HMOS and determined its mechanism of action. METHODS Models of inflammation were IECs invaded by type 1 pili enterotoxigenic E. coli (ETEC) in vitro: T84 modelled mature, and H4 modelled immature IECs. LPS-induced signalling molecules co-varying with IL-8 release in the presence or absence of HMOSs were identified. Knockdown and overexpression verified signalling mediators. The oligosaccharide responsible for altered signalling was identified. RESULTS HMOSs attenuated LPS-dependent induction of IL-8 caused by ETEC, uropathogenic E. coli, and adherent-invasive E. coli (AIEC) infection, and suppressed CD14 transcription and translation. CD14 knockdown recapitulated HMOS-induced attenuation. Overexpression of CD14 increased the inflammatory response to ETEC and sensitivity to inhibition by HMOSs. 2'-fucosyllactose (2'-FL), at milk concentrations, displayed equivalent ability as total HMOSs to suppress CD14 expression, and protected AIEC-infected mice. CONCLUSIONS HMOSs and 2'-FL directly inhibit LPS-mediated inflammation during ETEC invasion of T84 and H4 IECs through attenuation of CD14 induction. CD14 expression mediates LPS-TLR4 stimulation of portions of the 'macrophage migration inhibitory factors' inflammatory pathway via suppressors of cytokine signalling 2/signal transducer and activator of transcription 3/NF-κB. HMOS direct inhibition of inflammation supports its functioning as an innate immune system whereby the mother protects her vulnerable neonate through her milk. 2'-FL, a principal HMOS, quenches inflammatory signalling.
Collapse
Affiliation(s)
- YingYing He
- Laboratory of Gastroenterology and Nutrition, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA Program in Glycobiology, Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - ShuBai Liu
- Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David E Kling
- Program in Glycobiology, Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Serena Leone
- Program in Glycobiology, Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Nathan T Lawlor
- Program in Glycobiology, Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Yi Huang
- Program in Glycobiology, Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Samuel B Feinberg
- Program in Glycobiology, Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - David R Hill
- Program in Glycobiology, Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - David S Newburg
- Laboratory of Gastroenterology and Nutrition, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA Program in Glycobiology, Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| |
Collapse
|
90
|
Braquart-Varnier C, Altinli M, Pigeault R, Chevalier FD, Grève P, Bouchon D, Sicard M. The Mutualistic Side of Wolbachia-Isopod Interactions: Wolbachia Mediated Protection Against Pathogenic Intracellular Bacteria. Front Microbiol 2015; 6:1388. [PMID: 26733946 PMCID: PMC4679875 DOI: 10.3389/fmicb.2015.01388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/23/2015] [Indexed: 12/31/2022] Open
Abstract
Wolbachia is a vertically transmitted endosymbiont whose radiative success is mainly related to various host reproductive manipulations that led to consider this symbiont as a conflictual reproductive parasite. However, lately, some Wolbachia have been shown to act as beneficial symbionts by protecting hosts against a broad range of parasites. Still, this protection has been mostly demonstrated in artificial Wolbachia-host associations between partners that did not co-evolved together. Here, we tested in two terrestrial isopod species Armadillidium vulgare and Porcellio dilatatus whether resident Wolbachia (native or non-native) could confer protection during infections with Listeria ivanovii and Salmonella typhimurium and also during a transinfection with a Wolbachia strain that kills the recipient host (i.e., wVulC in P. dilatatus). Survival analyses showed that (i) A. vulgare lines hosting their native Wolbachia (wVulC) always exhibited higher survival than asymbiotic ones when infected with pathogenic bacteria (ii) P. dilatatus lines hosting their native wDil Wolbachia strain survived the S. typhimurium infection better, while lines hosting non-native wCon Wolbachia strain survived the L. ivanovii and also the transinfection with wVulC from A. vulgare better. By studying L. ivanovii and S. typhimurium loads in the hemolymph of the different host-Wolbachia systems, we showed that (i) the difference in survival between lines after L. ivanovii infections were not linked to the difference between their pathogenic bacterial loads, and (ii) the difference in survival after S. typhimurium infections corresponds to lower loads of pathogenic bacteria. Overall, our results demonstrate a beneficial effect of Wolbachia on survival of terrestrial isopods when infected with pathogenic intracellular bacteria. This protective effect may rely on different mechanisms depending on the resident symbiont and the invasive bacteria interacting together within the hosts.
