51
|
Homma T, Nishino Y, Fujii J, Yokoyama C. Flow cytometric determination of ferroptosis using a rat monoclonal antibody raised against ferroptotic cells. J Immunol Methods 2022; 510:113358. [PMID: 36126779 DOI: 10.1016/j.jim.2022.113358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 12/31/2022]
Abstract
Ferroptosis, a type of iron-dependent necrotic cell death, is specifically associated with increased lipid peroxidation. The dysfunction of the glutathione (GSH) production via the starvation of cysteine or the inhibition of phospholipid hydroperoxide glutathione peroxidase (GPX4) typically results in the accumulation of lipid peroxidation products and, consequently, the development of ferroptosis. We recently reported on the production of a rat monoclonal antibody, referred to as FerAb, against mouse-derived Hepa 1-6 cells that had been cultivated in cystine-deprived medium. Immunocytological analyses by means of fluorescence microscopy revealed that FerAb binds to fixed ferroptotic cells regardless of the species from which they were obtained, but not to apoptotic cells. We report herein on an in-depth characterization of the reactivity of FerAb with respect to unfixed cells by means of flow cytometry. The binding of FerAb to the cells was stimulated by incubating the cells in cystine deprived culture medium or treatment with RSL3, a GPX4 inhibitor, while treatment with staurosporine, an apoptosis inducer, had no effect on its binding to the cells. Supplementation with ferrostatin-1, a ferroptosis inhibitor, effectively suppressed the binding of FerAb to cells that had been cultivated in cystine-deprived medium or treated with RSL3, further confirming the specific binding of FerAb to ferroptotic cells. Thus, FerAb combined with a flow cytometry can be used to distinguish ferroptotic cells from living cells or apoptotic cells without the need for fixation. Applications of this combined technique will enable the quantitative evaluation of ferroptotic cells under a variety of patho-physiological conditions and will contribute to our understanding of the roles of ferroptosis in the body as well as cultured cells.
Collapse
Affiliation(s)
- Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan.
| | - Yuki Nishino
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, -shi, 558-8585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Chikako Yokoyama
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, -shi, 558-8585, Japan
| |
Collapse
|
52
|
Zou J, Lin Z, Jiao W, Chen J, Lin L, Zhang F, Zhang X, Zhao J. A multi-omics-based investigation of the prognostic and immunological impact of necroptosis-related mRNA in patients with cervical squamous carcinoma and adenocarcinoma. Sci Rep 2022; 12:16773. [PMID: 36202899 PMCID: PMC9537508 DOI: 10.1038/s41598-022-20566-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022] Open
Abstract
Necroptosis is a kind of programmed necrosis mode that plays a double-edged role in tumor progression. However, the role of necroptosis-related Messenger RNA (mRNA) in predicting the prognosis and immune response of cervical squamous carcinoma and adenocarcinoma (CESC) has not been fully studied. Firstly, the incidence of somatic mutation rate and copy number variation for 74 necroptosis-related mRNAs (NRmRNAs) were analyzed. Secondly, CESC patients were divided into four stable clusters based on the consensus clustering results and analyzed for correlations with a series of clinical factors. Subsequently, a total of 291 The Cancer Genome Atlas samples were randomly divided into either training or validation cohorts. A Cox proportional hazard model consisting of three NRmRNAs (CXCL8, CLEC9A, and TAB2) was constructed by univariate, least absolute shrinkage and selection operator and multivariate COX regression analysis to identify the prognosis and immune response. Its performance and stability were further validated in another testing dataset (GSE44001) from Gene Expression Omnibus database. The results of the receiver operating characteristic curve, principal component analysis, t-SNE, and nomogram indicated that the prognostic model we constructed can serve as an independent prognostic factor. The combination of the prognostic model and the classic TNM staging system could improve the performance in predicting the survival of CESC patients. In addition, differentially expressed genes from high and low-risk patients are screened by R software for functional analysis and pathway enrichment analysis. Besides, single-sample gene set enrichment analysis revealed that tumor-killing immune cells were reduced in the high-risk group. Moreover, patients in the low-risk group are more likely to benefit from immune checkpoint inhibitors. The analysis of tumor immune dysfunction and exclusion scores, M6A-related genes, stem cell correlation and Tumor mutational burden data with clinical information has quantified the expression levels of NRmRNAs between the two risk subgroups. According to tumor immune microenvironment scores, Spearman’s correlation analysis, and drug sensitivity, immunotherapy may have a higher response rate and better efficacy in patients of the low-risk subgroup. In conclusion, we have reported the clinical significance of NRmRNAs for the prognosis and immune response in CESC patients for the first time. Screening of accurate and effective prognostic markers is important for designing a multi-combined targeted therapeutic strategy and the development of individualized precision medicine.
Collapse
Affiliation(s)
- Jiani Zou
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Wenjian Jiao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Jun Chen
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Lidong Lin
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Fang Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Xiaodan Zhang
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Junde Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China.
| |
Collapse
|
53
|
The Prediction of Necroptosis-Related lncRNAs in Prognosis and Anticancer Therapy of Colorectal Cancer. Anal Cell Pathol 2022; 2022:7158684. [PMID: 36199434 PMCID: PMC9527116 DOI: 10.1155/2022/7158684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/21/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022] Open
Abstract
Background Colorectal cancer is one of the most common gastrointestinal malignancies globally. Necroptosis has been proved to play a role in the occurrence and development of the tumor, which makes it a new target for molecular therapy. However, the role of necroptosis in colorectal cancer remains unknown yet. Our study aims to build a prognostic signature of necroptosis-related lncRNAs (nrlncRNAs) to predict the outcomes of patients with colorectal cancer and facilitate in anticancer therapy. Method We obtained RNA-seq and clinical data of colorectal adenocarcinoma from the TCGA database and got prognosis-related nrlncRNAs by univariate regression analysis. Then, we carried out the LASSO regression and multivariate regression analysis to build the prognostic signature, whose predictive ability was tested by the Kaplan-Meier as well as ROC curves and verified by the internal cohort. Moreover, we divided the cohort into 2 groups based on median of risk scores: high- and low-risk groups. By analyzing the difference in the tumor microenvironment, microsatellite instability, and tumor mutation burden between the two groups, we explored the potential chemotherapy and immunotherapy drugs. Results We screened out 9 nrlncRNAs and built a prognostic signature based on them. With its good prognostic ability, the risk scores can act as an independent prognostic factor for patients with colorectal cancer. The overall survival rate of patients in high-risk group was significantly higher than the low-risk one. Furthermore, risk scores can also give us hints about the tumor microenvironment and facilitate in predicting the response to the CTLA-4 blocker treatment and other chemotherapeutic agents with potential efficacy such as cisplatin and staurosporine. Conclusions In conclusion, our prognostic signature of necroptosis-related lncRNAs can facilitate in predicting the prognosis and response to the anticancer therapy of colorectal cancer patients.
Collapse
|
54
|
Liu B, Feng C, Liu Z, Tu C, Li Z. A novel necroptosis-related lncRNAs signature effectively predicts the prognosis for osteosarcoma and is associated with immunity. Front Pharmacol 2022; 13:944158. [PMID: 36105232 PMCID: PMC9465333 DOI: 10.3389/fphar.2022.944158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Necroptosis is closely related to tumorigenesis and development. Accumulating evidence has revealed that long non-coding RNAs (lncRNAs) are also central players in osteosarcoma (OS). However, the role of necroptosis-related lncRNAs in OS remains unclear. In the present study, we aim to craft a prognostic signature based on necroptosis-related lncRNAs to improve the OS prognosis prediction. Methods: The signature based on necroptosis-related lncRNAs was discovered using univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analysis. The prognosis efficiency of the signature was then estimated by employing various bioinformatics methods. Subsequently, immunological analysis and Gene Set Enrichment Analysis (GSEA) were used to explore the association between necroptosis-related lncRNAs with clinical outcomes and immune status. More importantly, several necroptosis-related lncRNAs were validated with RT-qPCR. Results: Consequently, a novel prognosis signature was successfully constructed based on eight necroptosis-related lncRNAs. Meanwhile, the novel necroptosis-related lncRNAs model could distribute OS patients into two risk groups with a stable and accurate predictive ability. Additionally, the GSEA and immune analysis revealed that the necroptosis-related lncRNAs signature affects the development and prognosis of OS by regulating the immune status. The necroptosis-related lncRNA signature was closely correlated with multiple anticancer agent susceptibility. Moreover, the RT-qPCR results indicated several necroptosis-related lncRNAs were significantly differently expressed in osteosarcoma and osteoblast cell lines. Conclusion: In this summary, a novel prognostic signature integrating necroptosis-related lncRNAs was firstly constructed and could accurately predict the prognosis of OS. This study may increase the predicted value and guide the personalized chemotherapy treatment for OS.
Collapse
Affiliation(s)
- Binfeng Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhongyue Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- *Correspondence: Chao Tu, , Zhihong Li,
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- *Correspondence: Chao Tu, , Zhihong Li,
| |
Collapse
|
55
|
Sun C, Han Y, Zhang R, Liu S, Wang J, Zhang Y, Chen X, Jiang C, Wang J, Fan X, Wang J. Regulated necrosis in COVID-19: A double-edged sword. Front Immunol 2022; 13:917141. [PMID: 36090995 PMCID: PMC9452688 DOI: 10.3389/fimmu.2022.917141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
COVID-19 caused by SARS-CoV-2 can cause various systemic diseases such as acute pneumonia with cytokine storm. Constituted of necroptosis, pyroptosis, and ferroptosis, regulated necrosis constitutes the cell death patterns under the low apoptosis condition commonly observed in COVID-19. Regulated necrosis is involved in the release of cytokines like TNF-α, IL-1 β, and IL-6 and cell contents such as alarmins, PAMPs, and DAMPs, leading to more severe inflammation. Uncontrolled regulated necrosis may explain the poor prognosis and cytokine storm observed in COVID-19. In this review, the pathophysiology and mechanism of regulated necrosis with the double-edged sword effect in COVID-19 are thoroughly discussed in detail. Furthermore, this review also focuses on the biomarkers and potential therapeutic targets of the regulated necrosis pathway in COVID-19, providing practical guidance to judge the severity, prognosis, and clinical treatment of COVID-19 and guiding the development of clinical anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Chen Sun
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunze Han
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruoyu Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Simon Liu
- Medical Genomics Unit, National Human Genome Research Institute, Bethesda, MD, United States
| | - Jing Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqing Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chao Jiang
- Department of Neurology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jian Wang, ; Junmin Wang, ; Xiaochong Fan,
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jian Wang, ; Junmin Wang, ; Xiaochong Fan,
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jian Wang, ; Junmin Wang, ; Xiaochong Fan,
| |
Collapse
|
56
|
Cui B, Hou X, Liu M, Li Q, Yu C, Zhang S, Wang Y, Wang J, Zhuang S, Liu F. Pharmacological inhibition of SMYD2 protects against cisplatin-induced acute kidney injury in mice. Front Pharmacol 2022; 13:829630. [PMID: 36046818 PMCID: PMC9421052 DOI: 10.3389/fphar.2022.829630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The histone methyltransferase SET and MYND domain protein 2 (SMYD2) has been implicated in tumorigenesis through methylating histone H3 at lysine36 (H3K36) and some non-histone substrates. Currently, the role of SMYD2 in acute kidney injury (AKI) remains unknown. Here, we investigated the effects of AZ505, a highly selective inhibitor of SMYD2, on the development of AKI and the mechanisms involved in a murine model of cisplatin-induced AKI. SMYD2 and trimethylated histone H3K36 (H3K36Me3) were highly expressed in the kidney following cisplatin treatment; administration of AZ505 remarkedly inhibited their expression, along with improving kidney function and ameliorating kidney damage. AZ505 also attenuated kidney tubular cell injury and apoptosis as evidenced by diminished the expression of neutrophil gelatinase associated lipocalin (NGAL) and kidney injury molecule (Kim-1), reduced the number of TUNEL positive cells, decreased the expression of cleaved caspase-3 and the BAX/BCL-2 ratio in injured kidneys. Moreover, AZ505 inhibited cisplatin-induced phosphorylation of p53, a key driver of kidney cell apoptosis and reduced expression of p21, a cell cycle inhibitor. Meanwhile, AZ505 promoted expression of proliferating cell nuclear antigen and cyclin D1, two markers of cell proliferation. Furthermore, AZ505 was effective in suppressing the phosphorylation of STAT3 and NF-κB, two transcriptional factors associated with kidney inflammation, attenuating the expression of monocyte chemoattractant protein-1 and intercellular cell adhesion molecule-1 and reducing infiltration of F4/80+ macrophages to the injured kidney. Finally, in cultured HK-2 cells, silencing of SMYD2 by specific siRNA inhibited cisplatin-induced apoptosis of kidney tubular epithelial cells. Collectively, these results suggests that SMYD2 is a key determinant of cisplatin nephrotoxicity and targeting SMYD2 protects against cisplatin-induced AKI by inhibiting apoptosis and inflammation and promoting cell proliferation.
