51
|
To What Extent Does Photoperiod Affect Cattle Reproduction? Clinical Perspectives of Melatonin Administration – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The seasonality of reproduction in most mammals is dictated by photoperiod, temperature and nutrition. Melatonin, mainly synthesized in the pineal gland, is generally accepted as the active mediator of photoperiod responses including reproduction. While non-pregnant heifers and cows show continuous sexual activity and are therefore not seasonal breeders, it has been suggested that photo-periodicity may influence the appearance of puberty in heifers and the onset of parturition. Further, the light/dark ratio may influence endocrine patterns of gestation and a shorter light period correlates with the incidence of twin pregnancies. This review considers specific aspects of the effects of photoperiod and melatonin on reproduction in dairy cattle and discusses the clinical applications of melatonin.
Collapse
|
52
|
Sananmuang T, Puthier D, Nguyen C, Chokeshaiusaha K. Novel classifier orthologs of bovine and human oocytes matured in different melatonin environments. Theriogenology 2020; 156:82-89. [PMID: 32682179 DOI: 10.1016/j.theriogenology.2020.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/30/2022]
Abstract
It has been demonstrated that melatonin influences the developmental competence of both in vivo and in vitro matured oocytes. It modulates oocyte-specific gene expression patterns among mammalian species. Due to differences among study systems, the identification of the classifier orthologs-the homologous genes related among mammals that could universally categorize oocytes matured in environments with varied melatonin levels is still limitedly studied. To gain insight into such orthologs, cross-species transcription profiling meta-analysis of in vitro matured bovine oocytes and in vivo matured human oocytes in low and high melatonin environments was demonstrated in the current study. RNA-Seq data of bovine and human oocytes were retrieved from the Sequence Read Archive database and pre-processed. The used datasets of bovine oocytes obtained from culturing in the absence of melatonin and human oocytes from old patients were regarded as oocytes in the low melatonin environment (Low). Datasets from bovine oocytes cultured in 10-9 M melatonin and human oocytes from young patients were considered as oocytes in the high melatonin environment (High). Candidate orthologs differentially expressed between Low and High melatonin environments were selected by a linear model, and were further verified by Zero-inflated regression analysis. Support Vector Machine (SVM) was applied to determine the potentials of the verified orthologs as classifiers of melatonin environments. According to the acquired results, linear model analysis identified 284 candidate orthologs differentially expressed between Low and High melatonin environments. Among them, only 15 candidate orthologs were verified by Zero-inflated regression analysis (FDR ≤ 0.05). Utilization of the verified orthologs as classifiers in SVM resulted in the precise classification of oocyte learning datasets according to their melatonin environments (Misclassification rates < 0.18, area under curves > 0.9). In conclusion, the cross-species RNA-Seq meta-analysis to identify novel classifier orthologs of matured oocytes under different melatonin environments was successfully demonstrated in this study-delivering candidate orthologs for future studies at biological levels. Such verified orthologs might provide valuable evidence about melatonin sufficiency in target oocytes-by which, the decision on melatonin supplementation could be implied.
Collapse
Affiliation(s)
- Thanida Sananmuang
- Rajamangala University of Technology Tawan-OK, Faculty of Veterinary Medicine, Chonburi, Thailand
| | - Denis Puthier
- Aix-Marseille Université, INSERM UMR 1090, TAGC, Marseille, France
| | - Catherine Nguyen
- Aix-Marseille Université, INSERM UMR 1090, TAGC, Marseille, France
| | - Kaj Chokeshaiusaha
- Rajamangala University of Technology Tawan-OK, Faculty of Veterinary Medicine, Chonburi, Thailand.
| |
Collapse
|
53
|
Soni N, Pandey AK, Kumar A, Verma A, Kumar S, Gunwant P, Phogat JB, Kumar V, Singh V. Expression of MTNR1A, steroid (ERα, ERβ, and PR) receptor gene transcripts, and the concentration of melatonin and steroid hormones in the ovarian follicles of buffalo. Domest Anim Endocrinol 2020; 72:106371. [PMID: 31421986 DOI: 10.1016/j.domaniend.2019.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/19/2019] [Accepted: 06/07/2019] [Indexed: 11/16/2022]
Abstract
High ambient temperature exhibits a retrograde effect on buffalo reproduction because of heat stress. Moreover, melatonin is known to regulate reproductive changes in seasonally reproductive animals by binding to high affinity, G protein-coupled receptors. The MTNR1A gene is a prime receptor, mediating the effect of melatonin at the neuroendocrine level to control seasonal reproduction. In sheep, the role of melatonin is well known; however, studies have not been conducted in buffalo to determine its effect during favorable and unfavorable breeding seasons. Therefore, the present study aimed to (1) determine the expression of MTNR1A, ERα, ERβ, and PR gene transcripts in the ovarian follicles of buffalo during the summer and winter seasons and (2) analyze melatonin, 17β-estradiol, and progesterone concentrations in the follicular fluid of buffalo during both seasons. Murrah buffalo ovaries were collected during both the summer (May-June) and winter (December-January) seasons. All visible ovarian follicles were allocated into one of three groups: (1) small (8-9.9 mm); (2) medium (10-11.9 mm); and (3) large (12-14 mm). Follicular fluid was aspirated from each group of follicles for hormone analyses. The granulosa cells were processed for RNA extraction. Furthermore, they were subjected to real-time quantitative PCR to analyze the expression (relative quantification) of MTNR1A, ERα, ERβ, and PR in each follicular group. The expression of MTNR1A gene transcript decreased with the increasing size of the follicle and intrafollicular melatonin concentration. Expression of ERα and PR remained unaffected by the season and was similar (P > 0.05) in all groups. Expression of ERβ was higher (P < 0.05) in summer than winter; nevertheless, small-sized follicles from the summer exhibited higher (P < 0.05) expressions than medium- and large-sized follicles. The overall intrafollicular melatonin concentration was positively correlated (P < 0.05) with 17β-estradiol and progesterone concentrations. In conclusion, the decreased expression of MTNR1A and increased concentration of intrafollicular melatonin with the increasing size of the follicle indicates a probable role in folliculogenesis and ovulation in buffalo.
Collapse
Affiliation(s)
- N Soni
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - A K Pandey
- Department of Veterinary Clinical Complex, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India.
| | - A Kumar
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - A Verma
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - S Kumar
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - P Gunwant
- Government of Veterinary Hospital, Jauljivi, Pithoragarh 262544, India
| | - J B Phogat
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - V Kumar
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - V Singh
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| |
Collapse
|
54
|
Hu W, Tang J, Zhang Z, Tang Q, Yan Y, Wang P, Wang X, Liu Q, Guo X, Jin M, Zhang Y, Di R, Chu M. Polymorphisms in the ASMT and ADAMTS1 gene may increase litter size in goats. Vet Med Sci 2020; 6:775-787. [PMID: 32529744 PMCID: PMC7738733 DOI: 10.1002/vms3.301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Prolificacy of most local goat breeds in China is low. Jining Grey goat is one of the most prolific goat breeds in China, it is an important goat breed for the rural economy. ASMT (acetylserotonin O‐methyltransferase) and ADAMTS1 (ADAM metallopeptidase with thrombospondin type 1 motif) are essential for animal reproduction. Single nucleotide polymorphisms (SNPs) of ASMT and ADAMTS1 genes in the highly prolific breed (Jining Grey goats), medium prolific breed (Boer goats and Guizhou White goats) and low prolific breeds (Angora goats, Liaoning Cashmere goats and Inner Mongolia Cashmere goats) were detected by polymerase chain reaction‐restriction fragment length polymorphism and sequencing. Two SNPs (g.158122T>C, g.158700G>A) of ASMT gene and two SNPs (g.7979798A>G, g.7979477C>T) of ADAMTS1 gene were identified. For g.158122T>C of ASMT gene, further analysis revealed that genotype TC or CC had 0.66 (p < 0.05) or 0.75 (p < 0.05) kids more than those with genotype TT in Jining Grey goats. No significant difference (p > 0.05) was found in litter size between TC and CC genotypes. The SNP (g.158122T>C) caused a p.Tyr298His change and this SNP mutation resulted in changes in protein binding sites and macromolecule‐binding sites. The improvement in reproductive performance may be due to changes in the structure of ASMT protein. For g.7979477C>T of ADAMTS1 gene, Jining Grey does with genotype CT or TT had 0.82 (p < 0.05) or 0.86 (p < 0.05) more kids than those with genotype CC. No significant difference (p > 0.05) was found in litter size between CT or TT genotypes. These results preliminarily indicated that C allele (g.158122T>C) of ASMT gene and T allele (g.7979477C>T) of ADAMTS1 gene are potential molecular markers which could improve litter size of Jining Grey goats and be used in goat breeding.
Collapse
Affiliation(s)
- Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jishun Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China.,Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, PR China
| | - Zhuangbiao Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Qianqian Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Yan Yan
- Bioengineering College, Chongqing University, Chongqing, PR China
| | - Pinqing Wang
- Bioengineering College, Chongqing University, Chongqing, PR China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiaofei Guo
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Mei Jin
- College of Life Science, Liaoning Normal University, Dalian, PR China
| | - Yingjie Zhang
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, PR China
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|
55
|
Beneficial Effects of Melatonin in the Ovarian Transport Medium on In Vitro Embryo Production of Iberian Red Deer ( Cervus elaphus hispanicus). Animals (Basel) 2020; 10:ani10050763. [PMID: 32349425 PMCID: PMC7278470 DOI: 10.3390/ani10050763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/25/2023] Open
Abstract
Simple Summary The development of in vitro embryo production (IVP) in wild species, such as Iberian red deer, can become a daunting challenge since prolonged ovary transport times to the laboratory are often unavoidable. This may have detrimental effects on the quality and developmental capacity of oocytes. We evaluated the effect of supplementing the ovary transport medium with the antioxidant melatonin and observed an increased level of oocyte intracellular reduced glutathione content. Moreover, melatonin enhanced cleavage and blastocyst rates and had a positive effect on embryo quality in terms of the expression of essential embryo development-related genes. In conclusion, the addition of melatonin to the ovary storage medium could mitigate the negative impacts that long transport times may have on oocyte developmental competence and quality of the resulting blastocysts in Iberian red deer. Abstract A major limiting factor for the development of in vitro embryo production (IVP) in wild species, such as Iberian red deer, compared to livestock animals is the poor availability and limited access to biological material. Thus, the use of post-mortem ovaries from slaughtered animals represent a source of oocytes for the large scale production of embryos needed for research and to improve the efficiency of IVP. However, these oocytes are not as developmentally competent as their in vivo counterparts. Moreover, oocytes are usually obtained from ovaries that have been transported for long distances, which may also affect their quality. In order to overcome the issues associated with prolonged storage times of post-mortem material, in this study we examined the effect of melatonin supplementation to the ovary transport medium on oocyte quality, embryo yield, and blastocyst quality in Iberian red deer. When necessary, sheep was used as an experimental model due to the large number of samples required for analysis of oocyte quality parameters. Oocytes were in vitro matured and assessed for early apoptosis; DNA fragmentation; reactive oxygen species (ROS); reduced glutathione (GSH) content, mitochondrial membrane potential, and distribution; and relative abundance of mRNA transcript levels. After in vitro fertilization, embryo rates and blastocyst quality were also investigated. The results revealed that melatonin treatment significantly increased intracellular level of GSH in sheep oocytes. Moreover, the percentage of cleavage and blastocyst yield in red deer was greater compared to the Control group and there was lower abundance of oxidative stress- and apoptosis-related SHC1, TP53, and AKR1B1 mRNA transcripts in blastocysts for the Melatonin group. In conclusion, the supplementation of melatonin to the ovary storage medium had a positive effect on the developmental competence and quality of resulting blastocysts in Iberian red deer.
