51
|
Papazoglou S, Ashtarayeh M, Oeschger JM, Callaghan MF, Does MD, Mohammadi S. Insights and improvements in correspondence between axonal volume fraction measured with diffusion-weighted MRI and electron microscopy. NMR IN BIOMEDICINE 2024; 37:e5070. [PMID: 38098204 PMCID: PMC11475374 DOI: 10.1002/nbm.5070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 02/17/2024]
Abstract
Biophysical diffusion-weighted imaging (DWI) models are increasingly used in neuroscience to estimate the axonal water fraction (f AW ), which in turn is key for noninvasive estimation of the axonal volume fraction (f A ). These models require thorough validation by comparison with a reference method, for example, electron microscopy (EM). While EM studies often neglect the unmyelinated axons and solely report the fraction of myelinated axons, in DWI both myelinated and unmyelinated axons contribute to the DWI signal. However, DWI models often include simplifications, for example, the neglect of differences in the compartmental relaxation times or fixed diffusivities, which in turn might affect the estimation off AW . We investigate whether linear calibration parameters (scaling and offset) can improve the comparability between EM- and DWI-based metrics off A . To this end, we (a) used six DWI models based on the so-called standard model of white matter (WM), including two models with fixed compartmental diffusivities (e.g., neurite orientation dispersion and density imaging, NODDI) and four models that fitted the compartmental diffusivities (e.g., white matter tract integrity, WMTI), and (b) used a multimodal data set including ex vivo diffusion DWI and EM data in mice with a broad dynamic range of fibre volume metrics. We demonstrated that the offset is associated with the volume fraction of unmyelinated axons and the scaling factor is associated with different compartmentalT 2 and can substantially enhance the comparability between EM- and DWI-based metrics off A . We found that DWI models that fitted compartmental diffusivities provided the most accurate estimates of the EM-basedf A . Finally, we introduced a more efficient hybrid calibration approach, where only the offset is estimated but the scaling is fixed to a theoretically predicted value. Using this approach, a similar one-to-one correspondence to EM was achieved for WMTI. The method presented can pave the way for use of validated DWI-based models in clinical research and neuroscience.
Collapse
Affiliation(s)
- Sebastian Papazoglou
- Department of Systems NeuroscienceUniversity Medical Center Hamburg–EppendorfHamburgGermany
- Max Planck Research Group MR PhysicsMax Planck Institute for Human DevelopmentBerlinGermany
| | - Mohammad Ashtarayeh
- Department of Systems NeuroscienceUniversity Medical Center Hamburg–EppendorfHamburgGermany
| | - Jan Malte Oeschger
- Department of Systems NeuroscienceUniversity Medical Center Hamburg–EppendorfHamburgGermany
| | - Martina F. Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Mark D. Does
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Electrical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Siawoosh Mohammadi
- Department of Systems NeuroscienceUniversity Medical Center Hamburg–EppendorfHamburgGermany
- Max Planck Research Group MR PhysicsMax Planck Institute for Human DevelopmentBerlinGermany
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
52
|
Wang J, Chen Z, Cai C, Cai S. Ultrafast diffusion tensor imaging based on deep learning and multi-slice information sharing. Phys Med Biol 2024; 69:035011. [PMID: 38211309 DOI: 10.1088/1361-6560/ad1d6d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Objective. Diffusion tensor imaging (DTI) is excellent for non-invasively quantifying tissue microstructure. Theoretically DTI can be achieved with six different diffusion weighted images and one reference image, but the tensor estimation accuracy is poor in this case. Increasing the number of diffusion directions has benefits for the tensor estimation accuracy, which results in long scan time and makes DTI sensitive to motion. It would be beneficial to decrease the scan time of DTI by using fewer diffusion-weighted images without compromising reconstruction quality.Approach. A novel DTI scan scheme was proposed to achieve fast DTI, where only three diffusion directions per slice was required under a specific direction switching manner, and a deep-learning based reconstruction method was utilized using multi-slice information sharing and correspondingT1-weighted image for high-quality DTI reconstruction. A network with two encoders developed from U-Net was implemented for better utilizing the diffusion data redundancy between neighboring slices. The method performed direct nonlinear mapping from diffusion-weighted images to diffusion tensor.Main results. The performance of the proposed method was verified on the Human Connectome Project public data and clinical patient data. High-quality mean diffusivity, fractional anisotropy, and directionally encoded colormap can be achieved with only three diffusion directions per slice.Significance. High-quality DTI-derived maps can be achieved in less than one minute of scan time. The great reduction of scan time will help push the wider application of DTI in clinical practice.
Collapse
Affiliation(s)
- Jiechao Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zunquan Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| | - Congbo Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
53
|
Amaral DG, Andrews DS, Nordahl CW. Structural Brain Imaging Biomarkers of Autism Spectrum Disorder. ADVANCES IN NEUROBIOLOGY 2024; 40:491-509. [PMID: 39562455 DOI: 10.1007/978-3-031-69491-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Since the early 1990s, there have literally been thousands of reports related to magnetic resonance imaging of the autistic brain. The goals of these studies have ranged from identifying the earliest biological predictors of an autistic diagnosis to determining brain systems most altered in autistic individuals. Some of the later works attempt to use distinct patterns of brain alterations to help define more homogenous subtypes of autism. Far less work has been done to identify brain changes that are associated with therapeutic interventions. In this chapter, we will touch on all of these efforts as they relate to the general topic of the usefulness of brain imaging as a biomarker of autism.
Collapse
Affiliation(s)
- David G Amaral
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and the Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA.
| | - Derek Sayre Andrews
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and the Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Christine Wu Nordahl
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and the Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
54
|
Nelson MC, Royer J, Lu WD, Leppert IR, Campbell JSW, Schiavi S, Jin H, Tavakol S, Vos de Wael R, Rodriguez-Cruces R, Pike GB, Bernhardt BC, Daducci A, Misic B, Tardif CL. The human brain connectome weighted by the myelin content and total intra-axonal cross-sectional area of white matter tracts. Netw Neurosci 2023; 7:1363-1388. [PMID: 38144691 PMCID: PMC10697181 DOI: 10.1162/netn_a_00330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/19/2023] [Indexed: 12/26/2023] Open
Abstract
A central goal in neuroscience is the development of a comprehensive mapping between structural and functional brain features, which facilitates mechanistic interpretation of brain function. However, the interpretability of structure-function brain models remains limited by a lack of biological detail. Here, we characterize human structural brain networks weighted by multiple white matter microstructural features including total intra-axonal cross-sectional area and myelin content. We report edge-weight-dependent spatial distributions, variance, small-worldness, rich club, hubs, as well as relationships with function, edge length, and myelin. Contrasting networks weighted by the total intra-axonal cross-sectional area and myelin content of white matter tracts, we find opposite relationships with functional connectivity, an edge-length-independent inverse relationship with each other, and the lack of a canonical rich club in myelin-weighted networks. When controlling for edge length, networks weighted by either fractional anisotropy, radial diffusivity, or neurite density show no relationship with whole-brain functional connectivity. We conclude that the co-utilization of structural networks weighted by total intra-axonal cross-sectional area and myelin content could improve our understanding of the mechanisms mediating the structure-function brain relationship.
Collapse
Affiliation(s)
- Mark C. Nelson
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Jessica Royer
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Wen Da Lu
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Ilana R. Leppert
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Jennifer S. W. Campbell
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Hyerang Jin
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Shahin Tavakol
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Reinder Vos de Wael
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Raul Rodriguez-Cruces
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - G. Bruce Pike
- Hotchkiss Brain Institute and Departments of Radiology and Clinical Neuroscience, University of Calgary, Calgary, Canada
| | - Boris C. Bernhardt
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | | | - Bratislav Misic
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Christine L. Tardif
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
55
|
Lehmann N, Aye N, Kaufmann J, Heinze HJ, Düzel E, Ziegler G, Taubert M. Changes in Cortical Microstructure of the Human Brain Resulting from Long-Term Motor Learning. J Neurosci 2023; 43:8637-8648. [PMID: 37875377 PMCID: PMC10727185 DOI: 10.1523/jneurosci.0537-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/08/2023] [Accepted: 09/04/2023] [Indexed: 10/26/2023] Open
Abstract
The mechanisms subserving motor skill acquisition and learning in the intact human brain are not fully understood. Previous studies in animals have demonstrated a causal relationship between motor learning and structural rearrangements of synaptic connections, raising the question of whether neurite-specific changes are also observable in humans. Here, we use advanced diffusion magnetic resonance imaging (MRI), sensitive to dendritic and axonal processes, to investigate neuroplasticity in response to long-term motor learning. We recruited healthy male and female human participants (age range 19-29) who learned a challenging dynamic balancing task (DBT) over four consecutive weeks. Diffusion MRI signals were fitted using Neurite Orientation Dispersion and Density Imaging (NODDI), a theory-driven biophysical model of diffusion, yielding measures of tissue volume, neurite density and the organizational complexity of neurites. While NODDI indices were unchanged and reliable during the control period, neurite orientation dispersion increased significantly during the learning period mainly in primary sensorimotor, prefrontal, premotor, supplementary, and cingulate motor areas. Importantly, reorganization of cortical microstructure during the learning phase predicted concurrent behavioral changes, whereas there was no relationship between microstructural changes during the control phase and learning. Changes in neurite complexity were independent of alterations in tissue density, cortical thickness, and intracortical myelin. Our results are in line with the notion that structural modulation of neurites is a key mechanism supporting complex motor learning in humans.SIGNIFICANCE STATEMENT The structural correlates of motor learning in the human brain are not fully understood. Results from animal studies suggest that synaptic remodeling (e.g., reorganization of dendritic spines) in sensorimotor-related brain areas is a crucial mechanism for the formation of motor memory. Using state-of-the-art diffusion magnetic resonance imaging (MRI), we found a behaviorally relevant increase in the organizational complexity of neocortical microstructure, mainly in primary sensorimotor, prefrontal, premotor, supplementary, and cingulate motor regions, following training of a challenging dynamic balancing task (DBT). Follow-up analyses suggested structural modulation of synapses as a plausible mechanism driving this increase, while colocalized changes in cortical thickness, tissue density, and intracortical myelin could not be detected. These results advance our knowledge about the neurobiological basis of motor learning in humans.
Collapse
Affiliation(s)
- Nico Lehmann
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Magdeburg 39104, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Norman Aye
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Magdeburg 39104, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University, Magdeburg 39120, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto von Guericke University, Magdeburg 39120, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Magdeburg 39106, Germany
- Leibniz-Institute for Neurobiology (LIN), Magdeburg 39118, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Magdeburg 39106, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg 39120, Germany
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg 39120, Germany
| | - Marco Taubert
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Magdeburg 39104, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Magdeburg 39106, Germany
| |
Collapse
|
56
|
He J, Zhang F, Pan Y, Feng Y, Rushmore J, Torio E, Rathi Y, Makris N, Kikinis R, Golby AJ, O'Donnell LJ. Reconstructing the somatotopic organization of the corticospinal tract remains a challenge for modern tractography methods. Hum Brain Mapp 2023; 44:6055-6073. [PMID: 37792280 PMCID: PMC10619402 DOI: 10.1002/hbm.26497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023] Open
Abstract
The corticospinal tract (CST) is a critically important white matter fiber tract in the human brain that enables control of voluntary movements of the body. The CST exhibits a somatotopic organization, which means that the motor neurons that control specific body parts are arranged in order within the CST. Diffusion magnetic resonance imaging (MRI) tractography is increasingly used to study the anatomy of the CST. However, despite many advances in tractography algorithms over the past decade, modern, state-of-the-art methods still face challenges. In this study, we compare the performance of six widely used tractography methods for reconstructing the CST and its somatotopic organization. These methods include constrained spherical deconvolution (CSD) based probabilistic (iFOD1) and deterministic (SD-Stream) methods, unscented Kalman filter (UKF) tractography methods including multi-fiber (UKF2T) and single-fiber (UKF1T) models, the generalized q-sampling imaging (GQI) based deterministic tractography method, and the TractSeg method. We investigate CST somatotopy by dividing the CST into four subdivisions per hemisphere that originate in the leg, trunk, hand, and face areas of the primary motor cortex. A quantitative and visual comparison is performed using diffusion MRI data (N = 100 subjects) from the Human Connectome Project. Quantitative evaluations include the reconstruction rate of the eight anatomical subdivisions, the percentage of streamlines in each subdivision, and the coverage of the white matter-gray matter (WM-GM) interface. CST somatotopy is further evaluated by comparing the percentage of streamlines in each subdivision to the cortical volumes for the leg, trunk, hand, and face areas. Overall, UKF2T has the highest reconstruction rate and cortical coverage. It is the only method with a significant positive correlation between the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex. However, our experimental results show that all compared tractography methods are biased toward generating many trunk streamlines (ranging from 35.10% to 71.66% of total streamlines across methods). Furthermore, the coverage of the WM-GM interface in the largest motor area (face) is generally low (under 40%) for all compared tractography methods. Different tractography methods give conflicting results regarding the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex, indicating that there is generally no clear relationship, and that reconstruction of CST somatotopy is still a large challenge. Overall, we conclude that while current tractography methods have made progress toward the well-known challenge of improving the reconstruction of the lateral projections of the CST, the overall problem of performing a comprehensive CST reconstruction, including clinically important projections in the lateral (hand and face areas) and medial portions (leg area), remains an important challenge for diffusion MRI tractography.
