51
|
Priovoulos N, de Oliveira IAF, Poser BA, Norris DG, van der Zwaag W. Combining arterial blood contrast with BOLD increases fMRI intracortical contrast. Hum Brain Mapp 2023; 44:2509-2522. [PMID: 36763562 PMCID: PMC10028680 DOI: 10.1002/hbm.26227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
BOLD fMRI is widely applied in human neuroscience but is limited in its spatial specificity due to a cortical-depth-dependent venous bias. This reduces its localization specificity with respect to neuronal responses, a disadvantage for neuroscientific research. Here, we modified a submillimeter BOLD protocol to selectively reduce venous and tissue signal and increase cerebral blood volume weighting through a pulsed saturation scheme (dubbed Arterial Blood Contrast) at 7 T. Adding Arterial Blood Contrast on top of the existing BOLD contrast modulated the intracortical contrast. Isolating the Arterial Blood Contrast showed a response free of pial-surface bias. The results suggest that Arterial Blood Contrast can modulate the typical fMRI spatial specificity, with important applications in in-vivo neuroscience.
Collapse
Affiliation(s)
- Nikos Priovoulos
- Spinoza Center for Neuroimaging, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Icaro Agenor Ferreira de Oliveira
- Spinoza Center for Neuroimaging, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands
| | - Benedikt A Poser
- MR-Methods Group, Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
| | - Wietske van der Zwaag
- Spinoza Center for Neuroimaging, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
52
|
Yong X, Lu S, Hsu YC, Fu C, Sun Y, Zhang Y. Numerical fitting of Extrapolated semisolid Magnetization transfer Reference signals: Improved detection of ischemic stroke. Magn Reson Med 2023; 90:722-736. [PMID: 37052377 DOI: 10.1002/mrm.29660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE To propose a novel Numerical fitting method of the Extrapolated semisolid Magnetization transfer Reference (NEMR) signal for quantifying the CEST effect. THEORY AND METHODS Modified two-pool Bloch-McConnell equations were used to numerically fit the magnetization transfer (MT) and direct water saturation (DS) signals at far off-resonance frequencies, which was subsequently extrapolated into the frequency range of amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) pools. Then the subtraction of the fitted two-pool z-spectrum and the experimentally acquired z-spectrum yielded APT# and NOE# signals mostly free of MT and DS contamination. Several strategies were used to accelerate the NEMR fitting. Furthermore, the proposed NEMR method was compared with the conventional extrapolated semisolid magnetization transfer reference (EMR) and magnetization transfer ratio asymmetry (MTRasym ) methods in simulations and stroke patients. RESULTS The combination of RF downsampling, MT lineshape look-up table, and conversion of MATLAB code to C code accelerated the NEMR fitting by over 2700-fold. Monte-Carlo simulations showed that NEMR had higher accuracy than EMR and eliminated the requirement of the steady-state condition. In ischemic stroke patients, the NEMR maps at 1 μT removed hypointense artifacts seen on EMR and MTRasym images, and better depicted stroke lesions than EMR. For NEMR, NOE# yielded significantly (p < 0.05) stronger signal contrast between stroke and normal tissues than APT# at 1 μT. CONCLUSION The proposed NEMR method is suitable for arbitrary saturation settings and can remove MT and DS contamination from the CEST signal for improved detection of ischemic stroke.
Collapse
Affiliation(s)
- Xingwang Yong
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shanshan Lu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare Ltd., Shanghai, China
| | - Caixia Fu
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, Guangdong, China
| | - Yi Sun
- MR Collaboration, Siemens Healthcare Ltd., Shanghai, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
53
|
Kumar D, Benyard B, Soni ND, Swain A, Wilson N, Reddy R. Feasibility of transient nuclear Overhauser effect imaging in brain at 7 T. Magn Reson Med 2023; 89:1357-1367. [PMID: 36372994 DOI: 10.1002/mrm.29519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE The nuclear Overhauser effect (NOE) quantification from the steady-state NOE imaging suffers from multiple confounding non-NOE-specific sources, including direct saturation, magnetization transfer, and relevant chemical exchange species, and is affected by B0 and B1 + inhomogeneities. The B0 -dependent and B1 + -dependent data needed for deconvolving these confounding effects would increase the scan time substantially, leading to other issues such as patient tolerability. Here, we demonstrate the feasibility of brain lipid mapping using an easily implementable transient NOE (tNOE) approach. METHODS This 7T study used a frequency-selective inversion pulse at a range of frequency offsets between 1.0 and 5.0 parts per million (ppm) and -5.0 and -1.0 ppm relative to bulk water peak. This was followed by a fixed/variable mixing time and then a single-shot 2D turbo FLASH readout. The feasibility of tNOE measurements is demonstrated on bovine serum albumin phantoms and healthy human brains. RESULTS The tNOE measurements from bovine serum albumin phantoms were found to be independent of physiological pH variations. Both bovine serum albumin phantoms and human brains showed broad tNOE contributions centered at approximately -3.5 ppm relative to water peak, with presumably aliphatic moieties in lipids and proteins being the dominant contributors. Less prominent tNOE contributions of approximately +2.5 ppm relative to water, presumably from aromatic moieties, were also detected. These aromatic signals were free from any CEST signals. CONCLUSION In this study, we have demonstrated the feasibility of tNOE in human brain at 7 T. This method is more scan-time efficient than steady-state NOE and provides NOE measurement with minimal confounders.
Collapse
Affiliation(s)
- Dushyant Kumar
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Blake Benyard
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Narayan Datt Soni
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anshuman Swain
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Neil Wilson
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ravinder Reddy
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
54
|
Lipp I, Kirilina E, Edwards LJ, Pine KJ, Jäger C, Gräßle T, Weiskopf N, Helms G. B 1 + $$ {B}_1^{+} $$ -correction of magnetization transfer saturation maps optimized for 7T postmortem MRI of the brain. Magn Reson Med 2023; 89:1385-1400. [PMID: 36373175 DOI: 10.1002/mrm.29524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022]
Abstract
PURPOSE Magnetization transfer saturation ( MTsat $$ \mathrm{MTsat} $$ ) is a useful marker to probe tissue macromolecular content and myelination in the brain. The increased B 1 + $$ {B}_1^{+} $$ -inhomogeneity at ≥ 7 $$ \ge 7 $$ T and significantly larger saturation pulse flip angles which are often used for postmortem studies exceed the limits where previous MTsat $$ \mathrm{MTsat} $$ B 1 + $$ {B}_1^{+} $$ correction methods are applicable. Here, we develop a calibration-based correction model and procedure, and validate and evaluate it in postmortem 7T data of whole chimpanzee brains. THEORY The B 1 + $$ {B}_1^{+} $$ dependence of MTsat $$ \mathrm{MTsat} $$ was investigated by varying the off-resonance saturation pulse flip angle. For the range of saturation pulse flip angles applied in typical experiments on postmortem tissue, the dependence was close to linear. A linear model with a single calibration constant C $$ C $$ is proposed to correct bias in MTsat $$ \mathrm{MTsat} $$ by mapping it to the reference value of the saturation pulse flip angle. METHODS C $$ C $$ was estimated voxel-wise in five postmortem chimpanzee brains. "Individual-based global parameters" were obtained by calculating the mean C $$ C $$ within individual specimen brains and "group-based global parameters" by calculating the means of the individual-based global parameters across the five brains. RESULTS The linear calibration model described the data well, though C $$ C $$ was not entirely independent of the underlying tissue and B 1 + $$ {B}_1^{+} $$ . Individual-based correction parameters and a group-based global correction parameter ( C = 1 . 2 $$ C=1.2 $$ ) led to visible, quantifiable reductions of B 1 + $$ {B}_1^{+} $$ -biases in high-resolution MTsat $$ \mathrm{MTsat} $$ maps. CONCLUSION The presented model and calibration approach effectively corrects for B 1 + $$ {B}_1^{+} $$ inhomogeneities in postmortem 7T data.
Collapse
Affiliation(s)
- Ilona Lipp
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Evgeniya Kirilina
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Luke J Edwards
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kerrin J Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Carsten Jäger
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Paul Flechsig Institute of Brain Research, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Tobias Gräßle
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany
| | -
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Gunther Helms
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Clinical Sciences and Medical Radiation Physics, Lunds Universitet, Lund, Sweden
| |
Collapse
|
55
|
Wang P, Sisco N, Yoo W, Borazanci A, Karis J, Dortch R. Rapid whole-brain myelin imaging with selective inversion recovery and compressed SENSE. Magn Reson Med 2023; 89:1041-1054. [PMID: 36352756 DOI: 10.1002/mrm.29512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Quantitative magnetization transfer (QMT) using selective inversion recovery (SIR) can quantify the macromolecular-to-free proton pool size ratio (PSR), which has been shown to relate closely with myelin content. Currently clinical applications of SIR have been hampered by long scan times. In this work, the acceleration of SIR-QMT using CS-SENSE (compressed sensing SENSE) was systematically studied. THEORY AND METHODS Phantoms of varied concentrations of bovine serum albumin and human scans were first conducted to evaluate the SNR, precision of SIR-QMT parameters, and scan time. Based on these results, an optimized CS-SENSE factor of 8 was determined and the test-retest repeatability was further investigated. RESULTS A whole-brain SIR imaging of 6 min can be achieved. Bland-Altman analyses indicated excellent agreement between the test and retest sessions with a difference in mean PSR of 0.06% (and a difference in mean R1f of -0.001 s-1 ). In addition, the assessment of the intraclass correlation coefficient (ICC) revealed high reliability in nearly all the white matter and gray matter regions. In white matter regions, the ICC was 0.93 (95% confidence interval [CI]: 0.88-0.96, p < 0.001) for PSR, and 0.90 (95% CI: 0.83-0.94, p < 0.001) for R1f . In gray matter, ICC was 0.84 (95% CI: 0.66-0.93, p < 0.001) in PSR, and 0.98 (95% CI: 0.95-0.99, p < 0.001) for R1f . The method also showed excellent capability to detect focal lesions in multiple sclerosis. CONCLUSION Rapid, reliable, and sensitive whole-brain SIR imaging can be achieved using CS-SENSE, which is expected to significantly promote widespread clinical translation.
Collapse
Affiliation(s)
- Ping Wang
- Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Nicholas Sisco
- Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Wonsuk Yoo
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Aimee Borazanci
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - John Karis
- Department of Neuroradiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Richard Dortch
- Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
56
|
High-resolution magnetization-transfer imaging of post-mortem marmoset brain: Comparisons with relaxometry and histology. Neuroimage 2023; 268:119860. [PMID: 36610679 DOI: 10.1016/j.neuroimage.2023.119860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Cell membranes and macromolecules or paramagnetic compounds interact with water proton spins, which modulates magnetic resonance imaging (MRI) contrast providing information on tissue composition. For a further investigation, quantitative magnetization transfer (qMT) parameters (at 3T), including the ratio of the macromolecular and water proton pools, F, and the exchange-rate constant as well as the (observed) longitudinal and the effective transverse relaxation rates (at 3T and 7T), R1obs and R2*, respectively, were measured at high spatial resolution (200 µm) in a slice of fixed marmoset brain and compared to histology results obtained with Gallyas' myelin stain and Perls' iron stain. R1obs and R2* were linearly correlated with the iron content for the entire slice, whereas distinct differences were obtained between gray and white matter for correlations of relaxometry and qMT parameters with myelin content. The combined results suggest that the macromolecular pool interacting with water consists of myelin and (less efficient) non-myelin contributions. Despite strong correlation of F and R1obs, none of these parameters was uniquely specific to myelination. Due to additional sensitivity to iron stores, R1obs and R2* were more sensitive for depicting microstructural differences between cortical layers than F.