Collapse
|
56
|
von Mengden L, Klamt F, Smitz J. Redox Biology of Human Cumulus Cells: Basic Concepts, Impact on Oocyte Quality, and Potential Clinical Use. Antioxid Redox Signal 2020; 32:522-535. [PMID: 31861967 PMCID: PMC7038817 DOI: 10.1089/ars.2019.7984] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Abstract
Significance: Four decades have passed since the first successful human embryo conceived from a fertilization in vitro. Despite all advances, success rates in assisted reproduction techniques still remain unsatisfactory and it is well established that oxidative stress can be one of the major factors causing failure in in vitro fertilization (IVF) techniques. Recent Advances: In the past years, researchers have been shown details of the supportive role CCs play along oocyte maturation, development, and fertilization processes. Regarding redox metabolism, it is now evident that the synergism between gamete and somatic CCs is fundamental to further support a healthy embryo, since the oocyte lacks several defense mechanisms that are provided by the CCs. Critical Issues: There are many sources of reactive oxygen species (ROS) in the female reproductive tract in vivo that can be exacerbated (or aggravated) by pathological features. While an imbalance between ROS and antioxidants can result in oxidative damage, physiological levels of ROS are essential for oocyte maturation, ovulation, and early embryonic growth where they act as signaling molecules. At the event of an assisted reproduction procedure, the cumulus/oophorus complex is exposed to additional sources of oxidative stress in vitro. The cumulus cells (CCs) play essential roles in protecting the oocytes from oxidative damage. Future Directions: More studies are needed to elucidate redox biology in human CCs and oocyte. Also, randomized controlled trials will identify possible benefits of in vivo or in vitro administration of antioxidants for patients seeking IVF procedure.
Collapse
Affiliation(s)
- Lucia von Mengden
- Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institutes of Science and Technology—Translational Medicine (INCT-TM), Porto Alegre, Brazil
- Postgraduate Program: Biochemistry, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fabio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institutes of Science and Technology—Translational Medicine (INCT-TM), Porto Alegre, Brazil
- Postgraduate Program: Biochemistry, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Johan Smitz
- Follicle Biology Unit, Faculty of Medicine & Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
57
|
Maside C, Martinez CA, Cambra JM, Lucas X, Martinez EA, Gil MA, Rodriguez-Martinez H, Parrilla I, Cuello C. Supplementation with exogenous coenzyme Q10 to media for in vitro maturation and embryo culture fails to promote the developmental competence of porcine embryos. Reprod Domest Anim 2020; 54 Suppl 4:72-77. [PMID: 31625244 DOI: 10.1111/rda.13486] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 11/29/2022]
Abstract
The coenzyme Q10 (CoQ10) is a potent antioxidant with critical protection role against cell oxidative stress, caused by the mitochondrial dysfunction. This study evaluated the effects of CoQ10 supplementation to in vitro maturation (IVM) or embryo culture media on the maturation, fertilization and subsequent embryonic development of pig oocytes and embryos. Maturation (Experiment 1) or embryo culture (Experiment 2) media were supplemented with 0 (control), 10, 25, 50 and 100 μM CoQ10. The addition of 10-50 μM CoQ10 to the IVM medium did not affect the percentage of MII oocytes nor the fertilization or the parameters of subsequent embryonic development. Exogenous CoQ10 in the culture medium neither did affect the development to the 2-4-cell stage nor rates of blastocyst formation. Moreover, the highest concentration of CoQ10 (100 μM) in the maturation medium negatively affected blastocyst rates. In conclusion, exogenous CoQ10 supplementation of maturation or embryo culture media failed to improve the outcomes of our in vitro embryo production system and its use as an exogenous antioxidant should not be encouraged.
Collapse
Affiliation(s)
- Carolina Maside
- Department of Animal Medicine and Surgery, University of Murcia, Murcia, Spain.,SaBio IREC (CSIC-UCLM-JCCM), Albacete, Spain
| | - Cristina A Martinez
- Department of Animal Medicine and Surgery, University of Murcia, Murcia, Spain.,Department of Clinical & Experimental Medicine (IKE), BHK/Obstetrics & Gynaecology, Linköping University, Linköping, Sweden
| | - Josep M Cambra
- Department of Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| | - Xiomara Lucas
- Department of Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| | - Emilio A Martinez
- Department of Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| | - María Antonia Gil
- Department of Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Clinical & Experimental Medicine (IKE), BHK/Obstetrics & Gynaecology, Linköping University, Linköping, Sweden
| | - Inmaculada Parrilla
- Department of Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| | - Cristina Cuello
- Department of Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| |
Collapse
|
58
|
Xie S, Fan W, He H, Huang F. Role of Melatonin in the Regulation of Pain. J Pain Res 2020; 13:331-343. [PMID: 32104055 PMCID: PMC7012243 DOI: 10.2147/jpr.s228577] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a pleiotropic hormone synthesized and secreted mainly by the pineal gland in vertebrates. Melatonin is an endogenous regulator of circadian and seasonal rhythms. Melatonin is involved in many physiological and pathophysiological processes demonstrating antioxidant, antineoplastic, anti-inflammatory, and immunomodulatory properties. Accumulating evidence has revealed that melatonin plays an important role in pain modulation through multiple mechanisms. In this review, we examine recent evidence for melatonin on pain regulation in various animal models and patients with pain syndromes, and the potential cellular mechanisms.
Collapse
Affiliation(s)
- Shanshan Xie
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China.,Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China.,Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Fang Huang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| |
Collapse
|
59
|
Yang L, Wang Q, Cui M, Li Q, Mu S, Zhao Z. Effect of Melatonin on the In Vitro Maturation of Porcine Oocytes, Development of Parthenogenetically Activated Embryos, and Expression of Genes Related to the Oocyte Developmental Capability. Animals (Basel) 2020; 10:ani10020209. [PMID: 32012669 PMCID: PMC7070577 DOI: 10.3390/ani10020209] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Exogenous melatonin has beneficial effects on improving cumulus oophorus expansion; mitochondrial distribution; intracellular level of glutathione; and first polar body extrusion rate of porcine oocytes derived from in vitro maturation. Moreover; melatonin supplementation increases relative abundances of BMP15 and CAT mRNA; and decreases intracellular levels of reactive oxygen species; and expression values of P53 and BAX genes; which are related to in vitro development of porcine oocytes. Abstract Melatonin treatment can improve quality and in vitro development of porcine oocytes, but the mechanism of improving quality and developmental competence is not fully understood. In this study, porcine cumulus–oocyte complexes were cultured in TCM199 medium with non-treated (control), 10−5 M luzindole (melatonin receptor antagonist), 10−5 M melatonin, and melatonin + luzindole during in vitro maturation, and parthenogenetically activated (PA) embryos were treated with nothing (control), or 10−5 M melatonin. Cumulus oophorus expansion, oocyte survival rate, first polar body extrusion rate, mitochondrial distribution, and intracellular levels of reactive oxygen species (ROS) and glutathione of oocytes, and cleavage rate and blastocyst rate of the PA embryos were assessed. In addition, expression of growth differentiation factor 9 (GDF9), tumor protein p53 (P53), BCL2 associated X protein (BAX), catalase (CAT), and bone morphogenetic protein 15 (BMP15) were analyzed by real-time quantitative PCR. The results revealed that melatonin treatment not only improved the first polar body extrusion rate and cumulus expansion of oocytes via melatonin receptors, but also enhanced the rates of cleavage and blastocyst formation of PA embryos. Additionally, melatonin treatment significantly increased intraooplasmic level of glutathione independently of melatonin receptors. Furthermore, melatonin supplementation not only significantly enhanced mitochondrial distribution and relative abundances of BMP15 and CAT mRNA, but also decreased intracellular level of ROS and relative abundances of P53 and BAX mRNA of the oocytes. In conclusion, melatonin enhanced the quality and in vitro development of porcine oocytes, which may be related to antioxidant and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Ling Yang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China; (L.Y.); (Q.W.); (Z.Z.)
| | - Qingkai Wang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China; (L.Y.); (Q.W.); (Z.Z.)
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China; (Q.L.); (S.M.)
| | - Maosheng Cui
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China; (Q.L.); (S.M.)
- Correspondence:
| | - Qianjun Li
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China; (Q.L.); (S.M.)
| | - Shuqin Mu
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China; (Q.L.); (S.M.)
| | - Zimo Zhao
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China; (L.Y.); (Q.W.); (Z.Z.)
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China; (Q.L.); (S.M.)
| |
Collapse
|
60
|
Zhang M, Lu Y, Chen Y, Zhang Y, Xiong B. Insufficiency of melatonin in follicular fluid is a reversible cause for advanced maternal age-related aneuploidy in oocytes. Redox Biol 2019; 28:101327. [PMID: 31526949 PMCID: PMC6807363 DOI: 10.1016/j.redox.2019.101327] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 12/30/2022] Open
Abstract
Age-related decline in female fertility is a common feature that occurs in the fourth decade of women as a result of a reduction in both oocyte quality and quantity [1]. However, strategies to prevent the deterioration of maternal aged oocytes and relevant mechanisms are still underexplored. Here, we find that the reduced abundance of melatonin in the follicular fluid highly correlates with the advanced maternal age-related aneuploidy. Of note, we show that exposure of oocytes from aged mice both in vitro and in vivo to exogenous melatonin not only eliminates the accumulated reactive oxygen species-induced DNA damage and apoptosis, but also suppresses the occurrence of aneuploidy caused by spindle/chromosome defect that is frequently observed in aged oocytes. Importantly, we reveal that melatonin supplementation reverses the defective phenotypes in aged oocytes through a Sirt1/Sod2-dependent mechanism. Inhibition of Sirt1 activity abolishes the melatonin-mediated improvement of aged oocyte quality. Together our findings provide evidence that supplementation of melatonin is a feasible way to protect oocytes from advanced maternal age-related meiotic defects and aneuploidy, demonstrating the potential for improving the quality of oocytes from aged women and the efficiency of assisted reproductive technology. Melatonin abundance in the follicular fluid declines with age in the mouse. In vitro treatment of aged oocytes with melatonin eliminates the excessive ROS and reduces the occurrence of aneuploidy. In vivo administration of advanced-age mice with melatonin protects oocytes from spindle/chromosome defects and aneuploidy. Melatonin supplementation reverses the meiotic defects in aged oocytes through activation of Sirt1/Sod2 pathway.
Collapse
Affiliation(s)
- Mianqun Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yajuan Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
61
|
He X, Zhang Z, Liu Q, Chu M. Polymorphisms of the melatonin receptor 1A gene that affects the reproductive seasonality and litter size in Small Tail Han sheep. Reprod Domest Anim 2019; 54:1400-1410. [PMID: 31355975 PMCID: PMC6852127 DOI: 10.1111/rda.13538] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022]
Abstract
Previous researches have shown that MTNR1A plays an essential role in sheep reproduction. However, most researches focused more on the reproductive seasonality of sheep, and few scientists had studied the association of polymorphisms of the MTNR1A gene with ovine litter size and reproductive seasonality. Therefore, we chose MTNR1A gene to detect its novel sequence polymorphisms and population genetics and analyse their association with seasonal reproduction and litter size in ewes. The mRNA expression level in hypothalamus, pituitary and ovary was also detected. In this study, five polymorphisms (g.15118664G > T, g.15118683C > T, g.15118756C > T, g.15118774C > T and g.15118951G > A) were identified in exon 2. Most importantly, the g.15118683C > T and g.15118951G > A were significant difference between year‐round oestrous sheep and seasonal oestrous sheep (p < .01), and g.15118756C > T had a great effect on litter size of Small Tail Han sheep (p < .05). In addition, the mRNA expression level of MTNR1A in the hypothalamus of polytocous Small Tail Han sheep was significantly higher than that in monotocous Small Tail Han sheep (p < .01) and the expression of MTNR1A in the hypothalamus of year‐round oestrous sheep was significantly higher than that in seasonal oestrous sheep (p < .01). Polymorphisms in exon 2 may regulate the reproductive seasonality and litter size of ewes by influencing gene expression to regulate the reproductive seasonality and litter size of ewes. Our studies provided useful guidance in marker‐assisted selection of the litter size in Small Tail Han sheep.
Collapse
Affiliation(s)
- Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhuangbiao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
62
|
El Sheikh M, Mesalam A, Mesalam AA, Idrees M, Lee KL, Kong IK. Melatonin Abrogates the Anti-Developmental Effect of the AKT Inhibitor SH6 in Bovine Oocytes and Embryos. Int J Mol Sci 2019; 20:ijms20122956. [PMID: 31212969 PMCID: PMC6627520 DOI: 10.3390/ijms20122956] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Melatonin, a nighttime-secreted antioxidant hormone produced by the pineal gland, and AKT, a serine/threonine-specific protein kinase, have been identified as regulators for several cellular processes essential for reproduction. The current study aimed to investigate the potential interplay between melatonin and AKT in bovine oocytes in the context of embryo development. Results showed that the inclusion of SH6, a specific AKT inhibitor, during in vitro maturation (IVM) significantly reduced oocyte maturation, cumulus cell expansion, cleavage, and blastocyst development that were rescued upon addition of melatonin. Oocytes treated with SH6 in the presence of melatonin showed lower levels of reactive oxygen species (ROS) and blastocysts developed exhibited low apoptosis while the mitochondrial profile was significantly improved compared to the SH6-treated group. The RT-qPCR results showed up-regulation of the mRNA of maturation-, mitochondrial-, and cumulus expansion-related genes including GDF-9, BMP-15, MARF1, ATPase, ATP5F1E, POLG2, HAS2, TNFAIP6, and PTGS2 and down-regulation of Bcl-2 associated X apoptosis regulator (BAX), caspase 3, and p21 involved in apoptosis and cell cycle arrest in melatonin-SH6 co-treated group compared to SH6 sole treatment. The immunofluorescence showed high levels of caspase 3 and caspase 9, and low AKT phosphorylation in the SH6-treated group compared to the control and melatonin-SH6 co-treatment. Taken together, our results showed the importance of both melatonin and AKT for overall embryonic developmental processes and, for the first time, we report that melatonin could neutralize the deleterious consequences of AKT inhibition, suggesting a potential role in regulation of AKT signaling in bovine oocytes.