Collapse
Affiliation(s)
- Christine Braquart-Varnier
- Laboratoire Écologie et Biologie des Interactions - Equipe Écologie, Évolution, Symbiose - UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Mine Altinli
- Institut des Sciences de l'Évolution, CNRS-Université de Montpellier-IRD (UMR 5554) Montpellier, France
| | - Romain Pigeault
- IRD 224-Université de Montpellier, Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle, Équipe Interaction Parasitaires et Adaptation Montpellier, France
| | | | - Pierre Grève
- Laboratoire Écologie et Biologie des Interactions - Equipe Écologie, Évolution, Symbiose - UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Didier Bouchon
- Laboratoire Écologie et Biologie des Interactions - Equipe Écologie, Évolution, Symbiose - UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Mathieu Sicard
- Institut des Sciences de l'Évolution, CNRS-Université de Montpellier-IRD (UMR 5554) Montpellier, France
| |
Collapse
|
91
|
Dehkordi MS, Doosti A, Arshi A. Deletion of Salmonella enterica serovar typhimurium sipC gene. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/j.apjtb.2015.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
92
|
Xiong K, Chen Z, Zhu C, Li J, Hu X, Rao X, Cong Y. Safety and immunogenicity of an attenuated Salmonella enterica serovar Paratyphi A vaccine candidate. Int J Med Microbiol 2015; 305:563-71. [PMID: 26239100 DOI: 10.1016/j.ijmm.2015.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/02/2015] [Accepted: 07/22/2015] [Indexed: 02/08/2023] Open
Abstract
Enteric fever caused by Salmonella enterica serovar Paratyphi A has progressively increased in recent years and became a global health issue. Currently licensed typhoid vaccines do not confer adequate cross-immunoprotection against S. Paratyphi A infection. Therefore, vaccines specifically against enteric fever caused by S. Paratyphi A are urgently needed. In the present study, an attenuated vaccine strain was constructed from S. Paratyphi A CMCC50093 by the deletions of aroC and yncD. The obtained strain SPADD01 showed reduced survival within THP-1 cells and less bacterial burden in spleens and livers of infected mice compared with the wild-type strain. The 50% lethal doses of SPADD01 and the wild-type strain were assessed using a murine infection model. The virulence of SPADD01 is approximately 40,000-fold less than that of the wild-type strain. In addition, SPADD01 showed an excellent immunogenicity in mouse model. Single intranasal inoculation elicited striking humoral and mucosal immune responses in mice and yielded effective protection against lethal challenge of the wild-type strain. A high level of cross-reactive humoral immune response against LPS of Salmonella enterica serovar Typhi was also detected in immunized mice. However, SPADD01 vaccination only conferred a low level of cross-protection against S. Typhi. Our data suggest that SPADD01 is a promising vaccine candidate against S. Paratyphi A infection and deserves further evaluation in clinical trial. To date, no study has demonstrated a good cross-protection between serovars of S. Typhi and S. Paratyphi A, suggesting that the dominant protective antigens of both serovars are likely different and need to be defined in future study.
Collapse
Affiliation(s)
- Kun Xiong
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, PR China.
| | - Zhijin Chen
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, PR China.
| | - Chunyue Zhu
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, PR China.
| | - Jianhua Li
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, PR China.
| | - Xiaomei Hu
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, PR China.
| | - Xiancai Rao
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, PR China.
| | - Yanguang Cong
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, PR China.