Collapse
|
57
|
Hou J, Wong VWS, Qian Y, Jiang B, Chan AWH, Leung HHW, Wong GLH, Yu SCH, Chu WCW, Chen W. Detecting Early-Stage Liver Fibrosis Using Macromolecular Proton Fraction Mapping Based on Spin-Lock MRI: Preliminary Observations. J Magn Reson Imaging 2023; 57:485-492. [PMID: 35753084 DOI: 10.1002/jmri.28308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Liver fibrosis is characterized by macromolecule depositions. Recently, a novel technology termed macromolecular proton fraction quantification based on spin-lock magnetic resonance imaging (MPF-SL) is reported to measure macromolecule levels. HYPOTHESIS MPF-SL can detect early-stage liver fibrosis by measuring macromolecule levels in the liver. STUDY TYPE Retrospective. SUBJECTS Fifty-five participants, including 22 with no fibrosis (F0) and 33 with early-stage fibrosis (F1-2), were recruited. FIELD STRENGTH/SEQUENCE 3 T; two-dimensional (2D) MPF-SL turbo spin-echo sequence, 2D spin-lock T1rho turbo spin-echo sequence, and multi-slice 2D gradient echo sequence. ASSESSMENT Macromolecular proton fraction (MPF), T1rho, liver iron concentration (LIC), and fat fraction (FF) biomarkers were quantified within regions of interest. STATISTICAL TESTS Group comparison of the biomarkers using Mann-Whitney U tests; correlation between the biomarkers assessed using Spearman's rank correlation coefficient and linear regression with goodness-of-fit; fibrosis stage differentiation using receiver operating characteristic curve (ROC) analysis. P-value < 0.05 was considered statistically significant. RESULTS Average T1rho was 41.76 ± 2.94 msec for F0 and 41.15 ± 3.73 msec for F1-2 (P = 0.60). T1rho showed nonsignificant correlation with either liver fibrosis (ρ = -0.07; P = 0.61) or FF (ρ = -0.14; P = 0.35) but indicated a negative correlation with LIC (ρ = -0.66). MPF was 4.73 ± 0.45% and 5.65 ± 0.81% for F0 and F1-2 participants, respectively. MPF showed a positive correlation with liver fibrosis (ρ = 0.59), and no significant correlations with LIC (ρ = 0.02; P = 0.89) or FF (ρ = 0.05; P = 0.72). The area under the ROC curve was 0.85 (95% confidence interval [CI] 0.75-0.95) and 0.55 (95% CI 0.39-0.71; P = 0.55) for MPF and T1rho to discriminate between F0 and F1-2 fibrosis, respectively. DATA CONCLUSION MPF-SL has the potential to diagnose early-stage liver fibrosis and does not appear to be confounded by either LIC or FF. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Jian Hou
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Vincent W-S Wong
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong.,State Key Laboratory of Digestive Disease, Chinese University of Hong Kong, Hong Kong.,Medical Data Analytics Centre, Chinese University of Hong Kong, Hong Kong
| | - Yurui Qian
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Baiyan Jiang
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Anthony W-H Chan
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong
| | - Howard H-W Leung
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong
| | - Grace L-H Wong
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong.,State Key Laboratory of Digestive Disease, Chinese University of Hong Kong, Hong Kong.,Medical Data Analytics Centre, Chinese University of Hong Kong, Hong Kong
| | - Simon C-H Yu
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Winnie C-W Chu
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
58
|
In vitro 1H MT and CEST MRI mapping of gastro-intestinal milk protein breakdown. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2023.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
59
|
Kauppinen RA, Thotland J, Pisharady PK, Lenglet C, Garwood M. White matter microstructure and longitudinal relaxation time anisotropy in human brain at 3 and 7 T. NMR IN BIOMEDICINE 2023; 36:e4815. [PMID: 35994269 PMCID: PMC9742158 DOI: 10.1002/nbm.4815] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 05/22/2023]
Abstract
A high degree of structural order by white matter (WM) fibre tracts creates a physicochemical environment where water relaxations are rendered anisotropic. Recently, angularly dependent longitudinal relaxation has been reported in human WM. We have characterised interrelationships between T1 relaxation and diffusion MRI microstructural indices at 3 and 7 T. Eleven volunteers consented to participate in the study. Multishell diffusion MR images were acquired with b-values of 0/1500/3000 and 0/1000/2000 s/mm2 at 1.5 and 1.05 mm3 isotropic resolutions at 3 and 7 T, respectively. DTIFIT was used to compute DTI indices; the fibre-to-field angle (θFB ) maps were obtained using the principal eigenvector images. The orientations and volume fractions of multiple fibre populations were estimated using BedpostX in FSL, and the orientation dispersion index (ODI) was estimated using the NODDI protocol. MP2RAGE was used to acquire images for T1 maps at 1.0 and 0.9 mm3 isotropic resolutions at 3 and 7 T, respectively. At 3 T, T1 as a function of θFB in WM with high fractional anisotropy and one-fibre orientation volume fraction or low ODI shows a broad peak centred at 50o , but a flat baseline at 0o and 90o . The broad peak amounted up to 7% of the mean T1. At 7 T, the broad peak appeared at 40o and T1 in fibres running parallel to B0 was longer by up to 75 ms (8.3% of the mean T1) than in those perpendicular to the field. The peak at 40o was approximately 5% of mean T1 (i.e., proportionally smaller than that at 54o at 3 T). The data demonstrate T1 anisotropy in WM with high microstructural order at both fields. The angular patterns are indicative of the B0-dependency of T1 anisotropy. Thus myelinated WM fibres influence T1 contrast both by acting as a T1 contrast agent and rendering T1 dependent on fibre orientation with B0.
Collapse
Affiliation(s)
- Risto A. Kauppinen
- Department of Electric and Electronic EngineeringUniversity of BristolBristolUK
| | - Jeromy Thotland
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Pramod K. Pisharady
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Christophe Lenglet
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Michael Garwood
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
60
|
Wang K, Park S, Kamson DO, Li Y, Liu G, Xu J. Guanidinium and amide CEST mapping of human brain by high spectral resolution CEST at 3 T. Magn Reson Med 2023; 89:177-191. [PMID: 36063502 PMCID: PMC9617768 DOI: 10.1002/mrm.29440] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To extract guanidinium (Guan) and amide CEST on the human brain at 3 T MRI with the high spectral resolution (HSR) CEST combined with the polynomial Lorentzian line-shape fitting (PLOF). METHODS Continuous wave (cw) turbo spin-echo (TSE) CEST was implemented to obtain the optimum saturation parameters. Both Guan and amide CEST peaks were extracted and quantified using the PLOF method. The NMR spectra on the egg white phantoms were acquired to reveal the fitting range and the contributions to the amide and GuanCEST. Two types of CEST approaches, including cw gradient- and spin-echo (cwGRASE) and steady state EPI (ssEPI), were implemented to acquire multi-slice HSR-CEST. RESULTS GuanCEST can be extracted with the PLOF method at 3 T, and the optimumB 1 = 0.6 μ T $$ {\mathrm{B}}_1=0.6\kern0.2em \upmu \mathrm{T} $$ was determined for GuanCEST in white matter (WM) and 1.0 μT in gray matter (GM). The optimum B1 = 0.8-1 μT was found for amideCEST. AmideCEST is lower in both WM and GM collected with ssEPI compared to those by cwGRASE (ssEPI = [1.27-1.63]%; cwGRASE = [2.19-2.25]%). The coefficients of variation (COV) of the amide and Guan CEST in both WM and GM for ssEPI (COV: 28.6-33.4%) are significantly higher than those of cwGRASE (COV: 8.6-18.8%). Completely different WM/GM contrasts for Guan and amide CEST were observed between ssEPI and cwGRASE. The amideCEST was found to have originated from the unstructured amide protons as suggested by the NMR spectrum of the unfolded proteins in egg white. CONCLUSION Guan and amide CEST mapping can be achieved by the HSR-CEST at 3 T combing with the PLOF method.
Collapse
Affiliation(s)
- Kexin Wang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sooyeon Park
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - David Olayinka Kamson
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuguo Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
61
|
Sukstanskii AL, Yablonskiy DA. Microscopic theory of spin-spin and spin-lattice relaxation of bound protons in cellular and myelin membranes-A lateral diffusion model (LDM). Magn Reson Med 2023; 89:370-383. [PMID: 36094730 PMCID: PMC9826187 DOI: 10.1002/mrm.29430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/26/2022] [Accepted: 08/08/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE Deciphering salient features of biological tissue cellular microstructure in health and diseases is an ultimate goal of MRI. While most MRI approaches are based on studying MR properties of tissue "free" water indirectly affected by tissue microstructure, other approaches, such as magnetization transfer (MT), directly target signals from tissue-forming macromolecules. However, despite three-decades of successful applications, relationships between MT measurements and tissue microstructure remain elusive, hampering interpretation of experimental results. The goal of this paper is to develop microscopic theory connecting the structure of cellular and myelin membranes to their MR properties. THEORY AND METHODS Herein we introduce a lateral diffusion model (LDM) that explains the T2 (spin-spin) and T1 (spin-lattice) MRI relaxation properties of the macromolecular-bound protons by their dipole-dipole interaction modulated by the lateral diffusion of long lipid molecules forming cellular and myelin membranes. RESULTS LDM predicts anisotropic T1 and T2 relaxation of membrane-bound protons. Moreover, their T2 relaxation cannot be described in terms of a standard R2 = 1/T2 relaxation rate parameter, but rather by a relaxation rate function R2 (t) that depends on time t after RF excitation, having, in the main approximation, a logarithmic behavior: R2 (t) ∼ lnt. This anisotropic non-linear relaxation leads to an absorption lineshape that is different from Super-Lorentzian traditionally used in interpreting MT experiments. CONCLUSION LDM-derived analytical equations connect the membrane-bound protons T1 and T2 relaxation with dynamic distances between protons in neighboring membrane-forming lipid molecules and their lateral diffusion. This sheds new light on relationships between MT parameters and microstructure of cellular and myelin membranes.
Collapse
|
62
|
Ma Y, Jang H, Jerban S, Chang EY, Chung CB, Bydder GM, Du J. Making the invisible visible-ultrashort echo time magnetic resonance imaging: Technical developments and applications. APPLIED PHYSICS REVIEWS 2022; 9:041303. [PMID: 36467869 PMCID: PMC9677812 DOI: 10.1063/5.0086459] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/12/2022] [Indexed: 05/25/2023]
Abstract
Magnetic resonance imaging (MRI) uses a large magnetic field and radio waves to generate images of tissues in the body. Conventional MRI techniques have been developed to image and quantify tissues and fluids with long transverse relaxation times (T2s), such as muscle, cartilage, liver, white matter, gray matter, spinal cord, and cerebrospinal fluid. However, the body also contains many tissues and tissue components such as the osteochondral junction, menisci, ligaments, tendons, bone, lung parenchyma, and myelin, which have short or ultrashort T2s. After radio frequency excitation, their transverse magnetizations typically decay to zero or near zero before the receiving mode is enabled for spatial encoding with conventional MR imaging. As a result, these tissues appear dark, and their MR properties are inaccessible. However, when ultrashort echo times (UTEs) are used, signals can be detected from these tissues before they decay to zero. This review summarizes recent technical developments in UTE MRI of tissues with short and ultrashort T2 relaxation times. A series of UTE MRI techniques for high-resolution morphological and quantitative imaging of these short-T2 tissues are discussed. Applications of UTE imaging in the musculoskeletal, nervous, respiratory, gastrointestinal, and cardiovascular systems of the body are included.
Collapse
Affiliation(s)
- Yajun Ma
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California 92037, USA
| | | | | | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Jiang Du
- Author to whom correspondence should be addressed:. Tel.: (858) 246-2248, Fax: (858) 246-2221
| |
Collapse
|
63
|
Zaiss M, Jin T, Kim SG, Gochberg DF. Theory of chemical exchange saturation transfer MRI in the context of different magnetic fields. NMR IN BIOMEDICINE 2022; 35:e4789. [PMID: 35704180 DOI: 10.1002/nbm.4789] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is a versatile MRI method that provides contrast based on the level of molecular and metabolic activity. This contrast arises from indirect measurement of protons in low concentration molecules that are exchanging with the abundant water proton pool. The indirect measurement is based on magnetization transfer of radio frequency (rf)-prepared magnetization from the small pool to the water pool. The signal can be modeled by the Bloch-McConnell equations combining standard magnetization dynamics and chemical exchange processes. In this article, we review analytical solutions of the Bloch-McConnell equations and especially the derived CEST signal equations and their implications. The analytical solutions give direct insight into the dependency of measurable CEST effects on underlying parameters such as the exchange rate and concentration of the solute pools, but also on the system parameters such as the rf irradiation field B1 , as well as the static magnetic field B0 . These theoretical field-strength dependencies and their influence on sequence design are highlighted herein. In vivo results of different groups making use of these field-strength benefits/dependencies are reviewed and discussed.