Collapse
Affiliation(s)
- Marwa El Sheikh
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Ayman Mesalam
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Ahmed Atef Mesalam
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.
| | - Muhammad Idrees
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.
| | | | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.
- The King Kong Corp Ltd., Jinju 52828, Korea.
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
63
|
Effects of melatonin on production of reactive oxygen species and developmental competence of bovine oocytes exposed to heat shock and oxidative stress during in vitro maturation. ZYGOTE 2019; 27:180-186. [PMID: 31171044 DOI: 10.1017/s0967199419000236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SummaryHeat shock may disrupt oocyte function by increasing the generation of reactive oxygen species (ROS). We evaluated the capacity of the antioxidant melatonin to protect oocytes using two models of oxidative stress - heat shock and the pro-oxidant menadione. Bovine cumulus-oocyte complexes (COC) were exposed in the presence or absence of 1 µM melatonin to the following treatments during maturation: 38.5°C, 41°C and 38.5°C+5 µM menadione. In the first experiment, COC were matured for 3 h with 5 µM CellROX® and analyzed by epifluorescence microscopy to quantify production of ROS. The intensity of ROS was greater for oocytes exposed to heat shock and menadione than for control oocytes. Melatonin reduced ROS intensity for heat-shocked oocytes and oocytes exposed to menadione, but not for control oocytes. In the second experiment, COC were matured for 22 h. After maturation, oocytes were fertilized and the embryos cultured for 7.5 days. The proportion of oocytes that cleaved after fertilization was lower for oocytes exposed to heat shock and menadione than for control oocytes. Melatonin increased cleavage for heat-shocked oocytes and oocytes exposed to menadione, but not for control oocytes. Melatonin tended to increase the developmental competence of embryos from heat-shocked oocytes but not for embryos from oocytes exposed to menadione or from control oocytes. In conclusion, melatonin reduced production of ROS of maturing oocytes and protected oocytes from deleterious effects of both stresses on competence of the oocyte to cleave after coincubation with sperm. These results suggest that excessive production of ROS compromises oocyte function.
Collapse
|
64
|
Chen Z, Lei L, Wen D, Yang L. Melatonin attenuates palmitic acid-induced mouse granulosa cells apoptosis via endoplasmic reticulum stress. J Ovarian Res 2019; 12:43. [PMID: 31077207 PMCID: PMC6511168 DOI: 10.1186/s13048-019-0519-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Palmitic acid (PA), the main component of dietary saturated fat, causes apoptosis in many cell types, including mouse granulosa cell. Melatonin, an important endogenous hormone, has beneficial effects on female reproductive processes. Since elevated PA levels are present in follicular fluid (FF) of patients with infertility and are shown to be toxic for granulosa cells, we investigated the molecular mechanisms of PA toxicity in mouse granulosa cells and explored the effects of melatonin on PA-induced apoptosis. METHODS Granulosa cells from immature female mice were cultured for 24 h in medium containing PA and/or melatonin. Then, the effects of PA alone or combined with melatonin on viability, apoptosis and endoplasmic reticulum (ER) stress in granulosa cells were detected by methyl thiazolyl tetrazolium (MTT) assay, flow cytometry assay and western blot. After 48 h of PA and/or melatonin treatment, the concentrations of estradiol (E2) and progesterone (P4) in the culture supernatants were measured with ELISA kits. RESULTS In this study, we explored the effects of melatonin on cell viability and apoptosis in PA-treated mouse granulosa cells and uncovered the signaling pathways involved in these processes. Our results showed that 200-800 μM PA treatment reduces cell viability, induces cell apoptosis, enhances the expression of apoptosis-related genes (Caspase 3 and B-cell lymphoma-2 (BCL-2) associated X protein (BAX)), and activates the expression of ER stress marker genes (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)). Melatonin treatment (1-10 μM) suppresses 400 μM PA-induced cell viability decrease, cell apoptosis, Caspase 3 activation, and BAX, CHOP, and GRP78 expression. In addition, we found that 10 μM melatonin successfully attenuated the 400 μM PA-induced estrogen (E2) and progesterone (P4) decreases. CONCLUSIONS This study suggests that PA triggers cell apoptosis via ER stress and that melatonin protects cells against apoptosis by inhibiting ER stress in mouse granulosa cells.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Guizhou, 558000, Duyun, China
| | - Lanjie Lei
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Guizhou, 558000, Duyun, China
| | - Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
- College of Basic Medical Science, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
| |
Collapse
|
65
|
Gao L, Du M, Zhuan Q, Luo Y, Li J, Hou Y, Zeng S, Zhu S, Fu X. Melatonin rescues the aneuploidy in mice vitrified oocytes by regulating mitochondrial heat product. Cryobiology 2019; 89:68-75. [PMID: 31082378 DOI: 10.1016/j.cryobiol.2019.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 01/13/2023]
Abstract
Vitrification of germinal vesicle (GV) stage oocytes has been shown to be closely associated with decreased rates of meiosis maturation and increased rates of aneuploidy. However, little is known about the effects of melatonin on these events in mice vitrified GV oocytes. In this study, the effects of melatonin on meiosis maturation potential and the incidence rate of aneuploidy in mouse vitrified oocytes were analyzed by supplementing in vitro maturation (IVM) solution with melatonin at different concentrations. This study, for the first time, showed that the mitochondrial heat production was markedly increased in vitrified oocytes (P < 0.05), which compromised the first polar body extrusion (PBE) of vitrified oocytes (73.3% vs. 85.1%, P < 0.05). However, 10-11 mol/L melatonin could significantly decrease mitochondrial heat production and ROS level (9.1 vs. 12.0 pixels, P < 0.05), meanwhile increase ATP level (1.1 vs. 0.88 pmol, P < 0.05) and mtDNA copies (107438 vs. 67869, P < 0.05), which rescued the abnormal chromosome alignment (32% vs. 69%, P < 0.05) and reduced the incidence of aneuploidy (15.6% vs. 38.5%, P < 0.05) in vitrified oocytes. The meiosis maturation ability of vitrified oocytes with melatonin supplementation was similar to that of fresh ones (83.4% vs. 85.1%, P > 0.05). Collectively, our data revealed that melatonin has a protective action against vitrification-induced injuries of oocytes meiosis maturation.
Collapse
Affiliation(s)
- Lei Gao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Ming Du
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Qingrui Zhuan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yuxi Luo
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Junyou Li
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, 319-0206, Japan
| | - Yunpeng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Shien Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
66
|
Cao Z, Gao D, Tong X, Xu T, Zhang D, Wang Y, Liu Y, Li Y, Zhang Y, Pu Y. Melatonin improves developmental competence of oocyte-granulosa cell complexes from porcine preantral follicles. Theriogenology 2019; 133:149-158. [PMID: 31100559 DOI: 10.1016/j.theriogenology.2019.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 01/08/2023]
Abstract
Melatonin has been reported to improve the survival rate of mouse and goat preantral follicles cultured in vitro. However, the role of melatonin in the development of oocyte-granulosa cell complexes (OGCs) isolated from preantral follicles remains unclear. Cumulus-oocyte complexes were isolated from OGCs cultured in vitro for 18.5 days and were then maturated in vitro for 42 h. The matured oocytes were parthenogenetically activated and were further cultured up to the blastocyst stage. We found that the developmental capacity of oocytes from in vitro cultured OGCs was significantly inferior to that from in vivo grown counterparts. Additionally, a 10-5 M dose of melatonin added to the medium during in vitro culture of OGCs did not improve oocyte meiotic maturation but enhanced blastocyst rate of parthenogenetically activated embryos. Besides, these beneficial effects could be reversed by luzindole treatment, a melatonin membrane receptor antagonist. mRNA sequencing analysis further revealed that melatonin caused differential expression of 76 genes of which 75 were upregulated and 1 was downregulated in OGCs. Twelve of the 76 genes were identified as potential regulators of metabolic pathways by functional analysis. Taken together, these results indicate that melatonin improves developmental competence of porcine oocyte-granulosa cell complexes.
Collapse
Affiliation(s)
- Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Di Gao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xu Tong
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Tengteng Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Dandan Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yiqing Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ya Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yong Pu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
67
|
Cheng L, Qin Y, Hu X, Ren L, Zhang C, Wang X, Wang W, Zhang Z, Hao J, Guo M, Wu Z, Tian J, An L. Melatonin protects in vitro matured porcine oocytes from toxicity of Aflatoxin B1. J Pineal Res 2019; 66:e12543. [PMID: 30584671 DOI: 10.1111/jpi.12543] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/31/2018] [Accepted: 06/22/2018] [Indexed: 01/08/2023]
Abstract
Aflatoxin B1 (AFB1) is a major food and feed contaminant that threaten public health. Previous studies indicate that AFB1 exposure disrupted oocyte maturation. However, an effective and feasible method is unavailable for protecting oocytes against toxicity of AFB1. In the present study, using in vitro matured porcine oocytes and parthenogenetic embryos as model, we confirmed that AFB1 exposure during in vitro oocyte maturation (IVM) significantly impaired both nuclear and cytoplasmic maturation in a dose- and time-dependent manner. The different concentrations of melatonin were also tested for their protective effects on oocytes against the AFB1-induced toxicity. Our results showed that supplementation of a relative high concentration of melatonin (10-3 mol/L) during IVM efficiently reversed the impaired development rate and blastocyst quality, to the levels comparable to those of the control group. Further analysis indicated that melatonin application efficiently alleviated reactive oxygen species accumulation and initiation of apoptosis induced by AFB1 exposure. In addition, disrupted GSH/GPX system, as well as inhibited mitochondrial DNA (mtDNA) replication and mitochondrial biogenesis in AFB1-treated oocytes, can be notably reversed by melatonin application. Furthermore, cumulus cells may be important in mediating the toxicity of AFB1 to oocytes, and the metabolism of AFB1 in cumulus cells can be depressed by melatonin. To the best of our knowledge, this is the first report to confirm that melatonin application can efficiently protect oocytes from AFB1-induced toxicity. Our study provides a promising and practical strategy for alleviating or reversing AFB1-induced female reproductive toxicity in both clinical treatment and domestic reproductive management.
Collapse
Affiliation(s)
- Linghua Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yusheng Qin
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiao Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Likun Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Assisted Reproductive Centre of the Department of Gynaecology and Obstetrics, PLA Naval General Hospital, Beijing, China
| | - Chao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaodong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenjuan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenni Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jin Hao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Min Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhonghong Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianhui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
68
|
Lv D, Tan T, Zhu T, Wang J, Zhang S, Zhang L, Hu X, Liu G, Xing Y. Leptin mediates the effects of melatonin on female reproduction in mammals. J Pineal Res 2019; 66:e12559. [PMID: 30648765 DOI: 10.1111/jpi.12559] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 12/18/2022]
Abstract
Melatonin is a natural molecule produced in the pineal gland and other tissues. It participates in numerous biological activities including the regulation of reproduction. However, the mechanism by which melatonin affects mammalian female reproductive performance is not fully investigated. In the present study, it was observed that melatonin positively regulated the level of leptin in female mouse and pig. To understand the potential association between melatonin and leptin on the female reproductive activities, the melatonin receptor 1 MT1 knockout (MT1-/- ) mouse and Leptin knockout (Leptin-/- ) pig were created. It was found that the deficiency of M T1 caused low leptin secretion and litter size in mouse. Meanwhile, the deletion of leptin in pig did not affect melatonin production, but significantly reduced follicle-stimulating hormone, estradiol-17β (E2), and Luteinizing hormone and increased progesterone (P) at estrum stage, which also led to smaller litter size than that in control. Melatonin treatment increased the production of leptin in pigs, while the supplementary of leptin was also able to improve the ovulation number, polar body rates, and expression of StAR in MT1-/- females. Therefore, it is first time, we described that leptin is the downstream target of melatonin in regulating female reproduction. These findings provide the novel information on the physiology of melatonin in animal reproduction.
