51
|
Chin KY, Pang KL, Soelaiman IN. Tocotrienol and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:97-130. [DOI: 10.1007/978-3-319-41334-1_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
52
|
Yamasaki M, Nishimura M, Sakakibara Y, Suiko M, Morishita K, Nishiyama K. Delta-tocotrienol induces apoptotic cell death via depletion of intracellular squalene in ED40515 cells. Food Funct 2015; 5:2842-9. [PMID: 25225850 DOI: 10.1039/c4fo00635f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Here, we examined the effect of tocotrienols (T3) on the growth of adult T-cell leukemia (ATL) cells. All three forms (β-, γ-, and δ-T3) inhibited cell proliferation in a dose-dependent manner; δ-T3 showed the strongest growth-inhibitory effect. δ-T3 increased the G1, G2/M, and subG1 populations and induced internucleosomal DNA fragmentation. δ-T3 treatment also increased the levels of cleaved caspase-3, -6, -7, -9, and poly-ADP ribose polymerase (PARP), and this was accompanied by downregulation of Bcl-2, Bcl-xL, and XIAP. Moreover, δ-T3 decreased nuclear p65 NF-κB levels, indicating downregulation of NF-κB activity. This cytotoxic effect of δ-T3 was abrogated by squalene (SQL) but not mevalonate (MVL), farnesyl diphosphate (FPP), geranylgeranyl diphosphate (GGPP), or cholesterol (CL). δ-T3 decreased intracellular SQL levels, and inhibition of de novo cholesterol synthesis did not affect the action of SQL. Furthermore, δ-T3 significantly decreased farnesyl-diphosphate farnesyltransferase 1 (FDFT1) expression. Taken together, it is evident that δ-T3, due to its ability to potently induce apoptosis via the depletion of intracellular SQL, shows the potential to be considered a therapeutic agent in patients with ATL.
Collapse
Affiliation(s)
- Masao Yamasaki
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan.
| | | | | | | | | | | |
Collapse
|
53
|
Mba OI, Dumont MJ, Ngadi M. Palm oil: Processing, characterization and utilization in the food industry – A review. FOOD BIOSCI 2015. [DOI: 10.1016/j.fbio.2015.01.003] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
54
|
El-Sayed E, Ibrahim K. Effect of the types of dietary fats and non-dietary oils on bone metabolism. Crit Rev Food Sci Nutr 2015; 57:653-658. [DOI: 10.1080/10408398.2014.914889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
55
|
Alqahtani S, Kaddoumi A. Vitamin E transporters in cancer therapy. AAPS JOURNAL 2014; 17:313-22. [PMID: 25466495 DOI: 10.1208/s12248-014-9705-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/17/2014] [Indexed: 02/06/2023]
Abstract
Besides their potent antioxidant activity, vitamin E isoforms demonstrated multiple therapeutic activities among which is their activity against different cancer types, including breast, prostate, and colon cancers. However, the activity of vitamin E isoforms is limited by their low bioavailability following oral administration. In addition to the low solubility, vitamin E isoforms have been established as substrates for several intestinal and hepatic transport proteins. In this review, we present reported anticancer activity of vitamin E family members and the possible utilization of vitamin E and derivatives as chemosensitizers to reverse multidrug resistance when given as part of a delivery system and/or in combination with anticancer therapeutic drugs. Then, the review discusses disposition of vitamin E members and transport proteins that play a role in determining their systemic bioavailability followed by recent advances in vitamin E formulations and delivery strategies.
Collapse
Affiliation(s)
- Saeed Alqahtani
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Dr., Monroe, Louisiana, 71201, USA
| | | |
Collapse
|
56
|
Selvaraju TR, Khaza'ai H, Vidyadaran S, Abd Mutalib MS, Vasudevan R. The neuroprotective effects of tocotrienol rich fraction and alpha tocopherol against glutamate injury in astrocytes. Bosn J Basic Med Sci 2014; 14:195-204. [PMID: 25428670 DOI: 10.17305/bjbms.2014.4.91] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 01/01/2023] Open
Abstract
Tocotrienol rich fraction (TRF) is an extract of palm oil, which consists of 25% alpha tocopherol (α-TCP) and 75% tocotrienols. TRF has been shown to possess potent antioxidant, anti-inflammatory, anticancer, neuroprotection, and cholesterol lowering activities. Glutamate is the main excitatory amino acid neurotransmitter in the central nervous system of mammalian, which can be excitotoxic, and it has been suggested to play a key role in neurodegenerative disorders like Parkinson's and Alzheimer's diseases. In this present study, the effects of vitamin E (TRF and α-TCP) in protecting astrocytes against glutamate injury were elucidated. Astrocytes induced with 180 mM of glutamate lead to significant cell death. However, glutamate mediated cytotoxicity was diminished via pre and post supplementation of TRF and α-TCP. Hence, vitamin E acted as a potent antioxidant agent in recovering mitochondrial injury due to elevated oxidative stress, and enhanced better survivability upon glutamate toxicity.
Collapse
Affiliation(s)
- Thilaga Rati Selvaraju
- Biochemistry Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia.
| | | | | | | | | |
Collapse
|
57
|
Ahsan H, Ahad A, Iqbal J, Siddiqui WA. Pharmacological potential of tocotrienols: a review. Nutr Metab (Lond) 2014; 11:52. [PMID: 25435896 PMCID: PMC4247006 DOI: 10.1186/1743-7075-11-52] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
Tocotrienols, members of the vitamin E family, are natural compounds found in a number of vegetable oils, wheat germ, barley, and certain types of nuts and grains. Like tocopherols, tocotrienols are also of four types viz. alpha, beta, gamma and delta. Unlike tocopherols, tocotrienols are unsaturated and possess an isoprenoid side chain. Tocopherols are lipophilic in nature and are found in association with lipoproteins, fat deposits and cellular membranes and protect the polyunsaturated fatty acids from peroxidation reactions. The unsaturated chain of tocotrienol allows an efficient penetration into tissues that have saturated fatty layers such as the brain and liver. Recent mechanistic studies indicate that other forms of vitamin E, such as γ-tocopherol, δ-tocopherol, and γ-tocotrienol, have unique antioxidant and anti-inflammatory properties that are superior to those of α-tocopherol against chronic diseases. These forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids and suppress proinflammatory signalling, such as NF-κB and STAT. The animal and human studies show tocotrienols may be useful against inflammation-associated diseases. Many of the functions of tocotrienols are related to its antioxidant properties and its varied effects are due to it behaving as a signalling molecule. Tocotrienols exhibit biological activities that are also exhibited by tocopherols, such as neuroprotective, anti-cancer, anti-inflammatory and cholesterol lowering properties. Hence, effort has been made to compile the different functions and properties of tocotrienols in experimental model systems and humans. This article constitutes an in-depth review of the pharmacology, metabolism, toxicology and biosafety aspects of tocotrienols. Tocotrienols are detectable at appreciable levels in the plasma after supplementations. However, there is inadequate data on the plasma concentrations of tocotrienols that are sufficient to demonstrate significant physiological effect and biodistribution studies show their accumulation in vital organs of the body. Considering the wide range of benefits that tocotrienols possesses against some common human ailments and having a promising potential, the experimental analysis accounts for about a small fraction of all vitamin E research. The current state of knowledge deserves further investigation into this lesser known form of vitamin E.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Amjid Ahad
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203 USA
| | - Waseem A Siddiqui
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| |
Collapse
|
58
|
Synergistic Antiproliferative Effects of Combined γ -Tocotrienol and PPAR γ Antagonist Treatment Are Mediated through PPAR γ -Independent Mechanisms in Breast Cancer Cells. PPAR Res 2014; 2014:439146. [PMID: 24729783 PMCID: PMC3960771 DOI: 10.1155/2014/439146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/23/2014] [Indexed: 01/16/2023] Open
Abstract
Previous findings showed that the anticancer effects of combined γ-tocotrienol and peroxisome proliferator activated receptor γ (PPARγ) antagonist treatment caused a large reduction in PPARγ expression. However, other studies suggest that the antiproliferative effects of γ-tocotrienol and/or PPARγ antagonists are mediated, at least in part, through PPARγ-independent mechanism(s). Studies were conducted to characterize the role of PPARγ in mediating the effects of combined treatment of γ-tocotrienol with PPARγ agonists or antagonists on the growth of PPARγ negative +SA mammary cells and PPARγ-positive and PPARγ-silenced MCF-7 and MDA-MB-231 breast cancer cells. Combined treatment of γ-tocotrienol with PPARγ antagonist decreased, while combined treatment of γ-tocotrienol with PPARγ agonist increased, growth of all cancer cells. However, treatment with high doses of 15d-PGJ2, an endogenous natural ligand for PPARγ, had no effect on cancer cell growth. Western blot and qRT-PCR studies showed that the growth inhibitory effects of combined γ-tocotrienol and PPARγ antagonist treatment decreased cyclooxygenase (COX-2), prostaglandin synthase (PGDS), and prostaglandin D2 (PGD2) synthesis. In conclusion, the anticancer effects of combined γ-tocotrienol and PPARγ antagonists treatment in PPARγ negative/silenced breast cancer cells are mediated through PPARγ-independent mechanisms that are associated with a downregulation in COX-2, PGDS, and PGD2 synthesis.