Collapse
Affiliation(s)
- Moritz Zaiss
- High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tao Jin
- NeuroImaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
64
|
Wang F, Otsuka T, Adelnia F, Takahashi K, Delgado R, Harkins KD, Zu Z, de Caestecker MP, Harris RC, Gore JC, Takahashi T. Multiparametric magnetic resonance imaging in diagnosis of long-term renal atrophy and fibrosis after ischemia reperfusion induced acute kidney injury in mice. NMR IN BIOMEDICINE 2022; 35:e4786. [PMID: 35704387 PMCID: PMC10805124 DOI: 10.1002/nbm.4786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Tubular atrophy and fibrosis are pathological changes that determine the prognosis of kidney disease induced by acute kidney injury (AKI). We aimed to evaluate multiple magnetic resonance imaging (MRI) parameters, including pool size ratio (PSR) from quantitative magnetization transfer, relaxation rates, and measures from spin-lock imaging ( R 1 ρ and S ρ ), for assessing the pathological changes associated with AKI-induced kidney disease. Eight-week-old male C57BL/6 J mice first underwent unilateral ischemia reperfusion injury (IRI) induced by reperfusion after 45 min of ischemia. They were imaged using a 7T MRI system 56 days after the injury. Paraffin tissue sections were stained using Masson trichrome and picrosirius red to identify histopathological changes such as tubular atrophy and fibrosis. Histology detected extensive tubular atrophy and moderate fibrosis in the cortex and outer stripe of the outer medulla (CR + OSOM) and more prominent fibrosis in the inner stripe of the outer medulla (ISOM) of IRI kidneys. In the CR + OSOM region, evident decreases in PSR, R 1 , R 2 , R 1 ρ , and S ρ showed in IRI compared with contralateral kidneys, with PSR and S ρ exhibiting the most significant changes. In addition, the exchange parameter S ρ dropped by the largest degree among all the MRI parameters, whileR 2 * increased significantly. In the ISOM of IRI kidneys, PSR increased while S ρ kept decreasing. R 2 , R 1 ρ , andR 2 * all increased due to more severe fibrosis in this region. Among MRI measures, PSR and R 1 ρ showed the highest detectability of renal changes no matter whether tubular atrophy or fibrosis dominated.R 2 * and S ρ could be more specific to a single pathological event than other MRI measures because onlyR 2 * increased and S ρ decreased consistently when either fibrosis or tubular atrophy dominated, and their correlations with fibrosis scores were higher than other MRI measures. Multiparametric MRI may enable a more comprehensive analysis of histopathological changes following AKI.
Collapse
Affiliation(s)
- Feng Wang
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Radiology and Radiological Sciences,
Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Tadashi Otsuka
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
| | - Fatemeh Adelnia
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Keiko Takahashi
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Rachel Delgado
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kevin D. Harkins
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Radiology and Radiological Sciences,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Engineering, Vanderbilt
University, Nashville, TN 37232
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Radiology and Radiological Sciences,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mark P. de Caestecker
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Raymond C. Harris
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Radiology and Radiological Sciences,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Engineering, Vanderbilt
University, Nashville, TN 37232
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
65
|
Jara H, Sakai O, Farrher E, Oros-Peusquens AM, Shah NJ, Alsop DC, Keenan KE. Primary Multiparametric Quantitative Brain MRI: State-of-the-Art Relaxometric and Proton Density Mapping Techniques. Radiology 2022; 305:5-18. [PMID: 36040334 PMCID: PMC9524578 DOI: 10.1148/radiol.211519] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 05/01/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
This review on brain multiparametric quantitative MRI (MP-qMRI) focuses on the primary subset of quantitative MRI (qMRI) parameters that represent the mobile ("free") and bound ("motion-restricted") proton pools. Such primary parameters are the proton densities, relaxation times, and magnetization transfer parameters. Diffusion qMRI is also included because of its wide implementation in complete clinical MP-qMRI application. MP-qMRI advances were reviewed over the past 2 decades, with substantial progress observed toward accelerating image acquisition and increasing mapping accuracy. Areas that need further investigation and refinement are identified as follows: (a) the biologic underpinnings of qMRI parameter values and their changes with age and/or disease and (b) the theoretical limitations implicitly built into most qMRI mapping algorithms that do not distinguish between the different spatial scales of voxels versus spin packets, the central physical object of the Bloch theory. With rapidly improving image processing techniques and continuous advances in computer hardware, MP-qMRI has the potential for implementation in a wide range of clinical applications. Currently, three emerging MP-qMRI applications are synthetic MRI, macrostructural qMRI, and microstructural tissue modeling.
Collapse
Affiliation(s)
- Hernán Jara
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| | - Osamu Sakai
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| | - Ezequiel Farrher
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| | - Ana-Maria Oros-Peusquens
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| | - N. Jon Shah
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| | - David C. Alsop
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| | - Kathryn E. Keenan
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| |
Collapse
|
66
|
Casella C, Chamberland M, Laguna PL, Parker GD, Rosser AE, Coulthard E, Rickards H, Berry SC, Jones DK, Metzler‐Baddeley C. Mutation-related magnetization-transfer, not axon density, drives white matter differences in premanifest Huntington disease: Evidence from in vivo ultra-strong gradient MRI. Hum Brain Mapp 2022; 43:3439-3460. [PMID: 35396899 PMCID: PMC9248323 DOI: 10.1002/hbm.25859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/27/2022] [Indexed: 11/10/2022] Open
Abstract
White matter (WM) alterations have been observed in Huntington disease (HD) but their role in the disease-pathophysiology remains unknown. We assessed WM changes in premanifest HD by exploiting ultra-strong-gradient magnetic resonance imaging (MRI). This allowed to separately quantify magnetization transfer ratio (MTR) and hindered and restricted diffusion-weighted signal fractions, and assess how they drove WM microstructure differences between patients and controls. We used tractometry to investigate region-specific alterations across callosal segments with well-characterized early- and late-myelinating axon populations, while brain-wise differences were explored with tract-based cluster analysis (TBCA). Behavioral measures were included to explore disease-associated brain-function relationships. We detected lower MTR in patients' callosal rostrum (tractometry: p = .03; TBCA: p = .03), but higher MTR in their splenium (tractometry: p = .02). Importantly, patients' mutation-size and MTR were positively correlated (all p-values < .01), indicating that MTR alterations may directly result from the mutation. Further, MTR was higher in younger, but lower in older patients relative to controls (p = .003), suggesting that MTR increases are detrimental later in the disease. Finally, patients showed higher restricted diffusion signal fraction (FR) from the composite hindered and restricted model of diffusion (CHARMED) in the cortico-spinal tract (p = .03), which correlated positively with MTR in the posterior callosum (p = .033), potentially reflecting compensatory mechanisms. In summary, this first comprehensive, ultra-strong gradient MRI study in HD provides novel evidence of mutation-driven MTR alterations at the premanifest disease stage which may reflect neurodevelopmental changes in iron, myelin, or a combination of these.
Collapse
Affiliation(s)
- Chiara Casella
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
- Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging SciencesKing's College London, St Thomas' HospitalLondonUK
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenThe Netherlands
| | - Pedro L. Laguna
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Greg D. Parker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Anne E. Rosser
- Department of Neurology and Psychological MedicineHayden Ellis BuildingCardiffUK
- School of BiosciencesCardiff UniversityCardiffUK
| | | | - Hugh Rickards
- Birmingham and Solihull Mental Health NHS Foundation TrustBirminghamUK
- Institute of Clinical Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Samuel C. Berry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Claudia Metzler‐Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| |
Collapse
|
67
|
Mayar M, Miltenburg JL, Hettinga K, Smeets PAM, van Duynhoven JPM, Terenzi C. Non-invasive monitoring of in vitro gastric milk protein digestion kinetics by 1H NMR magnetization transfer. Food Chem 2022; 383:132545. [PMID: 35255364 DOI: 10.1016/j.foodchem.2022.132545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
Abstract
Processing of milk involves heating, which can modify the structure and digestibility of its proteins. In vitro models are useful for studying protein digestion. However, validating these models with in vivo data is challenging. Here, we non-invasively monitor in vitro gastric milk protein digestion by protein-water chemical exchange detected by 1H nuclear magnetic resonance (NMR) magnetization transfer (MT). We obtained either a fitted composite exchange rate (CER) with a relative standard error of ≤10% or the MT ratio (MTR) of the intensity without or with an off-resonance saturation pulse, from just a single spectral acquisition. Both CER and MTR, affected by the variation in the amount of semi-solid protons, decreased during in vitro gastric digestion in agreement with standard protein content analyses. The decrease was slower in heated milk, indicating slower breakdown of the coagulum. Our results open the way to future quantification of protein digestion in vivo by MRI.
Collapse
Affiliation(s)
- Morwarid Mayar
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands; Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Julie L Miltenburg
- Food Quality and Design, Wageningen University, Wageningen, The Netherlands
| | - Kasper Hettinga
- Food Quality and Design, Wageningen University, Wageningen, The Netherlands
| | - Paul A M Smeets
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands; Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Camilla Terenzi
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
68
|
Zhang X, Duchemin Q, Liu K, Gultekin C, Flassbeck S, Fernandez-Granda C, Assländer J. Cramér-Rao bound-informed training of neural networks for quantitative MRI. Magn Reson Med 2022; 88:436-448. [PMID: 35344614 PMCID: PMC9050814 DOI: 10.1002/mrm.29206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/13/2022] [Accepted: 02/07/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE To improve the performance of neural networks for parameter estimation in quantitative MRI, in particular when the noise propagation varies throughout the space of biophysical parameters. THEORY AND METHODS A theoretically well-founded loss function is proposed that normalizes the squared error of each estimate with respective Cramér-Rao bound (CRB)-a theoretical lower bound for the variance of an unbiased estimator. This avoids a dominance of hard-to-estimate parameters and areas in parameter space, which are often of little interest. The normalization with corresponding CRB balances the large errors of fundamentally more noisy estimates and the small errors of fundamentally less noisy estimates, allowing the network to better learn to estimate the latter. Further, proposed loss function provides an absolute evaluation metric for performance: A network has an average loss of 1 if it is a maximally efficient unbiased estimator, which can be considered the ideal performance. The performance gain with proposed loss function is demonstrated at the example of an eight-parameter magnetization transfer model that is fitted to phantom and in vivo data. RESULTS Networks trained with proposed loss function perform close to optimal, that is, their loss converges to approximately 1, and their performance is superior to networks trained with the standard mean-squared error (MSE). The proposed loss function reduces the bias of the estimates compared to the MSE loss, and improves the match of the noise variance to the CRB. This performance gain translates to in vivo maps that align better with the literature. CONCLUSION Normalizing the squared error with the CRB during the training of neural networks improves their performance in estimating biophysical parameters.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Center for Biomedical Imaging, Dept. of Radiology, New York University School of Medicine, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Dept. of Radiology, New York University School of Medicine, NY, USA
| | - Quentin Duchemin
- LAMA, Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS,F-77447 Marne-la-VallÃl’e,France
| | - Kangning Liu
- Center for Data Science, New York University Grossman School of Medicine, NY, USA
| | - Cem Gultekin
- Courant Institute of Mathematical Sciences, New York University, NY, USA
| | - Sebastian Flassbeck
- Center for Biomedical Imaging, Dept. of Radiology, New York University School of Medicine, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Dept. of Radiology, New York University School of Medicine, NY, USA
| | - Carlos Fernandez-Granda
- Courant Institute of Mathematical Sciences, New York University, NY, USA
- Center for Data Science, New York University Grossman School of Medicine, NY, USA
| | - Jakob Assländer
- Center for Biomedical Imaging, Dept. of Radiology, New York University School of Medicine, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Dept. of Radiology, New York University School of Medicine, NY, USA
| |
Collapse
|
69
|
Kose R, Kose K, Terada Y. Implementation of the QRAPMASTER data analysis using dictionary matching and quantitative evaluation of the magnetization transfer effect. Magn Reson Imaging 2022; 90:26-36. [DOI: 10.1016/j.mri.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
|
70
|
Leitão D, Tomi-Tricot R, Bridgen P, Wilkinson T, Liebig P, Gumbrecht R, Ritter D, Giles SL, Baburamani A, Sedlacik J, Hajnal JV, Malik SJ. Parallel transmit pulse design for saturation homogeneity (PUSH) for magnetization transfer imaging at 7T. Magn Reson Med 2022; 88:180-194. [PMID: 35266204 PMCID: PMC9315051 DOI: 10.1002/mrm.29199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE This work proposes a novel RF pulse design for parallel transmit (pTx) systems to obtain uniform saturation of semisolid magnetization for magnetization transfer (MT) contrast in the presence of transmit field B1+ inhomogeneities. The semisolid magnetization is usually modeled as being purely longitudinal, with the applied B1+ field saturating but not rotating its magnetization; thus, standard pTx pulse design methods do not apply. THEORY AND METHODS Pulse design for saturation homogeneity (PUSH) optimizes pTx RF pulses by considering uniformity of root-mean squared B1+ , B1rms , which relates to the rate of semisolid saturation. Here we considered designs consisting of a small number of spatially non-selective sub-pulses optimized over either a single 2D plane or 3D. Simulations and in vivo experiments on a 7T Terra system with an 8-TX Nova head coil in five subjects were carried out to study the homogenization of B1rms and of the MT contrast by acquiring MT ratio maps. RESULTS Simulations and in vivo experiments showed up to six and two times more uniform B1rms compared to circular polarized (CP) mode for 2D and 3D optimizations, respectively. This translated into 4 and 1.25 times more uniform MT contrast, consistently for all subjects, where two sub-pulses were enough for the implementation and coil used. CONCLUSION The proposed PUSH method obtains more uniform and higher MT contrast than CP mode within the same specific absorption rate (SAR) budget.