Collapse
Affiliation(s)
- Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiying Hou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mengjun Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Li
- Department of Pathology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shenglei Zhang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
- *Correspondence: Shougang Zhuang, ; Feng Liu,
| | - Feng Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Shougang Zhuang, ; Feng Liu,
| |
Collapse
|
57
|
Deger N, Ozmen R, Karabulut D. Thymoquinone regulates nitric oxide synthase enzymes and receptor-interacting serine-threonine kinases in isoproterenol-induced myocardial infarcted rats. Chem Biol Interact 2022; 365:110090. [PMID: 35940283 DOI: 10.1016/j.cbi.2022.110090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
This study aims to investigate the protective effects of thymoquinone (THQ) in isoproterenol (ISO)-induced myocardial infarction (MI) in rats. Thirty-two rats were divided into four equal groups. Control, THQ; Intragastric(ig) by dissolved 20 mg/kg in 500 μl olive oil at 24-h intervals for 7 days, ISO; On the 6th and 7th days of the experiment, it was dissolved in 1 ml distilled water, 100 mg/kg, subcutaneously(sb), THQ + ISO; THQ was given 20 mg/kg at 24-h intervals for 7 days, 100 mg/kg was given on days 6 and 7 of the ISO experiment. At the end of the experiment, blood and heart tissues were taken and histological, Western blot and biochemical analyzes were performed. In the ISO group, cardiomyocyte damage and large necrotic areas were observed. While neuronal nitric oxide synthase (nNOS) decreased, inducible NOS (iNOS) and endothelial NOS (eNOS) expression increased. Receptor-interacting serine-threonine kinase (RIP/RIPK) RIP1 and RIP3 protein levels were increased. Lactate dehydrogenase (LDH), creatin-kinase (CK-MB) and cardiac troponin I (cTn-I) levels were increased. Atrial natriuretic peptide (ANP) and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels were decreased. THQ caused the reduction of necrotic areas caused by ISO. NOS regulated enzyme levels. Increased ISO-induced decreased RIP1 and RIP3 expressions. THQ regulated the biochemical parameter levels. ISO triggers MI-induced necrosis through NOS enzymes by causing severe histological changes in heart tissue. THQ, on the other hand, reveals that it can be an important antinecrotic agent in the prevention of MI-induced damage by regulating both NOS enzyme levels and necrosis markers.
Collapse
Affiliation(s)
- Necla Deger
- Department of Histology-Embryology, Medicine Faculty of Erciyes University, Kayseri, 38280, Turkey
| | - Rifat Ozmen
- Department of Cardiovascular Surgery, Medicine Faculty of Erciyes University, Kayseri, 38280, Turkey
| | - Derya Karabulut
- Department of Histology-Embryology, Medicine Faculty of Erciyes University, Kayseri, 38280, Turkey.
| |
Collapse
|
58
|
Jang JY, Im E, Choi YH, Kim ND. Mechanism of Bile Acid-Induced Programmed Cell Death and Drug Discovery against Cancer: A Review. Int J Mol Sci 2022; 23:7184. [PMID: 35806184 PMCID: PMC9266679 DOI: 10.3390/ijms23137184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
Bile acids are major signaling molecules that play a significant role as emulsifiers in the digestion and absorption of dietary lipids. Bile acids are amphiphilic molecules produced by the reaction of enzymes with cholesterol as a substrate, and they are the primary metabolites of cholesterol in the body. Bile acids were initially considered as tumor promoters, but many studies have deemed them to be tumor suppressors. The tumor-suppressive effect of bile acids is associated with programmed cell death. Moreover, based on this fact, several synthetic bile acid derivatives have also been used to induce programmed cell death in several types of human cancers. This review comprehensively summarizes the literature related to bile acid-induced programmed cell death, such as apoptosis, autophagy, and necroptosis, and the status of drug development using synthetic bile acid derivatives against human cancers. We hope that this review will provide a reference for the future research and development of drugs against cancer.
Collapse
Affiliation(s)
- Jung Yoon Jang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Korea; (J.Y.J.); (E.I.)
| | - Eunok Im
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Korea; (J.Y.J.); (E.I.)
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea;
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Korea; (J.Y.J.); (E.I.)
| |
Collapse
|
59
|
Xie H, Xu J, Xie Z, Xie N, Lu J, Yu L, Li B, Cheng L. Identification and Validation of Prognostic Model for Pancreatic Ductal Adenocarcinoma Based on Necroptosis-Related Genes. Front Genet 2022; 13:919638. [PMID: 35783277 PMCID: PMC9243220 DOI: 10.3389/fgene.2022.919638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors with a poor prognosis. Recently, necroptosis has been reported to participate in the progression of multiple tumors. However, few studies have revealed the relationship between necroptosis and PDAC, and the role of necroptosis in PDAC has not yet been clarified. Methods: The mRNA expression data and corresponding clinical information of PDAC patients were downloaded from the TCGA and GEO databases. The necroptosis-related genes (NRGs) were obtained from the CUSABIO website. Consensus clustering was performed to divide PDAC patients into two clusters. Univariate and LASSO Cox regression analyses were applied to screen the NRGs related to prognosis to construct the prognostic model. The predictive value of the prognostic model was evaluated by Kaplan-Meier survival analysis and ROC curve. Univariate and multivariate Cox regression analyses were used to evaluate whether the risk score could be used as an independent predictor of PDAC prognosis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and single-sample gene set enrichment analysis (ssGSEA) were used for functional enrichment analysis. Finally, using qRT-PCR examined NRGs mRNA expression in vitro. Results: Based on the TCGA database, a total of 22 differential expressed NRGs were identified, among which eight NRGs (CAPN2, CHMP4C, PLA2G4F, PYGB, BCL2, JAK3, PLA2G4C and STAT4) that may be related to prognosis were screened by univariate Cox regression analysis. And CAPN2, CHMP4C, PLA2G4C and STAT4 were further selected to construct the prognostic model. Kaplan-Meier survival analysis and ROC curve showed that there was a significant correlation between the risk model and prognosis. Univariate and multivariate Cox regression analyses showed that the risk score of the prognostic model could be used as an independent predictor. The model efficacy was further demonstrated in the GEO cohort. Functional analysis revealed that there were significant differences in immune status between high and low-risk groups. Finally, the qRT-PCR results revealed a similar dysregulation of NRGs in PDAC cell lines. Conclusion: This study successfully constructed and verified a prognostic model based on NRGs, which has a good predictive value for the prognosis of PDAC patients.
Collapse
Affiliation(s)
- Haoran Xie
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingxian Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwen Xie
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ni Xie
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawei Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lanting Yu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiwen Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Baiwen Li, ; Li Cheng,
| | - Li Cheng
- Department of International Medical Care Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Baiwen Li, ; Li Cheng,
| |
Collapse
|
60
|
Oncolytic Vaccinia Virus Harboring Aphrocallistes vastus Lectin Inhibits the Growth of Hepatocellular Carcinoma Cells. Mar Drugs 2022; 20:md20060378. [PMID: 35736181 PMCID: PMC9230886 DOI: 10.3390/md20060378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Oncolytic vaccinia virus has been developed as a novel cancer therapeutic drug in recent years. Our previous studies demonstrated that the antitumor effect of oncolytic vaccina virus harboring Aphrocallistes vastus lectin (oncoVV-AVL) was significantly enhanced in several cancer cells. In the present study, we investigated the underlying mechanisms of AVL that affect virus replication and promote the antitumor efficacy of oncolytic virus in hepatocellular carcinoma (HCC). Our results showed that oncoVV-AVL markedly exhibited antitumor effects in both hepatocellular carcinoma cell lines and a xenograft mouse model. Further investigation illustrated that oncoVV-AVL could activate tumor immunity by upregulating the expression of type I interferons and enhance virus replication by inhibiting ISRE mediated viral defense response. In addition, we inferred that AVL promoted the ability of virus replication by regulating the PI3K/Akt, MAPK/ERK, and Hippo/MST pathways through cross-talk Raf-1, as well as metabolism-related pathways. These findings provide a novel perspective for the exploitation of marine lectins in oncolytic therapy.
Collapse
|
61
|
Ganini C, Montanaro M, Scimeca M, Palmieri G, Anemona L, Concetti L, Melino G, Bove P, Amelio I, Candi E, Mauriello A. No Time to Die: How Kidney Cancer Evades Cell Death. Int J Mol Sci 2022; 23:6198. [PMID: 35682876 PMCID: PMC9181490 DOI: 10.3390/ijms23116198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
The understanding of the pathogenesis of renal cell carcinoma led to the development of targeted therapies, which dramatically changed the overall survival rate. Nonetheless, despite innovative lines of therapy accessible to patients, the prognosis remains severe in most cases. Kidney cancer rarely shows mutations in the genes coding for proteins involved in programmed cell death, including p53. In this paper, we show that the molecular machinery responsible for different forms of cell death, such as apoptosis, ferroptosis, pyroptosis, and necroptosis, which are somehow impaired in kidney cancer to allow cancer cell growth and development, was reactivated by targeted pharmacological intervention. The aim of the present review was to summarize the modality of programmed cell death in the pathogenesis of renal cell carcinoma, showing in vitro and in vivo evidence of their potential role in controlling kidney cancer growth, and highlighting their possible therapeutic value.
Collapse
Affiliation(s)
- Carlo Ganini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Giampiero Palmieri
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Lucia Anemona
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Livia Concetti
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Pierluigi Bove
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| |
Collapse
|
62
|
Roles and Mechanisms of Regulated Necrosis in Corneal Diseases: Progress and Perspectives. J Ophthalmol 2022; 2022:2695212. [PMID: 35655803 PMCID: PMC9152437 DOI: 10.1155/2022/2695212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Regulated necrosis is defined as cell death characterized by loss of the cell membrane integrity and release of the cytoplasmic content. It contributes to the development and progression of some diseases, including ischemic stroke injury, liver diseases, hypertension, and cancer. Various forms of regulated necrosis, particularly pyroptosis, necroptosis, and ferroptosis, have been implicated in the pathogenesis of corneal disease. Regulated necrosis of corneal cells enhances inflammatory reactions in the adjacent corneal tissues, leading to recurrence and aggravation of corneal disease. In this review, we summarize the molecular mechanisms of pyroptosis, necroptosis, and ferroptosis in corneal diseases and discuss the roles of regulated necrosis in inflammation regulation, tissue repair, and corneal disease outcomes.
Collapse
|
63
|
Xu Y, Chen R, Yan J, Zang G, Shao C, Wang Z. CD137 Signal Mediates Cardiac Ischemia-Reperfusion Injury by Regulating the Necrosis of Cardiomyocytes. J Cardiovasc Transl Res 2022; 15:1163-1175. [PMID: 35419772 DOI: 10.1007/s12265-022-10240-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/18/2022] [Indexed: 11/28/2022]
Abstract
The injury of cardiomyocytes after ischemia-reperfusion is the main reason of cardiac dysfunction. Necrosis is one of the methods of programmed cell death and cardiomyocyte necrosis occurs in the process of reperfusion. The activation of CD137 signal is involved in various diseases. In vivo experiments proved that CD137-/- mice have less heart damage than wild-type mice after ischemia-reperfusion. In vitro experiments, we found that after inhibiting the CD137 signal, the degree of necrosis of HL-1 cells was reduced and it was caused by reducing the Ca2 + overload in the mitochondria, which caused the reduction of mPTP opening. Ca2 + overload in mitochondria induced by activation of CD137 signal was caused by increased Ca2 + released into mitochondria by activation of IP3R and increased MCU level. These results indicate that CD137 signaling aggravates cardiac ischemia-reperfusion injury by inducing myocardial cell necrosis.
Collapse
Affiliation(s)
- Yao Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Rui Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Jinchuan Yan
- Health Science Center, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China.