Collapse
Affiliation(s)
- Dongying Lv
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tan Tan
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Tianqi Zhu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Wang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Suhong Zhang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- College of Biological Science, China Agricultural University, Beijing, China
| | - Lu Zhang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- College of Biological Science, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, Beijing, China
| | - Guoshi Liu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiming Xing
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- College of Biological Science, China Agricultural University, Beijing, China
| |
Collapse
|
69
|
Martinez G, Hograindleur JP, Jeammet L, Le Blévec E, Coutton C, Mermillod P, Lambeau G, Schmitt E, Ray PF, Arnoult C. Enzymatic activity of mouse group X-sPLA2 improves in vitro production of preimplantation bovine embryos. Theriogenology 2019; 131:113-122. [PMID: 30959437 DOI: 10.1016/j.theriogenology.2019.03.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 10/27/2022]
Abstract
Assisted reproductive technologies (ART) are widely used for both humans and domestic animals. In bovine species, in vitro embryo production is increasingly used and significant efforts are being made to optimize media and culture conditions. Phospholipase A2 (PLA2) are lipolytic enzymes that hydrolyze glycerophospholipids to produce free fatty acids and lysophospholipids that have been found to be critical for many biological processes. Mouse group X secreted PLA2 (mGX) is abundant in the male reproductive tract and its use during sperm capacitation has been shown to improve in vitro production of viable embryos in a mouse model. Here, we examined its effect in the bovine species, testing the impact of mGX on the three steps involved in vitro production of preimplantation embryos: oocyte maturation, fertilization and preimplantation development. We found that incubating cumulus oocyte complexes (COC) or gametes with mGX resulted in increased blastocyst hatching and blastocyst production, respectively. The increases of embryo production induced by the phospholipase mGX were not observed for the catalytically inactive mutant H48Q-mGX, suggesting that these effects require the enzymatic activity of mGX. We also tested bGIB, a bovine homolog of mGX. bGIB failed to improve blastocyst production, underlining the high specificity of mGX. In conclusion, the results presented show that the effects of mGX are not restricted to the mouse model and that it is potent in the bovine species as well. This result strengthens the potential of mGX as a "pro-fertility drug" for mammalian reproduction.
Collapse
Affiliation(s)
- Guillaume Martinez
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France; IMV Technologies, ZI N 1 Est, F-61300, L'Aigle, France
| | - Jean-Pascal Hograindleur
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France
| | - Louise Jeammet
- Université Côte d'Azur, CNRS, IPMC, F-06560, Valbonne, Sophia Antipolis, France
| | - Emilie Le Blévec
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France
| | - Charles Coutton
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France
| | - Pascal Mermillod
- Laboratoire Physiologie de la Reproduction et des Comportements, INRA UMR 7247, Inra-Cnrs-Université de Tours-Haras Nationaux, F-37380, Nouzilly, France
| | - Gérard Lambeau
- Université Côte d'Azur, CNRS, IPMC, F-06560, Valbonne, Sophia Antipolis, France
| | - Eric Schmitt
- IMV Technologies, ZI N 1 Est, F-61300, L'Aigle, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France.
| |
Collapse
|
70
|
Liu Y, Yang Y, Li W, Ao H, Zhang Y, Zhou R, Li K. Effects of melatonin on the synthesis of estradiol and gene expression in pig granulosa cells. J Pineal Res 2019; 66:e12546. [PMID: 30586196 DOI: 10.1111/jpi.12546] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022]
Abstract
The interaction of granulosa cells (GCs) with oocytes is important to regulate follicle development. The exogenous melatonin promoting the maturation of oocytes by GCs has been approved in pig, however, the transcriptome profile and the functions of the genes regulated by melatonin in GCs have not yet to be fully characterized. In this study, we found melatonin could stimulate the synthesis of estradiol in pig GCs. The RNA-seq was used to explore the effects of melatonin on gene expression, a total of 89 differentially expressed genes (DEGs) were identified. Gene ontology analysis showed DEGs which associated with regulation of cell proliferation, cell cycle, and anti-apoptosis were significantly enriched. The functions of two DEGs, NOTCH2 and FILIP1L, were studied in pig GCs. The results showed that NOTCH2 inhibited the synthesis of estradiol, but FILIP1L promoted the synthesis of estradiol. Furthermore, inhibiting NOTCH2 in granulosa cells cocultured with cumulus-oocyte-complexes had no obvious effect on the maturation of pig oocyte, but could upregulate the cleavage rate of oocyte. We proved that FILIP1L had no effect on the maturation and cleavage of pig oocytes. Our work deepens the understanding of melatonin's effects on GCs and oocyte. The DEGs we found will be beneficial to reveal mechanisms of melatonin acting on GCs and oocytes and design the pharmacological interventions.
Collapse
Affiliation(s)
- Ying Liu
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalan Yang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Wentong Li
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Hong Ao
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanmin Zhang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Zhou
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kui Li
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
71
|
An Q, Peng W, Cheng Y, Lu Z, Zhou C, Zhang Y, Su J. Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos. J Cell Physiol 2019; 234:17370-17381. [DOI: 10.1002/jcp.28357] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Quanli An
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Wei Peng
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Yuyao Cheng
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Zhenzhen Lu
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Chuan Zhou
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Yong Zhang
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Jianmin Su
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| |
Collapse
|
72
|
Fang Y, Zhang J, Li Y, Guo X, Li J, Zhong R, Zhang X. Melatonin-induced demethylation of antioxidant genes increases antioxidant capacity through RORα in cumulus cells of prepubertal lambs. Free Radic Biol Med 2019; 131:173-183. [PMID: 30472366 DOI: 10.1016/j.freeradbiomed.2018.11.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/05/2018] [Accepted: 11/21/2018] [Indexed: 12/25/2022]
Abstract
Physical damage and oxidative stress may occur in prepubertal cumulus cells, due to insufficient glutathione synthesis. To determine potential epigenetic mechanisms related to antioxidant effects of melatonin on ovine prepubertal cumulus cells, 30 lambs, 4-wk-old were randomly allocated into two groups: a control (C, n = 20) group and a melatonin (M, n = 10) group given a subcutaneous implant containing 18 mg melatonin. All lambs were superovulated (250 IU FSH and 250 IU eCG). Cumulus cells from germinal vesicle stage cumulus oocyte complexes (COCs) were collected by ovarian follicular aspiration and dissociated with hyaluronidase. Compared to the C group, the M group had greater superovulation, better antioxidant capacity, a higher proportion of fully expanded COCs and a lower proportion of apoptotic cumulus cells (P < 0.05). Melatonin up-regulated mRNA expression of genes for melatonin receptors MT1 and nuclear binding site RORα, antioxidants (SOD1, GPx4 and CAT) and cumulus cell expansion (PTX3, HAS2 and PTGS2), as well as Bcl2, but down-regulated expression of Bax (P < 0.05). Regarding epigenetics, there were less methylation at five CpG sites of SOD1, three CpG sites of GPx4 and two CpG sites of CAT in M versus C groups (P < 0.05), leading to lower total methylation of SOD1, GPx4 and CAT promoters region on M group (P < 0.05). In a mechanistic study, addition of MT1 or RORα antagonist increased ROS and MDA concentrations, but decreased T-AOC, GPx, CAT and T-SOD concentrations (P < 0.05), whereas there were no significant difference between the melatonin and MT2 antagonist treatment groups for T-AOC, GPx, CAT and T-SOD concentrations. Furthermore, addition of RORα agonist decreased total DNA methylation of SOD1, GPx4 and CAT, with no significant difference after MT1 agonist treatment. These studies provided new information regarding epigenetic mechanisms by which melatonin promoted ovine prepubertal cumulus cells antioxidant through RORα, both in vitro and in vivo.
Collapse
Affiliation(s)
- Yi Fang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agoecology, Chinese Academy of Sciences, Changchun, Jilin 130062, China
| | - Jinlong Zhang
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China
| | - Yihai Li
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China
| | - Xiaofei Guo
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China
| | - Junjie Li
- College of animal science and technology, Agricultural University of Hebei, Baoding, Hebei 071000, China
| | - Rongzhen Zhong
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agoecology, Chinese Academy of Sciences, Changchun, Jilin 130062, China.
| | - Xiaosheng Zhang
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China.
| |
Collapse
|
73
|
Xiao P, Nie J, Wang X, Lu K, Lu S, Liang X. Melatonin alleviates the deterioration of oocytes from mice subjected to repeated superovulation. J Cell Physiol 2019; 234:13413-13422. [DOI: 10.1002/jcp.28018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Peng Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bio Resources Guangxi University Nanning Guangxi China
- College of Animal Science and Technology Guangxi University Nanning Guangxi China
- Key Laboratory of Buffalo Genetics Breeding and Reproduction Technology Ministry of Agriculture and Guangxi Buffalo Research Institute Chinese Academy of Agricultural Sciences Nanning Guangxi China
| | - Junyu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bio Resources Guangxi University Nanning Guangxi China
- College of Animal Science and Technology Guangxi University Nanning Guangxi China
| | - Xuefang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bio Resources Guangxi University Nanning Guangxi China
- College of Animal Science and Technology Guangxi University Nanning Guangxi China
| | - Kehuan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bio Resources Guangxi University Nanning Guangxi China
- College of Animal Science and Technology Guangxi University Nanning Guangxi China
| | - Shengsheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bio Resources Guangxi University Nanning Guangxi China
- College of Animal Science and Technology Guangxi University Nanning Guangxi China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bio Resources Guangxi University Nanning Guangxi China
- College of Animal Science and Technology Guangxi University Nanning Guangxi China
| |
Collapse
|
74
|
Xiao L, Hu J, Song L, Zhang Y, Dong W, Jiang Y, Zhang Q, Yuan L, Zhao X. Profile of melatonin and its receptors and synthesizing enzymes in cumulus-oocyte complexes of the developing sheep antral follicle-a potential estradiol-mediated mechanism. Reprod Biol Endocrinol 2019; 17:1. [PMID: 30606208 PMCID: PMC6317229 DOI: 10.1186/s12958-018-0446-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/12/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Melatonin is an amine hormone that plays an important role in regulating mammalian reproduction. This study aimed to investigate the expression pattern of melatonin synthesis enzymes AANAT and HIOMT and melatonin receptors MT1 and MT2 in sheep cumulus-oocyte complexes (COCs) as well as the change of melatonin level in follicular fluid (FF) during antral follicle development. In this research, we also study the effect of β-estradiol (E2) on MT1 and MT2 expression as well as melatonin synthesis in COCs so as to lay the foundation for further exploration of the regulation mechanism of melatonin synthesis in the ovary. METHODS COCs and FF were collected from different size (large follicles (diameter ≥ 5 mm), medium follicles (diameter 2-5 mm), and small follicles (diameter ≤ 2 mm)) of antral follicles in sheep ovaries. To assess whether E2 regulates melatonin synthase and its receptors expression in sheep COCs and whether it is mediated through estrogen receptor (ER) pathway. The collected COCs were cultured in vitro for 24 h and then treat with 1 μM E2 and/or 1 μM ICI182780 (non-selective ER antagonist). The expression of AANAT, HIOMT, MT1 and MT2 mRNA and protein were determined by qRT-PCR and western blot. The melatonin level was determined by ELISA. RESULTS The expression of AANAT, HIOMT, MT1 and MT2 were significantly higher expression in the COCs of small follicles than in those of large follicles (P < 0.05). However, the melatonin level was significantly higher in large follicle FF than in small follicle FF (P < 0.05). Further, the expression of AANAT, HIOMT, MT1, and MT2 and melatonin production were decreased by E2 treatment (P < 0.05), but when ICI182780 was added, the expression of AANAT, HIOMT, MT1, and MT2 and melatonin production recovered (P < 0.05). CONCLUSIONS We suggest that sheep COCs can synthesize melatonin, but this ability is decreased with increasing follicle diameter. Furthermore, E2 play an important role in regulated the expression of MT1 and MT2 as well as melatonin synthesis in sheep COCs through the ER pathway.