Collapse
Affiliation(s)
- David Leitão
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | | | - Pip Bridgen
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Tom Wilkinson
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | | | | | | | - Sharon L Giles
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Ana Baburamani
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Jan Sedlacik
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Joseph V Hajnal
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Shaihan J Malik
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
71
|
Kang B, Kim B, Park H, Heo HY. Learning-based optimization of acquisition schedule for magnetization transfer contrast MR fingerprinting. NMR IN BIOMEDICINE 2022; 35:e4662. [PMID: 34939236 PMCID: PMC9761585 DOI: 10.1002/nbm.4662] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 05/03/2023]
Abstract
Magnetization transfer contrast MR fingerprinting (MTC-MRF) is a novel quantitative imaging method that simultaneously quantifies free bulk water and semisolid macromolecule parameters using pseudo-randomized scan parameters. To improve acquisition efficiency and reconstruction accuracy, the optimization of MRF sequence design has been of recent interest in the MRF field, but has been challenging due to the large number of degrees of freedom to be optimized in the sequence. Herein, we propose a framework for learning-based optimization of the acquisition schedule (LOAS), which optimizes RF saturation-encoded MRF acquisitions with a minimal number of scan parameters for tissue parameter determination. In a supervised learning framework, scan parameters were subsequently updated to minimize a predefined loss function that can directly represent tissue quantification errors. We evaluated the performance of the proposed approach with a numerical phantom and in in vivo experiments. For validation, MRF images were synthesized using the tissue parameters estimated from a fully connected neural network framework and compared with references. Our results showed that LOAS outperformed existing indirect optimization methods with regard to quantification accuracy and acquisition efficiency. The proposed LOAS method could be a powerful optimization tool in the design of MRF pulse sequences.
Collapse
Affiliation(s)
- Beomgu Kang
- Department of Electrical Engineering, Korea Advanced
Institute of Science and Technology, Guseong-dong, Yuseong-gu, Daejeon, Republic of
Korea
| | - Byungjai Kim
- Department of Electrical Engineering, Korea Advanced
Institute of Science and Technology, Guseong-dong, Yuseong-gu, Daejeon, Republic of
Korea
- Divison of MR Research, Department of Radiology, Johns
Hopkins University, Baltimore, Maryland, USA
| | - HyunWook Park
- Department of Electrical Engineering, Korea Advanced
Institute of Science and Technology, Guseong-dong, Yuseong-gu, Daejeon, Republic of
Korea
| | - Hye-Young Heo
- Divison of MR Research, Department of Radiology, Johns
Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging,
Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
72
|
Jiang K, Ferguson CM, Grimm RC, Zhu X, Glockner JF, Lerman LO. Reliable Assessment of Swine Renal Fibrosis Using Quantitative Magnetization Transfer Imaging. Invest Radiol 2022; 57:334-342. [PMID: 34935650 PMCID: PMC8986560 DOI: 10.1097/rli.0000000000000843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Quantitative magnetization transfer (qMT) is useful for measurement of murine renal fibrosis at high and ultrahigh field strengths. However, its utility at clinical field strengths and in human-like kidneys remains unknown. We tested the hypothesis that qMT would successfully detect fibrosis in swine kidneys with unilateral renal artery stenosis (RAS) at 3.0 T. METHODS The qMT protocol is composed of MT scans with variable flip angles and offset frequencies, and of B0, B1, and T1 mapping. Pigs were scanned 10 weeks after RAS or control. A 2-pool model was used to fit the bound pool fraction f of the renal cortex (CO) and outer medulla (OM). Then qMT-derived f in 5 normal and 10 RAS pigs was compared with histological fibrosis determined using Masson's trichrome staining and to renal perfusion assessed with computed tomography. RESULTS The qMT 2-pool model provided accurate fittings of data collected on swine kidneys. Stenotic kidneys showed significantly elevated f in both the CO (9.8% ± 2.7% vs 6.4% ± 0.9%, P = 0.002) and OM (7.6% ± 2.2% vs 4.7% ± 1.1%, P = 0.002), as compared with normal kidneys. Histology-measured renal fibrosis and qMT-derived f correlated directly in both the cortex (Pearson correlation coefficient r = 0.93, P < 0.001) and OM (r = 0.84, P = 0.002), and inversely with stenotic kidney perfusion (r = 0.85, P = 0.002). CONCLUSIONS This study demonstrates the feasibility of qMT for measuring fibrosis in human-like swine kidneys, and the association between tissue macromolecule content and renal perfusion. Therefore, qMT may be useful as a tool for noninvasive assessment of renal fibrosis in subjects with RAS at clinical field strengths.
Collapse
Affiliation(s)
- Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Roger C. Grimm
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - James F. Glockner
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
73
|
York EN, Thrippleton MJ, Meijboom R, Hunt DPJ, Waldman AD. Quantitative magnetization transfer imaging in relapsing-remitting multiple sclerosis: a systematic review and meta-analysis. Brain Commun 2022; 4:fcac088. [PMID: 35652121 PMCID: PMC9149789 DOI: 10.1093/braincomms/fcac088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/17/2021] [Accepted: 03/31/2022] [Indexed: 11/28/2022] Open
Abstract
Myelin-sensitive MRI such as magnetization transfer imaging has been widely used in multiple sclerosis. The influence of methodology and differences in disease subtype on imaging findings is, however, not well established. Here, we systematically review magnetization transfer brain imaging findings in relapsing-remitting multiple sclerosis. We examine how methodological differences, disease effects and their interaction influence magnetization transfer imaging measures. Articles published before 06/01/2021 were retrieved from online databases (PubMed, EMBASE and Web of Science) with search terms including 'magnetization transfer' and 'brain' for systematic review, according to a pre-defined protocol. Only studies that used human in vivo quantitative magnetization transfer imaging in adults with relapsing-remitting multiple sclerosis (with or without healthy controls) were included. Additional data from relapsing-remitting multiple sclerosis subjects acquired in other studies comprising mixed disease subtypes were included in meta-analyses. Data including sample size, MRI acquisition protocol parameters, treatments and clinical findings were extracted and qualitatively synthesized. Where possible, effect sizes were calculated for meta-analyses to determine magnetization transfer (i) differences between patients and healthy controls; (ii) longitudinal change and (iii) relationships with clinical disability in relapsing-remitting multiple sclerosis. Eighty-six studies met inclusion criteria. MRI acquisition parameters varied widely, and were also underreported. The majority of studies examined the magnetization transfer ratio in white matter, but magnetization transfer metrics, brain regions examined and results were heterogeneous. The analysis demonstrated a risk of bias due to selective reporting and small sample sizes. The pooled random-effects meta-analysis across all brain compartments revealed magnetization transfer ratio was 1.17 per cent units (95% CI -1.42 to -0.91) lower in relapsing-remitting multiple sclerosis than healthy controls (z-value: -8.99, P < 0.001, 46 studies). Linear mixed-model analysis did not show a significant longitudinal change in magnetization transfer ratio across all brain regions [β = 0.12 (-0.56 to 0.80), t-value = 0.35, P = 0.724, 14 studies] or normal-appearing white matter alone [β = 0.037 (-0.14 to 0.22), t-value = 0.41, P = 0.68, eight studies]. There was a significant negative association between the magnetization transfer ratio and clinical disability, as assessed by the Expanded Disability Status Scale [r = -0.32 (95% CI -0.46 to -0.17); z-value = -4.33, P < 0.001, 13 studies]. Evidence suggests that magnetization transfer imaging metrics are sensitive to pathological brain changes in relapsing-remitting multiple sclerosis, although effect sizes were small in comparison to inter-study variability. Recommendations include: better harmonized magnetization transfer acquisition protocols with detailed methodological reporting standards; larger, well-phenotyped cohorts, including healthy controls; and, further exploration of techniques such as magnetization transfer saturation or inhomogeneous magnetization transfer ratio.
Collapse
Affiliation(s)
- Elizabeth N. York
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
| | | | - Rozanna Meijboom
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
| | - David P. J. Hunt
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of
Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic,
University of Edinburgh, Edinburgh, UK
| | - Adam D. Waldman
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of
Edinburgh, Edinburgh, UK
| |
Collapse
|
74
|
Assländer J, Gultekin C, Flassbeck S, Glaser SJ, Sodickson DK. Generalized Bloch model: A theory for pulsed magnetization transfer. Magn Reson Med 2022; 87:2003-2017. [PMID: 34811794 PMCID: PMC8810695 DOI: 10.1002/mrm.29071] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 11/05/2022]
Abstract
PURPOSE The paper introduces a classical model to describe the dynamics of large spin-1/2 ensembles associated with nuclei bound in large molecule structures, commonly referred to as the semi-solid spin pool, and their magnetization transfer (MT) to spins of nuclei in water. THEORY AND METHODS Like quantum-mechanical descriptions of spin dynamics and like the original Bloch equations, but unlike existing MT models, the proposed model is based on the algebra of angular momentum in the sense that it explicitly models the rotations induced by radiofrequency (RF) pulses. It generalizes the original Bloch model to non-exponential decays, which are, for example, observed for semi-solid spin pools. The combination of rotations with non-exponential decays is facilitated by describing the latter as Green's functions, comprised in an integro-differential equation. RESULTS Our model describes the data of an inversion-recovery magnetization-transfer experiment with varying durations of the inversion pulse substantially better than established models. We made this observation for all measured data, but in particular for pulse durations smaller than 300 μs. Furthermore, we provide a linear approximation of the generalized Bloch model that reduces the simulation time by approximately a factor 15,000, enabling simulation of the spin dynamics caused by a rectangular RF-pulse in roughly 2 μs. CONCLUSION The proposed theory unifies the original Bloch model, Henkelman's steady-state theory for MT, and the commonly assumed rotation induced by hard pulses (i.e., strong and infinitesimally short applications of RF-fields) and describes experimental data better than previous models.
Collapse
Affiliation(s)
- Jakob Assländer
- Center for Biomedical Imaging, Dept. of Radiology, New York
University Grossman School of Medicine, NY, USA
- Center for Advanced Imaging Innovation and Research
(CAI2R), Dept. of Radiology, New York University Grossman School of Medicine, NY,
USA
| | - Cem Gultekin
- Courant Institute of Mathematical Sciences, New York
University, NY, USA
| | - Sebastian Flassbeck
- Center for Biomedical Imaging, Dept. of Radiology, New York
University Grossman School of Medicine, NY, USA
- Center for Advanced Imaging Innovation and Research
(CAI2R), Dept. of Radiology, New York University Grossman School of Medicine, NY,
USA
| | - Steffen J Glaser
- Department of Chemistry, Technische Universität
München, Germany
| | - Daniel K Sodickson
- Center for Biomedical Imaging, Dept. of Radiology, New York
University Grossman School of Medicine, NY, USA
- Center for Advanced Imaging Innovation and Research
(CAI2R), Dept. of Radiology, New York University Grossman School of Medicine, NY,
USA
| |
Collapse
|
75
|
Emergent players in renovascular disease. Clin Sci (Lond) 2022; 136:239-256. [PMID: 35129198 DOI: 10.1042/cs20210509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
Renovascular disease (RVD) remains a common etiology of secondary hypertension. Recent clinical trials revealed unsatisfactory therapeutic outcomes of renal revascularization, leading to extensive investigation to unravel key pathophysiological mechanisms underlying irreversible functional loss and structural damage in the chronically ischemic kidney. Research studies identified complex interactions among various players, including inflammation, fibrosis, mitochondrial injury, cellular senescence, and microvascular remodeling. This interplay resulted in a shift of our understanding of RVD from a mere hemodynamic disorder to a pro-inflammatory and pro-fibrotic pathology strongly influenced by systemic diseases like metabolic syndrome (MetS), hypertension, diabetes mellitus, and hyperlipidemia. Novel diagnostic approaches have been tested for early detection and follow-up of RVD progression, using new imaging techniques and biochemical markers of renal injury and dysfunction. Therapies targeting some of the pathological pathways governing the development of RVD have shown promising results in animal models, and a few have moved from bench to clinical research. This review summarizes evolving understanding in chronic ischemic kidney injury.