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|
64
|
Lukenaite B, Griciune E, Leber B, Strupas K, Stiegler P, Schemmer P. Necroptosis in Solid Organ Transplantation: A Literature Overview. Int J Mol Sci 2022; 23:3677. [PMID: 35409037 PMCID: PMC8998671 DOI: 10.3390/ijms23073677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is encountered in various stages during solid organ transplantation (SOT). IRI is known to be a multifactorial inflammatory condition involving hypoxia, metabolic stress, leukocyte extravasation, cellular death (including apoptosis, necrosis and necroptosis) and an activation of immune response. Although the cycle of sterile inflammation during IRI is consistent among different organs, the underlying mechanisms are poorly understood. Receptor-interacting protein kinase 3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL) are thought to be crucial in the implementation of necroptosis. Moreover, apart from "silent" apoptotic death, necrosis also causes sterile inflammation-necroinflammation, which is triggered by various damage-associated molecular patterns (DAMPs). Those DAMPs activate the innate immune system, causing local and systemic inflammatory responses, which can result in graft failure. In this overview we summarize knowledge on mechanisms of sterile inflammation processes during SOT with special focus on necroptosis and IRI and discuss protective strategies.
Collapse
Affiliation(s)
- Beatrice Lukenaite
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (B.L.); (E.G.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania;
| | - Erika Griciune
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (B.L.); (E.G.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania;
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (B.L.); (E.G.); (B.L.); (P.S.)
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania;
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (B.L.); (E.G.); (B.L.); (P.S.)
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (B.L.); (E.G.); (B.L.); (P.S.)
| |
Collapse
|
65
|
Tonnus W, Locke S, Meyer C, Maremonti F, Eggert L, von Mässenhausen A, Bornstein SR, Green DR, Linkermann A. Rubicon-deficiency sensitizes mice to mixed lineage kinase domain-like (MLKL)-mediated kidney ischemia-reperfusion injury. Cell Death Dis 2022; 13:236. [PMID: 35288534 PMCID: PMC8921192 DOI: 10.1038/s41419-022-04682-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
Abstract
The cytosolic protein rubicon (RUBCN) has been implicated in the removal of necrotic debris and autoimmunity. However, the role of RUBCN in models of acute kidney injury (AKI), a condition that typically involves necrotic kidney tubules, was not investigated. Here, we demonstrate that RUBCN-deficient mice are hypersensitive to renal damage induced by ischemia-reperfusion injury (IRI) and cisplatin-induced AKI. Combined deficiency of RUBCN and mixed lineage kinase domain-like (MLKL) partially reversed the sensitivity in the IRI model suggesting that the absence of RUBCN sensitizes to necroptosis in that model. Necroptosis is known to contribute to TNFα-induced severe inflammatory response syndrome (SIRS), but we detected no statistically significant difference in overall survival following injection of TNFα in RUBCN-deficient mice. We additionally generated RUBCN-deficient mice which lack gasdermin D (GSDMD), the terminal mediator of pyroptosis, but no reversal of the AKI phenotype was observed. Finally, and in contrast to the previous understanding of the role of RUBCN, we did not find a significant autoimmune phenotype in RUBCN-deficient mice, but detected chronic kidney injury (CKD) in aged RUBCN-deficient mice of both sexes. In summary, our data indicate that RUBCN-deficient mice are hypersensitive to kidney injury.
Collapse
Affiliation(s)
- Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | - Sophie Locke
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | - Claudia Meyer
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | - Francesca Maremonti
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | - Lena Eggert
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | - Anne von Mässenhausen
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | - Stefan R Bornstein
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences, King's College London, London, UK
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Dresden, Germany
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Douglas R Green
- Department of Immunology, St. Jude Childrens Research Hospital, Memphis, TN, USA
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
- Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany.
| |
Collapse
|
66
|
Zhao Q, Zheng Y, Lv X, Gong J, Yang L. IMB5036 inhibits human pancreatic cancer growth primarily through activating necroptosis. Basic Clin Pharmacol Toxicol 2022; 130:375-384. [PMID: 34841678 DOI: 10.1111/bcpt.13694] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/30/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022]
Abstract
IMB5036 is a novel pyridazinone compound with potent cytotoxicity. In this study, we reported its antitumour activity against pancreatic cancer and the underlying mechanism. We found that IMB5036 induced rapid cell swelling and increased membrane permeability in pancreatic cancer cells. IMB5036 increased the ratio of PI+ cells, which could be rescued by necroptosis inhibitor. Furthermore, MLKL inhibitor NSA attenuated the killing effect of IMB5036 on pancreatic cancer cells. IMB5036 stimulated translocation of MLKL and p-MLKL from cytoplasm to cell membrane. IMB5036 upregulated the level of p-RIPK1, p-RIPK3, and p-MLKL. At the same time, IMB5036 also partially activated apoptosis and pyroptosis. IMB5036 inhibited tumour growth in pancreatic xenograft. IMB5036 induced larger necrosis area, increased p-MLKL level, and inhibited Ki67 expression in tumour mass. The study indicates that IMB5036 inhibits human pancreatic cancer growth primarily activating necroptosis.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Pharmacology, Shanxi Medical University, Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanbo Zheng
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xing Lv
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Jianhua Gong
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijun Yang
- Department of Pharmacology, Shanxi Medical University, Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
| |
Collapse
|
67
|
Salmonella pSLT-encoded effector SpvB promotes RIPK3-dependent necroptosis in intestinal epithelial cells. Cell Death Dis 2022; 8:44. [PMID: 35110556 PMCID: PMC8810775 DOI: 10.1038/s41420-022-00841-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 12/30/2022]
Abstract
Salmonella is one of the most important worldwide zoonotic pathogens. After invading a host orally, the bacteria break through the intestinal epithelial barrier for further invasion. Intestinal epithelial cells (IECs) play a crucial role in maintaining the integrity of the intestinal epithelial barrier. Necroptosis is considered one of the virulence strategies utilized by invasive Salmonella. Our previous work has shown that SpvB, an effector encoded by S. Typhimurium virulence plasmid (pSLT), promotes bacterial translocation via the paracellular route. However, it is still unknown whether SpvB could promote bacterial invasion through disrupting the integrity of IECs. Here, we demonstrated that SpvB promoted necroptosis of IECs and contributed to the destruction of the intestinal barrier during Salmonella infection. We found that SpvB enhanced the protein level of receptor-interacting protein kinase 3 (RIPK3) through inhibiting K48-linked poly-ubiquitylation of RIPK3 and the degradation of the protein in an autophagy-dependent manner. The abundant accumulation of RIPK3 upregulated the phosphorylation of MLKL, which contributed to necroptosis. The damage to IECs ultimately led to the disruption of the intestinal barrier and aggravated infection. In vivo, SpvB promoted the pathogenesis of Salmonella, favoring intestinal injury and colonic necroptosis. Our findings reveal a novel function of Salmonella effector SpvB, which could facilitate salmonellosis by promoting necroptosis, and broaden our understanding of the molecular mechanisms of bacterial invasion.
Collapse
|
68
|
Wang F, Wang JN, He XY, Suo XG, Li C, Ni WJ, Cai YT, He Y, Fang XY, Dong YH, Xing T, Yang YR, Zhang F, Zhong X, Zang HM, Liu MM, Li J, Meng XM, Jin J. Stratifin promotes renal dysfunction in ischemic and nephrotoxic AKI mouse models via enhancing RIPK3-mediated necroptosis. Acta Pharmacol Sin 2022; 43:330-341. [PMID: 33833407 PMCID: PMC8791945 DOI: 10.1038/s41401-021-00649-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/12/2021] [Indexed: 02/03/2023]
Abstract
Stratifin (SFN) is a member of the 14-3-3 family of highly conserved soluble acidic proteins, which regulates a variety of cellular activities such as cell cycle, cell growth and development, cell survival and death, and gene transcription. Acute kidney injury (AKI) is prevalent disorder characterized by inflammatory response, oxidative stress, and programmed cell death in renal tubular epithelial cells, but there is still a lack of effective therapeutic target for AKI. In this study, we investigated the role of SFN in AKI and the underlying mechanisms. We established ischemic and nephrotoxic AKI mouse models caused by ischemia-reperfusion (I/R) and cisplatin, respectively. We conducted proteomic and immunohistochemical analyses and found that SFN expression levels were significantly increased in AKI patients, cisplatin- or I/R-induced AKI mice. In cisplatin- or hypoxia/reoxygenation (H/R)-treated human proximal tubule epithelial cells (HK2), we showed that knockdown of SFN significantly reduced the expression of kidney injury marker Kim-1, attenuated programmed cell death and inflammatory response. Knockdown of SFN also significantly alleviated the decline of renal function and histological damage in cisplatin-caused AKI mice in vivo. We further revealed that SFN bound to RIPK3, a key signaling modulator in necroptosis, to induce necroptosis and the subsequent inflammation in cisplatin- or H/R-treated HK2 cells. Overexpression of SFN increased Kim-1 protein levels in cisplatin-treated MTEC cells, which was suppressed by RIPK3 knockout. Taken together, our results demonstrate that SFN that enhances cisplatin- or I/R-caused programmed cell death and inflammation via interacting with RIPK3 may serve as a promising therapeutic target for AKI treatment.
Collapse
Affiliation(s)
- Fang Wang
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Jia-nan Wang
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Xiao-yan He
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Xiao-guo Suo
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Chao Li
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Wei-jian Ni
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China ,grid.59053.3a0000000121679639Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China
| | - Yu-ting Cai
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Yuan He
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Xin-yun Fang
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Yu-hang Dong
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Tian Xing
- grid.186775.a0000 0000 9490 772XHospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032 China
| | - Ya-ru Yang
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Feng Zhang
- grid.73113.370000 0004 0369 1660Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003 China
| | - Xiang Zhong
- grid.54549.390000 0004 0369 4060Department of Nephrology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072 China
| | - Hong-mei Zang
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Ming-ming Liu
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Jun Li
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Xiao-ming Meng
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Juan Jin
- grid.186775.a0000 0000 9490 772XSchool of Basic Medical Sciences, Anhui Medical University, Hefei, 230032 China
| |
Collapse
|
69
|
Ashour H, Hashem HA, Khowailed AA, Rashed LA, Hassan RM, Soliman AS. Necrostatin-1 mitigates renal ischemia-reperfusion injury - time dependent- via aborting the interacting protein kinase (RIPK-1)-induced inflammatory immune response. Clin Exp Pharmacol Physiol 2022; 49:501-514. [PMID: 35090059 DOI: 10.1111/1440-1681.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/13/2021] [Accepted: 12/16/2021] [Indexed: 11/27/2022]
Abstract
The recently defined necroptosis process participates in the pathophysiology of several tissue injuries. Targeting the necroptosis mediator receptor-interacting protein kinase (RIPK1) by necrostatin-1 in different phases of ischemia-reperfusion injury (IRI) may provide new insight into the protection against renal IRI. The rat groups included (n= 8 in each group); 1) Sham, 2) Renal IRI, 3) Necrostatin-1 treatment 20 min before ischemia induction in a dose of 1.65 mg/kg/intravenous. 4) Necrostatin-1 injection just before reperfusion, 5) Necrostatin-1 injection 20 min after reperfusion establishment, and 6) drug injection at both the pre-ischemia and at reperfusion time in the same dose. Timing dependent, necrostatin-1 diminished RIPK1 (P < 0.001), and aborted the necroptosis induced renal cell injury. Necrostatin-1 decreased the renal chemokine (CXCL1), interleukin-6, intercellular adhesion molecule (ICAM-1), myeloperoxidase, and the nuclear factor (NFκB), concomitant with reduced inducible nitric oxide synthase (iNOS), inflammatory cell infiltration, and diminished cell death represented by apoptotic cell count and the BAX/Bcl2 protein ratio. In group six, the cell injury was minimum and the renal functions (creatinine, BUN, and creatinine clearance) were almost normalized. The inflammatory markers were diminished (P < 0.001) compared to the IRI group. The results were confirmed by histopathological examination. In conclusion, RIPK1 inhibition ameliorates the inflammatory immune response induced by renal IRI. The use of two doses was more beneficial as the pathophysiology of cell injury is characterized.