Collapse
Affiliation(s)
- Jianzhong He
- Institution of Information Processing and AutomationZhejiang University of TechnologyHangzhouChina
| | - Fan Zhang
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- University of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Yiang Pan
- Institution of Information Processing and AutomationZhejiang University of TechnologyHangzhouChina
| | - Yuanjing Feng
- Institution of Information Processing and AutomationZhejiang University of TechnologyHangzhouChina
| | - Jarrett Rushmore
- Departments of Psychiatry, Neurology and RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Erickson Torio
- Department of NeurosurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Nikos Makris
- Departments of Psychiatry, Neurology and RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Alexandra J. Golby
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurosurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lauren J. O'Donnell
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
57
|
Sairanen V, Andersson J. Outliers in diffusion-weighted MRI: Exploring detection models and mitigation strategies. Neuroimage 2023; 283:120397. [PMID: 37820862 DOI: 10.1016/j.neuroimage.2023.120397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Diffusion-weighted MRI (dMRI) is a medical imaging method that can be used to investigate the brain microstructure and structural connections between different brain regions. The method, however, requires relatively complex data processing frameworks and analysis pipelines. Many of these approaches are vulnerable to signal dropout artefacts that can originate from subjects moving their head during the scan. To combat these artefacts and eliminate such outliers, researchers have proposed two approaches: to replace outliers or to downweight outliers during modelling and analysis. With the rising interest in dMRI for clinical research, these types of corrections are increasingly important. Therefore, we set out to investigate the differences between outlier replacement and weighting approaches to help the dMRI community to select the best tool for their data processing pipelines. We evaluated dMRI motion correction registration and single tensor model fit pipelines using Gaussian Process and Spherical Harmonic based replacement approaches and outlier downweighting using highly realistic whole-brain simulations. As a proof of concept, we applied these approaches to dMRI infant data sets that contained varying numbers of dropout artefacts. Based on our results, we concluded that the Gaussian Process based outlier replacement provided similar tensor fit results to Gaussian Process based outlier detection and downweighting. Therefore, if only the least-squares estimate of the single tensor model is of interest, our recommendation is to use outlier replacement. However, outlier downweighting can potentially provide a more accurate estimate of the model precision which could be relevant for applications such as probabilistic tractoraphy.
Collapse
Affiliation(s)
- Viljami Sairanen
- Baby Brain Activity Center, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom; Department of Radiology, Kanta-Häme Central Hospital, Hämeenlinna, Finland.
| | - Jesper Andersson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| |
Collapse
|
58
|
Slator PJ, Cromb D, Jackson LH, Ho A, Counsell SJ, Story L, Chappell LC, Rutherford M, Hajnal JV, Hutter J, Alexander DC. Non-invasive mapping of human placenta microenvironments throughout pregnancy with diffusion-relaxation MRI. Placenta 2023; 144:29-37. [PMID: 37952367 DOI: 10.1016/j.placenta.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION In-vivo measurements of placental structure and function have the potential to improve prediction, diagnosis, and treatment planning for a wide range of pregnancy complications, such as fetal growth restriction and pre-eclampsia, and hence inform clinical decision making, ultimately improving patient outcomes. MRI is emerging as a technique with increased sensitivity to placental structure and function compared to the current clinical standard, ultrasound. METHODS We demonstrate and evaluate a combined diffusion-relaxation MRI acquisition and analysis pipeline on a sizable cohort of 78 normal pregnancies with gestational ages ranging from 15 + 5 to 38 + 4 weeks. Our acquisition comprises a combined T2*-diffusion MRI acquisition sequence - which is simultaneously sensitive to oxygenation, microstructure and microcirculation. We analyse our scans with a data-driven unsupervised machine learning technique, InSpect, that parsimoniously identifies distinct components in the data. RESULTS We identify and map seven potential placental microenvironments and reveal detailed insights into multiple microstructural and microcirculatory features of the placenta, and assess their trends across gestation. DISCUSSION By demonstrating direct observation of micro-scale placental structure and function, and revealing clear trends across pregnancy, our work contributes towards the development of robust imaging biomarkers for pregnancy complications and the ultimate goal of a normative model of placental development.
Collapse
Affiliation(s)
- Paddy J Slator
- Cardiff University Brain Research Imaging Centre, School of Psychology, Maindy Road, Cardiff, CF24 4HQ, UK; School of Computer Science and Informatics, Cardiff University, Cardiff, UK; Centre for Medical Image Computing and Department of Computer Science, University College London, London, UK.
| | - Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Laurence H Jackson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Alison Ho
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Lisa Story
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Lucy C Chappell
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Daniel C Alexander
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, UK
| |
Collapse
|
59
|
Lampinen B, Szczepankiewicz F, Lätt J, Knutsson L, Mårtensson J, Björkman-Burtscher IM, van Westen D, Sundgren PC, Ståhlberg F, Nilsson M. Probing brain tissue microstructure with MRI: principles, challenges, and the role of multidimensional diffusion-relaxation encoding. Neuroimage 2023; 282:120338. [PMID: 37598814 DOI: 10.1016/j.neuroimage.2023.120338] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diffusion MRI uses the random displacement of water molecules to sensitize the signal to brain microstructure and to properties such as the density and shape of cells. Microstructure modeling techniques aim to estimate these properties from acquired data by separating the signal between virtual tissue 'compartments' such as the intra-neurite and the extra-cellular space. A key challenge is that the diffusion MRI signal is relatively featureless compared with the complexity of brain tissue. Another challenge is that the tissue microstructure is wildly different within the gray and white matter of the brain. In this review, we use results from multidimensional diffusion encoding techniques to discuss these challenges and their tentative solutions. Multidimensional encoding increases the information content of the data by varying not only the b-value and the encoding direction but also additional experimental parameters such as the shape of the b-tensor and the echo time. Three main insights have emerged from such encoding. First, multidimensional data contradict common model assumptions on diffusion and T2 relaxation, and illustrates how the use of these assumptions cause erroneous interpretations in both healthy brain and pathology. Second, many model assumptions can be dispensed with if data are acquired with multidimensional encoding. The necessary data can be easily acquired in vivo using protocols optimized to minimize Cramér-Rao lower bounds. Third, microscopic diffusion anisotropy reflects the presence of axons but not dendrites. This insight stands in contrast to current 'neurite models' of brain tissue, which assume that axons in white matter and dendrites in gray matter feature highly similar diffusion. Nevertheless, as an axon-based contrast, microscopic anisotropy can differentiate gray and white matter when myelin alterations confound conventional MRI contrasts.
Collapse
Affiliation(s)
- Björn Lampinen
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden.
| | | | - Jimmy Lätt
- Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Linda Knutsson
- Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Johan Mårtensson
- Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, Lund, Sweden
| | - Isabella M Björkman-Burtscher
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Danielle van Westen
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Pia C Sundgren
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden; Lund University BioImaging Centre (LBIC), Lund University, Lund, Sweden
| | - Freddy Ståhlberg
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Markus Nilsson
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden
| |
Collapse
|
60
|
Weaver JM, DiPiero M, Rodrigues PG, Cordash H, Davidson RJ, Planalp EM, Dean DC. Automated motion artifact detection in early pediatric diffusion MRI using a convolutional neural network. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:10.1162/imag_a_00023. [PMID: 38344118 PMCID: PMC10854394 DOI: 10.1162/imag_a_00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Diffusion MRI (dMRI) is a widely used method to investigate the microstructure of the brain. Quality control (QC) of dMRI data is an important processing step that is performed prior to analysis using models such as diffusion tensor imaging (DTI) or neurite orientation dispersion and density imaging (NODDI). When processing dMRI data from infants and young children, where intra-scan motion is common, the identification and removal of motion artifacts is of the utmost importance. Manual QC of dMRI data is (1) time-consuming due to the large number of diffusion directions, (2) expensive, and (3) prone to subjective errors and observer variability. Prior techniques for automated dMRI QC have mostly been limited to adults or school-age children. Here, we propose a deep learning-based motion artifact detection tool for dMRI data acquired from infants and toddlers. The proposed framework uses a simple three-dimensional convolutional neural network (3DCNN) trained and tested on an early pediatric dataset of 2,276 dMRI volumes from 121 exams acquired at 1 month and 24 months of age. An average classification accuracy of 95% was achieved following four-fold cross-validation. A second dataset with different acquisition parameters and ages ranging from 2-36 months (consisting of 2,349 dMRI volumes from 26 exams) was used to test network generalizability, achieving 98% classification accuracy. Finally, to demonstrate the importance of motion artifact volume removal in a dMRI processing pipeline, the dMRI data were fit to the DTI and NODDI models and the parameter maps were compared with and without motion artifact removal.
Collapse
Affiliation(s)
- Jayse Merle Weaver
- Department of Medical Physics, University of Wisconsin–Madison, Madison, WI, United States
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Marissa DiPiero
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI, United States
| | | | - Hassan Cordash
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Richard J. Davidson
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
- Department of Psychology, University of Wisconsin–Madison, Madison, WI, United States
- Center for Healthy Minds, University of Wisconsin–Madison, Madison WI, United States
- Department of Psychiatry, University of Wisconsin–Madison, Madison, WI, United States
| | - Elizabeth M. Planalp
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
- Department of Medicine, University of Wisconsin–Madison, Madison, WI, United States
| | - Douglas C. Dean
- Department of Medical Physics, University of Wisconsin–Madison, Madison, WI, United States
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
61
|
Raspe J, Harder FN, Rupp S, McTavish S, Peeters JM, Weiss K, Makowski MR, Braren RF, Karampinos DC, Van AT. Retrospective Motion Artifact Reduction by Spatial Scaling of Liver Diffusion-Weighted Images. Tomography 2023; 9:1839-1856. [PMID: 37888738 PMCID: PMC10610678 DOI: 10.3390/tomography9050146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiac motion causes unpredictable signal loss in respiratory-triggered diffusion-weighted magnetic resonance imaging (DWI) of the liver, especially inside the left lobe. The left liver lobe may thus be frequently neglected in the clinical evaluation of liver DWI. In this work, a data-driven algorithm that relies on the statistics of the signal in the left liver lobe to mitigate the motion-induced signal loss is presented. The proposed data-driven algorithm utilizes the exclusion of severely corrupted images with subsequent spatially dependent image scaling based on a signal-loss model to correctly combine the multi-average diffusion-weighted images. The signal in the left liver lobe is restored and the liver signal is more homogeneous after applying the proposed algorithm. Furthermore, overestimation of the apparent diffusion coefficient (ADC) in the left liver lobe is reduced. The proposed algorithm can therefore contribute to reduce the motion-induced bias in DWI of the liver and help to increase the diagnostic value of DWI in the left liver lobe.