Collapse
|
59
|
Radhakrishnan A, Tudawe D, Chakravarthi S, Chiew GS, Haleagrahara N. Effect of γ-tocotrienol in counteracting oxidative stress and joint damage in collagen-induced arthritis in rats. Exp Ther Med 2014; 7:1408-1414. [PMID: 24940448 PMCID: PMC3991526 DOI: 10.3892/etm.2014.1592] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/13/2014] [Indexed: 12/22/2022] Open
Abstract
Tocotrienols exhibit a significant anti-inflammatory and antioxidant effect in numerous human diseases. However, the anti-inflammatory and antioxidant effects of tocotrienols in arthritic conditions are not well documented. Therefore, the effect of γ-tocotrienol supplementation against oxidative stress and joint pathology in collagen-induced arthritis in rats was investigated in the present study. Adult female Dark Agouti rats were randomly divided into groups: Control, γ-tocotrienol alone, arthritis alone and arthritis with γ-tocotrienol. Arthritis was induced using 4 mg/kg body weight collagen in complete Freund's adjuvant. The rats were treated orally with 5 mg/kg body weight of γ-tocotrienol between day 21 and day 45. After 45 days, serum C-reactive protein (CRP), tumor necrosis factor (TNF)-α, superoxide dismutase (SOD) and total glutathione (GSH) assays were conducted. γ-tocotrienol significantly reduced the arthritis-induced changes in body weight, CRP, TNF-α, SOD and the total GSH levels. There was a significant reduction in the arthritis-induced histopathological changes in the γ-tocotrienol treatment group. The data indicated that administration of γ-tocotrienol resulted in a significant antioxidant and anti-inflammatory effect on collagen-induced arthritis; therefore, γ-tocotrienol may have therapeutic potential as a long-term anti-arthritic agent in rheumatoid arthritis therapy.
Collapse
Affiliation(s)
- Ammu Radhakrishnan
- Faculty of Medicine and Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Dulanthi Tudawe
- Faculty of Medicine and Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Srikumar Chakravarthi
- Faculty of Medicine and Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Gan Seng Chiew
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kuala Lumpur 57000, Malaysia
| | - Nagaraja Haleagrahara
- Discipline of Physiology and Pharmacology, School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
60
|
Chakraborty K, Ramsauer VP, Stone W, Krishnan K. Tocotrienols in Pancreatic Cancer Treatment and Prevention. Cancer 2014. [DOI: 10.1016/b978-0-12-405205-5.00024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
61
|
Ahsan H, Ahad A, Iqbal J, Siddiqui WA. Pharmacological potential of tocotrienols: a review. Nutr Metab (Lond) 2014. [PMID: 25435896 DOI: 10.1186/743-7075-11-52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Tocotrienols, members of the vitamin E family, are natural compounds found in a number of vegetable oils, wheat germ, barley, and certain types of nuts and grains. Like tocopherols, tocotrienols are also of four types viz. alpha, beta, gamma and delta. Unlike tocopherols, tocotrienols are unsaturated and possess an isoprenoid side chain. Tocopherols are lipophilic in nature and are found in association with lipoproteins, fat deposits and cellular membranes and protect the polyunsaturated fatty acids from peroxidation reactions. The unsaturated chain of tocotrienol allows an efficient penetration into tissues that have saturated fatty layers such as the brain and liver. Recent mechanistic studies indicate that other forms of vitamin E, such as γ-tocopherol, δ-tocopherol, and γ-tocotrienol, have unique antioxidant and anti-inflammatory properties that are superior to those of α-tocopherol against chronic diseases. These forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids and suppress proinflammatory signalling, such as NF-κB and STAT. The animal and human studies show tocotrienols may be useful against inflammation-associated diseases. Many of the functions of tocotrienols are related to its antioxidant properties and its varied effects are due to it behaving as a signalling molecule. Tocotrienols exhibit biological activities that are also exhibited by tocopherols, such as neuroprotective, anti-cancer, anti-inflammatory and cholesterol lowering properties. Hence, effort has been made to compile the different functions and properties of tocotrienols in experimental model systems and humans. This article constitutes an in-depth review of the pharmacology, metabolism, toxicology and biosafety aspects of tocotrienols. Tocotrienols are detectable at appreciable levels in the plasma after supplementations. However, there is inadequate data on the plasma concentrations of tocotrienols that are sufficient to demonstrate significant physiological effect and biodistribution studies show their accumulation in vital organs of the body. Considering the wide range of benefits that tocotrienols possesses against some common human ailments and having a promising potential, the experimental analysis accounts for about a small fraction of all vitamin E research. The current state of knowledge deserves further investigation into this lesser known form of vitamin E.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Amjid Ahad
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203 USA
| | - Waseem A Siddiqui
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| |
Collapse
|
62
|
Daud ZAM, Tubie B, Sheyman M, Osia R, Adams J, Tubie S, Khosla P. Vitamin E tocotrienol supplementation improves lipid profiles in chronic hemodialysis patients. Vasc Health Risk Manag 2013; 9:747-61. [PMID: 24348043 PMCID: PMC3849001 DOI: 10.2147/vhrm.s51710] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Chronic hemodialysis patients experience accelerated atherosclerosis contributed to by dyslipidemia, inflammation, and an impaired antioxidant system. Vitamin E tocotrienols possess anti-inflammatory and antioxidant properties. However, the impact of dietary intervention with Vitamin E tocotrienols is unknown in this population. PATIENTS AND METHODS A randomized, double-blind, placebo-controlled, parallel trial was conducted in 81 patients undergoing chronic hemodialysis. Subjects were provided daily with capsules containing either vitamin E tocotrienol-rich fraction (TRF) (180 mg tocotrienols, 40 mg tocopherols) or placebo (0.48 mg tocotrienols, 0.88 mg tocopherols). Endpoints included measurements of inflammatory markers (C-reactive protein and interleukin 6), oxidative status (total antioxidant power and malondialdehyde), lipid profiles (plasma total cholesterol, triacylglycerols, and high-density lipoprotein cholesterol), as well as cholesteryl-ester transfer protein activity and apolipoprotein A1. RESULTS TRF supplementation did not impact any nutritional, inflammatory, or oxidative status biomarkers over time when compared with the baseline within the group (one-way repeated measures analysis of variance) or when compared with the placebo group at a particular time point (independent t-test). However, the TRF supplemented group showed improvement in lipid profiles after 12 and 16 weeks of intervention when compared with placebo at the respective time points. Normalized plasma triacylglycerols (cf baseline) in the TRF group were reduced by 33 mg/dL (P=0.032) and 36 mg/dL (P=0.072) after 12 and 16 weeks of intervention but no significant improvement was seen in the placebo group. Similarly, normalized plasma high-density lipoprotein cholesterol was higher (P<0.05) in the TRF group as compared with placebo at both week 12 and week 16. The changes in the TRF group at week 12 and week 16 were associated with higher plasma apolipoprotein A1 concentration (P<0.02) and lower cholesteryl-ester transfer protein activity (P<0.001). CONCLUSION TRF supplementation improved lipid profiles in this study of maintenance hemodialysis patients. A multi-centered trial is warranted to confirm these observations.