Collapse
Affiliation(s)
- Hend Ashour
- Department of Medical Physiology, Faculty of Medicine, King Khalid University, Abha, KSA.,Department of Medical Physiology, Faculty of Medicine, Cairo University, Egypt
| | - Heba A Hashem
- Department of Medical Physiology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Akef A Khowailed
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Egypt
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Egypt
| | - Randa M Hassan
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, Egypt
| | - Ayman S Soliman
- Department of Medical Physiology, Faculty of Medicine, Beni-Suef University, Egypt
| |
Collapse
|
70
|
Liu YP, Lei J, Yin MM, Chen Y. Organoantimony (III) Derivative induces necroptosis in human breast cancer MDA-MB-231 cells. Anticancer Agents Med Chem 2022; 22:2448-2457. [PMID: 35040419 DOI: 10.2174/1871520622666220118093643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE This study aimed to investigate the anticancer effect and the underlying mechanisms of organoantimony (III) fluoride on MDA-MB-231 human breast cancer cells. METHODS Five cancer and one normal cell line were treated with an organoantimony (III) compound 6-cyclohexyl-12-fluoro-5,6,7,12-tetrahydrodibenzo[c,f][1,5]azastibocine (denoted as C4). The cell viability was detected by MTT assay. Induction of cell death was determined by Hoechst 33342/PI staining and Annexin-V/PI staining. The effect of C4 on the necroptotic relative protein was determined by Western blot analysis. RESULTS Among the five cancer cell lines, C4 decreased the viability of MDA-MB-231, MCF-7 and A2780/cisR, and showed less toxicity to normal human embryonic kidney cells. In breast cancer cell line MDA-MB-231, the C4 treatment induced the percentage of necrotic cell death as well as LDH releasing in a time- and dose-dependent manner. Moreover, C4 could increase the expression of phosphorylated RIPK3 and MLKL proteins. Overall, the C4 treatment resulted in reduction of mitochondrial transmembrane potential and accumulation ROS in MDA-MB-231 cells. CONCLUSION C4-induced necroptosis could be ascribed to glutathione depletion and ROS elevation in MDA-MB-231 cells. Our findings illustrate that C4 is a potential necroptosis inducer for breast cancer treatment.
Collapse
Affiliation(s)
- Yong-Ping Liu
- Department of Physiology, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan,410208, PR China
| | - Jian Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Ming-Ming Yin
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan,410208, PR China
| | - Yi Chen
- Department of Physiology, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan,410208, PR China
| |
Collapse
|
71
|
Tsurusaki S, Kanegae K, Tanaka M. In Vivo Analysis of Necrosis and Ferroptosis in Nonalcoholic Steatohepatitis (NASH). Methods Mol Biol 2022; 2455:267-278. [PMID: 35213001 DOI: 10.1007/978-1-0716-2128-8_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a metabolic liver disease that progresses from simple steatosis to the disease states such as chronic inflammation and fibrosis. In most liver diseases, immunological responses caused by tissue damages or viral infection contribute to the pathological advances, and various types of cell death have been reported to be implicated in their pathogenesis. However, the conventional detection of necrosis in vivo is not currently available, whereas the detection method for apoptosis has been relatively well-established. We recently reported a method for the in vivo detection of necrotic cells in liver disease models by an intravenous injection of Propidium Iodide (PI) into mice. We also provide standard methods for the evaluation of lipid accumulation and fibrosis characteristic of NASH. In addition, by utilizing these procedures and a murine model of steatohepatitis, we showed that ferroptosis, a type of regulated necrotic cell death, could be involved in the pathogenesis of NASH. These approaches allow us to explore the pathophysiological roles of cell death in liver diseases.
Collapse
Affiliation(s)
- Shinya Tsurusaki
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuko Kanegae
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Minoru Tanaka
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
| |
Collapse
|
72
|
Mukhopadhyay U, Patra U, Chandra P, Saha P, Gope A, Dutta M, Chawla-Sarkar M. Rotavirus activates MLKL-mediated host cellular necroptosis concomitantly with apoptosis to facilitate dissemination of viral progeny. Mol Microbiol 2021; 117:818-836. [PMID: 34954851 DOI: 10.1111/mmi.14874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022]
Abstract
Reprogramming the host cellular environment is an obligatory facet of viral pathogens to foster their replication and perpetuation. One of such reprogramming events is the dynamic cross-talk between viruses and host cellular death signaling pathways. Rotaviruses (RVs) have been reported to develop multiple mechanisms to induce apoptotic programmed cell death for maximizing viral spread and pathogenicity. However, the importance of non-apoptotic programmed death events has remained elusive in context of RV infection. Here, we report that RV-induced apoptosis accompanies another non-apoptotic mode of programmed cell death pathway called necroptosis to promote host cellular demise at late phase of infection. Phosphorylation of mixed lineage kinase-domain like (MLKL) protein indicative of necroptosis was observed to concur with caspase-cleavage (apoptotic marker) beyond 6 hours of RV infection. Subsequent studies demonstrated phosphorylated-MLKL to oligomerize and to translocate to plasma membrane in RV infected cells, resulting in loss of plasma membrane integrity and release of alarmin molecules e.g., high mobility group box protein 1 (HMGB1) in the extracellular media. Moreover, inhibiting caspase-cleavage and apoptosis could not fully rescue virus-induced cell death but rather potentiated the necroptotic trigger. Interestingly, preventing both apoptosis and necroptosis by small molecules significantly rescued virus-induced host cytopathy by inhibiting viral dissemination.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Upayan Patra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Pritam Chandra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Priyanka Saha
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Animesh Gope
- ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| |
Collapse
|
73
|
Cell Death in Hepatocellular Carcinoma: Pathogenesis and Therapeutic Opportunities. Cancers (Basel) 2021; 14:cancers14010048. [PMID: 35008212 PMCID: PMC8750350 DOI: 10.3390/cancers14010048] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The progression of liver tumors is highly influenced by the interactions between cancer cells and the surrounding environment, and, consequently, can determine whether the primary tumor regresses, metastasizes, or establishes micrometastases. In the context of liver cancer, cell death is a double-edged sword. On one hand, cell death promotes inflammation, fibrosis, and angiogenesis, which are tightly orchestrated by a variety of resident and infiltrating host cells. On the other hand, targeting cell death in advanced hepatocellular carcinoma could represent an attractive therapeutic approach for limiting tumor growth. Further studies are needed to investigate therapeutic strategies combining current chemotherapies with novel drugs targeting either cell death or the tumor microenvironment. Abstract Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the third leading cause of cancer death worldwide. Closely associated with liver inflammation and fibrosis, hepatocyte cell death is a common trigger for acute and chronic liver disease arising from different etiologies, including viral hepatitis, alcohol abuse, and fatty liver. In this review, we discuss the contribution of different types of cell death, including apoptosis, necroptosis, pyroptosis, or autophagy, to the progression of liver disease and the development of HCC. Interestingly, inflammasomes have recently emerged as pivotal innate sensors with a highly pathogenic role in various liver diseases. In this regard, an increased inflammatory response would act as a key element promoting a pro-oncogenic microenvironment that may result not only in tumor growth, but also in the formation of a premetastatic niche. Importantly, nonparenchymal hepatic cells, such as liver sinusoidal endothelial cells, hepatic stellate cells, and hepatic macrophages, play an important role in establishing the tumor microenvironment, stimulating tumorigenesis by paracrine communication through cytokines and/or angiocrine factors. Finally, we update the potential therapeutic options to inhibit tumorigenesis, and we propose different mechanisms to consider in the tumor microenvironment field for HCC resolution.
Collapse
|
74
|
Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021; 26:molecules26247453. [PMID: 34946535 PMCID: PMC8708364 DOI: 10.3390/molecules26247453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
Nowadays, cancer has become the second highest leading cause of death, and it is expected to continue to affect the population in forthcoming years. Additionally, treatment options will become less accessible to the public as cases continue to grow and disease mechanisms expand. Hence, specific candidates with confirmed anticancer effects are required to develop new drugs. Among the novel therapeutic options, proteins are considered a relevant source, given that they have bioactive peptides encrypted within their sequences. These bioactive peptides, which are molecules consisting of 2–50 amino acids, have specific activities when administered, producing anticancer effects. Current databases report the effects of peptides. However, uncertainty is found when their molecular mechanisms are investigated. Furthermore, analyses addressing their interaction networks or their directly implicated mechanisms are needed to elucidate their effects on cancer cells entirely. Therefore, relevant peptides considered as candidates for cancer therapeutics with specific sequences and known anticancer mechanisms were accurately reviewed. Likewise, those features which turn certain peptides into candidates and the mechanisms by which peptides mediate tumor cell death were highlighted. This information will make robust the knowledge of these candidate peptides with recognized mechanisms and enhance their non-toxic capacity in relation to healthy cells and further avoid cell resistance.
Collapse
|
75
|
Trinidad-Calderón PA, Varela-Chinchilla CD, García-Lara S. Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021. [DOI: https://doi.org/10.3390/molecules26247453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nowadays, cancer has become the second highest leading cause of death, and it is expected to continue to affect the population in forthcoming years. Additionally, treatment options will become less accessible to the public as cases continue to grow and disease mechanisms expand. Hence, specific candidates with confirmed anticancer effects are required to develop new drugs. Among the novel therapeutic options, proteins are considered a relevant source, given that they have bioactive peptides encrypted within their sequences. These bioactive peptides, which are molecules consisting of 2–50 amino acids, have specific activities when administered, producing anticancer effects. Current databases report the effects of peptides. However, uncertainty is found when their molecular mechanisms are investigated. Furthermore, analyses addressing their interaction networks or their directly implicated mechanisms are needed to elucidate their effects on cancer cells entirely. Therefore, relevant peptides considered as candidates for cancer therapeutics with specific sequences and known anticancer mechanisms were accurately reviewed. Likewise, those features which turn certain peptides into candidates and the mechanisms by which peptides mediate tumor cell death were highlighted. This information will make robust the knowledge of these candidate peptides with recognized mechanisms and enhance their non-toxic capacity in relation to healthy cells and further avoid cell resistance.
Collapse
|
76
|
Liu X, Xie X, Ren Y, Shao Z, Zhang N, Li L, Ding X, Zhang L. The role of necroptosis in disease and treatment. MedComm (Beijing) 2021; 2:730-755. [PMID: 34977874 PMCID: PMC8706757 DOI: 10.1002/mco2.108] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Necroptosis, a distinctive type of programmed cell death different from apoptosis or necrosis, triggered by a series of death receptors such as tumor necrosis factor receptor 1 (TNFR1), TNFR2, and Fas. In case that apoptosis process is blocked, necroptosis pathway is initiated with the activation of three key downstream mediators which are receptor-interacting serine/threonine protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL). The whole process eventually leads to destruction of the cell membrane integrity, swelling of organelles, and severe inflammation. Over the past decade, necroptosis has been found widely involved in life process of human beings and animals. In this review, we attempt to explore the therapeutic prospects of necroptosis regulators by describing its molecular mechanism and the role it played in pathological condition and tissue homeostasis, and to summarize the research and clinical applications of corresponding regulators including small molecule inhibitors, chemicals, Chinese herbal extracts, and biological agents in the treatment of various diseases.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Xin Xie
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Yuanyuan Ren
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Zhiying Shao
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Cancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Nie Zhang
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Liantao Li
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Xin Ding
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Longzhen Zhang
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| |
Collapse
|
77
|
Shen Y, Li X, Wang D, Zhang L, Li X, Xia T, Shang X, Yang X, Su L, Fan X. Novel prognostic model established for patients with head and neck squamous cell carcinoma based on pyroptosis-related genes. Transl Oncol 2021; 14:101233. [PMID: 34600420 PMCID: PMC8487076 DOI: 10.1016/j.tranon.2021.101233] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022] Open
Abstract
Pyroptosis genes were differentially expressed between HNSCC and normal tissue. Developed a model for prognostic prediction of HNSCC based on pyroptosis genes. The risk-score model was proved to be promising and reliable in practical patients.