Collapse
|
76
|
Sun PZ. Consistent depiction of the acidic ischemic lesion with APT MRI-Dual RF power evaluation of pH-sensitive image in acute stroke. Magn Reson Med 2022; 87:850-858. [PMID: 34590730 PMCID: PMC8627494 DOI: 10.1002/mrm.29029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/31/2021] [Accepted: 09/09/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Amide proton transfer-weighted (APTw) MRI provides a non-invasive pH-sensitive image, complementing perfusion and diffusion imaging for refined stratification of ischemic tissue. Although the commonly used magnetization transfer (MT) asymmetry (MTRasym ) calculation reasonably corrects the direct RF saturation effect, it is susceptible to the concomitant semisolid macromolecular MT contribution. Therefore, this study aimed to compare the performance of MTRasym and magnetization transfer and relaxation-normalized APT (MRAPT) analyses under 2 representative experimental conditions. METHODS Multiparametric MRI scans were performed in a rodent model of acute stroke, including relaxation, diffusion, and Z spectral images under 2 representative RF levels of 0.75 and 1.5 µT. Both MTRasym and MRAPT values in the ischemic diffusion lesion and the contralateral normal areas were compared using correlation and Bland-Altman tests. In addition, the acidic lesion volumes were compared. RESULTS MRAPT measurements from the diffusion lesion under the 2 conditions were highly correlated (R2 = 0.97) versus MTRasym measures (R2 = 0.58). The pH lesion sizes determined from MRAPT analysis were in good agreement (178 ± 43 mm3 vs. 186 ± 55 mm3 for B1 of 0.75 and 1.5 µT, respectively). CONCLUSIONS The study demonstrated that MRAPT analysis could be generalized to moderately different RF amplitudes, providing a more consistent depiction of acidic lesions than the MTRasym analysis.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA,Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta GA,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA,Corresponding Author: Phillip Zhe Sun, Ph.D., Department of Radiology and Imaging Sciences, Emory University School of Medicine, 954 Gatewood Road NE, Atlanta, GA 30329, Phone: (404) 727-7786; (404) 712-1667,
| |
Collapse
|
77
|
Coad BM, Ghomroudi PA, Sims R, Aggleton JP, Vann SD, Metzler-Baddeley C. Apolipoprotein ε4 modifies obesity-related atrophy in the hippocampal formation of cognitively healthy adults. Neurobiol Aging 2022; 113:39-54. [PMID: 35303671 PMCID: PMC9084919 DOI: 10.1016/j.neurobiolaging.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2022] [Accepted: 02/12/2022] [Indexed: 12/02/2022]
Abstract
Age-related inverted U-shaped curve of hippocampal myelin/neurite packing. Reduced hippocampal myelin/neurite packing and size/complexity in obesity. APOE modifies the effects of obesity on hippocampal size/complexity. Age-related slowing of spatial navigation but no risk effects on cognition. CA/DG predict episodic memory and subiculum predicts spatial navigation performance.
Characterizing age- and risk-related hippocampal vulnerabilities may inform about the neural underpinnings of cognitive decline. We studied the impact of three risk-factors, Apolipoprotein (APOE)-ε4, a family history of dementia, and central obesity, on the CA1, CA2/3, dentate gyrus and subiculum of 158 cognitively healthy adults (38-71 years). Subfields were labelled with the Automatic Segmentation of Hippocampal Subfields and FreeSurfer (version 6) protocols. Volumetric and microstructural measurements from quantitative magnetization transfer and Neurite Orientation Density and Dispersion Imaging were extracted for each subfield and reduced to three principal components capturing apparent myelin/neurite packing, size/complexity, and metabolism. Aging was associated with an inverse U-shaped curve on myelin/neurite packing and affected all subfields. Obesity led to reductions in myelin/neurite packing and size/complexity regardless of APOE and family history of dementia status. However, amongst individuals with a healthy Waist-Hip-Ratio, APOE ε4 carriers showed lower size/complexity than non-carriers. Segmentation protocol type did not affect this risk pattern. These findings reveal interactive effects between APOE and central obesity on the hippocampal formation of cognitively healthy adults.
Collapse
|
78
|
Yu FF, Yi Huang S, Kumar A, Witzel T, Liao C, Duval T, Cohen-Adad J, Bilgic B. Rapid simultaneous acquisition of macromolecular tissue volume, susceptibility, and relaxometry maps. Magn Reson Med 2022; 87:781-790. [PMID: 34480768 PMCID: PMC8627440 DOI: 10.1002/mrm.28995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/13/2021] [Accepted: 08/10/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE A major obstacle to the clinical implementation of quantitative MR is the lengthy acquisition time required to derive multi-contrast parametric maps. We sought to reduce the acquisition time for QSM and macromolecular tissue volume by acquiring both contrasts simultaneously by leveraging their redundancies. The joint virtual coil concept with GRAPPA (JVC-GRAPPA) was applied to reduce acquisition time further. METHODS Three adult volunteers were imaged on a 3 Tesla scanner using a multi-echo 3D GRE sequence acquired at 3 head orientations. Macromolecular tissue volume, QSM, R2∗ , T1 , and proton density maps were reconstructed. The same sequence (GRAPPA R = 4) was performed in subject 1 with a single head orientation for comparison. Fully sampled data was acquired in subject 2, from which retrospective undersampling was performed (R = 6 GRAPPA and R = 9 JVC-GRAPPA). Prospective undersampling was performed in subject 3 (R = 6 GRAPPA and R = 9 JVC-GRAPPA) using gradient blips to shift k-space sampling in later echoes. RESULTS Subject 1's multi-orientation and single-orientation macromolecular tissue volume maps were not significantly different based on RMSE. For subject 2, the retrospectively undersampled JVC-GRAPPA and GRAPPA generated similar results as fully sampled data. This approach was validated with the prospectively undersampled images in subject 3. Using QSM, R2∗ , and macromolecular tissue volume, the contributions of myelin and iron content to susceptibility were estimated. CONCLUSION We have developed a novel strategy to simultaneously acquire data for the reconstruction of 5 intrinsically coregistered 1-mm isotropic resolution multi-parametric maps, with a scan time of 6 min using JVC-GRAPPA.
Collapse
Affiliation(s)
- Fang Frank Yu
- Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States,,Corresponding author. Fang Frank Yu, MD, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, Ph: 214-648-7813, Fax: 214-648-3904,
| | - Susie Yi Huang
- Department of Radiology, Harvard Medical School, Boston, MA, United States,Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Ashwin Kumar
- Vanderbilt University, Nashville, TN, United States
| | | | - Congyu Liao
- Radiological Sciences Laboratory, Stanford Medicine, Stanford, CA, United States
| | - Tanguy Duval
- Institute of Biomedical Engineering, Ecole Polytechnique de Montreal, Montreal, QC, Canada
| | - Julien Cohen-Adad
- Institute of Biomedical Engineering, Ecole Polytechnique de Montreal, Montreal, QC, Canada
| | - Berkin Bilgic
- Department of Radiology, Harvard Medical School, Boston, MA, United States,Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| |
Collapse
|
79
|
Fortier V, Levesque IR. Longitudinal relaxation in fat-water mixtures and its dependence on fat content at 3 T. NMR IN BIOMEDICINE 2022; 35:e4629. [PMID: 34636097 DOI: 10.1002/nbm.4629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Longitudinal (T1 ) relaxation of triglyceride molecules and water is of interest for fat-water separation and fat quantification. A better understanding of T1 relaxation could benefit modeling for applications in fat quantification and relaxation mapping. This work investigated T1 relaxation of spectral resonances of triglyceride molecules and water in liquid fat-water mixtures and its dependence on the fat fraction. Dairy cream and a safflower oil emulsion were used. These were diluted with distilled water to produce a variety of fat mass fractions (4.4% to 35% in dairy cream and 6.3% to 52.3% in safflower oil emulsion). T1 was measured at room temperature at 3 T using an inversion recovery STimulated Echo Acquisition Mode (STEAM) MR spectroscopy method with a series of inversion times. T1 variations as a function of fat fraction were investigated for various resonances. A two-component model was developed to describe the relaxation in a fat-water mixture as a function of the fat fraction. The T1 of water and of all fat resonances studied in this work decreased as the fat fraction increased. The relative variation in T1 was different for each fat resonance. The T1 of the methylene resonance showed the least variation as a function of the fat fraction. The proposed two-component model closely fits the observed T1 variations. In conclusion, this work clarifies how the T1 of major and minor fat resonances and of the water resonance varies as a function of the fat fraction in fat-water mixtures. Knowledge of these variations could serve modeling, analysis of MRI measurements in fat-water mixtures, and phantom preparation.
Collapse
Affiliation(s)
- Véronique Fortier
- Medical Physics Unit, McGill University, Montréal, QC, Canada
- Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Ives R Levesque
- Medical Physics Unit, McGill University, Montréal, QC, Canada
- Biomedical Engineering, McGill University, Montréal, QC, Canada
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Canada
| |
Collapse
|
80
|
Yarnykh VL, Korostyshevskaya AM, Savelov AA, Isaeva YO, Gornostaeva AM, Tulupov AA, Sagdeev RZ. Macromolecular proton fraction mapping in magnetic resonance imaging: physicochemical principles and biomedical applications. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
81
|
Afsahi AM, Sedaghat S, Moazamian D, Afsahi G, Athertya JS, Jang H, Ma YJ. Articular Cartilage Assessment Using Ultrashort Echo Time MRI: A Review. Front Endocrinol (Lausanne) 2022; 13:892961. [PMID: 35692400 PMCID: PMC9178905 DOI: 10.3389/fendo.2022.892961] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/14/2022] [Indexed: 01/05/2023] Open
Abstract
Articular cartilage is a major component of the human knee joint which may be affected by a variety of degenerative mechanisms associated with joint pathologies and/or the aging process. Ultrashort echo time (UTE) sequences with a TE less than 100 µs are capable of detecting signals from both fast- and slow-relaxing water protons in cartilage. This allows comprehensive evaluation of all the cartilage layers, especially for the short T2 layers which include the deep and calcified zones. Several ultrashort echo time (UTE) techniques have recently been developed for both morphological imaging and quantitative cartilage assessment. This review article summarizes the current catalog techniques based on UTE Magnetic Resonance Imaging (MRI) that have been utilized for such purposes in the human knee joint, such as T1, T2∗ , T1ρ, magnetization transfer (MT), double echo steady state (DESS), quantitative susceptibility mapping (QSM) and inversion recovery (IR). The contrast mechanisms as well as the advantages and disadvantages of these techniques are discussed.
Collapse
Affiliation(s)
- Amir Masoud Afsahi
- Department of Radiology, University of California San Diego, San Diego, CA, United States
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Sam Sedaghat
- Department of Radiology, University of California San Diego, San Diego, CA, United States
| | - Dina Moazamian
- Department of Radiology, University of California San Diego, San Diego, CA, United States
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Ghazaleh Afsahi
- Department of Biotechnology Research, BioSapien, San Diego, CA, United States
| | - Jiyo S. Athertya
- Department of Radiology, University of California San Diego, San Diego, CA, United States
| | - Hyungseok Jang
- Department of Radiology, University of California San Diego, San Diego, CA, United States
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, San Diego, CA, United States
- *Correspondence: Ya-Jun Ma,
| |
Collapse
|
82
|
Orzyłowska A, Oakden W. Saturation Transfer MRI for Detection of Metabolic and Microstructural Impairments Underlying Neurodegeneration in Alzheimer's Disease. Brain Sci 2021; 12:53. [PMID: 35053797 PMCID: PMC8773856 DOI: 10.3390/brainsci12010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia and difficult to study as the pool of subjects is highly heterogeneous. Saturation transfer (ST) magnetic resonance imaging (MRI) methods are quantitative modalities with potential for non-invasive identification and tracking of various aspects of AD pathology. In this review we cover ST-MRI studies in both humans and animal models of AD over the past 20 years. A number of magnetization transfer (MT) studies have shown promising results in human brain. Increased computing power enables more quantitative MT studies, while access to higher magnetic fields improves the specificity of chemical exchange saturation transfer (CEST) techniques. While much work remains to be done, results so far are very encouraging. MT is sensitive to patterns of AD-related pathological changes, improving differential diagnosis, and CEST is sensitive to particular pathological processes which could greatly assist in the development and monitoring of therapeutic treatments of this currently incurable disease.