Collapse
Affiliation(s)
- Johannes Raspe
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
- School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Felix N. Harder
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| | - Selina Rupp
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| | - Sean McTavish
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| | | | - Kilian Weiss
- Philips GmbH Market DACH, 22335 Hamburg, Germany
| | - Marcus R. Makowski
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| | - Rickmer F. Braren
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| | - Dimitrios C. Karampinos
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| | - Anh T. Van
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany (D.C.K.); (A.T.V.)
| |
Collapse
|
62
|
Seyedmirzaei H, Nabizadeh F, Aarabi MH, Pini L. Neurite Orientation Dispersion and Density Imaging in Multiple Sclerosis: A Systematic Review. J Magn Reson Imaging 2023; 58:1011-1029. [PMID: 37042392 DOI: 10.1002/jmri.28727] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Diffusion-weighted imaging has been applied to investigate alterations in multiple sclerosis (MS). In the last years, advanced diffusion models were used to identify subtle changes and early lesions in MS. Among these models, neurite orientation dispersion and density imaging (NODDI) is an emerging approach, quantifying specific neurite morphology in both grey (GM) and white matter (WM) tissue and increasing the specificity of diffusion imaging. In this systematic review, we summarized the NODDI findings in MS. A search was conducted on PubMed, Scopus, and Embase, which yielded a total number of 24 eligible studies. Compared to healthy tissue, these studies identified consistent alterations in NODDI metrics involving WM (neurite density index), and GM lesions (neurite density index), or normal-appearing WM tissue (isotropic volume fraction and neurite density index). Despite some limitations, we pointed out the potential of NODDI in MS to unravel microstructural alterations. These results might pave the way to a deeper understanding of the pathophysiological mechanism of MS. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
| | | | | | - Lorenzo Pini
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| |
Collapse
|
63
|
DiPiero M, Cordash H, Prigge MB, King CK, Morgan J, Guerrero-Gonzalez J, Adluru N, King JB, Lange N, Bigler ED, Zielinski BA, Alexander AL, Lainhart JE, Dean DC. Tract- and gray matter- based spatial statistics show white matter and gray matter microstructural differences in autistic males. Front Neurosci 2023; 17:1231719. [PMID: 37829720 PMCID: PMC10565827 DOI: 10.3389/fnins.2023.1231719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental condition commonly studied in the context of early childhood. As ASD is a life-long condition, understanding the characteristics of brain microstructure from adolescence into adulthood and associations to clinical features is critical for improving outcomes across the lifespan. In the current work, we utilized Tract Based Spatial Statistics (TBSS) and Gray Matter Based Spatial Statistics (GBSS) to examine the white matter (WM) and gray matter (GM) microstructure in neurotypical (NT) and autistic males. Methods Multi-shell diffusion MRI was acquired from 78 autistic and 81 NT males (12-to-46-years) and fit to the DTI and NODDI diffusion models. TBSS and GBSS were performed to analyze WM and GM microstructure, respectively. General linear models were used to investigate group and age-related group differences. Within the ASD group, relationships between WM and GM microstructure and measures of autistic symptoms were investigated. Results All dMRI measures were significantly associated with age across WM and GM. Significant group differences were observed across WM and GM. No significant age-by-group interactions were detected. Within the ASD group, positive relationships with WM microstructure were observed with ADOS-2 Calibrated Severity Scores. Conclusion Using TBSS and GBSS our findings provide new insights into group differences of WM and GM microstructure in autistic males from adolescence into adulthood. Detection of microstructural differences across the lifespan as well as their relationship to the level of autistic symptoms will deepen to our understanding of brain-behavior relationships of ASD and may aid in the improvement of intervention options for autistic adults.
Collapse
Affiliation(s)
- Marissa DiPiero
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Hassan Cordash
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Molly B. Prigge
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | - Carolyn K. King
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | - Jubel Morgan
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | | | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jace B. King
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | - Nicholas Lange
- Department of Psychiatry, Harvard School of Medicine, Boston, MA, United States
| | - Erin D. Bigler
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, United States
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Brandon A. Zielinski
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
- Departments of Pediatrics and Neurology, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Andrew L. Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Janet E. Lainhart
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Douglas C. Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
64
|
Wagstyl K, Raznahan A. Subcortical Anatomy in Neurogenetic Disorders: New Findings and Future Questions. Am J Psychiatry 2023; 180:634-635. [PMID: 37654115 DOI: 10.1176/appi.ajp.20230555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, University College London, London (Wagstyl); Section on Developmental Neurogenomics, Human Genetics Branch, NIMH, Bethesda, Md. (Raznahan)
| | - Armin Raznahan
- Wellcome Centre for Human Neuroimaging, University College London, London (Wagstyl); Section on Developmental Neurogenomics, Human Genetics Branch, NIMH, Bethesda, Md. (Raznahan)
| |
Collapse
|
65
|
Schiavi S, Palombo M, Zacà D, Tazza F, Lapucci C, Castellan L, Costagli M, Inglese M. Mapping tissue microstructure across the human brain on a clinical scanner with soma and neurite density image metrics. Hum Brain Mapp 2023; 44:4792-4811. [PMID: 37461286 PMCID: PMC10400787 DOI: 10.1002/hbm.26416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/02/2023] [Accepted: 06/23/2023] [Indexed: 08/05/2023] Open
Abstract
Soma and neurite density image (SANDI) is an advanced diffusion magnetic resonance imaging biophysical signal model devised to probe in vivo microstructural information in the gray matter (GM). This model requires acquisitions that include b values that are at least six times higher than those used in clinical practice. Such high b values are required to disentangle the signal contribution of water diffusing in soma from that diffusing in neurites and extracellular space, while keeping the diffusion time as short as possible to minimize potential bias due to water exchange. These requirements have limited the use of SANDI only to preclinical or cutting-edge human scanners. Here, we investigate the potential impact of neglecting water exchange in the SANDI model and present a 10-min acquisition protocol that enables to characterize both GM and white matter (WM) on 3 T scanners. We implemented analytical simulations to (i) evaluate the stability of the fitting of SANDI parameters when diminishing the number of shells; (ii) estimate the bias due to potential exchange between neurites and extracellular space in such reduced acquisition scheme, comparing it with the bias due to experimental noise. Then, we demonstrated the feasibility and assessed the repeatability and reproducibility of our approach by computing microstructural metrics of SANDI with AMICO toolbox and other state-of-the-art models on five healthy subjects. Finally, we applied our protocol to five multiple sclerosis patients. Results suggest that SANDI is a practical method to characterize WM and GM tissues in vivo on performant clinical scanners.
Collapse
Affiliation(s)
- Simona Schiavi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
| | - Marco Palombo
- CUBRIC, School of PsychologyCardiff UniversityCardiffUK
- School of Computer Science and InformaticsCardiff UniversityCardiffUK
| | | | - Francesco Tazza
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
| | - Caterina Lapucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
- HNSR, IRRCS Ospedale Policlinico San MartinoGenoaItaly
| | - Lucio Castellan
- Department of NeuroradiologyIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Mauro Costagli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
- Laboratory of Medical Physics and Magnetic ResonanceIRCCS Stella MarisPisaItaly
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| |
Collapse
|
66
|
Barakovic M, Pizzolato M, Tax CMW, Rudrapatna U, Magon S, Dyrby TB, Granziera C, Thiran JP, Jones DK, Canales-Rodríguez EJ. Estimating axon radius using diffusion-relaxation MRI: calibrating a surface-based relaxation model with histology. Front Neurosci 2023; 17:1209521. [PMID: 37638307 PMCID: PMC10457121 DOI: 10.3389/fnins.2023.1209521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Axon radius is a potential biomarker for brain diseases and a crucial tissue microstructure parameter that determines the speed of action potentials. Diffusion MRI (dMRI) allows non-invasive estimation of axon radius, but accurately estimating the radius of axons in the human brain is challenging. Most axons in the brain have a radius below one micrometer, which falls below the sensitivity limit of dMRI signals even when using the most advanced human MRI scanners. Therefore, new MRI methods that are sensitive to small axon radii are needed. In this proof-of-concept investigation, we examine whether a surface-based axonal relaxation process could mediate a relationship between intra-axonal T2 and T1 times and inner axon radius, as measured using postmortem histology. A unique in vivo human diffusion-T1-T2 relaxation dataset was acquired on a 3T MRI scanner with ultra-strong diffusion gradients, using a strong diffusion-weighting (i.e., b = 6,000 s/mm2) and multiple inversion and echo times. A second reduced diffusion-T2 dataset was collected at various echo times to evaluate the model further. The intra-axonal relaxation times were estimated by fitting a diffusion-relaxation model to the orientation-averaged spherical mean signals. Our analysis revealed that the proposed surface-based relaxation model effectively explains the relationship between the estimated relaxation times and the histological axon radius measured in various corpus callosum regions. Using these histological values, we developed a novel calibration approach to predict axon radius in other areas of the corpus callosum. Notably, the predicted radii and those determined from histological measurements were in close agreement.
Collapse
Affiliation(s)
- Muhamed Barakovic
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Chantal M. W. Tax
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Umesh Rudrapatna
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
| | - Stefano Magon
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Tim B. Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Centre d’Imagerie Biomédicale (CIBM), EPFL, Lausanne, Switzerland
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
| | - Erick J. Canales-Rodríguez
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
67
|
Bresser T, Leerssen J, Hölsken S, Groote I, Foster-Dingley JC, van den Heuvel MP, Van Someren EJW. The role of brain white matter in depression resilience and response to sleep interventions. Brain Commun 2023; 5:fcad210. [PMID: 37554956 PMCID: PMC10406158 DOI: 10.1093/braincomms/fcad210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
Insomnia poses a high risk for depression. Brain mechanisms of sleep and mood improvement following cognitive behavioural therapy for insomnia remain elusive. This longitudinal study evaluated whether (i) individual differences in baseline brain white matter microstructure predict improvements and (ii) intervention affects brain white matter microstructure. People meeting the Diagnostic and Statistical Manual of Mental Disorders-5 criteria for Insomnia Disorder (n = 117) participated in a randomized controlled trial comparing 6 weeks of no treatment with therapist-guided digital cognitive behavioural therapy for insomnia, circadian rhythm support or their combination (cognitive behavioural therapy for insomnia + circadian rhythm support). Insomnia Severity Index and Inventory of Depressive Symptomatology-Self Report were assessed at baseline and followed up at Weeks 7, 26, 39 and 52. Diffusion-weighted magnetic resonance images were acquired at baseline and Week 7. Skeletonized white matter tracts, fractional anisotropy and mean diffusivity were quantified both tract-wise and voxel-wise using tract-based spatial statistics. Analyses used linear and mixed effect models while correcting for multiple testing using false discovery rate and Bonferroni for correlated endpoint measures. Our results show the following: (i) tract-wise lower fractional anisotropy in the left retrolenticular part of the internal capsule at baseline predicted both worse progression of depressive symptoms in untreated participants and more improvement in treated participants (fractional anisotropy × any intervention, PFDR = 0.053, Pcorr = 0.045). (ii) Only the cognitive behavioural therapy for insomnia + circadian rhythm support intervention induced a trend-level mean diffusivity decrease in the right superior corona radiata (PFDR = 0.128, Pcorr = 0.108), and individuals with a stronger mean diffusivity decrease showed a stronger alleviation of insomnia (R = 0.20, P = 0.035). In summary, individual differences in risk and treatment-supported resilience of depression involve white matter microstructure. Future studies could target the role of the left retrolenticular part of the internal capsule and right superior corona radiata and the brain areas they connect.
Collapse
Affiliation(s)
- Tom Bresser
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universtiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, VU University Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Jeanne Leerssen
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universtiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Stefanie Hölsken
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg Essen, 45122, Essen, Germany
| | - Inge Groote
- Computational Radiology and Artificial Intelligence (CRAI), Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0372, Oslo, Norway
- Department of Radiology, Vestfold Hospital Trust, 3116, Tønsberg, Norway
| | - Jessica C Foster-Dingley
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Martijn P van den Heuvel
- Department of Clinical Genetics, Amsterdam Neuroscience, VU University Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universtiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Psychiatry, Vrije Universtiteit Amsterdam, Amsterdam UMC, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
68
|
Kauppinen RA, Thothard J, Leskinen HPP, Pisharady PK, Manninen E, Kettunen M, Lenglet C, Gröhn OHJ, Garwood M, Nissi MJ. Axon fiber orientation as the source of T 1 relaxation anisotropy in white matter: A study on corpus callosum in vivo and ex vivo. Magn Reson Med 2023; 90:708-721. [PMID: 37145027 DOI: 10.1002/mrm.29667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE Recent studies indicate that T1 in white matter (WM) is influenced by fiber orientation in B0 . The purpose of the study was to investigate the interrelationships between axon fiber orientation in corpus callosum (CC) and T1 relaxation time in humans in vivo as well as in rat brain ex vivo. METHODS Volunteers were scanned for relaxometric and diffusion MRI at 3 T and 7 T. Angular T1 plots from WM were computed using fractional anisotropy and fiber-to-field-angle maps. T1 and fiber-to-field angle were measured in five sections of CC to estimate the effects of inherently varying fiber orientations on T1 within the same tracts in vivo. Ex vivo rat-brain preparation encompassing posterior CC was rotated in B0 and T1 , and diffusion MRI images acquired at 9.4 T. T1 angular plots were determined at several rotation angles in B0 . RESULTS Angular T1 plots from global WM provided reference for estimated fiber orientation-linked T1 changes within CC. In anterior midbody of CC in vivo, where small axons are dominantly present, a shift in axon orientation is accompanied by a change in T1 , matching that estimated from WM T1 data. In CC, where large and giant axons are numerous, the measured T1 change is about 2-fold greater than the estimated one. Ex vivo rotation of the same midsagittal CC region of interest produced angular T1 plots at 9.4 T, matching those observed at 7 T in vivo. CONCLUSION These data causally link axon fiber orientation in B0 to the T1 relaxation anisotropy in WM.