We aimed at establishing a risk – score model using pyroptosis-related genes to predict the prognosis of patients with head and neck squamous cell carcinoma (HNSCC). A total of 33 pyroptosis-related genes were selected. We then evaluated the data of 502 HNSCC patients and 44 normal patients from TCGA database. Gene expression was then profiled to detect differentially expressed genes (DEGs). Using the univariate, the least absolute shrinkage and selection operator (LASSO) Cox regression analyses, we generated a risk – score model. Tissue samples from neoplastic and normal sites of 44 HNSCC patients were collected. qRT-PCR were employed to analyze the mRNA level of the samples. Kaplan-Meier method was used to evaluate the overall survival rate (OS). Enrichment analysis was performed to elucidate the underlying mechanism of HNSCC patient's differentially survival status from the perspective of tumor immunology. 17 genes were categorized as DEGs. GSDME, IL-6, CASP8, CASP6, NLRP1 and NLRP6 were used to establish the risk – score model. Each patient's risk score in the TCGA cohort was calculated using the risk – score formula. The risk score was able to independently predict the OS of the HNSCC patients (P = 0.02). The OS analysis showed that the risk score model (P < 0.0001) was more reliable than single gene, a phenomenon verified by practical patient cohort. Additionally, enrichment analysis indicated more active immune activities in low-risk group than high-risk group. In conclusion, our risk – score model has provided novel strategy for the prediction of HNSCC patients’ prognosis.
Collapse
Affiliation(s)
- Yuchen Shen
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Shanghai, China
| | - Xinyu Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.280 Mo-He Road, Shanghai, China
| | - Deming Wang
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Shanghai, China
| | - Liming Zhang
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Shanghai, China
| | - Xiao Li
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Shanghai, China
| | - Tong Xia
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Shanghai, China
| | - Xunjie Shang
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Shanghai, China
| | - Xitao Yang
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Shanghai, China.
| | - Lixin Su
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Shanghai, China.
| | - Xindong Fan
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Shanghai, China.
| |
Collapse
|
78
|
Yamauchi T, Fujishima F, Hashimoto M, Tsunokake J, Akaishi R, Gokon Y, Ueki S, Ozawa Y, Fukutomi T, Okamoto H, Sato C, Taniyama Y, Nakamura T, Nakaya N, Kamei T, Sasano H. Necroptosis in Esophageal Squamous Cell Carcinoma: An Independent Prognostic Factor and Its Correlation with Tumor-Infiltrating Lymphocytes. Cancers (Basel) 2021; 13:4473. [PMID: 34503283 PMCID: PMC8430921 DOI: 10.3390/cancers13174473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
Necroptosis is a pivotal process in cancer biology; however, the clinical significance of necroptosis in esophageal squamous cell carcinoma (ESCC) has remained unknown. Therefore, in this study, we aimed to verify the potential involvement of necroptosis in the clinical outcome, chemotherapeutic resistance, and tumor microenvironment of ESCC. Mixed lineage kinase domain-like protein (MLKL) and phosphorylated MLKL (pMLKL) were immunohistochemically examined in 88 surgically resected specimens following neoadjuvant chemotherapy (NAC) and 53 pre-therapeutic biopsy specimens, respectively. Tumor-infiltrating lymphocytes (TILs) were also evaluated by immunolocalizing CD3, CD8, and forkhead box protein 3 (FOXP3) in the residual tumors after NAC. High pMLKL status in the post-NAC resected specimens was significantly correlated with worse prognosis in ESCC patients. Multivariate analysis demonstrated that a high pMLKL status was an independent prognostic factor. In pre-NAC biopsy specimens, a high pMLKL status was significantly associated with a lower therapeutic efficacy. CD8+ TILs were significantly lower in the high-pMLKL group. FOXP3+ TILs were significantly higher in both high-MLKL and high-pMLKL groups. We first demonstrated pMLKL status as an independent prognostic factor in ESCC patients. Our study revealed the possible involvement of necroptosis in the immunosuppressive microenvironment, resulting in the attenuated therapeutic efficacy of NAC and eventual adverse clinical outcomes in ESCC.
Collapse
Affiliation(s)
- Takuro Yamauchi
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (J.T.); (R.A.); (Y.G.); (S.U.); (Y.O.); (T.F.); (H.O.); (C.S.); (Y.T.); (T.K.)
- Department of Pathology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (M.H.); (H.S.)
| | - Fumiyoshi Fujishima
- Department of Pathology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (M.H.); (H.S.)
| | - Masatoshi Hashimoto
- Department of Pathology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (M.H.); (H.S.)
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Junichi Tsunokake
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (J.T.); (R.A.); (Y.G.); (S.U.); (Y.O.); (T.F.); (H.O.); (C.S.); (Y.T.); (T.K.)
- Department of Pathology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (M.H.); (H.S.)
| | - Ryujiro Akaishi
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (J.T.); (R.A.); (Y.G.); (S.U.); (Y.O.); (T.F.); (H.O.); (C.S.); (Y.T.); (T.K.)
| | - Yusuke Gokon
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (J.T.); (R.A.); (Y.G.); (S.U.); (Y.O.); (T.F.); (H.O.); (C.S.); (Y.T.); (T.K.)
| | - Shunsuke Ueki
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (J.T.); (R.A.); (Y.G.); (S.U.); (Y.O.); (T.F.); (H.O.); (C.S.); (Y.T.); (T.K.)
| | - Yohei Ozawa
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (J.T.); (R.A.); (Y.G.); (S.U.); (Y.O.); (T.F.); (H.O.); (C.S.); (Y.T.); (T.K.)
| | - Toshiaki Fukutomi
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (J.T.); (R.A.); (Y.G.); (S.U.); (Y.O.); (T.F.); (H.O.); (C.S.); (Y.T.); (T.K.)
| | - Hiroshi Okamoto
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (J.T.); (R.A.); (Y.G.); (S.U.); (Y.O.); (T.F.); (H.O.); (C.S.); (Y.T.); (T.K.)
| | - Chiaki Sato
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (J.T.); (R.A.); (Y.G.); (S.U.); (Y.O.); (T.F.); (H.O.); (C.S.); (Y.T.); (T.K.)
| | - Yusuke Taniyama
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (J.T.); (R.A.); (Y.G.); (S.U.); (Y.O.); (T.F.); (H.O.); (C.S.); (Y.T.); (T.K.)
| | - Tomohiro Nakamura
- Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan;
| | - Naoki Nakaya
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan;
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (J.T.); (R.A.); (Y.G.); (S.U.); (Y.O.); (T.F.); (H.O.); (C.S.); (Y.T.); (T.K.)
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (M.H.); (H.S.)
| |
Collapse
|
79
|
Immune Responses Following Locoregional Treatment for Hepatocellular Carcinoma: Possible Roles of Adjuvant Immunotherapy. Pharmaceutics 2021; 13:pharmaceutics13091387. [PMID: 34575463 PMCID: PMC8471821 DOI: 10.3390/pharmaceutics13091387] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cause of cancer-related deaths worldwide. Unlike other types of cancer, HCC can be treated with locoregional treatments (LRTs) such as radiofrequency ablation (RFA) or transarterial chemoembolization (TACE). However, recurrences following LRTs are common, and strategies to improve long-term outcomes need to be developed. The exhaustion of anti-tumor immunity in HCC has been well established in many reports and the immunomodulatory effects of LRTs (enhancement of tumor antigen-specific T cell responses after RFA, reduction of effector regulatory T cells after TACE) have also been reported in several previous studies. However, a comprehensive review of previous studies and the possible roles of immunotherapy following LRTs in HCC are not known. In this review, we discuss the immunological evidence of current clinical trials using LRTs and combined immunotherapies, and the possible role of this strategy.
Collapse
|
80
|
Beijnink CWH, van der Hoeven NW, Konijnenberg LSF, Kim RJ, Bekkers SCAM, Kloner RA, Everaars H, El Messaoudi S, van Rossum AC, van Royen N, Nijveldt R. Cardiac MRI to Visualize Myocardial Damage after ST-Segment Elevation Myocardial Infarction: A Review of Its Histologic Validation. Radiology 2021; 301:4-18. [PMID: 34427461 DOI: 10.1148/radiol.2021204265] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac MRI is a noninvasive diagnostic tool using nonionizing radiation that is widely used in patients with ST-segment elevation myocardial infarction (STEMI). Cardiac MRI depicts different prognosticating components of myocardial damage such as edema, intramyocardial hemorrhage (IMH), microvascular obstruction (MVO), and fibrosis. But how do cardiac MRI findings correlate to histologic findings? Shortly after STEMI, T2-weighted imaging and T2* mapping cardiac MRI depict, respectively, edema and IMH. The acute infarct size can be determined with late gadolinium enhancement (LGE) cardiac MRI. T2-weighted MRI should not be used for area-at-risk delineation because T2 values change dynamically over the first few days after STEMI and the severity of T2 abnormalities can be modulated with treatment. Furthermore, LGE cardiac MRI is the most accurate method to visualize MVO, which is characterized by hemorrhage, microvascular injury, and necrosis in histologic samples. In the chronic setting post-STEMI, LGE cardiac MRI is best used to detect replacement fibrosis (ie, final infarct size after injury healing). Finally, native T1 mapping has recently emerged as a contrast material-free method to measure infarct size that, however, remains inferior to LGE cardiac MRI. Especially LGE cardiac MRI-defined infarct size and the presence and extent of MVO may be used to monitor the effect of new therapeutic interventions in the treatment of reperfusion injury and infarct size reduction. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Casper W H Beijnink
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Nina W van der Hoeven
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Lara S F Konijnenberg
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Raymond J Kim
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Sebastiaan C A M Bekkers
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Robert A Kloner
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Henk Everaars
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Saloua El Messaoudi
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Albert C van Rossum
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Niels van Royen
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Robin Nijveldt
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| |
Collapse
|
81
|
Hounsell C, Fan Y. The Duality of Caspases in Cancer, as Told through the Fly. Int J Mol Sci 2021; 22:8927. [PMID: 34445633 PMCID: PMC8396359 DOI: 10.3390/ijms22168927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Caspases, a family of cysteine-aspartic proteases, have an established role as critical components in the activation and initiation of apoptosis. Alongside this a variety of non-apoptotic caspase functions in proliferation, differentiation, cellular plasticity and cell migration have been reported. The activity level and context are important factors in determining caspase function. As a consequence of their critical role in apoptosis and beyond, caspases are uniquely situated to have pathological roles, including in cancer. Altered caspase function is a common trait in a variety of cancers, with apoptotic evasion defined as a "hallmark of cancer". However, the role that caspases play in cancer is much more complex, acting both to prevent and to promote tumourigenesis. This review focuses on the major findings in Drosophila on the dual role of caspases in tumourigenesis. This has major implications for cancer treatments, including chemotherapy and radiotherapy, with the activation of apoptosis being the end goal. However, such treatments may inadvertently have adverse effects on promoting tumour progression and acerbating the cancer. A comprehensive understanding of the dual role of caspases will aid in the development of successful cancer therapeutic approaches.
Collapse
Affiliation(s)
| | - Yun Fan
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
82
|
Tonnus W, Belavgeni A, Beuschlein F, Eisenhofer G, Fassnacht M, Kroiss M, Krone NP, Reincke M, Bornstein SR, Linkermann A. The role of regulated necrosis in endocrine diseases. Nat Rev Endocrinol 2021; 17:497-510. [PMID: 34135504 PMCID: PMC8207819 DOI: 10.1038/s41574-021-00499-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/13/2022]
Abstract
The death of endocrine cells is involved in type 1 diabetes mellitus, autoimmunity, adrenopause and hypogonadotropism. Insights from research on basic cell death have revealed that most pathophysiologically important cell death is necrotic in nature, whereas regular metabolism is maintained by apoptosis programmes. Necrosis is defined as cell death by plasma membrane rupture, which allows the release of damage-associated molecular patterns that trigger an immune response referred to as necroinflammation. Regulated necrosis comes in different forms, such as necroptosis, pyroptosis and ferroptosis. In this Perspective, with a focus on the endocrine environment, we introduce these cell death pathways and discuss the specific consequences of regulated necrosis. Given that clinical trials of necrostatins for the treatment of autoimmune conditions have already been initiated, we highlight the therapeutic potential of such novel therapeutic approaches that, in our opinion, should be tested in endocrine disorders in the future.