Collapse
Affiliation(s)
- Zulfitri A Mat Daud
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, USA
| | | | | | - Robert Osia
- Great Lake Dialysis Clinic, LLC, Detroit, MI, USA
| | - Judy Adams
- Great Lake Dialysis Clinic, LLC, Detroit, MI, USA
| | - Sharon Tubie
- Great Lake Dialysis Clinic, LLC, Detroit, MI, USA
| | - Pramod Khosla
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, USA
| |
Collapse
|
63
|
Wu SJ, Lu TM, Lai MN, Ng LT. Immunomodulatory activities of medicinal mushroom Grifola frondosa extract and its bioactive constituent. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:131-44. [PMID: 23336512 DOI: 10.1142/s0192415x13500109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Grifola frondosa (GF), a high value medicinal mushroom in China and Japan, is popularly consumed as traditional medicines and health foods, especially for enhancing immune functions. In this study, our aim was to examine the immunomodulatory activities of GF and its bioactive compound ergosterol peroxide (EPO) in lipopolysaccharide (LPS)-induced human monocytic (THP-1) cells. At low concentrations, EPO but not other extracts showed a full protection against LPS-induced cell toxicity. EPO significantly blocked MyD88 and VCAM-1 expression, and cytokine (IL-1β, IL-6 and TNF-α) production in LPS-stimulated cells. It also effectively inhibited NF-κB activation, which was further confirmed with siRNA treatment. These results conclude that EPO may play an important role in the immunomodulatory activity of GF through inhibiting the production of pro-inflammatory mediators and activation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shu-Jing Wu
- Department of Nutritional Health, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | | | | |
Collapse
|
64
|
Phellinus linteus polysaccharides and their immunomodulatory properties in human monocytic cells. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
65
|
Irandoost P, Ebrahimi-Mameghani M, Pirouzpanah S. Does grape seed oil improve inflammation and insulin resistance in overweight or obese women? Int J Food Sci Nutr 2013; 64:706-10. [DOI: 10.3109/09637486.2013.775228] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
66
|
Nishio K, Horie M, Akazawa Y, Shichiri M, Iwahashi H, Hagihara Y, Yoshida Y, Niki E. Attenuation of lipopolysaccharide (LPS)-induced cytotoxicity by tocopherols and tocotrienols. Redox Biol 2013; 1:97-103. [PMID: 24024142 PMCID: PMC3757666 DOI: 10.1016/j.redox.2012.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 10/26/2012] [Accepted: 10/26/2012] [Indexed: 01/23/2023] Open
Abstract
Lipopolysaccharide (LPS) induces host inflammatory responses and tissue injury and has been implicated in the pathogenesis of various age-related diseases such as acute respiratory distress syndrome, vascular diseases, and periodontal disease. Antioxidants, particularly vitamin E, have been shown to suppress oxidative stress induced by LPS, but the previous studies with different vitamin E isoforms gave inconsistent results. In the present study, the protective effects of α- and γ-tocopherols and α- and γ-tocotrienols on the oxidative stress induced by LPS against human lung carcinoma A549 cells were studied. They suppressed intracellular reactive oxygen formation, lipid peroxidation, induction of inflammatory mediator cytokines, and cell death. Tocopherols were incorporated into cultured cells much slower than tocotrienols but could suppress LPS-induced oxidative stress at much lower intracellular concentration than tocotrienols. Considering the bioavailability, it was concluded that α-tocopherol may exhibit the highest protective capacity among the vitamin E isoforms against LPS-induced oxidative stress.
Collapse
Key Words
- DCFH, Dichlorofluorescein
- DPPP, Diphenyl-1-pyrenylphosphine
- LPS, Lipopolysaccharide
- Lipid peroxidation
- Lipopolysaccharide (LPS)
- MTT, 3-[4,5-dimethylthiazol-2-yl]2,5-dipheyltetrazolium bromide
- NF-κB, Nuclear factor-kappaB
- Oxidative stress
- ROS, Reactive oxygen species
- SP-D, Pulmonary surfactant protein D
- TNF-α, Tumor necrosis factor α
- Toc, Tocopherol
- Toc3, Tocotrienol
- Tocopherol
- Tocotrienol
- Vitamin E
Collapse
Affiliation(s)
- Keiko Nishio
- Health Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Ikeda 563-8577, Japan
| | | | | | | | | | | | | | - Etsuo Niki
- Health Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Ikeda 563-8577, Japan
| |
Collapse
|
67
|
Bengmark S. Nutrition of the critically ill — a 21st-century perspective. Nutrients 2013; 5:162-207. [PMID: 23344250 PMCID: PMC3571643 DOI: 10.3390/nu5010162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/17/2012] [Accepted: 12/24/2012] [Indexed: 02/07/2023] Open
Abstract
Health care-induced diseases constitute a fast-increasing problem. Just one type of these health care-associated infections (HCAI) constitutes the fourth leading cause of death in Western countries. About 25 million individuals worldwide are estimated each year to undergo major surgery, of which approximately 3 million will never return home from the hospital. Furthermore, the quality of life is reported to be significantly impaired for the rest of the lives of those who, during their hospital stay, suffered life-threatening infections/sepsis. Severe infections are strongly associated with a high degree of systemic inflammation in the body, and intimately associated with significantly reduced and malfunctioning GI microbiota, a condition called dysbiosis. Deranged composition and function of the gastrointestinal microbiota, occurring from the mouth to the anus, has been found to cause impaired ability to maintain intact mucosal membrane functions and prevent leakage of toxins - bacterial endotoxins, as well as whole bacteria or debris of bacteria, the DNA of which are commonly found in most cells of the body, often in adipocytes of obese individuals or in arteriosclerotic plaques. Foods rich in proteotoxins such as gluten, casein and zein, and proteins, have been observed to have endotoxin-like effects that can contribute to dysbiosis. About 75% of the food in the Western diet is of limited or no benefit to the microbiota in the lower gut. Most of it, comprised specifically of refined carbohydrates, is already absorbed in the upper part of the GI tract, and what eventually reaches the large intestine is of limited value, as it contains only small amounts of the minerals, vitamins and other nutrients necessary for maintenance of the microbiota. The consequence is that the microbiota of modern humans is greatly reduced, both in terms of numbers and diversity when compared to the diets of our paleolithic forebears and the individuals living a rural lifestyle today. It is the artificial treatment provided in modern medical care - unfortunately often the only alternative provided - which constitute the main contributors to a poor outcome. These treatments include artificial ventilation, artificial nutrition, hygienic measures, use of skin-penetrating devices, tubes and catheters, frequent use of pharmaceuticals; they are all known to severely impair the microbiomes in various locations of the body, which, to a large extent, are ultimately responsible for a poor outcome. Attempts to reconstitute a normal microbiome by supply of probiotics have often failed as they are almost always undertaken as a complement to - and not as an alternative to - existing treatment schemes, especially those based on antibiotics, but also other pharmaceuticals.