Collapse
Affiliation(s)
- Longfei Xiao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Liangli Song
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Weitao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuting Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Quanwei Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
75
|
Pang YW, Jiang XL, Wang YC, Wang YY, Hao HS, Zhao SJ, Du WH, Zhao XM, Wang L, Zhu HB. Melatonin protects against paraquat-induced damage during in vitro maturation of bovine oocytes. J Pineal Res 2019; 66:e12532. [PMID: 30320949 DOI: 10.1111/jpi.12532] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022]
Abstract
Paraquat (PQ), a broad-spectrum agricultural pesticide, causes cellular toxicity by increasing oxidative stress levels in various biological systems, including the reproductive system. PQ exposure causes embryotoxicity and reduces the developmental abilities of embryos. However, there is little information regarding the toxic effects of PQ on oocyte maturation. In this study, we studied the toxic effects of PQ exposure and the effects of melatonin on PQ-induced damage in bovine oocytes. PQ exposure disrupted nuclear and cytoplasmic maturation, which was manifested as decreased cumulus cell expansion, reduced first polar body extrusion, and abnormal distribution patterns of cortical granules and mitochondria. In addition, PQ treatment severely disrupted the ability of the resulted in vitro-produced embryos to develop to the blastocyst stage. Moreover, PQ exposure significantly increased the intracellular reactive oxygen species (ROS) level and early apoptotic rate, and decreased the glutathione (GSH) level, antioxidative CAT and GPx4 mRNA, and apoptotic-related Bcl-2/Bax mRNA ratio. These results indicated that PQ causes reproductive toxicity in bovine oocytes. Melatonin application resulted in significant protection against the toxic effects of PQ in PQ-exposed oocytes. The mechanisms underlying the role of melatonin included the inhibition of PQ-induced p38 mitogen-activated protein kinase (MAPK) activation, and restoration of abnormal trimethyl-histone H3 lysine 4 (H3K4me3) and trimethyl-histone H3 lysine 9 (H3K9me3) levels. These results reveal that melatonin serves as a powerful agent against experimental PQ-induced toxicity during bovine oocyte maturation and could form a basis for further studies to develop therapeutic strategies against PQ poisoning.
Collapse
Affiliation(s)
- Yun-Wei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Long Jiang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agricultural Animal and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ya-Chun Wang
- Key Laboratory of Agricultural Animal and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yang-Yang Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Sheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan-Jiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei-Hua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue-Ming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua-Bin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
76
|
Abecia JA, Forcada F, Vázquez MI, Muiño-Blanco T, Cebrián-Pérez JA, Pérez-Pe R, Casao A. Role of melatonin on embryo viability in sheep. Reprod Fertil Dev 2019; 31:82-92. [PMID: 32188544 DOI: 10.1071/rd18308] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a natural hormone synthesised in the pineal gland, the activity of which is regulated by day-night perception and dictates seasonal rhythms in reproduction in ovine species. Exogenous melatonin, administered via subcutaneous implants, is used to prolong the breeding season of ewes and can increase the proportion of pregnant ewes (fertility rate) and litter size. The increased proportion of ewes that become pregnant and the number of lambs born per lambing among melatonin-treated sheep may be caused by increased embryo survival, through enhanced luteal function, reduced antiluteolytic mechanisms, or improved embryo quality. This review focuses on the effects of melatonin on embryo viability and summarises the processes by which this hormone affects the ovary, follicle, oocyte, corpus luteum and embryo. Moreover, the effects of melatonin on the mechanisms of invivo maternal recognition of pregnancy in sheep and the protective action that it appears to have on the invitro procedures that are used to obtain healthy embryos are reviewed.
Collapse
Affiliation(s)
- José-Alfonso Abecia
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Fernando Forcada
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet, 177, 50013 Zaragoza, Spain
| | - María-Isabel Vázquez
- Departamento de Reproducción Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - Teresa Muiño-Blanco
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet, 177, 50013 Zaragoza, Spain
| | - José A Cebrián-Pérez
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Rosaura Pérez-Pe
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Adriana Casao
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet, 177, 50013 Zaragoza, Spain
| |
Collapse
|
77
|
Soto-Heras S, Catalá MG, Roura M, Menéndez-Blanco I, Piras AR, Izquierdo D, Paramio MT. Effects of melatonin on oocyte developmental competence and the role of melatonin receptor 1 in juvenile goats. Reprod Domest Anim 2018; 54:381-390. [PMID: 30444551 DOI: 10.1111/rda.13378] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/29/2018] [Indexed: 01/02/2023]
Abstract
Melatonin enhances in vitro embryo development in several species by improving the oocyte developmental competence during in vitro maturation (IVM). Melatonin has a wide range of actions, from scavenging reactive oxygen species (ROS) to regulating gene expression, and it can also act by way of melatonin receptors. The aim of this study was to determine the mechanism of action of melatonin during the IVM of juvenile goat oocytes and the role of the membrane receptors. Melatonin receptor 1 was immunolocalized in cumulus cells and oocytes before and after 24 hr of IVM. The effect of melatonin on oocyte developmental competence was tested in three experimental IVM groups: (a) control, (b) 10-7 M melatonin, and (c) 10-7 M melatonin +10-7 M luzindole (an inhibitor of both melatonin receptors). After IVM oocytes were assessed for ROS levels, mitochondrial activity, adenosine 5'-triphosphate (ATP) concentration and relative gene expression (ACTB, SLC1A1, SOD1, GPx1, BAX, DNMT1, GCLC and GDF9). IVM-oocytes were in vitro fertilized and cultured under conventional conditions. Blastocyst rate and quality (differential cell count) were assessed at 8 days post-fertilization. Melatonin decreased ROS levels, increased mitochondrial activity and ATP content and increased blastocyst quality compared to control group (55.8 vs. 30.4 inner cell mass ICM, p < 0.05). There was no effect on the relative gene expression due to treatment with melatonin. In conclusion, we have showed that melatonin improves oocyte developmental competence in juvenile goats by reducing ROS levels and improving mitochondrial activity.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria-Gracia Catalá
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Roura
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irene Menéndez-Blanco
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna-Rita Piras
- Department of Veterinary Medicine, Università degli Studi di Sassari, Sardegna, Italy
| | - Dolors Izquierdo
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria-Teresa Paramio
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
78
|
Kleszczyński K, Bilska B, Stegemann A, Flis DJ, Ziolkowski W, Pyza E, Luger TA, Reiter RJ, Böhm M, Slominski AT. Melatonin and Its Metabolites Ameliorate UVR-Induced Mitochondrial Oxidative Stress in Human MNT-1 Melanoma Cells. Int J Mol Sci 2018; 19:ijms19123786. [PMID: 30487387 PMCID: PMC6320988 DOI: 10.3390/ijms19123786] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Melatonin (Mel) is the major biologically active molecule secreted by the pineal gland. Mel and its metabolites, 6-hydroxymelatonin (6(OH)Mel) and 5-methoxytryptamine (5-MT), possess a variety of functions, including the scavenging of free radicals and the induction of protective or reparative mechanisms in the cell. Their amphiphilic character allows them to cross cellular membranes and reach subcellular organelles, including the mitochondria. Herein, the action of Mel, 6(OH)Mel, and 5-MT in human MNT-1 melanoma cells against ultraviolet B (UVB) radiation was investigated. The dose of 50 mJ/cm2 caused a significant reduction of cell viability up to 48%, while investigated compounds counteracted this deleterious effect. UVB exposure increased catalase activity and led to a simultaneous Ca++ influx (16%), while tested compounds prevented these disturbances. Additional analysis focused on mitochondrial respiration performed in isolated mitochondria from the liver of BALB/cJ mice where Mel, 6(OH)Mel, and 5-MT significantly enhanced the oxidative phosphorylation at the dose of 10−6 M with lower effects seen at 10−9 or 10−4 M. In conclusion, Mel, 6(OH)Mel and 5-MT protect MNT-1 cells, which express melatonin receptors (MT1 and MT2) against UVB-induced oxidative stress and mitochondrial dysfunction, including the uncoupling of oxidative phosphorylation.
Collapse
Affiliation(s)
- Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany.
| | - Bernadetta Bilska
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Agatha Stegemann
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany.
| | - Damian Jozef Flis
- Department of Bioenergetics and Nutrition, Gdańsk University of Physical Education and Sport, Górski Str. 1, 80-336 Gdańsk, Poland.
| | - Wieslaw Ziolkowski
- Department of Bioenergetics and Nutrition, Gdańsk University of Physical Education and Sport, Górski Str. 1, 80-336 Gdańsk, Poland.
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Thomas A Luger
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA.
| | - Markus Böhm
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany.
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35249, USA.
| |
Collapse
|
79
|
Wang Y, Zeng S. Melatonin Promotes Ubiquitination of Phosphorylated Pro-Apoptotic Protein Bcl-2-Interacting Mediator of Cell Death-Extra Long (Bim EL) in Porcine Granulosa Cells. Int J Mol Sci 2018; 19:ijms19113431. [PMID: 30388852 PMCID: PMC6274928 DOI: 10.3390/ijms19113431] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/27/2018] [Accepted: 10/27/2018] [Indexed: 12/31/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is found in ovarian follicular fluid, and its concentration is closely related to follicular health status. Nevertheless, the molecular mechanisms underlying melatonin function in follicles are uncertain. In this study, melatonin concentration was measured in porcine follicular fluid at different stages of health. The melatonin concentration decreased as the follicles underwent atresia, suggesting that melatonin may participate in the maintenance of follicular health. The molecular pathway through which melatonin may regulate follicular development was further investigated. The pro-apoptotic protein BimEL (Bcl-2-interacting mediator of cell death-Extra Long), a key protein controlling granulosa cell apoptosis during follicular atresia, was selected as the target molecule. BimEL was downregulated when porcine granulosa cells were cultured in medium containing 10−9 M melatonin and isolated cumulus oocyte complexes (COCs) or follicle stimulating hormone (FSH). Interestingly, ERK-mediated phosphorylation was a prerequisite for the melatonin-induced decline in BimEL, and melatonin only promoted the ubiquitination of phosphorylated BimEL, and did not affect the activities of the lysosome or the proteasome. Moreover, the melatonin-induced downregulation of BimEL was independent of its receptor and its antioxidant properties. In conclusion, melatonin may maintain follicular health by inducing BimEL ubiquitination to inhibit the apoptosis of granulosa cells.
Collapse
Affiliation(s)
- Yingzheng Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Shenming Zeng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
80
|
Melatonin Improves Oocyte Maturation and Mitochondrial Functions by Reducing Bisphenol A-Derived Superoxide in Porcine Oocytes In Vitro. Int J Mol Sci 2018; 19:ijms19113422. [PMID: 30384504 PMCID: PMC6274783 DOI: 10.3390/ijms19113422] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022] Open
Abstract
Bisphenol A (BPA) is synthetic organic compound that exhibits estrogen-like properties and it induces mitochondrial superoxide production. Melatonin (Mela) protects against BPA-mediated cell damage and apoptosis. However, the antioxidative effects of Mela against BPA-induced superoxide production in porcine oocytes are still not known. In this study, we investigated the antioxidative effects of Mela against BPA-derived superoxide on oocyte maturation in pigs. To investigate the effects of the superoxide specific scavenger, Mito-TEMPO, on porcine oocyte maturation in response to BPA exposure apoptosis proteins, we treated the oocytes with Mito-TEMPO (0.1 µM) after pre-treating them with BPA (75 µM) for 22 h. As expected, the reduction in meiotic maturation and cumulus cell expansion of cumulus-oocyte-complexes (COCs) in the BPA (75 µM) treated group was recovered (p < 0.01) by treatment with Mito-TEMPO (0.1 µM). An increase in the levels of mitochondrial apoptotic proteins (AIF, cleaved Cas 3 and cleaved Parp1) in response to BPA-induced damage was also reduced by Mito-TEMPO treatment in porcine COCs. Interestingly, we confirmed the positive effects of Mela with respect to superoxide production upon BPA exposure during oocyte maturation and also confirmed the reduction in mitochondrial apoptosis in Mela (0.1 µM)-treated porcine COCs. These results provide evidence for the first time that antioxidative effects of Mela on BPA-derived superoxide improve porcine oocyte maturation.