Collapse
Affiliation(s)
- Wulf Tonnus
- Clinic of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Alexia Belavgeni
- Clinic of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Hospital of the Ludwig-Maximilian-University Munich, Munich, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Zürich, Switzerland
| | - Graeme Eisenhofer
- Clinic of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Martin Fassnacht
- Clinic of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital, University of Würzburg, Würzburg, Germany
| | - Matthias Kroiss
- Clinic of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital, University of Würzburg, Würzburg, Germany
| | - Nils P Krone
- Clinic of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Academic Unit of Child Health, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Hospital of the Ludwig-Maximilian-University Munich, Munich, Germany
| | - Stefan R Bornstein
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Zürich, Switzerland
- Clinic of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Andreas Linkermann
- Clinic of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
83
|
Tonnus W, Meyer C, Steinebach C, Belavgeni A, von Mässenhausen A, Gonzalez NZ, Maremonti F, Gembardt F, Himmerkus N, Latk M, Locke S, Marschner J, Li W, Short S, Doll S, Ingold I, Proneth B, Daniel C, Kabgani N, Kramann R, Motika S, Hergenrother PJ, Bornstein SR, Hugo C, Becker JU, Amann K, Anders HJ, Kreisel D, Pratt D, Gütschow M, Conrad M, Linkermann A. Dysfunction of the key ferroptosis-surveilling systems hypersensitizes mice to tubular necrosis during acute kidney injury. Nat Commun 2021; 12:4402. [PMID: 34285231 PMCID: PMC8292346 DOI: 10.1038/s41467-021-24712-6] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Acute kidney injury (AKI) is morphologically characterized by a synchronized plasma membrane rupture of cells in a specific section of a nephron, referred to as acute tubular necrosis (ATN). Whereas the involvement of necroptosis is well characterized, genetic evidence supporting the contribution of ferroptosis is lacking. Here, we demonstrate that the loss of ferroptosis suppressor protein 1 (Fsp1) or the targeted manipulation of the active center of the selenoprotein glutathione peroxidase 4 (Gpx4cys/-) sensitize kidneys to tubular ferroptosis, resulting in a unique morphological pattern of tubular necrosis. Given the unmet medical need to clinically inhibit AKI, we generated a combined small molecule inhibitor (Nec-1f) that simultaneously targets receptor interacting protein kinase 1 (RIPK1) and ferroptosis in cell lines, in freshly isolated primary kidney tubules and in mouse models of cardiac transplantation and of AKI and improved survival in models of ischemia-reperfusion injury. Based on genetic and pharmacological evidence, we conclude that GPX4 dysfunction hypersensitizes mice to ATN during AKI. Additionally, we introduce Nec-1f, a solid inhibitor of RIPK1 and weak inhibitor of ferroptosis.
Collapse
Affiliation(s)
- Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Claudia Meyer
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Alexia Belavgeni
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Anne von Mässenhausen
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Nadia Zamora Gonzalez
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Francesca Maremonti
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Florian Gembardt
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrecht-University Kiel, Kiel, Germany
| | - Markus Latk
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Sophie Locke
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Julian Marschner
- Division of Nephrology, Department of Medicine IV, University Hospital LMU Munich, Munich, Germany
| | - Wenjun Li
- Department of Surgery, Washington University, Saint Louis, MO, USA
| | - Spencer Short
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sebastian Doll
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Irina Ingold
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Nazanin Kabgani
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Rafael Kramann
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Stephen Motika
- Department of Pathobiology, University of Illinois, Urbana, IL, USA
| | | | - Stefan R Bornstein
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences, King's College London, London, UK
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Dresden, Germany
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Jan Ulrich Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital LMU Munich, Munich, Germany
| | - Daniel Kreisel
- Department of Surgery, Washington University, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University, Saint Louis, MO, USA
| | - Derek Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- National Research Medical University, Laboratory of Experimental Oncology, Moscow, Russia
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
84
|
The expression of RIPK3 is associated with cell turnover of gastric mucosa in the mouse and human stomach. J Mol Histol 2021; 52:849-857. [PMID: 34173165 PMCID: PMC8324621 DOI: 10.1007/s10735-021-10001-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/17/2021] [Indexed: 01/10/2023]
Abstract
Necroptosis is a novel manner of programmed cell death and important for tissue development, homeostasis, damage, and repair. Activation of receptor-interacting protein kinase 3 (RIPK3), a key member of receptor-interacting protein family in contributing significantly to necroptosis, in tissues is a hallmark of cells dying by necroptosis. However, there are few studies that examine the expression of RIPK3 in the glandular cells of stomachs under physiological condition. We have therefore conducted this study to immunohistochemically characterize the key element of necroptosis, RIPK3, in the mouse and human stomach. Results showed that RIPK3 positive cells could be observed in the surface mucosal cells, granular cells, and lamina propria cells in both mouse and human stomach tissues. Ratios of PCNA/RIPK3 positive cells in the glandular cells were ~ 2.1 in mouse and ~ 4.15 in human sections respectively. Morphological and double immunofluorescence analysis confirmed that these RIPK3 positive cells were mucous, parietal and lamina propria cells. Our results indicate that the expression of RIPK3 in different cell types might contribute to cell turnover of gastric mucosa in the mouse and human stomach under physiological condition.
Collapse
|
85
|
Pattar S, Aleinati M, Iqbal F, Madhu A, Blais S, Wang X, Dallaire F, Wang Y, Isaac D, Fine N, Greenway SC. Identification of cell-free DNA methylation patterns unique to the human left ventricle as a potential indicator of acute cellular rejection. Clin Transplant 2021; 35:e14295. [PMID: 33756005 DOI: 10.1111/ctr.14295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/22/2022]
Abstract
Increased levels of donor-derived cell-free DNA (dd-cfDNA) in recipient plasma have been associated with rejection after transplantation. DNA sequence differences have been used to distinguish between donor and recipient, but epigenetic differences could also potentially identify dd-cfDNA. This pilot study aimed to identify ventricle-specific differentially methylated regions of DNA (DMRs) that could be detected in cfDNA. We identified 24 ventricle-specific DMRs and chose two for further study, one on chromosome 9 and one on chromosome 12. The specificity of both DMRs for the left ventricle was confirmed using genomic DNA from multiple human tissues. Serial matched samples of myocardium (n = 33) and plasma (n = 24) were collected from stable adult heart transplant recipients undergoing routine endomyocardial biopsy for rejection surveillance. Plasma DMR levels increased with biopsy-proven rejection grade for individual patients. Mean cellular apoptosis in biopsy samples increased significantly with rejection severity (2.4%, 4.4% and 10.0% for ACR 0R, 1R, and 2R, respectively) but did not show a consistent relationship with DMR levels. We identified multiple DNA methylation patterns unique to the human ventricle and conclude that epigenetic differences in cfDNA populations represent a promising alternative strategy for the non-invasive detection of rejection.
Collapse
Affiliation(s)
- Sabrina Pattar
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mohammad Aleinati
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Fatima Iqbal
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aiswarya Madhu
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Samuel Blais
- Division of Pediatric Cardiology, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Xuemei Wang
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Frederic Dallaire
- Division of Pediatric Cardiology, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Yinong Wang
- Alberta Precision Laboratories and Department of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Debra Isaac
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nowell Fine
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Steven C Greenway
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
86
|
Abstract
In the last decade, the role of apoptosis in the pathophysiology of acute kidney injury (AKI) and AKI to chronic kidney disease (CKD) progression has been revisited as our understanding of ferroptosis and necroptosis has emerged. A growing body of evidence, reviewed here, ascribes a central pathophysiological role for ferroptosis and necroptosis to AKI, nephron loss, and acute tubular necrosis. We will introduce concepts to the non-cell-autonomous manner of kidney tubular injury during ferroptosis, a phenomenon that we refer to as a "wave of death." We hypothesize that necroptosis might initiate cell death propagation through ferroptosis. The remaining necrotic debris requires effective removal processes to prevent a secondary inflammatory response, referred to as necroinflammation. Open questions include the differences in the immunogenicity of ferroptosis and necroptosis, and the specificity of necrostatins and ferrostatins to therapeutically target these processes to prevent AKI-to-CKD progression and end-stage renal disease.
Collapse
|
87
|
Li L, Bi Z, Hu Y, Sun L, Song Y, Chen S, Mo F, Yang J, Wei Y, Wei X. Silver nanoparticles and silver ions cause inflammatory response through induction of cell necrosis and the release of mitochondria in vivo and in vitro. Cell Biol Toxicol 2021; 37:177-191. [PMID: 32367270 DOI: 10.1007/s10565-020-09526-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/06/2020] [Indexed: 02/05/2023]
Abstract
Owing to the excellent antibacterial and antiviral activity, silver nanoparticles have a widespread use in the food and pharmaceutical industries. With the increase in the production and use of the related products, the potential hazard of silver nanoparticles has aroused public attention. The main purpose of this study is to explore the toxicity of silver nanoparticles and induction of lung inflammation in vitro and in vivo. Here, we validated that small amounts of silver ions dissolved from silver nanoparticles caused the depolarization of plasma membrane, resulting in an overload of intracellular sodium and calcium, and eventually led to the cell necrosis. The blockers of calcium or sodium channels inversed the toxicity of silver ions. Then, we instilled silver nanoparticles or silver nitrate (50 μg per mouse) into the lungs of mice, and this induced pulmonary injury and mitochondrial content release, led to the recruitment of neutrophils to the lung tissue via p38 MAPK pathway. Altogether, these data show that released silver ions from nanoparticles induced cell necrosis through Na+ and Ca2+ influx and triggered pulmonary inflammation through elevating mitochondrial-related contents released from these necrotic cells.
Collapse
Affiliation(s)
- Lu Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuzhu Hu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lu Sun
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanlin Song
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
88
|
Chen X, Deng Z, Feng J, Chang Q, Lu F, Yuan Y. Necroptosis in Macrophage Foam Cells Promotes Fat Graft Fibrosis in Mice. Front Cell Dev Biol 2021; 9:651360. [PMID: 33842478 PMCID: PMC8027326 DOI: 10.3389/fcell.2021.651360] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/04/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Fibrosis is a major grafting-related complication that leads to fat tissue dysfunction. Macrophage-induced inflammation is related to the development of fat tissue fibrosis. Necroptosis is a recently discovered pathway of programmed cell necrosis that results in severe inflammation and subsequent tissue fibrosis. Thus, in this study, we investigated the role of macrophage necroptosis in fat graft fibrosis and the underlying mechanisms. Methods: Fibrosis and necroptosis were investigated in mouse fat tissue before and after grafting. An in vitro “crown-like” structure (CLS) cell culture model was developed by co-culturing RAW 264.7 macrophages with apoptotic adipocytes to reproduce in vivo CLS macrophage-adipocyte interactions. Lipid uptake and necroptosis in CLS macrophages were analyzed using Oil-Red-O staining, western blotting, and immunofluorescence. RAW264.7 macrophages were cultured alone or with apoptotic adipocytes and treated with a necroptosis inhibitor (Nec-1 or GSK872) to explore the paracrine effect of necroptotic CLS macrophages on collagen synthesis in fibroblasts in vitro. Mice were treated with Nec-1 to analyze the effect of blocking necroptosis on fat graft fibrosis. Results: Fibrosis was increased after grafting in fat grafts of mice. Macrophages clustered around apoptotic adipocytes or large oil droplets to form a typical CLS in fibrotic depots. This was accompanied by formation and necroptosis of macrophage foam cells (MFCs) in CLSs. RAW 264.7 macrophages co-cultured with apoptotic adipocytes induced CLS formation in vitro, and lipid accumulation in CLS macrophages resulted in the formation and necroptosis of MFCs. Necroptosis of MFCs altered the expression of collagen I and VI in fibroblasts via a paracrine mechanism involving inflammatory cytokines/chemokines, which was reversed by GSK872 or Nec-1 treatment. Furthermore, treatment with Nec-1 ameliorated fat graft fibrosis in mice. Conclusion: Apoptotic adipocytes induced necroptosis of MFCs, and necroptosis of these cells activated collagen synthesis in fibroblasts via a paracrine mechanism. Inhibition of necroptosis in macrophages is a potential approach to prevent fibrosis in fat grafts.