Collapse
Affiliation(s)
- Anna Orzyłowska
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8 (SPSK 4), 20-090 Lublin, Poland
| | - Wendy Oakden
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada;
| |
Collapse
|
83
|
Afsahi AM, Ma Y, Jang H, Jerban S, Chung CB, Chang EY, Du J. Ultrashort Echo Time Magnetic Resonance Imaging Techniques: Met and Unmet Needs in Musculoskeletal Imaging. J Magn Reson Imaging 2021; 55:1597-1612. [PMID: 34962335 DOI: 10.1002/jmri.28032] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
This review article summarizes recent technical developments in ultrashort echo time (UTE) magnetic resonance imaging of musculoskeletal (MSK) tissues with short-T2 relaxation times. A series of contrast mechanisms are discussed for high-contrast morphological imaging of short-T2 MSK tissues including the osteochondral junction, menisci, ligaments, tendons, and bone. Quantitative UTE mapping of T1, T2*, T1ρ, adiabatic T1ρ, magnetization transfer ratio, MT modeling of macromolecular proton fraction, quantitative susceptibility mapping, and water content is also introduced. Met and unmet needs in MSK imaging are discussed. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Amir Masoud Afsahi
- Department of Radiology, University of California, San Diego, California, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, California, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, California, USA.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, California, USA.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, California, USA.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
84
|
Han M, Tibrewala R, Bahroos E, Pedoia V, Majumdar S. Magnetization-prepared spoiled gradient-echo snapshot imaging for efficient measurement of R 2 -R 1ρ in knee cartilage. Magn Reson Med 2021; 87:733-745. [PMID: 34590728 DOI: 10.1002/mrm.29024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE To validate the potential of quantifying R2 -R1ρ using one pair of signals with T1ρ preparation and T2 preparation incorporated to magnetization-prepared angle-modulated partitioned k-space spoiled gradient-echo snapshots (MAPSS) acquisition and to find an optimal preparation time (Tprep ) for in vivo knee MRI. METHODS Bloch equation simulations were first performed to assess the accuracy of quantifying R2 -R1ρ using T1ρ - and T2 -prepared signals with an equivalent Tprep . For validation of this technique in comparison to the conventional approach that calculates R2 -R1ρ after estimating both T2 and T1ρ , phantom experiments and in vivo validation with five healthy subjects and five osteoarthritis patients were performed at a clinical 3T scanner. RESULTS Bloch equation simulations demonstrated that the accuracy of this efficient R2 -R1ρ quantification method and the optimal Tprep can be affected by image signal-to-noise ratio (SNR) and tissue relaxation times, but quantification can be closest to the reference with an around 25 ms Tprep for knee cartilage. Phantom experiments demonstrated that the proposed method can depict R2 -R1ρ changes with agarose gel concentration. With in vivo data, significant correlation was observed between cartilage R2 -R1ρ measured from the conventional and the proposed methods, and a Tprep of 25.6 ms provided the most agreement by Bland-Altman analysis. R2 -R1ρ was significantly lower in patients than in healthy subjects for most cartilage compartments. CONCLUSION As a potential biomarker to indicate cartilage degeneration, R2 -R1ρ can be efficiently measured using one pair of T1ρ -prepared and T2 -prepared signals with an optimal Tprep considering cartilage relaxation times and image SNR.
Collapse
Affiliation(s)
- Misung Han
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Radhika Tibrewala
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Emma Bahroos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,Center for Digital Health Innovation, University of California, San Francisco, San Francisco, California, USA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,Center for Digital Health Innovation, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
85
|
Archer BJ, Mack JJ, Acosta S, Nakasone R, Dahoud F, Youssef K, Goldstein A, Goldsman A, Held MC, Wiese M, Blumich B, Wessling M, Emondts M, Klankermayer J, Iruela-Arispe ML, Bouchard LS. Mapping Cell Viability Quantitatively and Independently From Cell Density in 3D Gels Noninvasively. IEEE Trans Biomed Eng 2021; 68:2940-2947. [PMID: 33531296 PMCID: PMC8326301 DOI: 10.1109/tbme.2021.3056526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In biomanufacturing there is a need for quantitative methods to map cell viability and density inside 3D bioreactors to assess health and proliferation over time. Recently, noninvasive MRI readouts of cell density have been achieved. However, the ratio of live to dead cells was not varied. Herein we present an approach for measuring the viability of cells embedded in a hydrogel independently from cell density to map cell number and health. METHODS Independent quantification of cell viability and density was achieved by calibrating the 1H magnetization transfer- (MT) and diffusion-weighted NMR signals to samples of known cell density and viability using a multivariate approach. Maps of cell viability and density were generated by weighting NMR images by these parameters post-calibration. RESULTS Using this method, the limits of detection (LODs) of total cell density and viable cell density were found to be 3.88 ×108 cells · mL -1· Hz -1/2 and 2.36 ×109 viable cells · mL -1· Hz -1/2 respectively. CONCLUSION This mapping technique provides a noninvasive means of visualizing cell viability and number density within optically opaque bioreactors. SIGNIFICANCE We anticipate that such nondestructive readouts will provide valuable feedback for monitoring and controlling cell populations in bioreactors.
Collapse
|
86
|
Saturation transfer MRI is sensitive to neurochemical changes in the rat brain due to chronic unpredictable mild stress. Sci Rep 2021; 11:19040. [PMID: 34561488 PMCID: PMC8463565 DOI: 10.1038/s41598-021-97991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
Chemical exchange saturation transfer (CEST) MRI was performed for the evaluation of cerebral metabolic changes in a rat model of depressive-like disease induced by chronic unpredictable mild stress (CUMS). CEST Z-spectra were acquired on a 7 T MRI with two saturation B1 amplitudes (0.5 and 0.75 µT) to measure the magnetization transfer ratio (MTR), CEST and relayed nuclear Overhauser effect (rNOE). Cerebral cortex and hippocampus were examined in two groups of animals: healthy control (n = 10) and stressed (n = 14), the latter of which was exposed to eight weeks of the CUMS protocol. The stressed group Z-spectrum parameters, primarily MTRs, were significantly lower than in controls, at all selected frequency offsets (3.5, 3.0, 2.0, - 3.2, - 3.6 ppm) in the cortex (the largest difference of ~ 3.5% at - 3.6 ppm, p = 0.0005) and the hippocampus (MTRs measured with a B1 = 0.5 µT). The hippocampal rNOE contributions decreased significantly in the stressed brains. Glutamate concentration (assessed using ELISA) and MTR at 3 ppm correlated positively in both brain regions. GABA concentration also correlated positively with CEST contributions in both cerebral areas, while such correlation with MTR was positive in hippocampus, and nonsignificant in cortex. Results indicate that CEST is sensitive to neurometabolic changes following chronic stress exposure.
Collapse
|
87
|
MacDonald ME, Pike GB. MRI of healthy brain aging: A review. NMR IN BIOMEDICINE 2021; 34:e4564. [PMID: 34096114 DOI: 10.1002/nbm.4564] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
We present a review of the characterization of healthy brain aging using MRI with an emphasis on morphology, lesions, and quantitative MR parameters. A scope review found 6612 articles encompassing the keywords "Brain Aging" and "Magnetic Resonance"; papers involving functional MRI or not involving imaging of healthy human brain aging were discarded, leaving 2246 articles. We first consider some of the biogerontological mechanisms of aging, and the consequences of aging in terms of cognition and onset of disease. Morphological changes with aging are reviewed for the whole brain, cerebral cortex, white matter, subcortical gray matter, and other individual structures. In general, volume and cortical thickness decline with age, beginning in mid-life. Prevalent silent lesions such as white matter hyperintensities, microbleeds, and lacunar infarcts are also observed with increasing frequency. The literature regarding quantitative MR parameter changes includes T1 , T2 , T2 *, magnetic susceptibility, spectroscopy, magnetization transfer, diffusion, and blood flow. We summarize the findings on how each of these parameters varies with aging. Finally, we examine how the aforementioned techniques have been used for age prediction. While relatively large in scope, we present a comprehensive review that should provide the reader with sound understanding of what MRI has been able to tell us about how the healthy brain ages.
Collapse
Affiliation(s)
- M Ethan MacDonald
- Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, Canada
- Departments of Radiology and Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
- Healthy Brain Aging Laboratory, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - G Bruce Pike
- Departments of Radiology and Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
- Healthy Brain Aging Laboratory, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
88
|
Chai Y, Li L, Wang Y, Huber L, Poser BA, Duyn J, Bandettini PA. Magnetization transfer weighted EPI facilitates cortical depth determination in native fMRI space. Neuroimage 2021; 242:118455. [PMID: 34364993 PMCID: PMC8520138 DOI: 10.1016/j.neuroimage.2021.118455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022] Open
Abstract
The increased availability of ultra-high field scanners provides an opportunity to perform fMRI at sub-millimeter spatial scales and enables in vivo probing of laminar function in the human brain. In most previous studies, the definition of cortical layers, or depths, is based on an anatomical reference image that is collected by a different acquisition sequence and exhibits different geometric distortion compared to the functional images. Here, we propose to generate the anatomical image with the fMRI acquisition technique by incorporating magnetization transfer (MT) weighted imaging. Small flip angle binomial pulse trains are used as MT preparation, with a flexible duration (several to tens of milliseconds), which can be applied before each EPI segment without constraining the acquisition length (segment or slice number). The method's feasibility was demonstrated at 7T for coverage of either a small slab or the near-whole brain at 0.8 mm isotropic resolution. Tissue contrast was found to be similar to that obtained with a state-of-art anatomical reference based on MP2RAGE. This MT-weighted EPI image allows an automatic reconstruction of the cortical surface to support laminar analysis in native fMRI space, obviating the need for distortion correction and registration.
Collapse
Affiliation(s)
- Yuhui Chai
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda 20892, MD, United States.
| | - Linqing Li
- Functional MRI Core, NIMH, NIH, Bethesda, MD, United States
| | - Yicun Wang
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, NINDS, NIH, Bethesda, MD, United States
| | - Laurentius Huber
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, University of Maastricht, the Netherlands
| | - Benedikt A Poser
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, University of Maastricht, the Netherlands
| | - Jeff Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, NINDS, NIH, Bethesda, MD, United States
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda 20892, MD, United States; Functional MRI Core, NIMH, NIH, Bethesda, MD, United States
| |
Collapse
|
89
|
Graf C, Rund A, Aigner CS, Stollberger R. Accuracy and performance analysis for Bloch and Bloch-McConnell simulation methods. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 329:107011. [PMID: 34147025 DOI: 10.1016/j.jmr.2021.107011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
PURPOSE To introduce new solution methods for the Bloch and Bloch-McConnell equations and compare them quantitatively to different known approaches. THEORY AND METHODS A new exact solution per time step is derived by means of eigenvalues and generalized eigenvectors. Fast numerical solution methods based on asymmetric and symmetric operator splitting, which are already known for the Bloch equations, are extended to the Bloch-McConnell equations. Those methods are compared to other numerical methods including spin domain, one-step and multi-step methods, and matrix exponential. Error metrics are introduced based on the exact solution method, which allows to assess the accuracy of each solution method quantitatively for arbitrary example data. RESULTS Accuracy and performance properties for nine different solution methods are analyzed and compared in extensive numerical experiments including various examples for non-selective and slice-selective MR imaging applications. The accuracy of the methods heavily varies, in particular for short relaxation times and long pulse durations. CONCLUSION In absence of relaxation effects, the numerical results confirm the rotation matrices approach as accurate and computationally efficient Bloch solution method. Otherwise, as well as for the Bloch-McConnell equations, symmetric operator splitting methods are recommended due to their excellent numerical accuracy paired with efficient run time.