| |
Collapse
|
93
|
Plzakova L, Krocova Z, Kubelkova K, Macela A. Entry of Francisella tularensis into Murine B Cells: The Role of B Cell Receptors and Complement Receptors. PLoS One 2015; 10:e0132571. [PMID: 26161475 PMCID: PMC4498600 DOI: 10.1371/journal.pone.0132571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/16/2015] [Indexed: 01/06/2023] Open
Abstract
Francisella tularensis, the etiological agent of tularemia, is an intracellular pathogen that dominantly infects and proliferates inside phagocytic cells but can be seen also in non-phagocytic cells, including B cells. Although protective immunity is known to be almost exclusively associated with the type 1 pathway of cellular immunity, a significant role of B cells in immune responses already has been demonstrated. Whether their role is associated with antibody-dependent or antibody-independent B cell functions is not yet fully understood. The character of early events during B cell–pathogen interaction may determine the type of B cell response regulating the induction of adaptive immunity. We used fluorescence microscopy and flow cytometry to identify the basic requirements for the entry of F. tularensis into B cells within in vivo and in vitro infection models. Here, we present data showing that Francisella tularensis subsp. holarctica strain LVS significantly infects individual subsets of murine peritoneal B cells early after infection. Depending on a given B cell subset, uptake of Francisella into B cells is mediated by B cell receptors (BCRs) with or without complement receptor CR1/2. However, F. tularensis strain FSC200 ΔiglC and ΔftdsbA deletion mutants are defective in the ability to enter B cells. Once internalized into B cells, F. tularensis LVS intracellular trafficking occurs along the endosomal pathway, albeit without significant multiplication. The results strongly suggest that BCRs alone within the B-1a subset can ensure the internalization process while the BCRs on B-1b and B-2 cells need co-signaling from the co receptor containing CR1/2 to initiate F. tularensis engulfment. In this case, fluidity of the surface cell membrane is a prerequisite for the bacteria’s internalization. The results substantially underline the functional heterogeneity of B cell subsets in relation to F. tularensis.
Collapse
Affiliation(s)
- Lenka Plzakova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Zuzana Krocova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
- * E-mail:
| | - Ales Macela
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| |
Collapse
|
94
|
Rieger J, Janczyk P, Hünigen H, Plendl J. Enhancement of immunohistochemical detection of Salmonella in tissues of experimentally infected pigs. Eur J Histochem 2015; 59:2516. [PMID: 26428884 PMCID: PMC4598596 DOI: 10.4081/ejh.2015.2516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/05/2015] [Accepted: 05/15/2015] [Indexed: 12/13/2022] Open
Abstract
Salmonella Typhimurium is one of the main pathogens compromising porcine and human health as well as food safety, because it is a prevailing source of foodborne infections due to contaminated pork. A prominent problem in the management of this bacteriosis is the number of subclinically infected carrier pigs. As very little is known concerning the mechanisms allowing Salmonella to persist in pigs, the objective of this study was to develop an immunohistochemical approach for the detection of salmonellae in tissue of pigs experimentally infected with Salmonella Typhimurium. Samples were obtained from a challenge trial in which piglets of the German Landrace were intragastrically infected with Salmonella enterica serovar Typhimurium DT104 (1.4-2.1x1010 CFU). Piglets were sacrificed on days 2 and 28 post infection. Tissue samples of jejunum, ileum, colon, ileocecal mesenteric lymph nodes (Lnn. ileocolici), and tonsils (Tonsilla veli palatini) were fixed in Zamboni's fixative and paraffin-embedded. Different immunohistochemical staining protocols were evaluated. Salmonella was detected in varying amounts in the tissues. Brown iron-containing pigments in the lymph nodes interfered with the identification of Salmonella if DAB was used as a staining reagent. Detergents like Triton X-100 or Saponin enhanced the sensitivity. It seems advisable not to use a detection system with brown staining for bacteria in an experimental setup involving intestinal damage including haemorrhage. The use of detergents appears to result in a higher sensitivity in the immunohistochemical detection of salmonellae.