Collapse
Affiliation(s)
- Stig Bengmark
- Division of Surgery & Interventional Science, University College London, 4th floor, 74 Huntley Street, London, WC1E 6AU, UK.
| |
Collapse
|
68
|
Vasdev S, Stuckless J, Richardson V. Role of the immune system in hypertension: modulation by dietary antioxidants. Int J Angiol 2012. [PMID: 23204821 DOI: 10.1055/s-0031-1288941] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypertension is a major health problem worldwide. Individuals with hypertension are at an increased risk for stroke, heart disease, and kidney failure. Although the etiology of essential hypertension has a genetic component, lifestyle factors such as diet play an important role. Insulin resistance is a common feature of hypertension in both humans and animal models affecting glucose and lipid metabolism producing excess aldehydes including methylglyoxal. These aldehydes react with proteins to form conjugates called advanced glycation end products (AGEs). This alters protein structure and function and can affect vascular and immune cells leading to their activation and secretion of inflammatory cytokines. AGEs also act via receptors for advanced glycation end products on these cells altering the function of antioxidant and metabolic enzymes, and ion channels. This results in an increase in cytosolic free calcium, decrease in nitric oxide, endothelial dysfunction, oxidative stress, peripheral vascular resistance, and infiltration of vascular and kidney tissue with inflammatory cells leading to hypertension. Supplementation with dietary antioxidants including vitamins C, E, or B(6), thiols such as cysteine and lipoic acid, have been shown to lower blood pressure and plasma inflammatory cytokines in animal models and humans with essential hypertension. A well-balanced diet rich in antioxidants that includes vegetables, fruits, low fat dairy products, low salt, and includes whole grains, poultry, fish and nuts, lowers blood pressure and vascular inflammation. These antioxidants may achieve their antihypertensive and anti-inflammatory/immunomodulatory effects by reducing AGEs and improving insulin resistance and associated alterations. Dietary supplementation with antioxidants may be a beneficial, inexpensive, front-line alterative treatment modality for hypertension.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Health Sciences Centre, Memorial University, St. John's, Newfoundland, Canada
| | | | | |
Collapse
|
69
|
Mo H, Yeganehjoo H, Shah A, Mo WK, Soelaiman IN, Shen CL. Mevalonate-suppressive dietary isoprenoids for bone health. J Nutr Biochem 2012; 23:1543-51. [DOI: 10.1016/j.jnutbio.2012.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/13/2012] [Accepted: 07/19/2012] [Indexed: 12/19/2022]
|
70
|
Bengmark S. Nutrition of the critically ill - emphasis on liver and pancreas. Hepatobiliary Surg Nutr 2012; 1:25-52. [PMID: 24570901 PMCID: PMC3924628 DOI: 10.3978/j.issn.2304-3881.2012.10.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 10/25/2012] [Indexed: 12/13/2022]
Abstract
About 25 million individuals undergo high risk surgery each year. Of these about 3 million will never return home from hospital, and the quality of life for many of those who return is often significantly impaired. Furthermore, many of those who manage to leave hospital have undergone severe life-threatening complications, mostly infections/sepsis. The development is strongly associated with the level of systemic inflammation in the body, which again is entirely a result of malfunctioning GI microbiota, a condition called dysbiosis, with deranged composition and function of the gastrointestinal microbiota from the mouth to the anus and impaired ability to maintain intact mucosal membrane functions and prevent leakage of toxins-bacterial endotoxins and whole or debris of bacteria, but also foods containing proteotoxins gluten, casein and zein and heat-induced molecules such as advanced glycation end products (AGEs) and advanced lipoxidation end products (ALEs). Markedly lower total anaerobic bacterial counts, particularly of the beneficial Bifidobacterium and Lactobacillus and higher counts of total facultative anaerobes such as Staphylococcus and Pseudomonas are often observed when analyzing the colonic microbiota. In addition Gram-negative facultative anaerobes are commonly identified microbial organisms in mesenteric lymph nodes and at serosal "scrapings" at laparotomy in patients suffering what is called "Systemic inflammation response system" (SIRS). Clearly the outcome is influenced by preexisting conditions in those undergoing surgery, but not to the extent as one could expect. Several studies have for example been unable to find significant influence of pre-existing obesity. The outcome seems much more to be related to the life-style of the individual and her/his "maintenance" of the microbiota e.g., size and diversity of microbiota, normal microbiota, eubiosis, being highly preventive. About 75% of the food Westerners consume does not benefit microbiota in the lower gut. Most of it, refined carbohydrates, is already absorbed in the upper part of the GI tract, and of what reaches the large intestine is of limited value containing less minerals, less vitamins and other nutrients important for maintenance of the microbiota. The consequence is that the microbiota of modern man has a much reduced size and diversity in comparison to what our Palelithic forefathers had, and individuals living a rural life have today. It is the artificial treatment provided by modern care, unfortunately often the only alternative, which belongs to the main contributor to poor outcome, among them; artificial ventilation, artificial nutrition, hygienic measures, use of skin penetrating devices, tubes and catheters, frequent use of pharmaceuticals, all known to significantly impair the total microbiome of the body and dramatically contribute to poor outcome. Attempts to reconstitute a normal microbiome have often failed as they have always been undertaken as a complement to and not an alternative to existing treatment schemes, especially treatments with antibiotics. Modern nutrition formulas are clearly too artificial as they are based on mixture of a variety of chemicals, which alone or together induce inflammation. Alternative formulas, based on regular food ingredients, especially rich in raw fresh greens, vegetables and fruits and with them healthy bacteria are suggested to be developed and tried.