Collapse
Affiliation(s)
- Risto A Kauppinen
- Department of Electric and Electronic Engineering, University of Bristol, Bristol, UK
| | - Jeromy Thothard
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Henri P P Leskinen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Pramod K Pisharady
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eppu Manninen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Mikko Kettunen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Olli H J Gröhn
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Michael Garwood
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mikko J Nissi
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
69
|
Nishat E, Stojanovski S, Scratch SE, Ameis SH, Wheeler AL. Premature white matter microstructure in female children with a history of concussion. Dev Cogn Neurosci 2023; 62:101275. [PMID: 37441978 PMCID: PMC10439504 DOI: 10.1016/j.dcn.2023.101275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/18/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Childhood concussion may interfere with neurodevelopment and influence cognition. Females are more likely to experience persistent symptoms after concussion, yet the sex-specific impact of concussion on brain microstructure in children is understudied. This study examined white matter and cortical microstructure, based on neurite density (ND) from diffusion-weighted MRI, in 9-to-10-year-old children in the Adolescent Brain Cognitive Development Study with (n = 336) and without (n = 7368) a history of concussion, and its relationship with cognitive performance. Multivariate regression was used to investigate relationships between ND and group, sex, and age in deep and superficial white matter, subcortical structures, and cortex. Partial least square correlation was performed to identify associations between ND and performance on NIH Toolbox tasks in children with concussion. All tissue types demonstrated higher ND with age, reflecting brain maturation. Group comparisons revealed higher ND in deep and superficial white matter in females with concussion. In female but not male children with concussion, there were significant associations between ND and performance on cognitive tests. These results demonstrate a greater long-term impact of childhood concussion on white matter microstructure in females compared to males that is associated with cognitive function. The increase in ND in females may reflect premature white matter maturation.
Collapse
Affiliation(s)
- Eman Nishat
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Sonja Stojanovski
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Shannon E Scratch
- Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1V7, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario M4G 1R8, Canada
| | - Stephanie H Ameis
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5T 1R8, Canada; Cundill Centre for Child and Youth Depression, Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada
| | - Anne L Wheeler
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.
| |
Collapse
|
70
|
Hu C, Grech‐Sollars M, Statton B, Li Z, Gao F, Williams GR, Parker GJM, Zhou F. Direct jet coaxial electrospinning of axon-mimicking fibers for diffusion tensor imaging. POLYM ADVAN TECHNOL 2023; 34:2573-2584. [PMID: 38505514 PMCID: PMC10946859 DOI: 10.1002/pat.6073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/01/2023] [Accepted: 04/16/2023] [Indexed: 03/21/2024]
Abstract
Hollow polymer microfibers with variable microstructural and hydrophilic properties were proposed as building elements to create axon-mimicking phantoms for validation of diffusion tensor imaging (DTI). The axon-mimicking microfibers were fabricated in a mm-thick 3D anisotropic fiber strip, by direct jet coaxial electrospinning of PCL/polysiloxane-based surfactant (PSi) mixture as shell and polyethylene oxide (PEO) as core. Hydrophilic PCL-PSi fiber strips were first obtained by carefully selecting appropriate solvents for the core and appropriate fiber collector rotating and transverse speeds. The porous cross-section and anisotropic orientation of axon-mimicking fibers were then quantitatively evaluated using two ImageJ plugins-nearest distance (ND) and directionality based on their scanning electron microscopy (SEM) images. Third, axon-mimicking phantom was constructed from PCL-PSi fiber strips with variable porous-section and fiber orientation and tested on a 3T clinical MR scanner. The relationship between DTI measurements (mean diffusivity [MD] and fractional anisotropy [FA]) of phantom samples and their pore size and fiber orientation was investigated. Two key microstructural parameters of axon-mimicking phantoms including normalized pore distance and dispersion of fiber orientation could well interpret the variations in DTI measurements. Two PCL-PSi phantom samples made from different regions of the same fiber strips were found to have similar MD and FA values, indicating that the direct jet coaxial electrospun fiber strips had consistent microstructure. More importantly, the MD and FA values of the developed axon-mimicking phantoms were mostly in the biologically relevant range.
Collapse
Affiliation(s)
- Chunyan Hu
- College of Textiles and ClothingQingdao UniversityQingdaoChina
| | - Matthew Grech‐Sollars
- Department of Computer ScienceUniversity College LondonLondonUK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Ben Statton
- Medical Research Council, London Institute of Medical SciencesImperial College LondonLondonUK
| | - Zhanxiong Li
- College of Textile and Clothing EngineeringSoochow UniversitySuzhouChina
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | | | - Geoff J. M. Parker
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Bioxydyn LimitedManchesterUK
| | - Feng‐Lei Zhou
- College of Textiles and ClothingQingdao UniversityQingdaoChina
- School of PharmacyUniversity College LondonLondonUK
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
71
|
Ulloa P, Methot V, Wottschel V, Koch MA. Extra-axonal contribution to double diffusion encoding-based pore size estimates in the corticospinal tract. MAGMA (NEW YORK, N.Y.) 2023; 36:589-612. [PMID: 36745290 PMCID: PMC10468962 DOI: 10.1007/s10334-022-01058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To study the origin of compartment size overestimation in double diffusion encoding MRI (DDE) in vivo experiments in the human corticospinal tract. Here, the extracellular space is hypothesized to be the origin of the DDE signal. By exploiting the DDE sensitivity to pore shape, it could be possible to identify the origin of the measured signal. The signal difference between parallel and perpendicular diffusion gradient orientation can indicate if a compartment is regular or eccentric in shape. As extracellular space can be considered an eccentric compartment, a positive difference would mean a high contribution to the compartment size estimates. MATERIALS AND METHODS Computer simulations using MISST and in vivo experiments in eight healthy volunteers were performed. DDE experiments using a double spin-echo preparation with eight perpendicular directions were measured in vivo. The difference between parallel and perpendicular gradient orientations was analyzed using a Wilcoxon signed-rank test and a Mann-Whitney U test. RESULTS Simulations and MR experiments showed a statistically significant difference between parallel and perpendicular diffusion gradient orientation signals ([Formula: see text]). CONCLUSION The results suggest that the DDE-based size estimate may be considerably influenced by the extra-axonal compartment. However, the experimental results are also consistent with purely intra-axonal contributions in combination with a large fiber orientation dispersion.
Collapse
Affiliation(s)
- Patricia Ulloa
- Institute of Medical Engineering, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| | - Vincent Methot
- Institute of Medical Engineering, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| | - Viktor Wottschel
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, De Boelelaan 1117, 1081, Amsterdam, The Netherlands
| | - Martin A. Koch
- Institute of Medical Engineering, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| |
Collapse
|
72
|
Delinte N, Dricot L, Macq B, Gosse C, Van Reybroeck M, Rensonnet G. Unraveling multi-fixel microstructure with tractography and angular weighting. Front Neurosci 2023; 17:1199568. [PMID: 37351427 PMCID: PMC10282555 DOI: 10.3389/fnins.2023.1199568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
Recent advances in MRI technology have enabled richer multi-shell sequences to be implemented in diffusion MRI, allowing the investigation of both the microscopic and macroscopic organization of the brain white matter and its complex network of neural fibers. The emergence of advanced diffusion models has enabled a more detailed analysis of brain microstructure by estimating the signal received from a voxel as the combination of responses from multiple fiber populations. However, disentangling the individual microstructural properties of different macroscopic white matter tracts where those pathways intersect remains a challenge. Several approaches have been developed to assign microstructural properties to macroscopic streamlines, but often present shortcomings. ROI-based heuristics rely on averages that are not tract-specific. Global methods solve a computationally-intensive global optimization but prevent the use of microstructural properties not included in the model and often require restrictive hypotheses. Other methods use atlases that might not be adequate in population studies where the shape of white matter tracts varies significantly between patients. We introduce UNRAVEL, a framework combining the microscopic and macroscopic scales to unravel multi-fixel microstructure by utilizing tractography. The framework includes commonly-used heuristics as well as a new algorithm, estimating the microstructure of a specific white matter tract with angular weighting. Our framework grants considerable freedom as the inputs required, a set of streamlines defining a tract and a multi-fixel diffusion model estimated in each voxel, can be defined by the user. We validate our approach on synthetic data and in vivo data, including a repeated scan of a subject and a population study of children with dyslexia. In each case, we compare the estimation of microstructural properties obtained with angular weighting to other commonly-used approaches. Our framework provides estimations of the microstructure at the streamline level, volumetric maps for visualization and mean microstructural values for the whole tract. The angular weighting algorithm shows increased accuracy, robustness to uncertainties in its inputs and maintains similar or better reproducibility compared to commonly-used analysis approaches. UNRAVEL will provide researchers with a flexible and open-source tool enabling them to study the microstructure of specific white matter pathways with their diffusion model of choice.
Collapse
Affiliation(s)
- Nicolas Delinte
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Institute of NeuroScience, Université Catholique de Louvain, Brussels, Belgium
| | - Laurence Dricot
- Institute of NeuroScience, Université Catholique de Louvain, Brussels, Belgium
| | - Benoit Macq
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Claire Gosse
- Institute of NeuroScience, Université Catholique de Louvain, Brussels, Belgium
- Psychological Sciences Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marie Van Reybroeck
- Institute of NeuroScience, Université Catholique de Louvain, Brussels, Belgium
- Psychological Sciences Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Gaetan Rensonnet
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
73
|
Reekes TH, Ledbetter CR, Alexander JS, Stokes KY, Pardue S, Bhuiyan MAN, Patterson JC, Lofton KT, Kevil CG, Disbrow EA. Elevated plasma sulfides are associated with cognitive dysfunction and brain atrophy in human Alzheimer's disease and related dementias. Redox Biol 2023; 62:102633. [PMID: 36924684 PMCID: PMC10026043 DOI: 10.1016/j.redox.2023.102633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Emerging evidence indicates that vascular stress is an important contributor to the pathophysiology of Alzheimer's disease and related dementias (ADRD). Hydrogen sulfide (H2S) and its metabolites (acid-labile (e.g., iron-sulfur clusters) and bound (e.g., per-, poly-) sulfides) have been shown to modulate both vascular and neuronal homeostasis. We recently reported that elevated plasma sulfides were associated with cognitive dysfunction and measures of microvascular disease in ADRD. Here we extend our previous work to show associations between elevated sulfides and magnetic resonance-based metrics of brain atrophy and white matter integrity. Elevated bound sulfides were associated with decreased grey matter volume, while increased acid labile sulfides were associated with decreased white matter integrity and greater ventricular volume. These findings are consistent with alterations in sulfide metabolism in ADRD which may represent maladaptive responses to oxidative stress.
Collapse
Affiliation(s)
- Tyler H Reekes
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Shreveport, United States; Center for Brain Health, LSU Health Shreveport, United States
| | - Christina R Ledbetter
- Center for Brain Health, LSU Health Shreveport, United States; Department of Neurosurgery, LSU Health Shreveport, United States
| | - J Steven Alexander
- Center for Brain Health, LSU Health Shreveport, United States; Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Neurology, LSU Health Shreveport, United States; Department of Molecular and Cellular Physiology, LSU Health Shreveport, United States
| | - Karen Y Stokes
- Center for Brain Health, LSU Health Shreveport, United States; Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Molecular and Cellular Physiology, LSU Health Shreveport, United States
| | - Sibile Pardue
- Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Pathology and Translational Pathobiology, LSU Health Shreveport, United States
| | | | - James C Patterson
- Center for Brain Health, LSU Health Shreveport, United States; Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, United States
| | - Katelyn T Lofton
- Center for Brain Health, LSU Health Shreveport, United States; Department of Neurology, LSU Health Shreveport, United States; Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, United States
| | - Christopher G Kevil
- Center for Brain Health, LSU Health Shreveport, United States; Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Pathology and Translational Pathobiology, LSU Health Shreveport, United States.
| | - Elizabeth A Disbrow
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Shreveport, United States; Center for Brain Health, LSU Health Shreveport, United States; Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Neurology, LSU Health Shreveport, United States.
| |
Collapse
|
74
|
Stellingwerff MD, Pouwels PJW, Roosendaal SD, Barkhof F, van der Knaap MS. Quantitative MRI in leukodystrophies. Neuroimage Clin 2023; 38:103427. [PMID: 37150021 PMCID: PMC10193020 DOI: 10.1016/j.nicl.2023.103427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Leukodystrophies constitute a large and heterogeneous group of genetic diseases primarily affecting the white matter of the central nervous system. Different disorders target different white matter structural components. Leukodystrophies are most often progressive and fatal. In recent years, novel therapies are emerging and for an increasing number of leukodystrophies trials are being developed. Objective and quantitative metrics are needed to serve as outcome measures in trials. Quantitative MRI yields information on microstructural properties, such as myelin or axonal content and condition, and on the chemical composition of white matter, in a noninvasive fashion. By providing information on white matter microstructural involvement, quantitative MRI may contribute to the evaluation and monitoring of leukodystrophies. Many distinct MR techniques are available at different stages of development. While some are already clinically applicable, others are less far developed and have only or mainly been applied in healthy subjects. In this review, we explore the background, current status, potential and challenges of available quantitative MR techniques in the context of leukodystrophies.