Collapse
|
81
|
Lin T, Lee JE, Kang JW, Oqani RK, Cho ES, Kim SB, Il Jin D. Melatonin supplementation during prolonged in vitro maturation improves the quality and development of poor-quality porcine oocytes via anti-oxidative and anti-apoptotic effects. Mol Reprod Dev 2018; 85:665-681. [PMID: 30106229 DOI: 10.1002/mrd.23052] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
Poor-quality oocytes (those with 1-2 layers of cumulus cells) typically possess low meiotic competence and development. Prolonging the duration of in vitro maturation (IVM; 52 hr) can enhance the maturation rate of poor-quality oocytes, but it does not improve subsequent embryonic development. This likely reflects the increased reactive oxygen species (ROS) production and apoptosis seen in these oocytes compared with the non-prolonged IVM (44 hr) group. Melatonin is a free radical scavenger, anti-oxidant and anti-apoptotic agent that reported to enhance the quality of embryos by inhibiting ROS generation and apoptosis. Therefore, we herein investigated whether melatonin combined with prolonged IVM (52 hr) could improve the quality and development of poor-quality oocytes. We supplemented IVM and/or in vitro culture (IVC) media with various concentrations (0, 10-7 , 10-6 , 10-5 M) of melatonin, and estimated parameters related to oocyte quality and development. The addition of melatonin (10-6 M) to a prolonged IVM system improved the oocyte quality and development compared with those of the melatonin-free poor-quality oocytes group, and that this was due to decreases in ROS generation, apoptosis, and DNA damage. When melatonin was added during both IVM (10-6 M) and IVC (10-6 M), we observed a cumulative positive influence on the embryonic development and quality; this treatment enhanced the expression level of Oct4 and decreased the levels of ROS, DNA damage, and apoptosis. Together, these findings suggest that the combination of melatonin plus prolonged IVM can improve the quality and development of poor-quality porcine oocytes via anti-oxidative and anti-apoptotic effects.
Collapse
Affiliation(s)
- Tao Lin
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Eun Lee
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Republic of Korea
| | - Jeong Won Kang
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Republic of Korea
| | - Reza K Oqani
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Republic of Korea
| | - Eun Seok Cho
- Department of Animal Resource Development, National Institute of Animal Science, Cheonan, Republic of Korea
| | - Seong Bok Kim
- Department of Animal Improvement, Chungnam Livestock Institute, Cheongyang-gun, Chungman, Republic of Korea
| | - Dong Il Jin
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
82
|
|
83
|
Soto-Heras S, Roura M, Catalá MG, Menéndez-Blanco I, Izquierdo D, Fouladi-Nashta AA, Paramio MT. Beneficial effects of melatonin on in vitro embryo production from juvenile goat oocytes. Reprod Fertil Dev 2018. [PMID: 28625274 DOI: 10.1071/rd17170] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Melatonin is a universal antioxidant that improves in vitro embryo production in several species. The aims of this study were to determine the melatonin concentration in the ovarian follicular fluid (FF) of juvenile goats and the effect of melatonin during in vitro maturation (IVM) on embryo development. The FF melatonin concentration was 0.57--1.07×10-9 M, increasing with follicular diameter. Oocytes were matured, fertilised and cultured under conventional conditions. Blastocyst development, embryo quality and levels of reactive oxygen species (ROS) and reduced glutathione were assessed. In Experiment 1 different melatonin concentrations (10-3, 10-7, 10-9, 10-11 M) were added to the IVM medium, which contained cysteamine as antioxidant, and no differences were observed. In Experiment 2, melatonin (10-7 M) was tested in the presence or absence of cysteamine (experimental groups: melatonin, cysteamine, melatonin+cysteamine, non-antioxidant). The melatonin group presented a higher blastocyst rate than the non-antioxidant group (28.9 vs 11.7%; P<0.01) and a higher total cell number than the cysteamine group (225.1 vs 129.0; P<0.05). Oocytes from the melatonin and cysteamine groups had lower ROS levels than those from the non-antioxidant group. This study shows that melatonin is an interesting tool for improving oocyte competence in juvenile goats as it increases embryo production and quality.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193 Bellaterra, Barcelona, Spain
| | - Montserrat Roura
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193 Bellaterra, Barcelona, Spain
| | - Maria G Catalá
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193 Bellaterra, Barcelona, Spain
| | - Irene Menéndez-Blanco
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193 Bellaterra, Barcelona, Spain
| | - Dolors Izquierdo
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193 Bellaterra, Barcelona, Spain
| | - Ali A Fouladi-Nashta
- Reproduction Genes and Development Group, Department of Veterinary Basic Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, Herts AL97TA, UK
| | - Maria T Paramio
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
84
|
Roohbakhsh A, Shamsizadeh A, Hayes A, Reiter RJ, Karimi G. Melatonin as an endogenous regulator of diseases: The role of autophagy. Pharmacol Res 2018; 133:265-276. [DOI: 10.1016/j.phrs.2018.01.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/17/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
|
85
|
Otsuka F. Modulation of bone morphogenetic protein activity by melatonin in ovarian steroidogenesis. Reprod Med Biol 2018; 17:228-233. [PMID: 30013422 PMCID: PMC6046534 DOI: 10.1002/rmb2.12089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 01/12/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Melatonin regulates circadian and seasonal rhythms and the activities of hormones and cytokines that are expressed in various tissues, including the ovary, in which melatonin receptors are expressed. In the ovary, follicular growth occurs as a result of complex interactions between pituitary gonadotropins and autocrine and paracrine factors, including bone morphogenetic proteins (BMPs) that are expressed in the ovary. METHODS The effects of melatonin and BMPs on steroidogenesis were examined by using the primary cultures of rat granulosa cells. MAIN FINDINGS RESULTS It was shown that melatonin has antagonistic effects on BMP-6 actions in the granulosa cells, suggesting that melatonin is likely to contribute to balancing the biological activity of endogenous BMPs that maintain progesterone production and luteinization in the growing follicles. Similar interactions between melatonin and BMP-smad signaling also were shown in the mechanism of controlling ovarian steroidogenesis by other ligands. CONCLUSION A new role of melatonin in the regulation of endocrine homeostasis in relation to BMP activity is introduced in this review.
Collapse
Affiliation(s)
- Fumio Otsuka
- Department of General MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
86
|
Wang H, Pu Y, Luo L, Li Y, Zhang Y, Cao Z. Membrane receptor-independent inhibitory effect of melatonin on androgen production in porcine theca cells. Theriogenology 2018; 118:63-71. [PMID: 29885642 DOI: 10.1016/j.theriogenology.2018.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 01/24/2023]
Abstract
Excessive secretion of androgens including androstenedione and testosterone in theca cells frequently causes female infertility in mammals. Melatonin is a potent inhibitor of androgen production in gonadal cells of several species in a membrane receptor-dependent manner. However, the function of melatonin in steroidogenesis of porcine theca cells remains unclear. Here we report that melatonin inhibits androgen biosynthesis independently of its membrane receptors in pigs. Using flow cytometry, immunofluorescence and RT-PCR we showed that the vast majority of cells isolated from the theca layer of antral follicles are indeed theca cells. Furthermore, we demonstrated that of the two of melatonin membrane receptors encoded in the porcine genome, theca cells exclusively express melatonin receptor 1B. Cell counting analysis indicated that different concentrations of melatonin did not alter the normal viability and proliferation of theca cells. Additionally, hormone radioimmunoassay and qPCR respectively showed that a high concentration of melatonin significantly repressed both androgen production and expression of steroidogenic genes involving StAR, CYP11A1, HSD3β and SET (P < 0.05), but did not impair progesterone production. Interestingly, these effects were not reversed by N-acetyl-2-benzyltryptamin, a melatonin membrane receptor antagonist. Overall, these results demonstrate that melatonin inhibits androgen production in porcine theca cells independently of its membrane receptor.
Collapse
Affiliation(s)
- Heng Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yong Pu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Lei Luo
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
87
|
Lee S, Jin JX, Taweechaipaisankul A, Kim GA, Lee BC. Stimulatory Effects of Melatonin on Porcine In Vitro Maturation Are Mediated by MT2 Receptor. Int J Mol Sci 2018; 19:ijms19061581. [PMID: 29861447 PMCID: PMC6032293 DOI: 10.3390/ijms19061581] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023] Open
Abstract
Melatonin is a multifunctional molecule with numerous biological activities. The fact that melatonin modulates the functions of porcine granulosa cells via the MT2 receptor suggests the possibility of MT2 receptor-mediation for melatonin to promote cumulus expansion of porcine cumulus-oocyte complexes (COCs). Therefore, we investigated the presence of MT2 in porcine COCs, and the effects of melatonin with or without selective MT2 antagonists (luzindole and 4-P-PDOT) on this process; COCs underwent in vitro maturation culturing with six different conditions (control, melatonin, luzindole, 4-P-PDOT, melatonin + luzindole or melatonin + 4-P-PDOT). Cumulus expansion, oocyte nuclear maturation, and subsequent embryo development after parthenogenetic activation (PA) were evaluated. In experiment 1, MT2 was expressed in both oocytes and cumulus cells. In experiment 2, melatonin significantly increased the proportion of complete cumulus expansion (degree 4), which was inhibited by simultaneous addition of either luzindole or 4-P-PDOT. A similar pattern was observed in the expression of genes related to cumulus expansion, apoptosis, and MT2. In experiment 3, no significant difference was observed in immature, degenerate, and MII oocyte rates among the groups. In experiment 4, melatonin significantly increased blastocyst formation rates and total blastocyst cell numbers after PA, but these effects were abolished when either luzindole or 4-P-PDOT was added concomitantly. In conclusion, our results indicate that the MT2 receptor mediated the stimulatory effects of melatonin on porcine cumulus expansion and subsequent embryo development.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Jun-Xue Jin
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Anukul Taweechaipaisankul
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Geon-A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Byeong-Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
88
|
Saeedabadi S, Abazari-Kia AH, Rajabi H, Parivar K, Salehi M. Melatonin Improves The Developmental Competence of Goat Oocytes. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2018; 12:157-163. [PMID: 29707934 PMCID: PMC5936615 DOI: 10.22074/ijfs.2018.5204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/19/2017] [Indexed: 11/04/2022]
Abstract
Background DNA methylation is one the epigenetic mechanisms, which is critically involved in gene expression. This phenomenon is mediated by DNA methyl-transferases and is affected by environmental stress, including in vitro maturation (IVM) of oocytes. Melatonin, as an antioxidant, may theoretically be involved in epigenetic regulation via reductions of reactive oxygen species. This study was performed to investigate DNA methylation and the possibility of goat oocyte development after treatment with different concentrations of melatonin. MATERIALS AND METHODS This experimental study was performed to investigate DNA methylation and the possibility of goat oocyte development after treatment with different concentrations of melatonin. For this purpose, oocytes with granulated cytoplasm were selected and co-cultured with at least two layers of cumulus cells in maturation medium with 10-6 M, 10-9 M, 10-12 M and 0-M (as control group) of melatonin. Nucleus status, glutathione content and developmental competence of the oocytes in each experimental group were assessed. Also, expression of genes associated with DNA methylation, including DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3b (DNMT3b) and DNA methyltransferase 3a (DNMT3a) was evaluated by quantitative real time-polymerase chain reaction (RT-PCR). RESULTS According to our findings, the percentage of oocytes that reached the M-II stage significantly increased in the 10-12 M group (P<0.05). Also, a significant elevation of glutathione content was observed in melatonin-treated oocytes (P<0.05). Analysis of blastocyst formation revealed that developmental competence of the oocytes was higher than the control group (P<0.05). It was observed that melatonin treatment decreased expression levels of DNA methyltransferases (DNMTs) and global DNA methylation (P<0.05). In addition, the expression of melatonin receptor1A (MTNR1A) was detected in both cumulus and oocyte by RT-PCR. CONCLUSION The results suggested that in goat model melatonin affects DNA methylation pattern, leading to an improvement in the developmental competence of the oocytes.
Collapse
Affiliation(s)
- Saghar Saeedabadi
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.,Department of Transgenic Animal Science, Stem Cell Technology Research Center, Tehran, Iran
| | | | - Hoda Rajabi
- Department of Transgenic Animal Science, Stem Cell Technology Research Center, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic Address:.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
89
|
viviD D, Bentley GE. Seasonal Reproduction in Vertebrates: Melatonin Synthesis, Binding, and Functionality Using Tinbergen's Four Questions. Molecules 2018; 23:E652. [PMID: 29534047 PMCID: PMC6017951 DOI: 10.3390/molecules23030652] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022] Open
Abstract
One of the many functions of melatonin in vertebrates is seasonal reproductive timing. Longer nights in winter correspond to an extended duration of melatonin secretion. The purpose of this review is to discuss melatonin synthesis, receptor subtypes, and function in the context of seasonality across vertebrates. We conclude with Tinbergen's Four Questions to create a comparative framework for future melatonin research in the context of seasonal reproduction.