Collapse
Affiliation(s)
- Stig Bengmark
- Division of Surgery & Interventional Science, University College London, London, WC1E 6AU, United Kingdom
| |
Collapse
|
71
|
|
72
|
Ng LT, Ko HJ. Comparative effects of tocotrienol-rich fraction, α-tocopherol and α-tocopheryl acetate on inflammatory mediators and nuclear factor kappa B expression in mouse peritoneal macrophages. Food Chem 2012; 134:920-5. [PMID: 23107708 DOI: 10.1016/j.foodchem.2012.02.206] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 08/03/2011] [Accepted: 02/29/2012] [Indexed: 11/30/2022]
Abstract
The effects of tocotrienol-rich fraction (TRF), α-tocopherol (T) and α-tocopheryl acetate (TA) on lipopolysaccharide (LPS)-induced inflammatory responses in mouse peritoneal macrophages were examined. Results showed that at 5-30 μg/ml, all test compounds plus 1 μg/ml LPS exhibited no cytotoxic effects on macrophage cells. Compared with T and TA, TRF showed the strongest anti-inflammatory activity as demonstrated by its potency in inhibiting the LPS-induced nitric oxide (NO), prostaglandin E(2) (PGE(2)), and proinflammatory cytokine (TNF-α, IFN-γ, IL-1β and IL-6) production. At 10 μg/ml, it significantly blocked the LPS induction of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, but has no effect on cyclooxygenase-1 (COX-1). Furthermore, TRF also showed a greater inhibition on the nuclear factor kappa B (NF-κB) expression than T and TA. These results suggest that TRF could be a better agent than T and TA for use in the prevention of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan.
| | | |
Collapse
|
73
|
Matsunaga T, Shoji A, Gu N, Joo E, Li S, Adachi T, Yamazaki H, Yasuda K, Kondoh T, Tsuda K. γ-Tocotrienol attenuates TNF-α-induced changes in secretion and gene expression of MCP-1, IL-6 and adiponectin in 3T3-L1 adipocytes. Mol Med Rep 2012; 5:905-9. [PMID: 22293775 PMCID: PMC3493080 DOI: 10.3892/mmr.2012.770] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/22/2011] [Indexed: 01/22/2023] Open
Abstract
Tocotrienols, members of the vitamin E family, have been shown to possess anti-inflammatory properties and display activity against a variety of chronic diseases, such as cancer, cardiovascular and neurological diseases. However, whether tocotrienols contribute to the prevention of inflammatory responses in adipose tissue remains to be elucidated. In this study, we examined the effects of γ-tocotrienol, the most common tocotrienol isomer, on tumor necrosis factor-α (TNF-α)-induced inflammatory responses by measuring the expression of the adipokines, monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6) and adiponectin in 3T3-L1 adipocytes. Exposure to TNF-α (10 ng/ml) for 24 h increased MCP-1 and IL-6 secretion, and decreased adiponectin secretion and peroxisome proliferator-activated receptor-γ (PPARγ) mRNA expression. γ-tocotrienol effectively improved the TNF-α-induced adverse changes in MCP-1, IL-6 and adiponectin secretion, and in MCP-1, IL-6, adiponectin and PPARγ mRNA expression. Furthermore, TNF-α-mediated IκB-α phosphorylation and nuclear factor-κB (NF-κB) activation were significantly suppressed by the γ-tocotrienol treatment. Our results suggest that γ-tocotrienol may improve obesity-related functional abnormalities in adipocytes by attenuating NF-κB activation and the expression of inflammatory adipokines.
Collapse
Affiliation(s)
- Tetsuro Matsunaga
- Ajinomoto Integrative Research for Advanced Dieting, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Vasanthi HR, Parameswari RP, Das DK. Multifaceted role of tocotrienols in cardioprotection supports their structure: function relation. GENES & NUTRITION 2012; 7:19-28. [PMID: 21604025 PMCID: PMC3250529 DOI: 10.1007/s12263-011-0227-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 04/08/2011] [Indexed: 01/01/2023]
Abstract
Tocotrienols are a class of vitamin E which modulates several mechanisms associated with cardioprotection, anti-cancer, anti-diabetic, and neuroprotection. Unlike other Vitamin E-like compounds, tocotrienols possess inimitable properties. Quite a lot of studies have determined the cardioprotective abilities of tocotrienols and have been shown to possess novel hypocholesterolemic effects together with an ability to reduce the atherogenic apolipoprotein and lipoprotein plasma levels. In addition, tocotrienol has been suggested to have an antioxidant, anti-thrombotic, and anti-tumor effect indicating that tocotrienol may serve as an effective agent in the prevention and/or treatment of cardiovascular disease and cancer. The bioactivity exhibited is due to the structural characteristics of tocotrienols. Rich sources of tocotrienols which include rice bran, palm oil, and other edible oils exhibit protective effect against cardiovascular disorders. The conclusions drawn from the early literature that vitamin E group of compounds provides an inevitable role in cardioprotection is sustained in many more recent studies.
Collapse
Affiliation(s)
- Hannah R. Vasanthi
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, Puducherry India
| | - R. P. Parameswari
- Herbal and Indian Medicine Research Laboratory, Sri Ramachandra University, Chennai, India
| | - Dipak K. Das
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110 USA
| |
Collapse
|
75
|
Bony E, Boudard F, Brat P, Dussossoy E, Portet K, Poucheret P, Giaimis J, Michel A. Awara (Astrocaryum vulgare M.) pulp oil: Chemical characterization, and anti-inflammatory properties in a mice model of endotoxic shock and a rat model of pulmonary inflammation. Fitoterapia 2012; 83:33-43. [DOI: 10.1016/j.fitote.2011.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 08/29/2011] [Accepted: 09/12/2011] [Indexed: 11/25/2022]
|
76
|
Anti-inflammatory effect of grape seed may involve the induction of heme oxygenase-1 and suppression of nuclear factor-κB activation. Food Sci Biotechnol 2011. [DOI: 10.1007/s10068-011-0236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
77
|
Ko HJ, Song A, Lai MN, Ng LT. Immunomodulatory properties of Xylaria nigripes in peritoneal macrophage cells of Balb/c mice. JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:762-768. [PMID: 22044578 DOI: 10.1016/j.jep.2011.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/27/2011] [Accepted: 10/15/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wu Ling Shen, a folklore name for Xylaria nigripes (XN), is a high value medicinal fungus used in traditional Chinese medicine. AIM OF STUDY The present study aimed to examine the immunomodulatory properties of aqueous (XN-H) and ethanol (XN-E) XN extracts in lipopolysaccharide (LPS)-induced peritoneal macrophage cells of Balb/c mice. MATERIALS AND METHODS After treating the macrophage cells with LPS (1 μg/ml) and different XN extracts, the immunomodulatory properties were determined by the responses of inflammatory mediators, namely nitrite oxide (NO), prostaglandin E2 (PGE(2)) and cytokine (IL-1β, IL-6, TNF-α and IFN-γ) production, iNOS, COX-2 and IκB-α expression, and NF-κB activation. RESULTS Results showed that treatment of macrophages with 5-30 μg/ml of XN-H or XN-E plus 1 μg/ml LPS exhibited no cytotoxic effect on cell viability. At these concentrations, although both XN-H and XN-E showed a dose-dependent inhibitory effect on NO, PGE(2), IL-1β, IL-6, TNF-α and IFN-γ production in LPS-stimulated macrophages, a greater potency was noted in the XN-H treated group. RT-PCR assay also showed that XN-H possessed a greater inhibition than XN-E on iNOS and COX-2 RNA expression. Furthermore, XN-H also showed a significant stronger suppression than XN-E on the LPS-induced IκB-α phosphorylation and NF-κB activation. XN-E showed a higher total flavonoid and phenol contents but a lower β-glucan content than XN-H. CONCLUSION Taken together, these results conclude that XN-H possesses a stronger anti-inflammatory activity than XN-E, and its mechanism of action could be mediated by inhibiting iNOS and COX-2 expression via the NF-κB signaling pathway, and these activities could be contributed by the β-glucan content.