Collapse
Affiliation(s)
- Menno D Stellingwerff
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Child Neurology, Emma Children's Hospital, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Petra J W Pouwels
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Stefan D Roosendaal
- Amsterdam UMC Location University of Amsterdam, Department of Radiology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; University College London, Institutes of Neurology and Healthcare Engineering, London, UK
| | - Marjo S van der Knaap
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Child Neurology, Emma Children's Hospital, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; Vrije Universiteit Amsterdam, Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, De Boelelaan 1105, Amsterdam, the Netherlands.
| |
Collapse
|
75
|
Pan Z, Ma X, Dai E, Auerbach EJ, Guo H, Uğurbil K, Wu X. Reconstruction for 7T high-resolution whole-brain diffusion MRI using two-stage N/2 ghost correction and L1-SPIRiT without single-band reference. Magn Reson Med 2023; 89:1915-1930. [PMID: 36594439 PMCID: PMC9992311 DOI: 10.1002/mrm.29573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE To combine a new two-stage N/2 ghost correction and an adapted L1-SPIRiT method for reconstruction of 7T highly accelerated whole-brain diffusion MRI (dMRI) using only autocalibration scans (ACS) without the need of additional single-band reference (SBref) scans. METHODS The proposed ghost correction consisted of a 3-line reference approach in stage 1 and the reference-free entropy method in stage 2. The adapted L1-SPIRiT method was formulated within the 3D k-space framework. Its efficacy was examined by acquiring two dMRI data sets at 1.05-mm isotropic resolutions with a total acceleration of 6 or 9 (i.e., 2-fold or 3-fold slice and 3-fold in-plane acceleration). Diffusion analysis was performed to derive DTI metrics and estimate fiber orientation distribution functions (fODFs). The results were compared with those of 3D k-space GRAPPA using only ACS, all in reference to 3D k-space GRAPPA using both ACS and SBref (serving as a reference). RESULTS The proposed ghost correction eliminated artifacts more robustly than conventional approaches. Our adapted L1-SPIRiT method outperformed 3D k-space GRAPPA when using only ACS, improving image quality to what was achievable with 3D k-space GRAPPA using both ACS and SBref scans. The improvement in image quality further resulted in an improvement in estimation performances for DTI and fODFs. CONCLUSION The combination of our new ghost correction and adapted L1-SPIRiT method can reliably reconstruct 7T highly accelerated whole-brain dMRI without the need of SBref scans, increasing acquisition efficiency and reducing motion sensitivity.
Collapse
Affiliation(s)
- Ziyi Pan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaodong Ma
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Erpeng Dai
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Edward J. Auerbach
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
76
|
Tax CM, Genc S, MacIver CL, Nilsson M, Wardle M, Szczepankiewicz F, Jones DK, Peall KJ. Ultra-strong diffusion-weighted MRI reveals cerebellar grey matter abnormalities in movement disorders. Neuroimage Clin 2023; 38:103419. [PMID: 37192563 PMCID: PMC10199248 DOI: 10.1016/j.nicl.2023.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/28/2023] [Accepted: 04/23/2023] [Indexed: 05/18/2023]
Abstract
Structural brain MRI has proven invaluable in understanding movement disorder pathophysiology. However, most work has focused on grey/white matter volumetric (macrostructural) and white matter microstructural effects, limiting understanding of frequently implicated grey matter microstructural differences. Using ultra-strong spherical tensor encoding diffusion-weighted MRI, a persistent MRI signal was seen in healthy cerebellar grey matter even at high diffusion-weightings (b ≥ 10,000 s/mm2). Quantifying the proportion of this signal (denoted fs), previously ascertained to originate from inside small spherical spaces, provides a potential proxy for cell body density. In this work, this approach was applied for the first time to a clinical cohort, including patients with diagnosed movement disorders in which the cerebellum has been implicated in symptom pathophysiology. Five control participants (control group 1, median age 24.5 years (20-39 years), imaged at two timepoints, demonstrated consistency in measurement of all three measures - MD (Mean Diffusivity) fs, and Ds (dot diffusivity)- with intraclass correlation coefficients (ICC) of 0.98, 0.86 and 0.76, respectively. Comparison with an older control group (control group 2 (n = 5), median age 51 years (43-58 years)) found no significant differences, neither with morphometric nor microstructural (MD (p = 0.36), fs (p = 0.17) and Ds (p = 0.22)) measures. The movement disorder cohort (Parkinson's Disease, n = 5, dystonia, n = 5. Spinocerebellar Ataxia 6, n = 5) when compared to the age-matched control cohort (Control Group 2) identified significantly lower MD (p < 0.0001 and p < 0.0001) and higher fs values (p < 0.0001 and p < 0.0001) in SCA6 and dystonia cohorts respectively. Lobar division of the cerebellum found these same differences in the superior and inferior posterior lobes, while no differences were seen in either the anterior lobes or with Ds measurements. In contrast to more conventional measures from diffusion tensor imaging, this framework provides enhanced specificity to differences in restricted spherical spaces in grey matter (including small cells) by eliminating signals from cerebrospinal fluid and axons. In the context of human and animal histopathology studies, these findings potentially implicate the cerebellar Purkinje and granule cells as contributors to the observed signal differences, with both cell types having been implicated in several neurological disorders through both postmortem and animal model studies. This novel microstructural imaging approach shows promise for improving movement disorder diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Chantal M.W. Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, UK
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Claire L MacIver
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Markus Nilsson
- Diagnostic Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Mark Wardle
- Cardiff and Vale University Health Board, University Hospital of Wales Cardiff, Heath Park, Cardiff, UK
| | - Filip Szczepankiewicz
- Diagnostic Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
- Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Kathryn J. Peall
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
77
|
Corp DT, Morrison-Ham J, Jinnah HA, Joutsa J. The functional anatomy of dystonia: Recent developments. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:105-136. [PMID: 37482390 DOI: 10.1016/bs.irn.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
While dystonia has traditionally been viewed as a disorder of the basal ganglia, the involvement of other key brain structures is now accepted. However, just what these structures are remains to be defined. Neuroimaging has been an especially valuable tool in dystonia, yet traditional cross-sectional designs have not been able to separate causal from compensatory brain activity. Therefore, this chapter discusses recent studies using causal brain lesions, and animal models, to converge upon the brain regions responsible for dystonia with increasing precision. This evidence strongly implicates the basal ganglia, thalamus, brainstem, cerebellum, and somatosensory cortex, yet shows that different types of dystonia involve different nodes of this brain network. Nearly all of these nodes fall within the recently identified two-way networks connecting the basal ganglia and cerebellum, suggesting dysfunction of these specific pathways. Localisation of the functional anatomy of dystonia has strong implications for targeted treatment options, such as deep brain stimulation, and non-invasive brain stimulation.
Collapse
Affiliation(s)
- Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States.
| | - Jordan Morrison-Ham
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Juho Joutsa
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States; Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Centre, Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
78
|
Trofimova O, Latypova A, DiDomenicantonio G, Lutti A, de Lange AMG, Kliegel M, Stringhini S, Marques-Vidal P, Vaucher J, Vollenweider P, Strippoli MPF, Preisig M, Kherif F, Draganski B. Topography of associations between cardiovascular risk factors and myelin loss in the ageing human brain. Commun Biol 2023; 6:392. [PMID: 37037939 PMCID: PMC10086032 DOI: 10.1038/s42003-023-04741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Our knowledge of the mechanisms underlying the vulnerability of the brain's white matter microstructure to cardiovascular risk factors (CVRFs) is still limited. We used a quantitative magnetic resonance imaging (MRI) protocol in a single centre setting to investigate the cross-sectional association between CVRFs and brain tissue properties of white matter tracts in a large community-dwelling cohort (n = 1104, age range 46-87 years). Arterial hypertension was associated with lower myelin and axonal density MRI indices, paralleled by higher extracellular water content. Obesity showed similar associations, though with myelin difference only in male participants. Associations between CVRFs and white matter microstructure were observed predominantly in limbic and prefrontal tracts. Additional genetic, lifestyle and psychiatric factors did not modulate these results, but moderate-to-vigorous physical activity was linked to higher myelin content independently of CVRFs. Our findings complement previously described CVRF-related changes in brain water diffusion properties pointing towards myelin loss and neuroinflammation rather than neurodegeneration.
Collapse
Affiliation(s)
- Olga Trofimova
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Adeliya Latypova
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Giulia DiDomenicantonio
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ann-Marie G de Lange
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Matthias Kliegel
- Department of Psychology, University of Geneva, Geneva, Switzerland
| | - Silvia Stringhini
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Julien Vaucher
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie-Pierre F Strippoli
- Center for Research in Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martin Preisig
- Center for Research in Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
79
|
Vandeloo KL, Burhunduli P, Bouix S, Owsia K, Cho KIK, Fang Z, Van Geel A, Pasternak O, Blier P, Phillips JL. Free-Water Diffusion Magnetic Resonance Imaging Differentiates Suicidal Ideation From Suicide Attempt in Treatment-Resistant Depression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:471-481. [PMID: 36906445 PMCID: PMC11421579 DOI: 10.1016/j.bpsc.2022.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/21/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Suicide attempt is highly prevalent in treatment-resistant depression (TRD); however, the neurobiological profile of suicidal ideation versus suicide attempt is unclear. Neuroimaging methods including diffusion magnetic resonance imaging-based free-water imaging may identify neural correlates underlying suicidal ideation and attempts in individuals with TRD. METHODS Diffusion magnetic resonance imaging data were obtained from 64 male and female participants (mean age 44.5 ± 14.2 years), including 39 patients with TRD (n = 21 and lifetime history of suicidal ideation but no attempts [SI group]; n = 18 with lifetime history of suicide attempt [SA group]), and 25 age- and sex-matched healthy control participants. Depression and suicidal ideation severity were examined using clinician-rated and self-report measures. Whole-brain neuroimaging analysis was conducted using tract-based spatial statistics via FSL to identify differences in white matter microstructure in the SI versus SA groups and in patients versus control participants. RESULTS Free-water imaging revealed elevated axial diffusivity and extracellular free water in fronto-thalamo-limbic white matter tracts of the SA group compared with the SI group. In a separate comparison, patients with TRD had widespread reductions in fractional anisotropy and axial diffusivity, as well as elevated radial diffusivity compared with control participants (thresholded p < .05, familywise error corrected). CONCLUSIONS A unique neural signature consisting of elevated axial diffusivity and free water was identified in patients with TRD and suicide attempt history. Findings of reduced fractional anisotropy, axial diffusivity, and elevated radial diffusivity in patients versus control participants are consistent with previously published studies. Multimodal and prospective investigations are recommended to better understand biological correlates of suicide attempt in TRD.
Collapse
Affiliation(s)
- Katie L Vandeloo
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Patricia Burhunduli
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sylvain Bouix
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kimia Owsia
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zhuo Fang
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Amanda Van Geel
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pierre Blier
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| | - Jennifer L Phillips
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
80
|
Sabidussi ER, Klein S, Jeurissen B, Poot DHJ. dtiRIM: A generalisable deep learning method for diffusion tensor imaging. Neuroimage 2023; 269:119900. [PMID: 36702213 DOI: 10.1016/j.neuroimage.2023.119900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Diffusion weighted MRI is an indispensable tool for routine patient screening and diagnostics of pathology. Recently, several deep learning methods have been proposed to quantify diffusion parameters, but poor generalisation to new data prevents broader use of these methods, as they require retraining of the neural network for each new scan protocol. In this work, we present the dtiRIM, a new deep learning method for Diffusion Tensor Imaging (DTI) based on the Recurrent Inference Machines. Thanks to its ability to learn how to solve inverse problems and to use the diffusion tensor model to promote data consistency, the dtiRIM can generalise to variations in the acquisition settings. This enables a single trained network to produce high quality tensor estimates for a variety of cases. We performed extensive validation of our method using simulation and in vivo data, and compared it to the Iterated Weighted Linear Least Squares (IWLLS), the approach of the state-of-the-art MRTrix3 software, and to an implementation of the Maximum Likelihood Estimator (MLE). Our results show that dtiRIM predictions present low dependency on tissue properties, anatomy and scanning parameters, with results comparable to or better than both IWLLS and MLE. Further, we demonstrate that a single dtiRIM model can be used for a diversity of data sets without significant loss in quality, representing, to our knowledge, the first generalisable deep learning based solver for DTI.