Collapse
Affiliation(s)
- Dax viviD
- Berkeley Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.
| | - George E Bentley
- Berkeley Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
90
|
Park H, Park J, Kim J, Yang S, Jung J, Kim M, Kang M, Cho YH, Wee G, Yang H, Song B, Kim S, Koo D. Melatonin improves the meiotic maturation of porcine oocytes by reducing endoplasmic reticulum stress during in vitro maturation. J Pineal Res 2018; 64:e12458. [PMID: 29149522 PMCID: PMC5814851 DOI: 10.1111/jpi.12458] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/30/2017] [Indexed: 01/10/2023]
Abstract
Under endoplasmic reticulum (ER)-stress conditions, the unfolded protein response (UPR) generates a defense mechanism in mammalian cells. The regulation of UPR signaling is important in oocyte maturation, embryo development, and female reproduction of pigs. Recent studies have shown that melatonin plays an important role as an antioxidant to improve pig oocyte maturation. However, there is no report on the role of melatonin in the regulation of UPR signaling and ER-stress during in vitro maturation (IVM) of porcine oocytes. Therefore, the objective of this study was to investigate the antioxidative effects of melatonin on porcine oocyte maturation through the regulation of ER-stress and UPR signaling. We investigated the changes in the mRNA/protein expression levels of three UPR signal genes (Bip/Grp78, ATF4, P90/50ATF6, sXbp1, and CHOP) on oocytes, cumulus cells, and cumulus-oocyte complexes (COCs) during IVM (metaphase I; 22 hours and metaphase II; 44 hours) by Western blot and reverse transcription-polymerase chain reaction analysis. Treatment with the ER-stress inducer, tunicamycin (Tm), significantly increased expression of UPR markers. Additionally, cumulus cell expansion and meiotic maturation of oocytes were reduced in COCs of Tm-treated groups (1, 5, and 10 μg/mL). We confirmed the reducing effects of melatonin (0.1 μmol/L) on ER-stress after pretreatment with Tm (5 μg/mL; 22 hours) in maturing COCs. Addition of melatonin (0.1 μmol/L) to Tm-pretreated COCs recovered meiotic maturation rates and expression of most UPR markers. In conclusion, we confirmed a role for melatonin in the modulation of UPR signal pathways and reducing ER-stress during IVM of porcine oocytes.
Collapse
Affiliation(s)
- Hyo‐Jin Park
- Department of BiotechnologyCollege of EngineeringDaegu UniversityJillyangGyeongsanGyeongbukKorea
| | - Jae‐Young Park
- Department of BiotechnologyCollege of EngineeringDaegu UniversityJillyangGyeongsanGyeongbukKorea
- Saewha HospitalDongnaeBusanKorea
| | - Jin‐Woo Kim
- Department of BiotechnologyCollege of EngineeringDaegu UniversityJillyangGyeongsanGyeongbukKorea
| | - Seul‐Gi Yang
- Department of BiotechnologyCollege of EngineeringDaegu UniversityJillyangGyeongsanGyeongbukKorea
| | - Jae‐Min Jung
- Department of BiotechnologyCollege of EngineeringDaegu UniversityJillyangGyeongsanGyeongbukKorea
| | - Min‐Ji Kim
- Department of BiotechnologyCollege of EngineeringDaegu UniversityJillyangGyeongsanGyeongbukKorea
| | - Man‐Jong Kang
- Department of Animal ScienceCollege of Agriculture and Life SciencesChonnam National UniversityGwangjuKorea
| | - Young Ho Cho
- Department of Pharmaceutics & BiotechnologyCollege of Medical EngineeringKonyang UniversityDaejeonKorea
| | - Gabbine Wee
- Laboratory Animal CenterDaegu‐Gyeongbuk Medical Innovation Foundation (DGMIF)DaeguKorea
| | - Hee‐Young Yang
- Laboratory Animal CenterDaegu‐Gyeongbuk Medical Innovation Foundation (DGMIF)DaeguKorea
| | - Bong‐Seok Song
- National Primate Research Center & Futuristic Animal Resource and Research CenterKorea Research Institute of Bioscience and BiotechnologyOchangChungbukKorea
| | - Sun‐Uk Kim
- National Primate Research Center & Futuristic Animal Resource and Research CenterKorea Research Institute of Bioscience and BiotechnologyOchangChungbukKorea
| | - Deog‐Bon Koo
- Department of BiotechnologyCollege of EngineeringDaegu UniversityJillyangGyeongsanGyeongbukKorea
| |
Collapse
|
91
|
Melatonin-Mediated Development of Ovine Cumulus Cells, Perhaps by Regulation of DNA Methylation. Molecules 2018; 23:molecules23020494. [PMID: 29473888 PMCID: PMC6017080 DOI: 10.3390/molecules23020494] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
Cumulus cells of pre-pubertal domestic animals are dysfunctional, perhaps due to age-specific epigenetic events. This study was designed to determine effects of melatonin treatment of donors on methylation modification of pre-pubertal cumulus cells. Cumulus cells from germinal vesicle stage cumulus oocyte complexes (COCs) were collected from eighteen lambs which were randomly divided into control group (C) and melatonin group given an 18 mg melatonin implant subcutaneous (M). Compared to the C group, the M group had higher concentrations of melatonin in plasma and follicular fluid (p < 0.05), greater superovulation, a higher proportion of fully expanded COCs, and a lower proportion of apoptotic cumulus cells (p < 0.05). Real-time PCR results showed that melatonin up-regulated expression of genes MT1, Bcl2, DNMT1, DNMT3a and DNMT3b, but down-regulated expression of genes p53, Caspase 3 and Bax (p < 0.05). Furthermore, melatonin increased FI of FITC (global methylation level) on cumulus cells (p < 0.05). To understand the regulation mechanism, the DNMTs promoter methylation sequence were analyzed. Compared to the C group, although there was less methylation at two CpG sites of DNMT1 (p < 0.05) and higher methylation at two CpG sites of DNMT3a (p < 0.05), there were no significant differences in methylation of the detected DNMT1 and DNMT3a promoter regions. However, there were lower methylation levels at five CpG sites of DNMT3b, which decreased methylation of detected DNMT3b promoter region on M group (p < 0.05). In conclusion, alterations of methylation regulated by melatonin may mediate development of cumulus cells in lambs.
Collapse
|
92
|
Zhao XM, Wang N, Hao HS, Li CY, Zhao YH, Yan CL, Wang HY, Du WH, Wang D, Liu Y, Pang YW, Zhu HB. Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events. J Pineal Res 2018; 64. [PMID: 28833478 DOI: 10.1111/jpi.12445] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/18/2017] [Indexed: 01/21/2023]
Abstract
Melatonin is a well-characterized antioxidant that has been successfully used to protect oocytes from reactive oxygen species during in vitro maturation (IVM), resulting in improved fertilization capacity and development ability. However, the mechanism via which melatonin improves oocyte fertilization capacity and development ability remains to be determined. Here, we studied the effects of melatonin on cytoplasmic maturation of bovine oocytes. In the present study, bovine oocytes were cultured in IVM medium supplemented with 0, 10-7 , 10-9 , and 10-11 mol/L melatonin, and the cytoplasmic maturation parameters of MII oocytes after IVM were investigated, including redistribution of organelles (mitochondria, cortical granules [CGs], and endoplasmic reticulum [ER]), intracellular glutathione (GSH) and ATP levels, expression of endogenous antioxidant genes (Cat, Sod1, and GPx), and fertilization-related events (IP3R1 distribution and expression of CD9 and Juno). Our results showed that melatonin significantly improved the cytoplasmic maturation of bovine oocytes by improving the normal distribution of organelles, increasing intracellular GSH and ATP levels, enhancing antioxidant gene expression levels, and modulating fertilization-related events, all of which resulted in increased fertilization capacity and developmental ability. Meanwhile, melatonin also increased the mRNA and protein expression levels of the Tet1 gene and decreased the Dnmt1 gene mRNA and protein levels in bovine oocytes, indicating that melatonin regulates the expression of the detected genes via demethylation. These findings shed insights into the potential mechanisms by which melatonin improves oocyte quality during IVM.
Collapse
Affiliation(s)
- Xue-Ming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Na Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hai-Sheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Chong-Yang Li
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ya-Han Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Chang-Liang Yan
- Livestock and Poultry Import & Export Department, China Animal Husbandry Group (CAHG), Beijing, China
| | - Hao-Yu Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Wei-Hua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Dong Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yan Liu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yun-Wei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hua-Bin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
93
|
Abstract
The bone morphogenetic protein (BMP) system in the ovary plays a physiological role as a luteinization inhibitor in growing follicles. BMP-6 secreted from oocytes and granulosa cells can exert an inhibitory effect on follicle-stimulating hormone (FSH) actions by suppressing adenylate cyclase activity downstream of the FSH receptor. The inhibition of FSH-induced progesterone production by BMP-6 is impaired by melatonin treatment in granulosa cells. Intracellular Smad signaling induced by BMP-6 is suppressed by melatonin, suggesting that melatonin has a regulatory role in BMP receptor signaling in granulosa cells. Since the expression of BMP-6 in granulosa cells is increased in patients with polycystic ovary syndrome, melatonin may play an important role in the maintenance of progesterone production by suppressing BMP-6 signaling, leading to the preservation of ovarian function.
Collapse
|
94
|
Pang Y, Zhao S, Sun Y, Jiang X, Hao H, Du W, Zhu H. Protective effects of melatonin on the in vitro developmental competence of bovine oocytes. Anim Sci J 2017; 89:648-660. [PMID: 29280529 DOI: 10.1111/asj.12970] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/30/2017] [Indexed: 01/08/2023]
Abstract
The present study investigated the effects of melatonin on bovine oocyte maturation and subsequent embryonic development in vitro. Results showed that the nuclear and cytoplasmic maturation, characterized by first polar body extrusion, normal distribution of cortical granules and mitochondria, as well as increased mitochondrial membrane potential, were significantly improved in 10-9 mol/L melatonin-treated oocytes. Melatonin supplementation reduced intracellular reactive oxygen species level and enhanced glutathione production. Meanwhile, the presence of melatonin (10-9 mol/L) during oocyte maturation resulted in a decreased early apoptotic rate in oocytes. After in vitro fertilization, oocytes receiving melatonin supplementation exhibited a significantly higher blastocyst formation rate and yielded a markedly lower number of apoptotic cells. Mechanistic explorations showed that addition of 10-9 mol/L melatonin to in vitro maturation media significantly attenuated the transcript level of caspase-3, while the expressions of BCL-2, XIAP, CAT and HSP70 were significantly reinforced in the resultant embryos. Taken together, melatonin ameliorates bovine oocyte maturation potential, and the beneficial effects can affect subsequent embryonic development. The protective role of melatonin may be due to its anti-apoptotic and anti-oxidative activities.
Collapse
Affiliation(s)
- Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yeqing Sun
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolong Jiang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
95
|
Marques TC, da Silva Santos EC, Diesel TO, Leme LO, Martins CF, Dode M, Alves BG, Costa F, de Oliveira EB, Gambarini ML. Melatonin reduces apoptotic cells, SOD2 and HSPB1 and improves the in vitro production and quality of bovine blastocysts. Reprod Domest Anim 2017; 53:226-236. [PMID: 29205523 DOI: 10.1111/rda.13097] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
Effects of adding different concentrations of melatonin (10-7 , 10-9 and 10-11 M) to maturation (Experiment 1; Control, IVM + 10-7 , IVM + 10-9 , IVM + 10-11 ) and culture media (Experiment 2; Control, IVC + 10-7 , IVC + 10-9 , IVC + 10-11 ) were evaluated on in vitro bovine embryonic development. The optimal concentration of melatonin (10-9 M) from Experiments 1-2 was tested in both maturation and/or culture media of Experiment 3 (Control, IVM + 10-9 , IVC + 10-9 , IVM/IVC + 10-9 ). In Experiment 1, maturated oocytes from Control and IVM + 10-9 treatments showed increased glutathione content, mitochondrial membrane potential and percentage of Grade I blastocysts (40.6% and 43%, respectively). In Experiment 2, an increase in the percentage of Grade I blastocysts was detected in IVC + 10-7 (43.5%; 56.7%) and IVC + 10-9 (47.4%; 57.4%). Moreover, a lower number and percentage of apoptotic cells in blastocysts were observed in the IVC + 10-9 group compared to Control (3.8 ± 0.6; 3.6% versus 6.1 ± 0.6; 5.3%). In Experiment 3, the IVC + 10-9 treatment increased percentage of Grade I blastocysts with a lower number of apoptotic cells compared to IVM/IVC + 10-9 group (52.6%; 3.0 ± 0.5 versus 46.0%; 5.4 ± 1.0). The IVC + 10-9 treatment also had a higher mRNA expression of antioxidant gene (SOD2) compared to the Control, as well as the heat shock protein (HSPB1) compared to the IVM + 10-9 . Reactive oxygen species production was greater in the IVM/IVC + 10-9 treatment group. In conclusion, the 10-9 M concentration of melatonin and the in vitro production phase in which it is used directly affected embryonic development and quality.