Collapse
Affiliation(s)
- Huey-Jiun Ko
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | | | | | | |
Collapse
|
78
|
Abstract
Inflammation is an organism's response to environmental assaults. It can be classified as acute inflammation that leads to therapeutic recovery or chronic inflammation, which may lead to the development of cancer and other ailments. Genetic changes that occur within cancer cells themselves are responsible for many aspects of cancer development but are dependent on ancillary processes for tumor promotion and progression. Inflammation has long been associated with the development of cancer. The distinct characteristics of cancer cells to proliferate, metastasize, evade apoptotic signals, and develop chemoresistance have been linked to the inflammatory response. Due to the involvement of multiple genes and various pathways, current drugs that target single genes have not been effective in providing a therapeutic cure. On the other hand, natural products target multiple genes and therefore have better success compared to drugs. Tocotrienols, the potent isoforms of vitamin E, are such a natural product. This review will discuss the relationship between cancer and inflammation with particular focus on the roles played by NF-κB, STAT3, and COX-2.
Collapse
|
79
|
Wilankar C, Sharma D, Checker R, Khan NM, Patwardhan R, Patil A, Sandur SK, Devasagayam TPA. Role of immunoregulatory transcription factors in differential immunomodulatory effects of tocotrienols. Free Radic Biol Med 2011; 51:129-43. [PMID: 21536125 DOI: 10.1016/j.freeradbiomed.2011.03.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/01/2011] [Accepted: 03/28/2011] [Indexed: 12/20/2022]
Abstract
Tocotrienols have been shown to possess antioxidant, antitumor, cardioprotective, and antiproliferative effects. This report describes novel immunomodulatory effects of tocotrienols in murine lymphocytes. γ-Tocotrienol (GT) was more effective in suppressing concanavalin A (Con A)-induced T cell proliferation and cytokine production compared to α-tocotrienol (AT) when present continuously in the culture. GT inhibited T cell activation markers and costimulatory molecule. GT modulated intracellular glutathione in lymphocytes, and the suppressive effects of GT could not be abrogated by thiol or nonthiol antioxidants, indicating a poor link between anti-inflammatory properties of tocotrienols and cellular redox status. It was also observed that GT suppressed Con A-induced activation of NF-κB, AP-1, and NF-κB-dependent gene expression. Cellular uptake studies with tocotrienols showed higher accumulation of GT compared to AT. Similar immunosuppressive effects of GT were also observed when administered to mice. In contrast, transient exposure of lymphocytes to GT (4 h) resulted in higher survival and proliferation of lymphocytes in vitro and in vivo in syngeneic and allogeneic hosts. This was attributed to the ability of GT to induce NF-κB, AP-1, and mTOR activation in lymphocytes upon transient exposure. Our results demonstrated that antioxidants such as tocotrienols may exhibit pleiotropic effects by activating multiple mechanisms in cells.
Collapse
Affiliation(s)
- Chandan Wilankar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Yang Z, Lee MJ, Zhao Y, Yang CS. Metabolism of tocotrienols in animals and synergistic inhibitory actions of tocotrienols with atorvastatin in cancer cells. GENES AND NUTRITION 2011; 7:11-8. [PMID: 21590436 DOI: 10.1007/s12263-011-0233-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/22/2011] [Indexed: 12/31/2022]
Abstract
Tocotrienols (T3s), members of the vitamin E family, exhibit potent anti-cancer, anti-oxidative, anti-inflammatory, and some other biological activities. To better understand the bioavailability and metabolism of T3s, T3s and their metabolites were identified in urine and fecal samples from mice on diet supplemented with mixed T3s using HPLC/electrochemical detection and liquid chromatography electrospray ionisation mass spectrometry (LC-ESI-MS). Whereas the short-chain metabolites carboxyethyl hydroxychromans (CEHCs) and carboxymethylbutyl hydroxychromans (CMBHCs) were the major metabolites of T3s, several new metabolites with double bonds were also identified. Similar to tocopherols, the majority of T3 metabolites were excreted as sulfate/glucuronide conjugates in mouse urine. The distribution of γ- and δ-T3 and γ-T3 metabolites were also determined in different organs as well as in urine and fecal samples from mice on diets supplemented with corresponding T3s. The synergistic anti-cancer actions of γ-T3 and atorvastatin (ATST) were studied in HT29 and HCT116 colon cancer cell lines. The combination greatly potentiated the ability of each individual agent to inhibit cancer cell growth and to induce cell cycle arrest and apoptosis. The triple combination of γ-T3, ATST, and celecoxib exhibited synergistic actions when compared with any double combination plus the third agent. Mechanistic studies revealed that the synergistic actions of γ-T3 and ATST could be attributed to their mediation of 3-hydroxy-3-methyl-glutaryl-CoA reductase, and the subsequent inhibition of protein geranylgeranylation. It remains to be determined whether such a synergy occurs in vivo.
Collapse
Affiliation(s)
- Zhihong Yang
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | | | | | | |
Collapse
|
81
|
Kannappan R, Gupta SC, Kim JH, Aggarwal BB. Tocotrienols fight cancer by targeting multiple cell signaling pathways. GENES AND NUTRITION 2011; 7:43-52. [PMID: 21484157 DOI: 10.1007/s12263-011-0220-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 12/11/2022]
Abstract
Cancer cells are distinguished by several distinct characteristics, such as self-sufficiency in growth signal, resistance to growth inhibition, limitless replicative potential, evasion of apoptosis, sustained angiogenesis, and tissue invasion and metastasis. Tumor cells acquire these properties due to the dysregulation of multiple genes and associated cell signaling pathways, most of which are linked to inflammation. For that reason, rationally designed drugs that target a single gene product are unlikely to be of use in preventing or treating cancer. Moreover, targeted drugs can cause serious and even life-threatening side effects. Therefore, there is an urgent need for safe and effective promiscuous (multitargeted) drugs. "Mother Nature" produces numerous such compounds that regulate multiple cell signaling pathways, are cost effective, exhibit low toxicity, and are readily available. One among these is tocotrienol, a member of the vitamin E family, which has exhibited anticancer properties. This review summarizes data from in vitro and in vivo studies of the effects of tocotrienol on nuclear factor-κB, signal transducer and activator of transcription (STAT) 3, death receptors, apoptosis, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), hypoxia-inducible factor (HIF) 1, growth factor receptor kinases, and angiogenic pathways.