Collapse
Affiliation(s)
- Christina Graf
- Institute of Medical Engineering, Graz University of Technology, Graz, Austria
| | - Armin Rund
- Institute for Mathematics and Scientific Computing, University of Graz, Graz, Austria
| | | | - Rudolf Stollberger
- Institute of Medical Engineering, Graz University of Technology, Graz, Austria.
| |
Collapse
|
90
|
Bayer FM, Bock M, Jezzard P, Smith AK. Unbiased signal equation for quantitative magnetization transfer mapping in balanced steady-state free precession MRI. Magn Reson Med 2021; 87:446-456. [PMID: 34331470 PMCID: PMC8951070 DOI: 10.1002/mrm.28940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/12/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
Purpose Quantitative magnetization transfer (qMT) imaging can be used to quantify the proportion of protons in a voxel attached to macromolecules. Here, we show that the original qMT balanced steady‐state free precession (bSSFP) model is biased due to over‐simplistic assumptions made in its derivation. Theory and Methods We present an improved model for qMT bSSFP, which incorporates finite radiofrequency (RF) pulse effects as well as simultaneous exchange and relaxation. Furthermore, a correction relating to finite RF pulse effects for sinc‐shaped excitations is derived. The new model is compared to the original one in numerical simulations of the Bloch‐McConnell equations and in previously acquired in vivo data. Results Our numerical simulations show that the original signal equation is significantly biased in typical brain tissue structures (by 7%‐20%), whereas the new signal equation outperforms the original one with minimal bias (<1%). It is further shown that the bias of the original model strongly affects the acquired qMT parameters in human brain structures, with differences in the clinically relevant parameter of pool‐size‐ratio of up to 31%. Particularly high biases of the original signal equation are expected in an MS lesion within diseased brain tissue (due to a low T2/T1‐ratio), demanding a more accurate model for clinical applications. Conclusion The improved model for qMT bSSFP is recommended for accurate qMT parameter mapping in healthy and diseased brain tissue structures.
Collapse
Affiliation(s)
- Fritz M Bayer
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,D-BSSE, ETH Zurich, Basel, Switzerland
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alex K Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
91
|
Olsson H, Andersen M, Wirestam R, Helms G. Mapping magnetization transfer saturation (MT sat ) in human brain at 7T: Protocol optimization under specific absorption rate constraints. Magn Reson Med 2021; 86:2562-2576. [PMID: 34196043 DOI: 10.1002/mrm.28899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/19/2021] [Accepted: 06/02/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE To optimize a whole-brain magnetization transfer saturation (MTsat ) protocol at 7T, focusing on maximizing obtainable MTsat under the constraints of specific absorption rate (SAR) and transmit field inhomogeneity, while avoiding bias and keeping scan time short. THEORY AND METHODS MTsat is a semi-quantitative metric, obtained by spoiled gradient-echo MRI in the imaging steady-state. Optimization was based on an established 7T dual flip angle protocol, and focused on MT pulse, readout flip angle, repetition time (TR), offset frequency (Δ), and correction of residual effects from transmit field inhomogeneities by separate flip angle mapping. RESULTS A 100% SAR level was reached at a 180° MT pulse flip angle, using a compact sinc main lobe (4 ms duration) and minimum TR = 26.5 ms. The use of Δ = +2.0 kHz caused no discernible direct saturation, while Δ = -2.0 kHz resulted in 45% higher MTsat in white matter (WM) compared to Δ = +2.0 kHz. A 4° readout flip angle eliminated bias while yielding a good signal-to-noise ratio. Increased TR yielded only a little increase in MTsat , and TR = 26.5 ms (scan time 04:58 min) was thus selected. Post hoc transmit field correction clearly improved homogeneity, especially in WM. CONCLUSIONS The range of MTsat is limited at 7T, and this can partly be overcome by the exploitation of the asymmetry of the macromolecular lineshape through the sign of Δ. To reduce scan time, a compact MT pulse with a sufficiently narrow frequency response should be used. TR and readout flip angle should be kept short/small. Transmit field correction through separate flip angle mapping is required.
Collapse
Affiliation(s)
- Hampus Olsson
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Mads Andersen
- Philips Healthcare, Copenhagen, Denmark.,Lund University Bioimaging Center, Lund University, Lund, Sweden
| | - Ronnie Wirestam
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Gunther Helms
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
92
|
Rowley CD, Campbell JSW, Wu Z, Leppert IR, Rudko DA, Pike GB, Tardif CL. A model-based framework for correcting B 1 + inhomogeneity effects in magnetization transfer saturation and inhomogeneous magnetization transfer saturation maps. Magn Reson Med 2021; 86:2192-2207. [PMID: 33956348 DOI: 10.1002/mrm.28831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/08/2021] [Accepted: 04/16/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE In this work, we propose that Δ B 1 + -induced errors in magnetization transfer (MT) saturation (MTsat ) maps can be corrected with use of an R1 and B 1 + map and through numerical simulations of the sequence. THEORY AND METHODS One healthy subject was scanned at 3.0T using a partial quantitative MT protocol to estimate the relationship between observed R1 (R1,obs ) and apparent bound pool size ( M 0 , a p p B ) in the brain. MTsat values were simulated for a range of B 1 + , R1,obs , and M 0 , a p p B . An equation was fit to the simulated MTsat , then a linear relationship between R1,obs and M 0 , a p p B was generated. These results were used to generate correction factor maps for the MTsat acquired from single-point data. The proposed correction was compared to an empirical correction factor with different MT-preparation schemes. RESULTS M 0 , a p p B was highly correlated with R1,obs (r > 0.96), permitting the use of R1,obs to estimate M 0 , a p p B for B 1 + correction. All B 1 + corrected MTsat maps displayed a decreased correlation with B 1 + compared to uncorrected MTsat and MTsat corrected with an empirical factor in the corpus callosum. There was good agreement between the proposed approach and the empirical correction with radiofrequency saturation at 2 kHz, with larger deviations seen when using saturation pulses further off-resonance and in inhomogeneous (ih) MTsat maps. CONCLUSION The proposed correction decreases the dependence of MTsat on B 1 + inhomogeneities. Furthermore, this flexible framework permits the use of different saturation protocols, making it useful for correcting B 1 + inhomogeneities in ihMT.
Collapse
Affiliation(s)
- Christopher D Rowley
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Jennifer S W Campbell
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Zhe Wu
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Ilana R Leppert
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - David A Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Gilbert Bruce Pike
- Hotchkiss Brain Institute and Departments of Radiology and Clinical Neuroscience, University of Calgary, Calgary, Canada
| | - Christine L Tardif
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
93
|
Olivieri B, Rampakakis E, Gilbert G, Fezoua A, Wintermark P. Myelination may be impaired in neonates following birth asphyxia. NEUROIMAGE-CLINICAL 2021; 31:102678. [PMID: 34082365 PMCID: PMC8182124 DOI: 10.1016/j.nicl.2021.102678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 01/23/2023]
Abstract
Myelination is a developmental process that intensifies after birth during the first years of life. We used a T2* mapping sequence to assess myelination in healthy and critically ill neonates with neonatal encephalopathy. Birth asphyxia, in addition to causing the previously well-described direct injury to the brain, may impair myelination.
Background Myelination is a developmental process that begins during the end of gestation, intensifies after birth over the first years of life, and continues well into adolescence. Any event leading to brain injury around the time of birth and during the perinatal period, such as birth asphyxia, may impair this critical process. Currently, the impact of such brain injury related to birth asphyxia on the myelination process is unknown. Objective To assess the myelination pattern over the first month of life in neonates with neonatal encephalopathy (NE) developing brain injury, compared to neonates without injury (i.e., healthy neonates and neonates with NE who do not develop brain injury). Methods Brain magnetic resonance imaging (MRI) was performed around day of life 2, 10, and 30 in healthy neonates and near-term/term neonates with NE who were treated with hypothermia. We evaluated myelination in various regions of interest using a T2* mapping sequence. In each region of interest, we compared the T2* values of the neonates with NE with brain injury to the values of the neonates without injury, according to the MRI timing, by using a repeated measures generalized linear mixed model. Results We obtained 74 MRI scans over the first month of life for 6 healthy neonates, 17 neonates with NE who were treated with hypothermia and did not develop brain injury, and 16 neonates with NE who were treated with hypothermia and developed brain injury. The T2* values significantly increased in the neonates with NE who developed injury in the posterior limbs of the internal capsule (day 2: p < 0.001; day 10: p < 0.001; and day 30: p < 0.001), the thalami (day 2: p = 0.001; day 10: p = 0.006; and day 30: p = 0.016), the lentiform nuclei (day 2: p = 0.005), the anterior white matter (day 2: p = 0.002; day 10: p = 0.006; and day 30: p = 0.002), the posterior white matter (day 2: p = 0.001; day 10: p = 0.008; and day 30: p = 0.03), the genu of the corpus callosum (day 2: p = 0.01; and day 10: p = 0.006), and the optic radiations (day 30: p < 0.001). Conclusion In the neonates with NE who were treated with hypothermia and developed brain injury, birth asphyxia impaired myelination in the regions that are myelinated at birth or soon after birth (the posterior limbs of internal capsule, the thalami, and the lentiform nuclei), in the regions where the myelination process begins only after the perinatal period (optic radiations), and in the regions where this process does not occur until months after birth (anterior/posterior white matter), which suggests that birth asphyxia, in addition to causing the previously well-described direct injury to the brain, may impair myelination.
Collapse
Affiliation(s)
- Bianca Olivieri
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Emmanouil Rampakakis
- Medical Affairs, JSS Medical Research, Montreal, Québec, Canada; Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | | | - Aliona Fezoua
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Pia Wintermark
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada; Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
94
|
Lazari A, Lipp I. Can MRI measure myelin? Systematic review, qualitative assessment, and meta-analysis of studies validating microstructural imaging with myelin histology. Neuroimage 2021; 230:117744. [PMID: 33524576 PMCID: PMC8063174 DOI: 10.1016/j.neuroimage.2021.117744] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/16/2022] Open
Abstract
Recent years have seen an increased understanding of the importance of myelination in healthy brain function and neuropsychiatric diseases. Non-invasive microstructural magnetic resonance imaging (MRI) holds the potential to expand and translate these insights to basic and clinical human research, but the sensitivity and specificity of different MR markers to myelination is a subject of debate. To consolidate current knowledge on the topic, we perform a systematic review and meta-analysis of studies that validate microstructural imaging by combining it with myelin histology. We find meta-analytic evidence for correlations between various myelin histology metrics and markers from different MRI modalities, including fractional anisotropy, radial diffusivity, macromolecular pool, magnetization transfer ratio, susceptibility and longitudinal relaxation rate, but not mean diffusivity. Meta-analytic correlation effect sizes range widely, between R2 = 0.26 and R2 = 0.82. However, formal comparisons between MRI-based myelin markers are limited by methodological variability, inconsistent reporting and potential for publication bias, thus preventing the establishment of a single most sensitive strategy to measure myelin with MRI. To facilitate further progress, we provide a detailed characterisation of the evaluated studies as an online resource. We also share a set of 12 recommendations for future studies validating putative MR-based myelin markers and deploying them in vivo in humans.
Collapse
Affiliation(s)
- Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Ilona Lipp
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
95
|
Casella C, Kleban E, Rosser AE, Coulthard E, Rickards H, Fasano F, Metzler-Baddeley C, Jones DK. Multi-compartment analysis of the complex gradient-echo signal quantifies myelin breakdown in premanifest Huntington's disease. Neuroimage Clin 2021; 30:102658. [PMID: 33865029 PMCID: PMC8079666 DOI: 10.1016/j.nicl.2021.102658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/04/2022]
Abstract
White matter (WM) alterations have been identified as a relevant pathological feature of Huntington's disease (HD). Increasing evidence suggests that WM changes in this disorder are due to alterations in myelin-associated biological processes. Multi-compartmental analysis of the complex gradient-echo MRI signal evolution in WM has been shown to quantify myelin in vivo, therefore pointing to the potential of this technique for the study of WM myelin changes in health and disease. This study first characterized the reproducibility of metrics derived from the complex multi-echo gradient-recalled echo (mGRE) signal across the corpus callosum in healthy participants, finding highest reproducibility in the posterior callosal segment. Subsequently, the same analysis pipeline was applied in this callosal region in a sample of premanifest HD patients (n = 19) and age, sex and education matched healthy controls (n = 21). In particular, we focused on two myelin-associated derivatives: i. the myelin water signal fraction (fm), a parameter dependent on myelin content; and ii. The difference in frequency between myelin and intra-axonal water pools (Δω), a parameter dependent on the ratio between the inner and the outer axonal radii. fm was found to be lower in HD patients (β = -0.13, p = 0.03), while Δω did not show a group effect. Performance in tests of working memory, executive function, social cognition and movement was also assessed, and a greater age-related decline in executive function was detected in HD patients (β = -0.06, p = 0.006), replicating previous evidence of executive dysfunction in HD. Finally, the correlation between fm, executive function, and proximity to disease onset was explored in patients, and a positive correlation between executive function and fm was detected (r = 0.542; p = 0.02). This study emphasises the potential of complex mGRE signal analysis for aiding understanding of HD pathogenesis and progression. Moreover, expanding on evidence from pathology and animal studies, it provides novel in vivo evidence supporting myelin breakdown as an early feature of HD.