Collapse
Affiliation(s)
- T C Marques
- Center for Studies and Research in Animal Reproductive Biology, College of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | - E C da Silva Santos
- Center for Studies and Research in Animal Reproductive Biology, College of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | - T O Diesel
- Center for Studies and Research in Animal Reproductive Biology, College of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | - L O Leme
- Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Reproduction, Brasília, DF, Brazil
| | - C F Martins
- Center of Animal Production Systems, Embrapa Cerrados, Brasília, DF, Brazil
| | - Man Dode
- Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Reproduction, Brasília, DF, Brazil
| | - B G Alves
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Fph Costa
- Center for Studies and Research in Animal Reproductive Biology, College of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | - E B de Oliveira
- Center for Studies and Research in Animal Reproductive Biology, College of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | - M L Gambarini
- Center for Studies and Research in Animal Reproductive Biology, College of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
96
|
Melatonin Improves the Quality of Inferior Bovine Oocytes and Promoted Their Subsequent IVF Embryo Development: Mechanisms and Results. Molecules 2017; 22:molecules22122059. [PMID: 29186876 PMCID: PMC6149663 DOI: 10.3390/molecules22122059] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 02/02/2023] Open
Abstract
The inferior oocytes (IOs), which are not suitable for embryo development, occupy roughly one-third or more of the collected immature bovine oocytes. The IOs are usually discarded from the in vitro bovine embryo production process. Improving the quality of the inferior oocytes (IOs) and make them available in in vitro embryo production would have important biological, as well as commercial, value. This study was designed to investigate whether melatonin could improve the quality of IOs and make them usable in the in vitro maturation (IVM) and subsequent (in vitro fertilization) IVF embryo development. The results indicated that: the maturation rate of IOs and their subsequent IVF embryo developments were impaired compared to cumulus-oocyte complexes and melatonin treatment significantly improved the quality of IOs, as well as their IVF and embryo developments. The potential mechanisms are that: (1) melatonin reduced reactive oxygen species (ROS) and enhanced glutathione (GSH) levels in the IOs, thereby protecting them from oxidative stress; (2) melatonin improved mitochondrial normal distribution and function to increase ATP level in IOs; and (3) melatonin upregulated the expression of ATPase 6, BMP-15, GDF-9, SOD-1, Gpx-4, and Bcl-2, which are critical genes for oocyte maturation and embryo development and downregulated apoptotic gene expression of caspase-3.
Collapse
|
97
|
Mayo JC, Sainz RM, González-Menéndez P, Hevia D, Cernuda-Cernuda R. Melatonin transport into mitochondria. Cell Mol Life Sci 2017; 74:3927-3940. [PMID: 28828619 PMCID: PMC11107582 DOI: 10.1007/s00018-017-2616-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 12/15/2022]
Abstract
Melatonin is a well-known, nighttime-produced indole found in bacteria, eukaryotic unicellulars, animals or vascular plants. In vertebrates, melatonin is the major product of the pineal gland, which accounts for its increase in serum during the dark phase, but it is also produced by many other organs and cell types. Such a wide distribution is consistent with its multiple and well-described functions which include from the circadian regulation and adaptation to seasonal variations to immunomodulatory and oncostatic actions in different types of tumors. The discovery of its antioxidant properties in the early 1990s opened a new field of potential protective functions in multiple tissues. A special mention should be made regarding the nervous system, where the indole is considered a major neuroprotector. Furthermore, mitochondria appear as one of the most important targets for the indole's protective actions. Melatonin's mechanisms of action vary from the direct molecular interaction with free radicals (free radical scavenger) to the binding to membrane (MLT1A and MLT1B) or nuclear receptors (RZR/RORα). Receptor binding has been associated with some, but not all of the indole functions reported to date. Recently, two new mechanisms of cellular uptake involving the facilitative glucose transporters GLUT/SLC2A and the proton-driven oligopeptide transporter PEPT1/2 have been reported. Here we discuss the potential importance that these newly discovered transport systems could have in determining the actions of melatonin, particularly in the mitochondria. We also argue the relative importance of passive diffusion vs active transport in different parts of the cell.
Collapse
Affiliation(s)
- Juan C Mayo
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, 6, 33006, Oviedo, Asturias, Spain.
- Instituto Universitario Oncológico del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.
| | - Rosa M Sainz
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, 6, 33006, Oviedo, Asturias, Spain
- Instituto Universitario Oncológico del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Pedro González-Menéndez
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, 6, 33006, Oviedo, Asturias, Spain
- Instituto Universitario Oncológico del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - David Hevia
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, 6, 33006, Oviedo, Asturias, Spain
- Instituto Universitario Oncológico del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Rafael Cernuda-Cernuda
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, 6, 33006, Oviedo, Asturias, Spain
| |
Collapse
|
98
|
Lee S, Jin JX, Taweechaipaisankul A, Kim GA, Ahn C, Lee BC. Melatonin influences the sonic hedgehog signaling pathway in porcine cumulus oocyte complexes. J Pineal Res 2017; 63. [PMID: 28512846 DOI: 10.1111/jpi.12424] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/12/2017] [Indexed: 12/15/2022]
Abstract
Melatonin, which is synthesized in the pineal gland and peripheral reproductive organs, has antioxidant properties and regulates physiological processes. It is well known that melatonin affects in vitro maturation (IVM) of oocytes and embryonic development in many species. However, beneficial effects of melatonin on IVM have been explained mainly by indirect antioxidant effects and little information is available on the underlying mechanism by which melatonin directly acts on porcine cumulus oocyte complexes (COCs). Sonic hedgehog (Shh) signaling is important for follicle development, oocyte maturation, and embryo development, and there may be a relationship between melatonin and Shh signaling. To examine this, we designed three groups: (i) control, (ii) melatonin (10-9 mol/L), and (iii) melatonin with cyclopamine (2 μmol/L; Shh signaling inhibitor). The aim of this study was to investigate the effects of these agents on cumulus expansion, oocyte maturation, embryo development after parthenogenetic activation (PA), gene expression in cumulus cells, oocytes and blastocysts, and protein expression in COCs. Melatonin significantly increased the proportion of COCs exhibiting complete cumulus expansion (degree 4), PA blastocyst formation rates, and total cell numbers, which were inhibited by addition of cyclopamine. Simultaneously, the expression of cumulus expansion-related genes (Ptgs1, Ptgs2, and Has2) and Shh signaling-related genes (Shh, Pthc1, Smo, and Gli1) and proteins (Ptch1, Smo, and Gli1) in cumulus cells was upregulated in the melatonin-treated group, and these effects were also inhibited by cyclopamine. In conclusion, our results suggest that Shh signaling mediates effects of melatonin to improve porcine cumulus expansion and subsequent embryo development.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jun-Xue Jin
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Anukul Taweechaipaisankul
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Curie Ahn
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
99
|
Zeebaree BK, Kwong WY, Mann GE, Gutierrez CG, Sinclair KD. Physiological responses of cultured bovine granulosa cells to elevated temperatures under low and high oxygen in the presence of different concentrations of melatonin. Theriogenology 2017; 105:107-114. [PMID: 28942371 DOI: 10.1016/j.theriogenology.2017.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 12/18/2022]
Abstract
Our understanding of the effects of temperature on granulosa cell (GC) physiology is primarily limited to in vitro studies conducted under atmospheric (∼20% O2) conditions. In the current series of factorial experiments we identify important effects of O2 level (i.e. 5% vs 20% O2) on GC viability and steroidogenesis, and go onto report effects of standard (37.5 °C) vs high (40.0 °C) temperatures under more physiologically representative (i.e. 5%) O2 levels in the presence of different levels of melatonin (0, 20, 200 and 2000 pg/ml); a potent free-radical scavenger and abundant molecule within the ovarian follicle. Cells aspirated from antral (4-6 mm) follicles were cultured in fibronectin-coated wells using serum-free M199 for up to 144 h. At 37.5 °C viable cell number was enhanced and luteinization reduced under 5 vs 20% O2. Oxygen level interacted (P < 0.001) with time in culture to affect aromatase activity and cell estradiol (E2) production (pg/mL/105 cells). These decreased between 48 and 96 h for both O2 levels but increased again by 144 h for cells cultured under 5% but not 20% O2. Progesterone (P4) concentration (ng/mL/105 cells) was greater (P < 0.001) under 20 vs 5% O2 at 96 and 144 h. Cell number increased (P < 0.01) with time in culture under 5% O2 irrespective of temperature. However, higher doses of melatonin increased viable cell number at 40.0 °C but reduced viable cell number at 37.5 °C (P = 0.004). Melatonin also reduced (P < 0.001) ROS generation at both O2 levels across all concentrations. E2 increased with time in culture at both temperatures under 5% O2, however P4 declined between 96 and 144 h at 40.0 but not 37.5 °C. Furthermore, melatonin interacted (P < 0.001) with temperature in a dose dependent manner to increase P4 at 37.5 °C but to reduce P4 at 40.0 °C. Transcript expression for HSD3B1 paralleled temporal changes in P4 production, and those for HBA were greater at 5% than 20% O2, suggesting that hemoglobin synthesis is responsive to changes in O2 level. In conclusion, 5% O2 enhances GC proliferation and reduces luteinization. Elevated temperatures under 5% O2 reduce GC proliferation and P4 production. Melatonin reduces ROS generation irrespective of O2 level and temperature, but interacts with temperature in a dose dependent manner to influence GC proliferation and luteinization.
Collapse
Affiliation(s)
- Bayar K Zeebaree
- University of Nottingham, School of Biosciences, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Wing Y Kwong
- University of Nottingham, School of Biosciences, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - George E Mann
- University of Nottingham, School of Biosciences, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Carlos G Gutierrez
- University of Nottingham, School of Biosciences, Sutton Bonington, Leicestershire, LE12 5RD, UK; Universidad Nacional Autonoma de Mexico, Facultad de Medicina Veterinaria, Mexico City 04510, Mexico
| | - Kevin D Sinclair
- University of Nottingham, School of Biosciences, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
100
|
CoQ10 increases mitochondrial mass and polarization, ATP and Oct4 potency levels, and bovine oocyte MII during IVM while decreasing AMPK activity and oocyte death. J Assist Reprod Genet 2017; 34:1595-1607. [PMID: 28900834 DOI: 10.1007/s10815-017-1027-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/22/2017] [Indexed: 12/26/2022] Open
Abstract
PURPOSE We tested whether mitochondrial electron transport chain electron carrier coenzyme Q10 (CoQ10) increases ATP during bovine IVM and increases %M2 oocytes, mitochondrial polarization/mass, and Oct4, and decreases pAMPK and oocyte death. METHODS Bovine oocytes were aspirated from ovaries and cultured in IVM media for 24 h with 0, 20, 40, or 60 μM CoQ10. Oocytes were assayed for ATP by luciferase-based luminescence. Oocyte micrographs were quantitated for Oct4, pAMPK (i.e., activity), polarization by JC1 staining, and mitochondrial mass by MitoTracker Green staining. RESULTS CoQ10 at 40 μM was optimal. Oocytes at 40 μM enabled 1.9-fold more ATP than 0 μM CoQ10. There was 4.3-fold less oocyte death, 1.7-fold more mitochondrial charge polarization, and 3.1-fold more mitochondrial mass at 40 μM than at 0 μM CoQ10. Increased ATP was associated with 2.2-fold lower AMPK thr172P activation and 2.1-fold higher nuclear Oct4 stemness/potency protein at 40 μM than at 0 μM CoQ10. CoQ10 is hydrophobic, and at all doses, 50% was lost from media into oil by ~ 12 h. Replenishing CoQ10 at 12 h did not significantly diminish dead oocytes. CONCLUSIONS The data suggest that CoQ10 improves mitochondrial function in IVM where unwanted stress, higher AMPK activity, and Oct4 potency loss are induced.
Collapse
|