Collapse
Affiliation(s)
- E R Sabidussi
- Erasmus MC University Medical Center, Department of Radiology and Nuclear Medicine, Rotterdam, the Netherlands.
| | - S Klein
- Erasmus MC University Medical Center, Department of Radiology and Nuclear Medicine, Rotterdam, the Netherlands
| | - B Jeurissen
- imec-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium; Lab for Equilibrium Investigations and Aerospace, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - D H J Poot
- Erasmus MC University Medical Center, Department of Radiology and Nuclear Medicine, Rotterdam, the Netherlands
| |
Collapse
|
81
|
Warner W, Palombo M, Cruz R, Callaghan R, Shemesh N, Jones DK, Dell'Acqua F, Ianus A, Drobnjak I. Temporal Diffusion Ratio (TDR) for imaging restricted diffusion: Optimisation and pre-clinical demonstration. Neuroimage 2023; 269:119930. [PMID: 36750150 PMCID: PMC7615244 DOI: 10.1016/j.neuroimage.2023.119930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023] Open
Abstract
Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general.
Collapse
Affiliation(s)
- William Warner
- Centre for Medical Image Computing (CMIC), Computer Science Department, University College London, United Kingdom
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom; School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | - Renata Cruz
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Flavio Dell'Acqua
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Andrada Ianus
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
| | - Ivana Drobnjak
- Centre for Medical Image Computing (CMIC), Computer Science Department, University College London, United Kingdom.
| |
Collapse
|
82
|
Li X, Rangelov D, Mattingley JB, Oestreich L, Lévy-Bencheton D, O'Sullivan MJ. White matter microstructure is associated with the precision of visual working memory. Neuroimage 2023; 272:120069. [PMID: 37003445 DOI: 10.1016/j.neuroimage.2023.120069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Visual working memory is critical for goal-directed behaviour as it maintains continuity between previous and current visual input. Functional neuroimaging studies have shown that visual working memory relies on communication between distributed brain regions, which implies an important role for long-range white matter connections in visual working memory performance. Here, we characterised the relationship between the microstructure of white matter association tracts and the precision of visual working memory representations. To that purpose, we devised a delayed estimation task which required participants to reproduce visual features along a continuous scale. A sample of 80 healthy adults performed the task and underwent diffusion-weighted MRI. We applied mixture distribution modelling to quantify the precision of working memory representations, swap errors, and guess rates, all of which contribute to observed responses. Latent components of microstructural properties in sets of anatomical tracts were identified by principal component analysis. We found an interdependency between fibre coherence in the bilateral SLF I, SLF II, and SLF III, on one hand, and the bilateral IFOF, on the other, in mediating the precision of visual working memory in a functionally specific manner. We also found that individual differences in axonal density in a network comprising the bilateral ILF and SLF III and right SLF II, in combination with a supporting network located elsewhere in the brain, form a common system for visual working memory to modulate response precision, swap errors, and random guess rates.
Collapse
Affiliation(s)
- Xuqian Li
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
| | - Dragan Rangelov
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia; School of Psychology, The University of Queensland, Brisbane, Australia; Canadian Institute for Advanced Research, Toronto, Canada
| | - Lena Oestreich
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | | | - Michael J O'Sullivan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
83
|
Cabeen RP, Toga AW, Allman JM. Mapping frontoinsular cortex from diffusion microstructure. Cereb Cortex 2023; 33:2715-2733. [PMID: 35753692 PMCID: PMC10016069 DOI: 10.1093/cercor/bhac237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022] Open
Abstract
We developed a novel method for mapping the location, surface area, thickness, and volume of frontoinsular cortex (FI) using structural and diffusion magnetic resonance imaging. FI lies in the ventral part of anterior insular cortex and is characterized by its distinctive population von Economo neurons (VENs). Functional neuroimaging studies have revealed its involvement in affective processing, and histopathology has implicated VEN loss in behavioral-variant frontotemporal dementia and chronic alcoholism; however, structural neuroimaging of FI has been relatively limited. We delineated FI by jointly modeling cortical surface geometry and its coincident diffusion microstructure parameters. We found that neurite orientation dispersion in cortical gray matter can be used to map FI in specific individuals, and the derived measures reflect a range of behavioral factors in young adults from the Human Connectome Project (N=1052). FI volume was larger in the left hemisphere than the right (31%), and the percentage volume of FI was larger in women than men (15.3%). FI volume was associated with measures of decision-making (delay discounting, substance abuse), emotion (negative intrusive thinking and perception of hostility), and social behavior (theory of mind and working memory for faces). The common denominator is that larger FI size is related to greater self-control and social awareness.
Collapse
Affiliation(s)
- Ryan P Cabeen
- Laboratory of Neuro Imaging, USC Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, United States
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, United States
| | - John M Allman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| |
Collapse
|
84
|
Huber E, Corrigan NM, Yarnykh VL, Ferjan Ramírez N, Kuhl PK. Language Experience during Infancy Predicts White Matter Myelination at Age 2 Years. J Neurosci 2023; 43:1590-1599. [PMID: 36746626 PMCID: PMC10008053 DOI: 10.1523/jneurosci.1043-22.2023] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
Parental input is considered a key predictor of language achievement during the first years of life, yet relatively few studies have assessed the effects of parental language input and parent-infant interactions on early brain development. We examined the relationship between measures of parent and child language, obtained from naturalistic home recordings at child ages 6, 10, 14, 18, and 24 months, and estimates of white matter myelination, derived from quantitative MRI at age 2 years (mean = 26.30 months, SD = 1.62, N = 22). Analysis of the white matter focused on dorsal pathways associated with expressive language development and long-term language ability, namely, the left arcuate fasciculus (AF) and superior longitudinal fasciculus (SLF). Frequency of parent-infant conversational turns (CT) uniquely predicted myelin density estimates in both the AF and SLF. Moreover, the effect of CT remained significant while controlling for total adult speech and child speech-related utterances, suggesting a specific role for interactive language experience, rather than simply speech exposure or production. An exploratory analysis of 18 additional tracts, including the right AF and SLF, indicated a high degree of anatomic specificity. Longitudinal analyses of parent and child language variables indicated an effect of CT as early as 6 months of age, as well as an ongoing effect over infancy. Together, these results link parent-infant conversational turns to white matter myelination at age 2 years, and suggest that early, interactive experiences with language uniquely contribute to the development of white matter associated with long-term language ability.SIGNIFICANCE STATEMENT Children's earliest experiences with language are thought to have profound and lasting developmental effects. Recent studies suggest that intervention can increase the quality of parental language input and improve children's learning outcomes. However, important questions remain about the optimal timing of intervention, and the relationship between specific aspects of language experience and brain development. We report that parent-infant turn-taking during home language interactions correlates with myelination of language related white matter pathways through age 2 years. Effects were independent of total speech exposure and infant vocalizations and evident starting at 6 months of age, suggesting that structured language interactions throughout infancy may uniquely support the ongoing development of brain systems critical to long-term language ability.
Collapse
Affiliation(s)
- Elizabeth Huber
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington 98195
| | - Neva M Corrigan
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington 98195
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, Washington 98195
| | - Naja Ferjan Ramírez
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Linguistics, University of Washington, Seattle, Washington 98195
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington 98195
| |
Collapse
|
85
|
Lv J, Zeng R, Ho MP, D'Souza A, Calamante F. Building a tissue-unbiased brain template of fiber orientation distribution and tractography with multimodal registration. Magn Reson Med 2023; 89:1207-1220. [PMID: 36299169 PMCID: PMC10952616 DOI: 10.1002/mrm.29496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/07/2022] [Accepted: 09/30/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE Brain templates provide an essential standard space for statistical analysis of brain structure and function. Despite recent advances, diffusion MRI still lacks a template of fiber orientation distribution (FOD) and tractography that is unbiased for both white and gray matter. Therefore, we aim to build up a set of such templates for better white-matter analysis and joint structural and functional analysis. METHODS We have developed a multimodal registration method to leverage the complementary information captured by T1 -weighted, T2 -weighted, and diffusion MRI, so that a coherent transformation is generated to register FODs into a common space and average them into a template. Consequently, the anatomically constrained fiber-tracking method was applied to the FOD template to generate a tractography template. Fiber-centered functional connectivity analysis was then performed as an example of the benefits of such an unbiased template. RESULTS Our FOD template preserves fine structural details in white matter and also, importantly, clear folding patterns in the cortex and good contrast in the subcortex. Quantitatively, our templates show better individual-template agreement at the whole-brain scale and segmentation scale. The tractography template aligns well with the gray matter, which led to fiber-centered functional connectivity showing high cross-group consistency. CONCLUSION We have proposed a novel methodology for building a tissue-unbiased FOD and anatomically constrained tractography template based on multimodal registration. Our templates provide a standard space and statistical platform for not only white-matter analysis but also joint structural and functional analysis, therefore filling an important gap in multimodal neuroimage analysis.
Collapse
Affiliation(s)
- Jinglei Lv
- School of Biomedical EngineeringThe University of Sydney
SydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
| | - Rui Zeng
- School of Biomedical EngineeringThe University of Sydney
SydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
| | - Mai Phuong Ho
- School of Biomedical EngineeringThe University of Sydney
SydneyNew South WalesAustralia
| | - Arkiev D'Souza
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
- Translational Research Collective, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Fernando Calamante
- School of Biomedical EngineeringThe University of Sydney
SydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
- Sydney ImagingThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
86
|
Wichtmann BD, Fan Q, Eskandarian L, Witzel T, Attenberger UI, Pieper CC, Schad L, Rosen BR, Wald LL, Huang SY, Nummenmaa A. Linear multi-scale modeling of diffusion MRI data: A framework for characterization of oriented structures across length scales. Hum Brain Mapp 2023; 44:1496-1514. [PMID: 36477997 PMCID: PMC9921225 DOI: 10.1002/hbm.26143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 12/12/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DW-MRI) has evolved to provide increasingly sophisticated investigations of the human brain's structural connectome in vivo. Restriction spectrum imaging (RSI) is a method that reconstructs the orientation distribution of diffusion within tissues over a range of length scales. In its original formulation, RSI represented the signal as consisting of a spectrum of Gaussian diffusion response functions. Recent technological advances have enabled the use of ultra-high b-values on human MRI scanners, providing higher sensitivity to intracellular water diffusion in the living human brain. To capture the complex diffusion time dependence of the signal within restricted water compartments, we expand upon the RSI approach to represent restricted water compartments with non-Gaussian response functions, in an extended analysis framework called linear multi-scale modeling (LMM). The LMM approach is designed to resolve length scale and orientation-specific information with greater specificity to tissue microstructure in the restricted and hindered compartments, while retaining the advantages of the RSI approach in its implementation as a linear inverse problem. Using multi-shell, multi-diffusion time DW-MRI data acquired with a state-of-the-art 3 T MRI scanner equipped with 300 mT/m gradients, we demonstrate the ability of the LMM approach to distinguish different anatomical structures in the human brain and the potential to advance mapping of the human connectome through joint estimation of the fiber orientation distributions and compartment size characteristics.