Collapse
Affiliation(s)
- Ramaswamy Kannappan
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | | | | |
Collapse
|
82
|
Qureshi AA, Reis JC, Qureshi N, Papasian CJ, Morrison DC, Schaefer DM. δ-Tocotrienol and quercetin reduce serum levels of nitric oxide and lipid parameters in female chickens. Lipids Health Dis 2011; 10:39. [PMID: 21356098 PMCID: PMC3053241 DOI: 10.1186/1476-511x-10-39] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 02/28/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chronic, low-grade inflammation provides a link between normal ageing and the pathogenesis of age-related diseases. A series of in vitro tests confirmed the strong anti-inflammatory activities of known inhibitors of NF-κB activation (δ-tocotrienol, quercetin, riboflavin, (-) Corey lactone, amiloride, and dexamethasone). δ-Tocotrienol also suppresses β-hydroxy-β-methylglutaryl coenzyme A (HMG-CoA) reductase activity (the rate-limiting step in de novo cholesterol synthesis), and concomitantly lowers serum total and LDL cholesterol levels. We evaluated these compounds in an avian model anticipating that a dietary additive combining δ-tocotrienol with quercetin, riboflavin, (-) Corey lactone, amiloride, or dexamethasone would yield greater reductions in serum levels of total cholesterol, LDL-cholesterol and inflammatory markers (tumor necrosis factor-α [TNF-α], and nitric oxide [NO]), than that attained with the individual compounds. RESULTS The present results showed that supplementation of control diets with all compounds tested except riboflavin, (-) Corey lactone, and dexamethasone produced small but significant reductions in body weight gains as compared to control. (-) Corey lactone and riboflavin did not significantly impact body weight gains. Dexamethasone significantly and markedly reduced weight gain (>75%) compared to control. The serum levels of TNF-α and NO were decreased 61% - 84% (P < 0.001), and 14% - 67%, respectively, in chickens fed diets supplemented with δ-tocotrienol, quercetin, riboflavin, (-) Corey lactone, amiloride, or dexamethasone as compared to controls. Significant decreases in the levels of serum total and LDL-cholesterol were attained with δ-tocotrienol, quercetin, riboflavin and (-) Corey lactone (13% - 57%; P < 0.05), whereas, these levels were 2-fold higher in dexamethasone treated chickens as compared to controls. Parallel responses on hepatic lipid infiltration were confirmed by histological analyses. Treatments combining δ-tocotrienol with the other compounds yielded values that were lower than individual values attained with either δ-tocotrienol or the second compound. Exceptions were the significantly lower total and LDL cholesterol and triglyceride values attained with the δ-tocotrienol/(-) Corey lactone treatment and the significantly lower triglyceride value attained with the δ-tocotrienol/riboflavin treatment. δ-Tocotrienol attenuated the lipid-elevating impact of dexamethasone and potentiated the triglyceride lowering impact of riboflavin. Microarray analyses of liver samples identified 62 genes whose expressions were either up-regulated or down-regulated by all compounds suggesting common impact on serum TNF-α and NO levels. The microarray analyses further identified 41 genes whose expression was differentially impacted by the compounds shown to lower serum lipid levels and dexamethasone, associated with markedly elevated serum lipids. CONCLUSIONS This is the first report describing the anti-inflammatory effects of δ-tocotrienol, quercetin, riboflavin, (-) Corey lactone, amiloride, and dexamethasone on serum TNF-δ and NO levels. Serum TNF-δ levels were decreased by >60% by each of the experimental compounds. Additionally, all the treatments except with dexamethasone, resulted in lower serum total cholesterol, LDL-cholesterol and triglyceride levels. The impact of above mentioned compounds on the factors evaluated herein was increased when combined with δ-tocotrienol.
Collapse
Affiliation(s)
- Asaf A Qureshi
- Department of Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Julia C Reis
- Department of Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
- Department of Pharmacology/Toxicology, School of Pharmacy, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Nilofer Qureshi
- Department of Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
- Department of Pharmacology/Toxicology, School of Pharmacy, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Christopher J Papasian
- Department of Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - David C Morrison
- Department of Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Daniel M Schaefer
- Department of Animal Sciences, University of Wisconsin, Madison, WI. 53706, USA
| |
Collapse
|
83
|
Tan SW, Ramasamy R, Abdullah M, Vidyadaran S. Inhibitory effects of palm α-, γ- and δ-tocotrienol on lipopolysaccharide-induced nitric oxide production in BV2 microglia. Cell Immunol 2011; 271:205-9. [DOI: 10.1016/j.cellimm.2011.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/27/2011] [Accepted: 07/14/2011] [Indexed: 10/18/2022]
|
84
|
Nazrun A, Norazlina M, Norliza M, Nirwana SI. Tocotrienols as an Anti-Osteoporotic Agent: The Progress So Far. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ijom.2011.1.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
85
|
Palm Tocotrienols Inhibit Proliferation of Murine Mammary Cancer Cells and Induce Expression of Interleukin-24 mRNA. J Interferon Cytokine Res 2010; 30:909-16. [DOI: 10.1089/jir.2010.0021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
86
|
Siddiqui S, Rashid Khan M, Siddiqui WA. Comparative hypoglycemic and nephroprotective effects of tocotrienol rich fraction (TRF) from palm oil and rice bran oil against hyperglycemia induced nephropathy in type 1 diabetic rats. Chem Biol Interact 2010; 188:651-8. [DOI: 10.1016/j.cbi.2010.08.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 08/21/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
|
87
|
gamma-Tocotrienol reduces squalene hydroperoxide-induced inflammatory responses in HaCaT keratinocytes. Lipids 2010; 45:833-41. [PMID: 20714817 DOI: 10.1007/s11745-010-3458-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 07/27/2010] [Indexed: 12/11/2022]
Abstract
Squalene hydroperoxide (SQ-OOH), the primary peroxidation product of squalene (SQ), accumulates at the surface of sunlight-exposed human skin. There are however only a few studies on the pathogenic actions (i.e., inflammatory stimuli) of SQ-OOH. Here, we evaluated whether SQ-OOH induced inflammatory responses in immortalized human keratinocytes (HaCaT). We found that SQ-OOH caused an increase in the expression of inflammatory genes such as the interleukins as well as cyclooxygenase-2 (COX-2). In concordance with the upregulation of COX-2 mRNA, SQ-OOH enhanced reactive oxygen species generation, nuclear factor kappa B activation, COX-2 protein expression, and prostaglandin E2 production. Therefore, the pro-inflammatory effects of SQ-OOH may be mediated in part via COX-2. On the other hand, gamma-tocotrienol (gamma-T3, an unsaturated form of vitamin E) was found to ameliorate the SQ-OOH actions. These results suggest that SQ-OOH induces inflammatory responses in HaCaT, implying that SQ-OOH plays an important role in inflammatory skin disorders. As a preventive strategy, inflammation could be reduced via the use of gamma-T3.