Collapse
|
95
|
Elhadad D, McClelland M, Rahav G, Gal-Mor O. Feverlike Temperature is a Virulence Regulatory Cue Controlling the Motility and Host Cell Entry of Typhoidal Salmonella. J Infect Dis 2015; 212:147-56. [PMID: 25492917 PMCID: PMC4542590 DOI: 10.1093/infdis/jiu663] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/11/2014] [Indexed: 12/11/2022] Open
Abstract
Human infection with typhoidal Salmonella serovars causes a febrile systemic disease, termed enteric fever. Here we establish that in response to a temperature equivalent to fever (39 °C-42 °C) Salmonella enterica serovars Typhi, Paratyphi A, and Sendai significantly attenuate their motility, epithelial cell invasion, and uptake by macrophages. Under these feverlike conditions, the residual epithelial cell invasion of S. Paratyphi A occurs in a type III secretion system (T3SS) 1-independent manner and results in restrained disruption of epithelium integrity. The impaired motility and invasion are associated with down-regulation of T3SS-1 genes and class II and III (but not I) of the flagella-chemotaxis regulon. In contrast, we demonstrate up-regulation of particular Salmonella pathogenicity island 2 genes (especially spiC) and increased intraepithelial growth in a T3SS-2-dependent manner. These results indicate that elevated physiological temperature is a novel cue controlling virulence phenotypes in typhoidal serovars, which is likely to play a role in the distinct clinical manifestations elicited by typhoidal and nontyphoidal salmonellae.
Collapse
Affiliation(s)
- Dana Elhadad
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer
- The Department of Clinical Microbiology and Immunology
- Sackler School of Medicine, Tel Aviv University, Israel
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer
- Sackler School of Medicine, Tel Aviv University, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer
- The Department of Clinical Microbiology and Immunology
- Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
96
|
Rieger J, Janczyk P, Hünigen H, Neumann K, Plendl J. Intraepithelial lymphocyte numbers and histomorphological parameters in the porcine gut after Enterococcus faecium NCIMB 10415 feeding in a Salmonella Typhimurium challenge. Vet Immunol Immunopathol 2015; 164:40-50. [DOI: 10.1016/j.vetimm.2014.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 12/07/2014] [Accepted: 12/31/2014] [Indexed: 02/08/2023]
|
97
|
Wiedemann A, Virlogeux-Payant I, Chaussé AM, Schikora A, Velge P. Interactions of Salmonella with animals and plants. Front Microbiol 2015; 5:791. [PMID: 25653644 PMCID: PMC4301013 DOI: 10.3389/fmicb.2014.00791] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/22/2014] [Indexed: 12/16/2022] Open
Abstract
Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.
Collapse
Affiliation(s)
- Agnès Wiedemann
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Isabelle Virlogeux-Payant
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Anne-Marie Chaussé
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Adam Schikora
- Institute for Phytopathology, Research Center for BioSystems, Land Use and Nutrition (IFZ), Justus Liebig University Giessen Giessen, Germany
| | - Philippe Velge
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| |
Collapse
|
98
|
Chowdhury R, Mandal RS, Ta A, Das S. An AIL family protein promotes type three secretion system-1-independent invasion and pathogenesis of Salmonella enterica serovar Typhi. Cell Microbiol 2014; 17:486-503. [PMID: 25308535 DOI: 10.1111/cmi.12379] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/25/2014] [Accepted: 10/04/2014] [Indexed: 02/05/2023]
Abstract
Adhesion and invasion of Intestinal Epithelial Cells (IECs) are critical for the pathogenesis of Salmonella Typhi, the aetiological agent of human typhoid fever. While type three secretion system-1 (T3SS-1) is a major invasion apparatus of Salmonella, independent invasion mechanisms were described for non-typhoidal Salmonellae. Here, we show that T2942, an AIL-like protein of S. Typhi Ty2 strain, is required for adhesion and invasion of cultured IECs. That invasion was T3SS-1 independent was proved by ectopic expression of T2942 in the non-invasive E. coli BL21 and double-mutant Ty2 (Ty2Δt2942ΔinvG) strains. Laminin and fibronectin were identified as the host-binding partners of T2942 with higher affinity for laminin. Standalone function of T2942 was confirmed by cell adhesion of the recombinant protein, while the protein or anti-T2942 antiserum blocked adhesion/invasion of S. Typhi, indicating specificity. A 20-amino acid extracellular loop was required for invasion, while several loop regions of T2942 contributed to adhesion. Further, T2942 cooperates with laminin-binding T2544 for adhesion and T3SS-1 for invasion. Finally, T2942 was required and synergistically worked with T3SS-1 for pathogenesis of S. Typhi in mice. Considering wide distribution of T2942 among clinical strains, the protein or the 20-mer peptide may be suitable for vaccine development.