Collapse
Affiliation(s)
- Chiara Casella
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF 24 4HQ, UK.
| | - Elena Kleban
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF 24 4HQ, UK
| | - Anne E Rosser
- Department of Neurology and Psychological Medicine, Hayden Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | | | - Hugh Rickards
- Birmingham and Solihull Mental Health NHS Foundation Trust, 50 Summer Hill Road, Birmingham B1 3RB, UK; Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Fabrizio Fasano
- Siemens Healthcare Ltd, Camberly, UK; Siemens Healthcare GmbH, Erlangen, Germany
| | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF 24 4HQ, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF 24 4HQ, UK
| |
Collapse
|
96
|
Leddy S, Serra L, Esposito D, Vizzotto C, Giulietti G, Silvestri G, Petrucci A, Meola G, Lopiano L, Cercignani M, Bozzali M. Lesion distribution and substrate of white matter damage in myotonic dystrophy type 1: Comparison with multiple sclerosis. NEUROIMAGE-CLINICAL 2021; 29:102562. [PMID: 33516936 PMCID: PMC7848627 DOI: 10.1016/j.nicl.2021.102562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023]
Abstract
The supratentorial distribution of lesions is similar in DM1 and MS. Patients with DM1 do not show infratentorial lesions. Quantitative magnetization transfer supports the presence of demyelination in DM1 lesions, but not in the NAWM. Anterior temporal lobe lesions in DM1 might have a different substrate than periventricular ones.
Myotonic Dystrophy type 1 (DM1) is an autosomal dominant condition caused by expansion of the CTG triplet repeats within the myotonic dystrophy protein of the kinase (DMPK) gene. The central nervous system is involved in the disease, with multiple symptoms including cognitive impairment. A typical feature of DM1 is the presence of widespread white matter (WM) lesions, whose total volume is associated with CTG triplet expansion. The aim of this study was to characterize the distribution and pathological substrate of these lesions as well as the normal appearing WM (NAWM) using quantitative magnetization transfer (qMT) MRI, and comparing data from DM1 patients with those from patients with multiple sclerosis (MS). Twenty-eight patients with DM1, 29 patients with relapsing-remitting MS, and 15 healthy controls had an MRI scan, including conventional and qMT imaging. The average pool size ratio (F), a proxy of myelination, was computed within lesions and NAWM for every participant. The lesion masks were warped into MNI space and lesion probability maps were obtained for each patient group. The lesion distribution, total lesion load and the tissue-specific mean F were compared between groups. The supratentorial distribution of lesions was similar in the 2 patient groups, although mean lesion volume was higher in MS than DM1. DM1 presented higher prevalence of anterior temporal lobe lesions, but none in the cerebellum and brainstem. Significantly reduced F values were found within DM1 lesions, suggesting a loss of myelin density. While F was reduced in the NAWM of MS patients, it did not differ between DM1 and controls. Our results provide further evidence for a need to compare histology and imaging using new MRI techniques in DM1 patients, in order to further our understanding of the underlying disease process contributing to WM disease.
Collapse
Affiliation(s)
- Sara Leddy
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom; Brighton and Sussex University Hospital Trust, Brighton, United Kingdom
| | - Laura Serra
- Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Davide Esposito
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Camilla Vizzotto
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom
| | | | - Gabriella Silvestri
- Department of Neuroscience, Fondazione Policlinico Gemelli IRCCS, Università Cattolica del S. Cuore, Rome, Italy
| | - Antonio Petrucci
- UOC Neurologia e Neurofisiopatologia, AO San Camillo Forlanini, Rome, Italy
| | - Giovanni Meola
- Department of Neurorehabilitation Sciences, Casa di Cura Policlinico, Milan, Italy; Department of Biomedical Science for Health, University of Milan, Milan, Italy
| | - Leonardo Lopiano
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Mara Cercignani
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom; Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Marco Bozzali
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom; UOC Neurologia e Neurofisiopatologia, AO San Camillo Forlanini, Rome, Italy.
| |
Collapse
|
97
|
Wei Z, Jang H, Bydder GM, Yang W, Ma YJ. Fast T 1 measurement of cortical bone using 3D UTE actual flip angle imaging and single-TR acquisition (3D UTE-AFI-STR). Magn Reson Med 2021; 85:3290-3298. [PMID: 33404142 DOI: 10.1002/mrm.28655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To describe a new method for accurate T1 measurement of cortical bone that fits the data sets of both 3D UTE actual flip angle imaging (UTE-AFI) and UTE with a single TR (UTE-STR) simultaneously (UTE-AFI-STR). THEORY AND METHODS To make both the constant values and longitudinal mapping functions in the signal equations for UTE-AFI and UTE-STR identical, the same RF pulses and flip angles were used. Therefore, there were three unknowns in the three equations. This was sufficient to fit the data. Numerical simulation as well as ex vivo and in vivo cortical bone studies were performed to validate the T1 measurement accuracy with the UTE-AFI-STR method. The original UTE-AFI variable TR (VTR) (ie, combined UTE-AFI and UTE with VTR) and simultaneous fitting (sf) of UTE-AFI and UTE-VTR (sf-UTE-AFI-VTR) methods were performed for comparison. RESULTS The numerical simulation study showed that the UTE-AFI-STR method provided accurate value of T1 when the SNR of the UTE-STR image was higher than 40. The ex vivo study showed that the UTE-AFI-STR method measured the T1 of cortical bone accurately, with difference ratios ranging from -5.0% to 0.4%. The in vivo study showed a mean T1 of 246 ms with the UTE-AFI-STR method, and mean difference ratios of 2.4% and 5.0%, respectively, compared with the other two methods. CONCLUSION The 3D UTE-AFI-STR method provides accurate mapping of the T1 of cortical bone with improved time efficiency compared with the UTE-AFI-VTR/sf-UTE-AFI-VTR methods.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Radiology, University of California San Diego, San Diego, California, USA
- Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hyungseok Jang
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Graeme M Bydder
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Wenhui Yang
- Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, San Diego, California, USA
| |
Collapse
|
98
|
Mueller S, Scheffler K, Zaiss M. On the interference from agar in chemical exchange saturation transfer MRI parameter optimization in model solutions. NMR IN BIOMEDICINE 2021; 34:e4403. [PMID: 32929815 DOI: 10.1002/nbm.4403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI is currently set to become part of clinical routine as it enables indirect detection of low concentrated molecules and proteins. Recently, intermediate to fast exchanging functional groups of glucose and its derivatives, glutamate and dextran, have gained attention as promising CEST contrast agents. To increase the specificity of CEST MRI for certain functional groups, the presaturation module is commonly optimized. At an early stage, this is performed in well-defined model solutions, in which, for instance, the relaxation times are adjusted to mimic in vivo conditions. This often involves agar, assuming the substance would not yield significant CEST effects by itself, which the current study proves to be an invalid assumption. Model solutions at different pH values and concentrations of agar were investigated at different temperatures at a 9.4 T human whole body MR scanner. High power presaturation of around 4 μT, optimal for investigating intermediate to fast exchanging groups, was applied. Postprocessing included spatiotemporal corrections for B0 and spatial corrections for B1+ . CEST effects of up to 3 % of the bulk water signal were observed. From pH, concentration and temperature dependency, it was concluded that the observed behavior reflects a CEST effect of agar. It was also shown how to remove this undesirable contribution from CEST MRI data. It was concluded that if agar is involved in the CEST MRI parameter optimization process, its contribution to the observed effects has to be taken into account. CEST agent concentration must be sufficiently high to be able to neglect the contribution of agar, or a control sample at matched pH is necessary for correction. Experiments on pure agarose showed reduced CEST effects compared with agar but did not provide a neutral baseline either.
Collapse
Affiliation(s)
- Sebastian Mueller
- High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Klaus Scheffler
- High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- Department of Biomedical Magnetic Resonance, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Moritz Zaiss
- High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- Department of Neuroradiology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
99
|
Tan Z, Lam WW, Oakden W, Murray L, Koletar MM, Liu SK, Stanisz GJ. Saturation transfer properties of tumour xenografts derived from prostate cancer cell lines 22Rv1 and DU145. Sci Rep 2020; 10:21315. [PMID: 33277574 PMCID: PMC7718243 DOI: 10.1038/s41598-020-78353-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
Histopathology is currently the most reliable tool in assessing the aggressiveness and prognosis of solid tumours. However, developing non-invasive modalities for tumour evaluation remains crucial due to the side effects and complications caused by biopsy procedures. In this study, saturation transfer MRI was used to investigate the microstructural and metabolic properties of tumour xenografts in mice derived from the prostate cancer cell lines 22Rv1 and DU145, which express different aggressiveness. The magnetization transfer (MT) and chemical exchange saturation transfer (CEST) effects, which are associated with the microstructural and metabolic properties in biological tissue, respectively, were analyzed quantitatively and compared amongst different tumour types and regions. Histopathological staining was performed as a reference. Higher cellular density and metabolism expressed in more aggressive tumours (22Rv1) were associated with larger MT and CEST effects. High collagen content in the necrotic regions might explain their higher MT effects compared to tumour regions.
Collapse
Affiliation(s)
- Ziyu Tan
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wilfred W Lam
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Wendy Oakden
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Leedan Murray
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Stanley K Liu
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Greg J Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
100
|
López K, Neji R, Bustin A, Rashid I, Hajhosseiny R, Malik SJ, Teixeira RPAG, Razavi R, Prieto C, Roujol S, Botnar RM. Quantitative magnetization transfer imaging for non-contrast enhanced detection of myocardial fibrosis. Magn Reson Med 2020; 85:2069-2083. [PMID: 33201524 DOI: 10.1002/mrm.28577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop a novel gadolinium-free model-based quantitative magnetization transfer (qMT) technique to assess macromolecular changes associated with myocardial fibrosis. METHODS The proposed sequence consists of a two-dimensional breath-held dual shot interleaved acquisition of five MT-weighted (MTw) spoiled gradient echo images, with variable MT flip angles (FAs) and off-resonance frequencies. A two-pool exchange model and dictionary matching were used to quantify the pool size ratio (PSR) and bound pool T2 relaxation ( T 2 B ). The signal model was developed and validated using 25 MTw images on a bovine serum albumin (BSA) phantom and in vivo human thigh muscle. A protocol with five MTw images was optimized for single breath-hold cardiac qMT imaging. The proposed sequence was tested in 10 healthy subjects and 5 patients with myocardial fibrosis and compared to late gadolinium enhancement (LGE). RESULTS PSR values in the BSA phantom were within the confidence interval of previously reported values (concentration 10% BSA = 5.9 ± 0.1%, 15% BSA = 9.4 ± 0.2%). PSR and T 2 B in thigh muscle were also in agreement with literature (PSR = 10.9 ± 0.3%, T 2 B = 6.4 ± 0.4 us). In 10 healthy subjects, global left ventricular PSR was 4.30 ± 0.65%. In patients, PSR was reduced in areas associated with LGE (remote: 4.68 ± 0.70% vs. fibrotic: 3.12 ± 0.78 %, n = 5, P < .002). CONCLUSION In vivo model-based qMT mapping of the heart was performed for the first time, with promising results for non-contrast enhanced assessment of myocardial fibrosis.
Collapse
Affiliation(s)
- Karina López
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,MR Research Collaboration, Siemens Healthcare Limited, Frimley, UK
| | - Aurelien Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Imran Rashid
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Shaihan J Malik
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Rui Pedro A G Teixeira
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|