Collapse
Affiliation(s)
- Xihang Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zilong Deng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingwei Feng
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Yuan
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
89
|
Juan CX, Mao Y, Cao Q, Chen Y, Zhou LB, Li S, Chen H, Chen JH, Zhou GP, Jin R. Exosome-mediated pyroptosis of miR-93-TXNIP-NLRP3 leads to functional difference between M1 and M2 macrophages in sepsis-induced acute kidney injury. J Cell Mol Med 2021; 25:4786-4799. [PMID: 33745232 PMCID: PMC8107088 DOI: 10.1111/jcmm.16449] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a systemic inflammatory response syndrome caused by infection, resulting in organ dysfunction. Sepsis-induced acute kidney injury (AKI) is one of the most common potential complications. Increasing reports have shown that M1 and M2 macrophages both take part in the progress of AKI by influencing the level of inflammatory factors and the cell death, including pyroptosis. However, whether M1 and M2 macrophages regulate AKI by secreting exosome remains unknown. In the present study, we isolated the exosomes from M1 and M2 macrophages and used Western blot and enzyme-linked immunosorbent assay (ELISA) to investigate the effect of M1 and M2 exosomes on cell pyroptosis. miRNA sequencing was used to identify the different miRNA in M1 and M2 exosomes. Luciferase reporter assay was used to verify the target gene of miRNA. We confirmed that exosomes excreted by macrophages regulated cell pyroptosis in vitro by using Western blot and ELISA. miRNA sequencing revealed the differentially expressed level of miRNAs in M1 and M2 exosomes, among which miR-93-5p was involved in the regulation of pyroptosis. By using bioinformatics predictions and luciferase reporter assay, we found that thioredoxin-interacting protein (TXNIP) was a direct target of miR-93-5p. Further in vitro and in vivo experiments indicated that exosomal miR-93-5p regulated the TXNIP directly to influence the pyroptosis in renal epithelial cells, which explained the functional difference between different phenotypes of macrophages. This study might provide new targets for the treatment of sepsis-induced AKI.
Collapse
Affiliation(s)
- Chen-Xia Juan
- Department of Pediatrics, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yan Mao
- Department of Pediatrics, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Cao
- Department of Pediatrics, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Nephrology, Affiliated Geriatric Hospital, Nanjing Medical University, Nanjing, China
| | - Lan-Bo Zhou
- Department of Dermatology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Sheng Li
- Department of Pediatrics, Yancheng Maternity and Child Health Care Hospital, Yancheng, China
| | - Hao Chen
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jia-He Chen
- Department of Pediatrics, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Guo-Ping Zhou
- Department of Pediatrics, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Rui Jin
- Department of Pediatrics, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
90
|
Hu XM, Li ZX, Lin RH, Shan JQ, Yu QW, Wang RX, Liao LS, Yan WT, Wang Z, Shang L, Huang Y, Zhang Q, Xiong K. Guidelines for Regulated Cell Death Assays: A Systematic Summary, A Categorical Comparison, A Prospective. Front Cell Dev Biol 2021; 9:634690. [PMID: 33748119 PMCID: PMC7970050 DOI: 10.3389/fcell.2021.634690] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Over the past few years, the field of regulated cell death continues to expand and novel mechanisms that orchestrate multiple regulated cell death pathways are being unveiled. Meanwhile, researchers are focused on targeting these regulated pathways which are closely associated with various diseases for diagnosis, treatment, and prognosis. However, the complexity of the mechanisms and the difficulties of distinguishing among various regulated types of cell death make it harder to carry out the work and delay its progression. Here, we provide a systematic guideline for the fundamental detection and distinction of the major regulated cell death pathways following morphological, biochemical, and functional perspectives. Moreover, a comprehensive evaluation of different assay methods is critically reviewed, helping researchers to make a reliable selection from among the cell death assays. Also, we highlight the recent events that have demonstrated some novel regulated cell death processes, including newly reported biomarkers (e.g., non-coding RNA, exosomes, and proteins) and detection techniques.
Collapse
Affiliation(s)
- Xi-min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhi-xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Rui-han Lin
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jia-qi Shan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qing-wei Yu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Rui-xuan Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lv-shuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhen Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
91
|
Zefferino R, Piccoli C, Di Gioia S, Capitanio N, Conese M. How Cells Communicate with Each Other in the Tumor Microenvironment: Suggestions to Design Novel Therapeutic Strategies in Cancer Disease. Int J Mol Sci 2021; 22:ijms22052550. [PMID: 33806300 PMCID: PMC7961918 DOI: 10.3390/ijms22052550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
Connexin- and pannexin (Panx)-formed hemichannels (HCs) and gap junctions (GJs) operate an interaction with the extracellular matrix and GJ intercellular communication (GJIC), and on account of this they are involved in cancer onset and progression towards invasiveness and metastatization. When we deal with cancer, it is not correct to omit the immune system, as well as neglecting its role in resisting or succumbing to formation and progression of incipient neoplasia until the formation of micrometastasis, nevertheless what really occurs in the tumor microenvironment (TME), which are the main players and which are the tumor or body allies, is still unclear. The goal of this article is to discuss how the pivotal players act, which can enhance or contrast cancer progression during two important process: "Activating Invasion and Metastasis" and the "Avoiding Immune Destruction", with a particular emphasis on the interplay among GJIC, Panx-HCs, and the purinergic system in the TME without disregarding the inflammasome and cytokines thereof derived. In particular, the complex and contrasting roles of Panx1/P2X7R signalosome in tumor facilitation and/or inhibition is discussed in regard to the early/late phases of the carcinogenesis. Finally, considering this complex interplay in the TME between cancer cells, stromal cells, immune cells, and focusing on their means of communication, we should be capable of revealing harmful messages that help the cancer growth and transform them in body allies, thus designing novel therapeutic strategies to fight cancer in a personalized manner.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
- Correspondence: ; Tel.: +39-0881-884673
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (N.C.)
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (N.C.)
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| |
Collapse
|
92
|
Južnić L, Peuker K, Strigli A, Brosch M, Herrmann A, Häsler R, Koch M, Matthiesen L, Zeissig Y, Löscher BS, Nuber A, Schotta G, Neumeister V, Chavakis T, Kurth T, Lesche M, Dahl A, von Mässenhausen A, Linkermann A, Schreiber S, Aden K, Rosenstiel PC, Franke A, Hampe J, Zeissig S. SETDB1 is required for intestinal epithelial differentiation and the prevention of intestinal inflammation. Gut 2021; 70:485-498. [PMID: 32503845 PMCID: PMC7873423 DOI: 10.1136/gutjnl-2020-321339] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The intestinal epithelium is a rapidly renewing tissue which plays central roles in nutrient uptake, barrier function and the prevention of intestinal inflammation. Control of epithelial differentiation is essential to these processes and is dependent on cell type-specific activity of transcription factors which bind to accessible chromatin. Here, we studied the role of SET Domain Bifurcated Histone Lysine Methyltransferase 1, also known as ESET (SETDB1), a histone H3K9 methyltransferase, in intestinal epithelial homeostasis and IBD. DESIGN We investigated mice with constitutive and inducible intestinal epithelial deletion of Setdb1, studied the expression of SETDB1 in patients with IBD and mouse models of IBD, and investigated the abundance of SETDB1 variants in healthy individuals and patients with IBD. RESULTS Deletion of intestinal epithelial Setdb1 in mice was associated with defects in intestinal epithelial differentiation, barrier disruption, inflammation and mortality. Mechanistic studies showed that loss of SETDB1 leads to de-silencing of endogenous retroviruses, DNA damage and intestinal epithelial cell death. Predicted loss-of-function variants in human SETDB1 were considerably less frequently observed than expected, consistent with a critical role of SETDB1 in human biology. While the vast majority of patients with IBD showed unimpaired mucosal SETDB1 expression, comparison of IBD and non-IBD exomes revealed over-representation of individual rare missense variants in SETDB1 in IBD, some of which are predicted to be associated with loss of function and may contribute to the pathogenesis of intestinal inflammation. CONCLUSION SETDB1 plays an essential role in intestinal epithelial homeostasis. Future work is required to investigate whether rare variants in SETDB1 contribute to the pathogenesis of IBD.
Collapse
Affiliation(s)
- Lea Južnić
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany,Center for Regenerative Therapies (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Kenneth Peuker
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany,Center for Regenerative Therapies (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Anne Strigli
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany,Center for Regenerative Therapies (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Mario Brosch
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany,Center for Regenerative Therapies (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Alexander Herrmann
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany,Center for Regenerative Therapies (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Michael Koch
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany,Center for Regenerative Therapies (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Liz Matthiesen
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany,Center for Regenerative Therapies (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Yvonne Zeissig
- Department of General Pediatrics, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Britt-Sabina Löscher
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alexander Nuber
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Volker Neumeister
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMBC), Technology Platform, Technische Universität (TU) Dresden, Dresden, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität (TU) Dresden, Dresden, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität (TU) Dresden, Dresden, Germany
| | - Anne von Mässenhausen
- BIOTEChnology Center, Technische Universität (TU) Dresden, Dresden, Germany,Division of Nephrology, Department of Medicine III, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Andreas Linkermann
- BIOTEChnology Center, Technische Universität (TU) Dresden, Dresden, Germany,Division of Nephrology, Department of Medicine III, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Christian-Albrechts-University of Kiel, Kiel, Germany,Department of Internal Medicine I, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Christian-Albrechts-University of Kiel, Kiel, Germany,Department of Internal Medicine I, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Philip C Rosenstiel
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jochen Hampe
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany,Center for Regenerative Therapies (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Sebastian Zeissig
- Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, Dresden, Germany .,Center for Regenerative Therapies (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| |
Collapse
|
93
|
Heme Oxgenase-1, a Cardinal Modulator of Regulated Cell Death and Inflammation. Cells 2021; 10:cells10030515. [PMID: 33671004 PMCID: PMC7997353 DOI: 10.3390/cells10030515] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Heme oxygenase catalyzes the rate-limiting step in heme degradation in order to generate biliverdin, carbon monoxide (CO), and iron. The inducible form of the enzyme, heme oxygenase-1 (HO-1), exerts a central role in cellular protection. The substrate, heme, is a potent pro-oxidant that can accelerate inflammatory injury and promote cell death. HO-1 has been implicated as a key mediator of inflammatory cell and tissue injury, as validated in preclinical models of acute lung injury and sepsis. A large body of work has also implicated HO-1 as a cytoprotective molecule against various forms of cell death, including necrosis, apoptosis and newly recognized regulated cell death (RCD) programs such as necroptosis, pyroptosis, and ferroptosis. While the antiapoptotic potential of HO-1 and its reaction product CO in apoptosis regulation has been extensively characterized, relatively fewer studies have explored the regulatory role of HO-1 in other forms of necrotic and inflammatory RCD (i.e., pyroptosis, necroptosis and ferroptosis). HO-1 may provide anti-inflammatory protection in necroptosis or pyroptosis. In contrast, in ferroptosis, HO-1 may play a pro-death role via enhancing iron release. HO-1 has also been implicated in co-regulation of autophagy, a cellular homeostatic program for catabolic recycling of proteins and organelles. While autophagy is primarily associated with cell survival, its occurrence can coincide with RCD programs. This review will summarize the roles of HO-1 and its reaction products in co-regulating RCD and autophagy programs, with its implication for both protective and detrimental tissue responses, with emphasis on how these impact HO-1 as a candidate therapeutic target in disease.
Collapse
|
94
|
Tang LJ, Luo XJ, Tu H, Chen H, Xiong XM, Li NS, Peng J. Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:401-410. [PMID: 32621060 DOI: 10.1007/s00210-020-01932-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
Ferroptosis is an iron-dependent regulated necrosis. This study aims to evaluate the contribution of ferroptosis to ischemia or reperfusion injury, and lay a basis for precise therapy of myocardial infarction. The Sprague-Dawley (SD) rat hearts were subjected to ischemia for different duration or the hearts were treated with 1 h-ischemia plus different duration of reperfusion. The myocardial injury was assessed by biochemical assays and hematoxylin & eosin (HE) staining. The ferroptosis was evaluated with the levels of acyl-CoA synthetase long-chain family member 4 (ACSL4), glutathione peroxidase 4 (GPX4), iron, and malondialdehyde. Iron chelator (deferoxamine) was applied to verify the contribution of ferroptosis to ischemia and reperfusion injury. The results showed that ischemic injury (infarction and CK release) was getting worse with the extension of ischemia, but no significant changes in ferroptosis indexes (ACSL4, GPX4, iron, and malondialdehyde) in cardiac tissues were observed. Differently, the levels of ACSL4, iron, and malondialdehyde were gradually elevated with the extension of reperfusion concomitant with a decrease of GPX4 level. In the ischemia-treated rat hearts, no significant changes in myocardial injury were observed in the presence of deferoxamine, while in the ischemia/reperfusion-treated rat hearts, myocardial injury was markedly attenuated in the presence of deferoxamine concomitant with a reduction of ferroptosis. Based on these observations, we conclude that ferroptosis occurs mainly in the phase of myocardial reperfusion but not ischemia. Thus, intervention of ferroptosis exerts beneficial effects on reperfusion injury but not ischemic injury, laying a basis for precise therapy for patients with myocardial infarction.