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33 Scheme XM C.I.T. Road, Beliaghata Kolkata, 700010, India
| | | | | | | |
Collapse
|
99
|
Abed N, Grépinet O, Canepa S, Hurtado-Escobar GA, Guichard N, Wiedemann A, Velge P, Virlogeux-Payant I. Direct regulation of the pefI-srgC operon encoding the Rck invasin by the quorum-sensing regulator SdiA in Salmonella Typhimurium. Mol Microbiol 2014; 94:254-71. [PMID: 25080967 DOI: 10.1111/mmi.12738] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2014] [Indexed: 01/18/2023]
Abstract
One important step for the pathogenesis of Salmonella is its ability to penetrate host cells. Recently, a new entry system involving the outer membrane protein Rck has been characterized. Previous studies have shown that the pefI-srgC locus, which contains rck, was regulated by the temperature and SdiA, the transcriptional regulator of quorum sensing in Salmonella. To decipher the regulation of rck by SdiA, we first confirmed the operon organization of the pefI-srgC locus. Using plasmid-based transcriptional fusions, we showed that only the predicted distal promoter upstream of pefI, PefIP2, displays an SdiA- and acyl-homoserine lactones-dependent activity while the predicted proximal PefIP1 promoter exhibits a very low activity independent on SdiA in our culture conditions. A direct and specific interaction of SdiA with this PefIP2 region was identified using electrophoretic mobility shift assays and surface plasmon resonance studies. We also observed that Rck expression is negatively regulated by the nucleoid-associated H-NS protein at both 25°C and 37°C. This work is the first demonstration of a direct regulation of genes by SdiA in Salmonella and will help further studies designed to identify environmental conditions required for Rck expression and consequently contribute to better characterize the role of this invasin in vivo.
Collapse
Affiliation(s)
- Nadia Abed
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France; Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France; INRA, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Rossignol A, Roche SM, Virlogeux-Payant I, Wiedemann A, Grépinet O, Fredlund J, Trotereau J, Marchès O, Quéré P, Enninga J, Velge P. Deciphering why Salmonella Gallinarum is less invasive in vitro than Salmonella Enteritidis. Vet Res 2014; 45:81. [PMID: 25175996 PMCID: PMC4154518 DOI: 10.1186/s13567-014-0081-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/23/2014] [Indexed: 02/05/2023] Open
Abstract
Salmonella Gallinarum and Salmonella Enteritidis are genetically closely related however associated with different pathologies. Several studies have suggested that S. Gallinarum is less invasive in vitro than S. Enteritidis. In this study we confirm that the S. Gallinarum strains tested were much less invasive than the S. Enteritidis strains tested in cells of avian or human origin. In addition, the S. Gallinarum T3SS-1-dependent ability to invade host cells was delayed by two to three hours compared to S. Enteritidis, indicating that T3SS-1-dependent entry is less efficient in S. Gallinarum than S. Enteritidis. This was neither due to a decreased transcription of T3SS-1 related genes when bacteria come into contact with cells, as transcription of hilA, invF and sipA was similar to that observed for S. Enteritidis, nor to a lack of functionality of the S. Gallinarum T3SS-1 apparatus as this apparatus was able to secrete and translocate effector proteins into host cells. In contrast, genome comparison of four S. Gallinarum and two S. Enteritidis strains revealed that all S. Gallinarum genomes displayed the same point mutations in each of the main T3SS-1 effector genes sipA, sopE, sopE2, sopD and sopA.
Collapse
|