Collapse
Affiliation(s)
- Barbara D. Wichtmann
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
- Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
| | - Qiuyun Fan
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics EngineeringTianjin UniversityTianjinChina
| | - Laleh Eskandarian
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
| | | | - Ulrike I. Attenberger
- Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
| | - Claus C. Pieper
- Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
| | - Lothar Schad
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Bruce R. Rosen
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
| | - Lawrence L. Wald
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Susie Y. Huang
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Aapo Nummenmaa
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
| |
Collapse
|
87
|
DiPiero M, Rodrigues PG, Gromala A, Dean DC. Applications of advanced diffusion MRI in early brain development: a comprehensive review. Brain Struct Funct 2023; 228:367-392. [PMID: 36585970 PMCID: PMC9974794 DOI: 10.1007/s00429-022-02605-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Brain development follows a protracted developmental timeline with foundational processes of neurodevelopment occurring from the third trimester of gestation into the first decade of life. Defining structural maturational patterns of early brain development is a critical step in detecting divergent developmental trajectories associated with neurodevelopmental and psychiatric disorders that arise later in life. While considerable advancements have already been made in diffusion magnetic resonance imaging (dMRI) for pediatric research over the past three decades, the field of neurodevelopment is still in its infancy with remarkable scientific and clinical potential. This comprehensive review evaluates the application, findings, and limitations of advanced dMRI methods beyond diffusion tensor imaging, including diffusion kurtosis imaging (DKI), constrained spherical deconvolution (CSD), neurite orientation dispersion and density imaging (NODDI) and composite hindered and restricted model of diffusion (CHARMED) to quantify the rapid and dynamic changes supporting the underlying microstructural architectural foundations of the brain in early life.
Collapse
Affiliation(s)
- Marissa DiPiero
- Department of Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Alyssa Gromala
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
88
|
Zhang C, Yuan Y, Sang T, Yu L, Yu Y, Liu X, Zhou W, Zeng Q, Wang J, Peng G, Feng Y. Local white matter abnormalities in Parkinson's disease with mild cognitive impairment: Assessed with neurite orientation dispersion and density imaging. J Neurosci Res 2023; 101:1154-1169. [PMID: 36854050 DOI: 10.1002/jnr.25179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/06/2022] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
Mild cognitive impairment is a nonmotor complication in Parkinson's disease (PD) that have a high risk of developing dementia. White matter is associated with cognitive function in PD and the alterations may occur before the symptoms of the disease. Previous diffusion tensor imaging (DTI) studies lacked specificity to characterize the concrete contributions of distinct white matter tissue properties. This may lead to inconsistent conclusions about the alteration of white matter microstructure. Here, we used neurite orientation dispersion and density imaging (NODDI) and white matter fiber clustering method to uncover local white matter microstructures in PD with mild cognitive impairment (PD-MCI). This study included 23 PD-MCI and 20 PD with normal cognition (PD-NC) and 21 healthy controls (HC). To probe specific and fine-grained differences, metrics of NODDI and DTI in white matter fiber clusters were evaluated using along-tract analysis. Our results showed that PD-MCI patients had significantly lower neurite density index (NDI) and orientation dispersion index (ODI) in white matter fiber clusters in the prefrontal region. Correlation analysis and receiver operating characteristic (ROC) analysis revealed that the diagnostic performance of NODDI-derived metrics in cingulum bundle (2 clusters) and thalamo-frontal (2 clusters) were superior to DTI metrics. Our study provides a more specific insight to uncover local white matter abnormalities in PD-MCI, which benefit understanding the underlying mechanism of cognitive decline in PD and predicting the disease in advance.
Collapse
Affiliation(s)
- Chengzhe Zhang
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuan Yuan
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian Sang
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Lihua Yu
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Yu
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyang Zhou
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Qingrun Zeng
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jingqiang Wang
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanjing Feng
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
89
|
High frequency conductivity decomposition by solving physically constraint underdetermined inverse problem in human brain. Sci Rep 2023; 13:3273. [PMID: 36841894 PMCID: PMC9968322 DOI: 10.1038/s41598-023-30344-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
The developed magnetic resonance electrical properties tomography (MREPT) can visualize the internal conductivity distribution at Larmor frequency by measuring the B1 transceive phase data from magnetic resonance imaging (MRI). The recovered high-frequency conductivity (HFC) value is highly complex and heterogeneous in a macroscopic imaging voxel. Using high and low b-value diffusion weighted imaging (DWI) data, the multi-compartment spherical mean technique (MC-SMT) characterizes the water molecule movement within and between intra- and extra-neurite compartments by analyzing the microstructures and underlying architectural organization of brain tissues. The proposed method decomposes the recovered HFC into the conductivity values in the intra- and extra-neurite compartments via the recovered intra-neurite volume fraction (IVF) and the diffusion patterns using DWI data. As a form of decomposition of intra- and extra-neurite compartments, the problem to determine the intra- and extra-neurite conductivity values from the HFC is still an underdetermined inverse problem. To solve the underdetermined problem, we use the compartmentalized IVF as a criterion to decompose the electrical properties because the ion-concentration and mobility have different characteristics in the intra- and extra-neurite compartments. The proposed method determines a representative apparent intra- and extra-neurite conductivity values by changing the underdetermined equation for a voxel into an over-determined minimization problem over a local window consisting of surrounding voxels. To suppress the noise amplification and estimate a feasible conductivity, we define a diffusion pattern distance to weight the over-determined system in the local window. To quantify the proposed method, we conducted a simulation experiment. The simulation experiments show the relationships between the noise reduction and the spatial resolution depending on the designed local window sizes and diffusion pattern distance. Human brain experiments (five young healthy volunteers and a patient with brain tumor) were conducted to evaluate and validate the reliability of the proposed method. To quantitatively compare the results with previously developed methods, we analyzed the errors for reconstructed extra-neurite conductivity using existing methods and indirectly verified the feasibility of the proposed method.
Collapse
|
90
|
Pizzolato M, Canales-Rodríguez EJ, Andersson M, Dyrby TB. Axial and radial axonal diffusivities and radii from single encoding strongly diffusion-weighted MRI. Med Image Anal 2023; 86:102767. [PMID: 36867913 DOI: 10.1016/j.media.2023.102767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/13/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
We enable the estimation of the per-axon axial diffusivity from single encoding, strongly diffusion-weighted, pulsed gradient spin echo data. Additionally, we improve the estimation of the per-axon radial diffusivity compared to estimates based on spherical averaging. The use of strong diffusion weightings in magnetic resonance imaging (MRI) allows to approximate the signal in white matter as the sum of the contributions from only axons. At the same time, spherical averaging leads to a major simplification of the modeling by removing the need to explicitly account for the unknown distribution of axonal orientations. However, the spherically averaged signal acquired at strong diffusion weightings is not sensitive to the axial diffusivity, which cannot therefore be estimated although needed for modeling axons - especially in the context of multi-compartmental modeling. We introduce a new general method for the estimation of both the axial and radial axonal diffusivities at strong diffusion weightings based on kernel zonal modeling. The method could lead to estimates that are free from partial volume bias with gray matter or other isotropic compartments. The method is tested on publicly available data from the MGH Adult Diffusion Human Connectome project. We report reference values of axonal diffusivities based on 34 subjects, and derive estimates of axonal radii from only two shells. The estimation problem is also addressed from the angle of the required data preprocessing, the presence of biases related to modeling assumptions, current limitations, and future possibilities.
Collapse
Affiliation(s)
- Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.
| | | | - Mariam Andersson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Tim B Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
91
|
Singh AP, Jain VS, Yu JPJ. Diffusion radiomics for subtyping and clustering in autism spectrum disorder: A preclinical study. Magn Reson Imaging 2023; 96:116-125. [PMID: 36496097 PMCID: PMC9815912 DOI: 10.1016/j.mri.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorder (ASD) is a highly prevalent, heterogenous neurodevelopmental disorder. Neuroimaging methods such as functional, structural, and diffusion MRI have been used to identify candidate imaging biomarkers for ASD, but current findings remain non-specific and likely arise from the heterogeneity present in ASD. To account for this, efforts to subtype ASD have emerged as a potential strategy for both the study of ASD and advancement of tailored behavioral therapies and therapeutics. Towards these ends, to improve upon current neuroimaging methods, we propose combining biologically sensitive neurite orientation dispersion and density index (NODDI) diffusion MR imaging with radiomics image processing to create a new methodological approach that, we hypothesize, can sensitively and specifically capture neurobiology. We demonstrate this method can sensitively distinguish differences between four genetically distinct rat models of ASD (Fmr1, Pten, Nrxn1, Disc1). Further, we demonstrate diffusion radiomic analyses hold promise for subtyping in ASD as we show unsupervised clustering of NODDI radiomic data generates clusters specific to the underlying genetic differences between the animal models. Taken together, our findings suggest the unique application of radiomic analysis on NODDI diffusion MRI may have the capacity to sensitively and specifically disambiguate the neurobiological heterogeneity present in the ASD population.
Collapse
Affiliation(s)
- Ajay P Singh
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.; Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vansh S Jain
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - John-Paul J Yu
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
92
|
Margoni M, Pagani E, Preziosa P, Palombo M, Gueye M, Azzimonti M, Filippi M, Rocca MA. In vivo quantification of brain soma and neurite density abnormalities in multiple sclerosis. J Neurol 2023; 270:433-445. [PMID: 36153468 DOI: 10.1007/s00415-022-11386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Soma and neurite density imaging (SANDI) is a new biophysical model that incorporates soma in addition to neurite density, thus possibly providing more specific information about the complex pathological processes of multiple sclerosis (MS). PURPOSE To discriminate the pathological abnormalities of MS white matter (WM) lesions, normal-appearing (NA) WM and cortex and to evaluate the associations among SANDI-derived measures, clinical disability, and conventional MRI variables. METHODS Twenty healthy controls (HC) and 23 MS underwent a 3 T brain MRI. Using SANDI on diffusion-weighted sequence, the fractions of neurite (fneurite) and soma (fsoma) were assessed in WM lesions, NAWM, and cortex. RESULTS Compared to HC WM, MS NAWM showed lower fneurite (false discovery rate [FDR]-p = 0.011). In MS patients, WM lesions showed lower fneurite and fsoma compared to both HC and MS NAWM (FDR-p < 0.001 for all). In the cortex, MS patients had lower fneurite and fsoma compared to HC (FDR-p ≤ 0.009). Compared to both HC and RRMS, PMS patients had lower fneurite in NAWM (vs HC: FDR-p < 0.001; vs RRMS: FDR-p = 0.003) and cortex (vs HC: FDR-p < 0.001; vs RRMS: p = 0.031, not surviving FDR correction), and lower cortical fsoma (vs HC: FDR-p < 0.001; vs RRMS: FDR-p = 0.009). Compared to HC, PMS also showed a higher fsoma in NAWM (FDR-p = 0.015). Fneurite and fsoma in the different brain compartments were correlated with age, phenotype, disease duration, disability, WM lesion volumes, normalized brain, cortical, and WM volumes (r from - 0.761 to 0.821, FDR-p ≤ 0.4). CONCLUSIONS SANDI may represent a clinically relevant model to discriminate different neurodegenerative phenomena that gradually accumulate through MS disease course.
Collapse
Affiliation(s)
- Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Mor Gueye
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Azzimonti
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Assunta Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
93
|
Chakwizira A, Westin C, Brabec J, Lasič S, Knutsson L, Szczepankiewicz F, Nilsson M. Diffusion MRI with pulsed and free gradient waveforms: Effects of restricted diffusion and exchange. NMR IN BIOMEDICINE 2023; 36:e4827. [PMID: 36075110 PMCID: PMC10078514 DOI: 10.1002/nbm.4827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 05/06/2023]
Abstract
Monitoring time dependence with diffusion MRI yields observables sensitive to compartment sizes (restricted diffusion) and membrane permeability (water exchange). However, restricted diffusion and exchange have opposite effects on the diffusion-weighted signal, which can lead to errors in parameter estimates. In this work, we propose a signal representation that incorporates the effects of both restricted diffusion and exchange up to second order in b-value and is compatible with gradient waveforms of arbitrary shape. The representation features mappings from a gradient waveform to two scalars that separately control the sensitivity to restriction and exchange. We demonstrate that these scalars span a two-dimensional space that can be used to choose waveforms that selectively probe restricted diffusion or exchange, eliminating the correlation between the two phenomena. We found that waveforms with specific but unconventional shapes provide an advantage over conventional pulsed and oscillating gradient acquisitions. We also show that parametrization of waveforms into a two-dimensional space can be used to understand protocols from other approaches that probe restricted diffusion and exchange. For example, we found that the variation of mixing time in filter-exchange imaging corresponds to variation of our exchange-weighting scalar at a fixed value of the restriction-weighting scalar. The proposed signal representation was evaluated using Monte Carlo simulations in identical parallel cylinders with hexagonal and random packing as well as parallel cylinders with gamma-distributed radii. Results showed that the approach is sensitive to sizes in the interval 4-12 μm and exchange rates in the simulated range of 0 to 20 s - 1 , but also that there is a sensitivity to the extracellular geometry. The presented theory constitutes a simple and intuitive description of how restricted diffusion and exchange influence the signal as well as a guide to protocol design capable of separating the two effects.