Collapse
|
88
|
Aggarwal BB, Sundaram C, Prasad S, Kannappan R. Tocotrienols, the vitamin E of the 21st century: its potential against cancer and other chronic diseases. Biochem Pharmacol 2010; 80:1613-31. [PMID: 20696139 DOI: 10.1016/j.bcp.2010.07.043] [Citation(s) in RCA: 358] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/12/2010] [Accepted: 07/27/2010] [Indexed: 02/07/2023]
Abstract
Initially discovered in 1938 as a "fertility factor," vitamin E now refers to eight different isoforms that belong to two categories, four saturated analogues (α, β, γ, and δ) called tocopherols and four unsaturated analogues referred to as tocotrienols. While the tocopherols have been investigated extensively, little is known about the tocotrienols. Very limited studies suggest that both the molecular and therapeutic targets of the tocotrienols are distinct from those of the tocopherols. For instance, suppression of inflammatory transcription factor NF-κB, which is closely linked to tumorigenesis and inhibition of HMG-CoA reductase, mammalian DNA polymerases and certain protein tyrosine kinases, is unique to the tocotrienols. This review examines in detail the molecular targets of the tocotrienols and their roles in cancer, bone resorption, diabetes, and cardiovascular and neurological diseases at both preclinical and clinical levels. As disappointment with the therapeutic value of the tocopherols grows, the potential of these novel vitamin E analogues awaits further investigation.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Box 143, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
89
|
|
90
|
Lee SP, Yang SC, Cheng YS, Lien WJ, Ng LT. Hepatoprotection by palm tocotrienol-rich fraction. EUR J LIPID SCI TECH 2010. [DOI: 10.1002/ejlt.200900175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
91
|
Muharis SP, Top AGM, Murugan D, Mustafa MR. Palm oil tocotrienol fractions restore endothelium dependent relaxation in aortic rings of streptozotocin-induced diabetic and spontaneously hypertensive rats. Nutr Res 2010; 30:209-16. [DOI: 10.1016/j.nutres.2010.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/22/2010] [Accepted: 03/24/2010] [Indexed: 02/06/2023]
|
92
|
Shirode AB, Sylvester PW. Synergistic anticancer effects of combined gamma-tocotrienol and celecoxib treatment are associated with suppression in Akt and NFkappaB signaling. Biomed Pharmacother 2009; 64:327-32. [PMID: 19954924 DOI: 10.1016/j.biopha.2009.09.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 09/24/2009] [Indexed: 01/29/2023] Open
Abstract
The selective cyclooxygenase (COX)-2 inhibitor, celecoxib, and the vitamin E isoform, gamma-tocotrienol, both display potent anticancer activity. However, high dose clinical use of selective COX-2 inhibitors has been limited by gastrointestinal and cardiovascular toxicity, whereas limited absorption and transport of gamma-tocotrienol by the body has made it difficult to obtain and sustain therapeutic levels in the blood and target tissues. Studies were conducted to characterize the synergistic anticancer antiproliferative effects of combined low dose celecoxib and gamma-tocotrienol treatment on mammary tumor cells in culture. The highly malignant mouse +SA mammary epithelial cells were maintained in culture on serum-free defined control or treatment media. Treatment effects on COX-1, COX-2, Akt, NFkappaB and prostaglandin E(2) (PGE(2)) synthesis were assessed following a 3- or 4-day culture period. Treatment with 3-4 microM gamma-tocotrienol or 7.5-10 microM celecoxib alone significantly inhibited +SA cell growth in a dose-responsive manner. However, combined treatment with subeffective doses of gamma-tocotrienol (0.25 microM) and celecoxib (2.5 microM) resulted in a synergistic antiproliferative effect, as determined by isobologram analysis, and this growth inhibitory effect was associated with a reduction in PGE(2) synthesis, and decrease in COX-2, phospho-Akt (active), and phospho-NFkappaB (active) levels. These results demonstrate that the synergistic anticancer effects of combined celecoxib and gamma-tocotrienol therapy are mediated by COX-2 dependent and independent mechanisms. These findings also suggest that combination therapy with these agents may provide enhanced therapeutic response in breast cancer patients, while avoiding the toxicity associated with high-dose COX-2 inhibitor monotherapy.
Collapse
Affiliation(s)
- Amit B Shirode
- College of Pharmacy, University of Louisiana, 700 University Avenue, Monroe, LA 71209-0470, USA
| | | |
Collapse
|
93
|
Fang F, Kang Z, Wong C. Vitamin E tocotrienols improve insulin sensitivity through activating peroxisome proliferator-activated receptors. Mol Nutr Food Res 2009; 54:345-52. [DOI: 10.1002/mnfr.200900119] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
94
|
Lee SP, Mar GY, Ng LT. Effects of tocotrienol-rich fraction on exercise endurance capacity and oxidative stress in forced swimming rats. Eur J Appl Physiol 2009; 107:587-95. [PMID: 19705143 DOI: 10.1007/s00421-009-1159-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
The present study aimed to examine the effects of tocotrienol-rich fraction (TRF) on exercise endurance and oxidative stress in forced swimming rats. Rats fed on isocaloric diet were orally given 25 (TRF-25) and 50 (TRF-50) mg/kg of TRF, or 25 mg/kg D-alpha-tocopherol (T-25) whilst the control group received only the vehicle for 28 days, followed by being forced to undergo swimming endurance tests, with measurements taken of various biochemical parameters, including blood glucose, lactate and urea nitrogen, glycogen, total antioxidant capacity, antioxidant enzymes, thiobarbituric acid-reactive substances (TBARS), and protein carbonyl. Results showed that the TRF-treated animals (268.0 +/- 24.1 min for TRF-25 and 332.5 +/- 24.3 min for TRF-50) swam significantly longer than the control (135.5 +/- 32.9 min) and T-25-treated (154.1 +/- 36.4 min) animals, whereas there was no difference in the performance between the T-25 and control groups. The TRF-treated rats also showed significantly higher concentrations of liver glycogen, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as of muscle glycogen and SOD than the control and the T-25-treated animals, but lower levels in blood lactate, plasma and liver TBARS, and liver and muscle protein carbonyl. Taken together, these results suggest that TRF is able to improve the physiological condition and reduce the exercise-induced oxidative stress in forced swimming rats.
Collapse
Affiliation(s)
- Shu-Ping Lee
- Ping Tin Enterprise Co., Ltd., Kaohsiung, Taiwan
| | | | | |
Collapse
|
95
|
Tocotrienols Suppress Proinflammatory Markers and Cyclooxygenase-2 Expression in RAW264.7 Macrophages. Lipids 2009; 44:787-97. [DOI: 10.1007/s11745-009-3326-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 06/23/2009] [Indexed: 01/22/2023]
|
96
|
Nakamura YK, Omaye ST. Vitamin E-modulated gene expression associated with ROS generation. J Funct Foods 2009. [DOI: 10.1016/j.jff.2009.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
97
|
Inada T, Kubo K, Kambara T, Shingu K. Propofol inhibits cyclo-oxygenase activity in human monocytic THP-1 cells. Can J Anaesth 2009; 56:222-9. [PMID: 19247743 DOI: 10.1007/s12630-008-9035-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/26/2008] [Accepted: 12/09/2008] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Monocytes/macrophages are key players in innate and adaptive immunity. Upon stimulation, they secrete prostanoids, which are produced by cyclooxygenase from arachidonic acid. Prostanoids influence inflammation and immune responses. We investigated the effect of propofol on prostaglandin E(2) and thromboxane B(2) production by the human monocytic cell line THP-1. METHODS The THP-1 cells were cultured with lipopolysaccharide (1 microg ml(-1)) in the presence of clinically relevant sedative/anesthetic concentrations of propofol (0-30 microM) for 18 h, and the concentration of prostaglandin E(2) and thromboxane B(2) in culture supernatants was measured using an enzyme immunoassay. Intracellular cyclooxygenase protein expression was measured by flow cytometry. Cyclooxygenase activity was assessed by measuring production of prostaglandin E(2) and thromboxane B(2) by THP-1 cells after arachidonic acid (10 microM) substrate provision. RESULTS Propofol decreased the production of prostaglandin E(2) (75.4 +/- 6.4 pg ml(-1) at 0 microM vs. 28.5 +/- 11.2 pg ml(-1) at 30 microM; P < 0.001) and thromboxane B(2) (282.4 +/- 79.2 pg ml(-1) at 0 microM vs. 40.4 +/- 21.7 pg ml(-1) at 30 microM; P < 0.001). The inhibition was not due to the decreased cyclooxygenase protein expression because intracellular staining of this enzyme was not affected by propofol. After arachidonic acid provision, prostaglandin E(2) and thromboxane B(2) production from activated THP-1 cells was significantly (P < 0.001) decreased with propofol, indicating direct suppression of cyclooxygenase activity with propofol. CONCLUSIONS Propofol may modulate inflammation via the suppression of cyclooxygenase activity. Through the inhibition of prostanoid production, propofol may enhance immune responses.
Collapse
Affiliation(s)
- Takefumi Inada
- Department of Anesthesiology, Kansai Medical University, 10-15, Fumizono-cho, Moriguchi, Osaka 570-8507, Japan.
| | | | | | | |
Collapse
|