Collapse
Affiliation(s)
- Arthur Chakwizira
- Department of Medical Radiation Physics, LundLund UniversityLundSweden
| | - Carl‐Fredrik Westin
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jan Brabec
- Department of Medical Radiation Physics, LundLund UniversityLundSweden
| | - Samo Lasič
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital ‐ Amager and HvidovreCopenhagenDenmark
- Random Walk Imaging ABLundSweden
| | - Linda Knutsson
- Department of Medical Radiation Physics, LundLund UniversityLundSweden
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- F. M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
| | | | - Markus Nilsson
- Department of Clinical Sciences Lund, RadiologyLund UniversityLundSweden
| |
Collapse
|
94
|
Kraguljac NV, Guerreri M, Strickland MJ, Zhang H. Neurite Orientation Dispersion and Density Imaging in Psychiatric Disorders: A Systematic Literature Review and a Technical Note. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:10-21. [PMID: 36712566 PMCID: PMC9874146 DOI: 10.1016/j.bpsgos.2021.12.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 02/01/2023] Open
Abstract
While major psychiatric disorders lack signature diagnostic neuropathologies akin to dementias, classic postmortem studies have established microstructural involvement, i.e., cellular changes in neurons and glia, as a key pathophysiological finding. Advanced magnetic resonance imaging techniques allow mapping of cellular tissue architecture and microstructural abnormalities in vivo, which holds promise for advancing our understanding of the pathophysiology underlying psychiatric disorders. Here, we performed a systematic review of case-control studies using neurite orientation dispersion and density imaging (NODDI) to assess brain microstructure in psychiatric disorders and a selective review of technical considerations in NODDI. Of the 584 potentially relevant articles, 18 studies met the criteria to be included in this systematic review. We found a general theme of abnormal gray and white matter microstructure across the diagnostic spectrum. We also noted significant variability in patterns of neurite density and fiber orientation within and across diagnostic groups, as well as associations between brain microstructure and phenotypical variables. NODDI has been successfully used to detect subtle microstructure abnormalities in patients with psychiatric disorders. Given that NODDI indices may provide a more direct link to pathophysiological processes, this method may not only contribute to advancing our mechanistic understanding of disease processes, it may also be well positioned for next-generation biomarker development studies.
Collapse
Affiliation(s)
- Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michele Guerreri
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - Molly Jordan Strickland
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hui Zhang
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
95
|
DiPiero MA, Surgent OJ, Travers BG, Alexander AL, Lainhart JE, Dean Iii DC. Gray matter microstructure differences in autistic males: A gray matter based spatial statistics study. Neuroimage Clin 2022; 37:103306. [PMID: 36587584 PMCID: PMC9817031 DOI: 10.1016/j.nicl.2022.103306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/29/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition. Understanding the brain's microstructure and its relationship to clinical characteristics is important to advance our understanding of the neural supports underlying ASD. In the current work, we implemented Gray-Matter Based Spatial Statistics (GBSS) to examine and characterize cortical microstructure and assess differences between typically developing (TD) and autistic males. METHODS A multi-shell diffusion MRI (dMRI) protocol was acquired from 83 TD and 70 autistic males (5-to-21-years) and fit to the DTI and NODDI models. GBSS was performed for voxelwise analysis of cortical gray matter (GM). General linear models were used to investigate group differences, while age-by-group interactions assessed age-related differences between groups. Within the ASD group, relationships between cortical microstructure and measures of autistic symptoms were investigated. RESULTS All dMRI measures were significantly associated with age across the GM skeleton. Group differences and age-by-group interactions are reported. Group-wise increases in neurite density in autistic individuals were observed across frontal, temporal, and occipital regions of the right hemisphere. Significant age-by-group interactions of neurite density were observed within the middle frontal gyrus, precentral gyrus, and frontal pole. Negative relationships between neurite dispersion and the ADOS-2 Calibrated Severity Scores (CSS) were observed within the ASD group. DISCUSSION Findings demonstrate group and age-related differences between groups in neurite density in ASD across right-hemisphere brain regions supporting cognitive processes. Results provide evidence of altered neurodevelopmental processes affecting GM microstructure in autistic males with implications for the role of cortical microstructure in the level of autistic symptoms. CONCLUSION Using dMRI and GBSS, our findings provide new insights into group and age-related differences of the GM microstructure in autistic males. Defining where and when these cortical GM differences arise will contribute to our understanding of brain-behavior relationships of ASD and may aid in the development and monitoring of targeted and individualized interventions.
Collapse
Affiliation(s)
- Marissa A DiPiero
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Olivia J Surgent
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Brittany G Travers
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI, USA; Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew L Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Janet E Lainhart
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Douglas C Dean Iii
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
96
|
Surgent O, Riaz A, Ausderau KK, Adluru N, Kirk GR, Guerrero-Gonzalez J, Skaletski EC, Kecskemeti SR, Dean III DC, Weismer SE, Alexander AL, Travers BG. Brainstem white matter microstructure is associated with hyporesponsiveness and overall sensory features in autistic children. Mol Autism 2022; 13:48. [PMID: 36536467 PMCID: PMC9762648 DOI: 10.1186/s13229-022-00524-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Elevated or reduced responses to sensory stimuli, known as sensory features, are common in autistic individuals and often impact quality of life. Little is known about the neurobiological basis of sensory features in autistic children. However, the brainstem may offer critical insights as it has been associated with both basic sensory processing and core features of autism. METHODS Diffusion-weighted imaging (DWI) and parent-report of sensory features were acquired from 133 children (61 autistic children with and 72 non-autistic children, 6-11 years-old). Leveraging novel DWI processing techniques, we investigated the relationship between sensory features and white matter microstructure properties (free-water-elimination-corrected fractional anisotropy [FA] and mean diffusivity [MD]) in precisely delineated brainstem white matter tracts. Follow-up analyses assessed relationships between microstructure and sensory response patterns/modalities and analyzed whole brain white matter using voxel-based analysis. RESULTS Results revealed distinct relationships between brainstem microstructure and sensory features in autistic children compared to non-autistic children. In autistic children, more prominent sensory features were generally associated with lower MD. Further, in autistic children, sensory hyporesponsiveness and tactile responsivity were strongly associated with white matter microstructure in nearly all brainstem tracts. Follow-up voxel-based analyses confirmed that these relationships were more prominent in the brainstem/cerebellum, with additional sensory-brain findings in the autistic group in the white matter of the primary motor and somatosensory cortices, the occipital lobe, the inferior parietal lobe, and the thalamic projections. LIMITATIONS All participants communicated via spoken language and acclimated to the sensory environment of an MRI session, which should be considered when assessing the generalizability of this work to the whole of the autism spectrum. CONCLUSIONS These findings suggest unique brainstem white matter contributions to sensory features in autistic children compared to non-autistic children. The brainstem correlates of sensory features underscore the potential reflex-like nature of behavioral responses to sensory stimuli in autism and have implications for how we conceptualize and address sensory features in autistic populations.
Collapse
Affiliation(s)
- Olivia Surgent
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Ali Riaz
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
| | - Karla K. Ausderau
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- Occupational Therapy Program in the Department of Kinesiology, University of Wisconsin-Madison, Madison, WI USA
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- Department of Radiology, University of Wisconsin-Madison, Madison, WI USA
| | - Gregory R. Kirk
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
| | - Jose Guerrero-Gonzalez
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI USA
| | - Emily C. Skaletski
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- Occupational Therapy Program in the Department of Kinesiology, University of Wisconsin-Madison, Madison, WI USA
| | - Steven R. Kecskemeti
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
| | - Douglas C Dean III
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI USA
| | - Susan Ellis Weismer
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI USA
- Department of Educational Psychology, University of Wisconsin-Madison, Madison, WI USA
| | - Andrew L. Alexander
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI USA
| | - Brittany G. Travers
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- Occupational Therapy Program in the Department of Kinesiology, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
97
|
Abstract
Within the past decade, multiple lines of evidence have converged to identify a critical role for activity-regulated myelination in tuning the function of neural networks. In this Review, we provide an overview of accumulating evidence that activity-regulated myelination is required for brain adaptation and learning across multiple domains. We then discuss dysregulation of activity-dependent myelination in the context of neurological disease, a novel frontier with the potential to uncover new mechanisms of disease pathogenesis and to develop new therapeutic strategies. Alterations in myelination and neural network function can result from deficient myelin plasticity that impairs neurological function or from maladaptive myelination, in which intact activity-dependent myelination contributes to the disease process by promoting pathological patterns of neuronal activity. These emerging mechanisms suggest new avenues for therapeutic intervention that could more fully address the complex interactions between neurons and oligodendroglia.
Collapse
|
98
|
Brynolfsson P, Lerner M, Sundgren PC, Jamtheim Gustafsson C, Nilsson M, Szczepankiewicz F, Olsson LE. Tensor-valued diffusion magnetic resonance imaging in a radiotherapy setting. Phys Imaging Radiat Oncol 2022; 24:144-151. [DOI: 10.1016/j.phro.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
|
99
|
Afzali M, Mueller L, Sakaie K, Hu S, Chen Y, Szczepankiewicz F, Griswold MA, Jones DK, Ma D. MR Fingerprinting with b-Tensor Encoding for Simultaneous Quantification of Relaxation and Diffusion in a Single Scan. Magn Reson Med 2022; 88:2043-2057. [PMID: 35713357 PMCID: PMC9420788 DOI: 10.1002/mrm.29352] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE Although both relaxation and diffusion imaging are sensitive to tissue microstructure, studies have reported limited sensitivity and robustness of using relaxation or conventional diffusion alone to characterize tissue microstructure. Recently, it has been shown that tensor-valued diffusion encoding and joint relaxation-diffusion quantification enable more reliable quantification of compartment-specific microstructural properties. However, scan times to acquire such data can be prohibitive. Here, we aim to simultaneously quantify relaxation and diffusion using MR fingerprinting (MRF) and b-tensor encoding in a clinically feasible time. METHODS We developed multidimensional MRF scans (mdMRF) with linear and spherical b-tensor encoding (LTE and STE) to simultaneously quantify T1, T2, and ADC maps from a single scan. The image quality, accuracy, and scan efficiency were compared between the mdMRF using LTE and STE. Moreover, we investigated the robustness of different sequence designs to signal errors and their impact on the maps. RESULTS T1 and T2 maps derived from the mdMRF scans have consistently high image quality, while ADC maps are sensitive to different sequence designs. Notably, the fast imaging steady state precession (FISP)-based mdMRF scan with peripheral pulse gating provides the best ADC maps that are free of image distortion and shading artifacts. CONCLUSION We demonstrated the feasibility of quantifying T1, T2, and ADC maps simultaneously from a single mdMRF scan in around 24 s/slice. The map quality and quantitative values are consistent with the reference scans.
Collapse
Affiliation(s)
- Maryam Afzali
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of Leeds
LeedsUK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff UniversityCardiffUK
| | - Lars Mueller
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of Leeds
LeedsUK
| | - Ken Sakaie
- Imaging Institute, Cleveland ClinicClevelandOhioUSA
| | - Siyuan Hu
- Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Yong Chen
- RadiologyCase Western Reserve UniversityClevelandOhioUSA
| | | | | | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff UniversityCardiffUK
| | - Dan Ma
- Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
100
|
Wei L, Ding M, Zhang Y, Wang H. Decoding transcriptional signatures of the association between free water and macroscale organizations in healthy adolescents. Neuroimage 2022; 261:119514. [PMID: 35901916 DOI: 10.1016/j.neuroimage.2022.119514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
We leveraged a novel index of diffusion MRI to investigate the relationships among cortical free water, macro-organizations and gene expression in healthy adults. Few research has been conducted to investigate the role of free water in the healthy adults due to it can easily be affected also by aging diseases. High quality data of 350 subjects from Human Connectome Project were used in our study. Cortical free water was estimated by using a bi-tensor model. The free water was high in the limbic, insular and somatosensory cortex, while being lower in motor and association cortex. The negative correlation between the free water and cortical thickness has been consistently identified in almost all the cortical regions. Negative correlation between the cortical free water and structural covariance (rho=-0.38, pspin=0.005) revealed the free water was sensitive to cortical heterogeneity. Using human gene expression dataset, we found the gene expression pattern of the relationship between the free water and cortical thickness spatially coupled with primary gradient of structural covariance network (rho=0.40, pspin=0.004). Our findings indicated the free water was sensitive to the cortical cellular status. The relationship between free water and macroscale organization also reflected hierarchal structures of cerebral cortex.
Collapse
Affiliation(s)
- Lei Wei
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China.
| | - Ming Ding
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China; Human Phenome Institute, Fudan University, Shanghai, PR China; Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|