Collapse
Affiliation(s)
- Li-Jing Tang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, No.110 Xiangya Road, Changsha, 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Hua Tu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, No.110 Xiangya Road, Changsha, 410078, China
| | - Heng Chen
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, No.110 Xiangya Road, Changsha, 410078, China
| | - Xiao-Ming Xiong
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, No.110 Xiangya Road, Changsha, 410078, China
| | - Nian-Sheng Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, No.110 Xiangya Road, Changsha, 410078, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, No.110 Xiangya Road, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
95
|
Zhou H, Liu L, Ma X, Wang J, Yang J, Zhou X, Yang Y, Liu H. RIP1/RIP3/MLKL-mediated necroptosis contributes to vinblastine-induced myocardial damage. Mol Cell Biochem 2021; 476:1233-1243. [PMID: 33247805 PMCID: PMC7873015 DOI: 10.1007/s11010-020-03985-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Vinblastine (VBL) has been considered as a first-line anti-tumor drug for many years. However, vinblastine-caused myocardial damage has been continually reported. The underlying molecular mechanism of the myocardial damage remains unknown. Here, we show that vinblastine induces myocardial damage and necroptosis is involved in the vinblastine-induced myocardial damage both in vitro and in vivo. The results of WST-8 and flow cytometry analysis show that vinblastine causes damage to H9c2 cells, and the results of animal experiments show that vinblastine causes myocardial cell damage. The necrosome components, receptor-interacting protein 1 (RIP1) receptor-interacting protein 3 (RIP3), are significantly increased in vinblastine-treated H9c2 cells, primary neonatal rat ventricular myocytes and rat heart tissues. And the downstream substrate of RIP3, mixed lineage kinase domain like protein (MLKL) was also increased. Pre-treatment with necroptosis inhibitors partially inhibits the necrosome components and MLKL levels and alleviates vinblastine-induced myocardial injury both in vitro and in vivo. This study indicates that necroptosis participated in vinblastine-evoked myocardial cell death partially, which would be a potential target for relieving the chemotherapy-related myocardial damage.
Collapse
Affiliation(s)
- Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaolong Ma
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jian Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xinmin Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
96
|
Hao T, Zhang P, Hao H, Du W, Pang Y, Zhao S, Zou H, Zhu H, Yu W, Li S, Zhao X. The combination treatment of cholesterol-loaded methyl-β-cyclodextrin and methyl-β-cyclodextrin significantly improves the fertilization capacity of vitrified bovine oocytes by protecting fertilization protein JUNO. Reprod Domest Anim 2021; 56:519-530. [PMID: 33405303 DOI: 10.1111/rda.13890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 12/25/2022]
Abstract
Many experiments show that vitrification significantly reduces the fertilization capacity of mammalian oocytes, restricting the application of vitrified oocytes. It has been proven that the JUNO protein plays a vital role in mammalian oocytes fertilization. However, little information is available about the effects of vitrification on the JUNO protein and the procedure to protect it in bovine oocytes. Here, the present study was designed to investigate the effect of vitrification on the JUNO protein level in bovine oocytes. In this study, MII oocytes were treated with cholesterol-loaded methyl-β-cyclodextrin (CLC; 0, 10, 15, 20 mM) for 45 min before vitrification and methyl-β-cyclodextrin (MβCD; 0, 2.25, 4.25, 6.25 mM) for 45 min after thawing (38-39°C). Then, the expression level and function of JUNO protein, cholesterol level in the membrane, the externalization of phosphatidylserine, sperm binding capacity and the developmental ability of vitrified bovine oocytes were examined. Our results showed that vitrification significantly decreased the JUNO protein level, cholesterol level, sperm binding capacity, development ability, and increased the promoter methylation level of the JUNO gene and apoptosis level of bovine oocytes. Furthermore, 15 mM CLC + 4.25 mM MβCD treatment significantly improved the cholesterol level and increased sperm binding and development ability of vitrified bovine oocytes. In conclusion, the combination treatment of cholesterol-loaded methyl-β-cyclodextrin and methyl-β-cyclodextrin significantly improves the fertilization capacity of vitrified bovine oocytes by protecting fertilization protein JUNO.
Collapse
Affiliation(s)
- Tong Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Peipei Zhang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Huiying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Weili Yu
- Shijiazhuang Tianquan Elite Dairy Lt.D., Shijiazhuang, China.,Hebei Provincial Dairy Cow Breeding Engineering Technology Research Center, Shijiazhuang, China.,Hebei Cattle Industry Technology Research Institute, Shijiazhuang, China
| | - Shujing Li
- Shijiazhuang Tianquan Elite Dairy Lt.D., Shijiazhuang, China.,Hebei Provincial Dairy Cow Breeding Engineering Technology Research Center, Shijiazhuang, China.,Hebei Cattle Industry Technology Research Institute, Shijiazhuang, China
| | - Xueming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
97
|
Xia GQ, Lei TR, Yu TB, Zhou PH. Nanocarrier-based activation of necroptotic cell death potentiates cancer immunotherapy. NANOSCALE 2021; 13:1220-1230. [PMID: 33404038 DOI: 10.1039/d0nr05832g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Even though immunological checkpoint inhibitors have demonstrated a potent anti-tumor effect in clinical practice, the low immunogenicity of the majority of tumors still results in a lower response rate and a higher resistance to mono-immunotherapy. Recent studies revealed that immunogenic cell death (ICD) augments T cell responses against some cancers, thus indicating that this combination therapy may further improve the anti-tumor immunity produced by anti-PD-1/PD-L1. Herein a robust synergetic strategy is reported to integrate the activation of necroptotic cell death and the subsequent using of immune checkpoint inhibitors. Liposomes have good biocompatibility and are widely used as drug carriers. Using liposomes as TNF-α-loaded nanoplatforms achieves in vivo tumor targeting and long-term retention in the tumor microenvironment. Tumor cells treated with TNF-α-loaded liposomes exhibited the hallmarks of ICD including the release of high mobility group box 1 (HMGB1) and lactate dehydrogenase (LDH). Additionally, the tumor cell necrosis caused by TNF-α induces the in situ release of tumor-specific antigens, thus increasing the dendritic cell (DC) activation and T cell infiltration when combined with the checkpoint blockade therapy. Collectively, significant tumor reduction is accomplishable by this synergetic strategy, in which TNF-α-loaded liposomes convert the tumor cell into an endogenous vaccine and improve the anti-tumor immunity of anti-PD-1/PD-L1.
Collapse
Affiliation(s)
- Gan-Qing Xia
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P. R. China.
| | | | | | | |
Collapse
|
98
|
Liu Y, Ding Y, Zhang X, Zhang Y, Hua K. Morphologic assessment of hypertonic citrate adenine, histidine-tryptophan-ketoglutarate, and university of Wisconsin solutions for hypothermic uterus preservation in rats. J Obstet Gynaecol Res 2021; 47:1097-1109. [PMID: 33410204 DOI: 10.1111/jog.14645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
AIM Optimizing perfusate for static cold storage is one of the key ways of reducing organ dysfunction and rejection in organ transplantation. Here, we tested the effectiveness of the three different solutions for hypothermic uterus preservation. METHODS Twenty rats were divided into four groups, five in each group. Uterine grafts were retrieved and perfused in situ. The uteri were preserved at 4°C in normal saline as control group (group NS), hypertonic citrate adenine (group HCA), histidine-tryptophan-ketoglutarate (group HTK), or university of Wisconsin solutions (group UW) for 0, 12, 24, and 48 h, respectively. HE, electron microscopy, TUNEL staining, and Cleaved Caspase3 immunohistochemical staining were assessed at each time point. RESULTS There was no significant difference in the uterine retrieval time, perfusion time, and the amount of perfusion solution in NS, HCA, HTK, and UW groups (p > 0.05). HCA and HTK can well preserve the pathological morphology of rat uterine tissues for up to 24 h, and the apoptosis rates of the two groups are 7.2% and 7.1%, respectively, with no statistical difference (p > 0.05). Still, the protective effect of HTK on the ultrastructure of cells was much better than HCA. There was a significant difference in the apoptosis rate of UW (6.5%), HTK (8.8%), and HCA (9.4%) at 48 h, with mitochondrial and endoplasmic reticulum structure well preserved only in UW. CONCLUSION At 4°C, normal saline is not suitable to preserve rat uterus for more than 12 h. The morphologic results would favor the use of HTK rather than HCA for short-term hypothermic uterus preservation (≤24 h). UW is better than HTK and HCA for 48 h hypothermic uterus preservation.
Collapse
Affiliation(s)
- Yu Liu
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yan Ding
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xuyin Zhang
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Keqin Hua
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
99
|
Mallarpu CS, Ponnana M, Prasad S, Singarapu M, Kim J, Haririparsa N, Bratic N, Brar H, Chelluri LK, Madiraju C. Distinct cell death markers identified in critical care patient survivors diagnosed with sepsis. Immunol Lett 2021; 231:1-10. [PMID: 33406390 DOI: 10.1016/j.imlet.2020.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
Sepsis is an abnormal immune response to infection characterized by an overwhelming systemic inflammation and cell death. Non-apoptotic cell death pertaining to pyroptosis, necroptosis and autophagy contribute to sepsis pathogenesis apart from classical apoptotic cell death. The objective of the current study is to investigate the presence of molecular markers of relevance to apoptotic and non-apoptotic cell death in control healthy subjects and septic patient survivors. Sepsis survivors (N = 24) and healthy human volunteers (N = 16) [40 total subjects] were recruited into the study. Clinical intervention included antibiotic treatment regimen administered to patients upon clinical diagnosis of sepsis followed by blood draw 18-24 hr post-antibiotic dose. Serum samples analyzed by enzyme-linked immunosorbent assay (ELISA) and peripheral blood mononuclear cells (PBMCs) by flow cytometry analysis for identification of cell death markers. Cell death markers analyzed by ELISA and flow cytometry included caspase-1, caspase-3, MLKL, RIPK3, p62 and LC3B. Serum and peripheral blood mononuclear cells (PBMCs) of septic survivors and healthy controls analyzed for the presence of distinct cell death markers. Markers of relevance to apoptosis (caspase-3), pyroptosis (caspase-1), necroptosis (MLKL) and autophagy (p62 and LC3B) were compared between septic survivors and healthy controls. ELISA analysis suggested significant alterations in the serum levels of non-apoptotic cell death markers, caspase-1 and p62/SQSTM1, in septic survivors compared to healthy controls (p < 0.05). There was no significant difference in the serum levels of caspase-3 and MLKL between septic survivors and healthy control subjects (p> 0.05). Intracellular caspase-1 levels did not show any significant alterations between septic survivors and healthy control subjects (p > 0.05). Flow cytometry analysis suggested significant increase in the intracellular expression of caspase-3, MLKL and its associated kinase RIPK3, and p62/SQSTM1 (p < 0.05) in sepsis patient survivors when compared to healthy human subjects. The current observational study identified significantly elevated levels of non-apoptotic cell death markers in sepsis patients compared to healthy controls. Noteworthy observation is the significant modulation of non-apoptotic cell death markers in serum samples derived from septic survivors post-antibiotic administration compared to healthy control subjects. Preliminary results serve as a basis for further mechanistic investigations to elucidate the role of distinct cell death markers in the prediction of clinical outcomes in sepsis.
Collapse
Affiliation(s)
- Chandra Shekar Mallarpu
- Department of Transplant Immunology & Stem Cell Unit, Gleneagles Global Hospitals, Lakdi-ka-Pul, Hyderabad, 500 004, India
| | - Meenakshi Ponnana
- Department of Transplant Immunology & Stem Cell Unit, Gleneagles Global Hospitals, Lakdi-ka-Pul, Hyderabad, 500 004, India
| | - Sudhir Prasad
- Department of Transplant Immunology & Stem Cell Unit, Gleneagles Global Hospitals, Lakdi-ka-Pul, Hyderabad, 500 004, India
| | - Maneendra Singarapu
- Department of Transplant Immunology & Stem Cell Unit, Gleneagles Global Hospitals, Lakdi-ka-Pul, Hyderabad, 500 004, India
| | - Jean Kim
- Marshall B. Ketchum University, College of Pharmacy, 2575 Yorba Linda Blvd, Fullerton, CA, 92831, USA
| | - Neda Haririparsa
- Marshall B. Ketchum University, College of Pharmacy, 2575 Yorba Linda Blvd, Fullerton, CA, 92831, USA
| | - Nemanja Bratic
- Marshall B. Ketchum University, College of Pharmacy, 2575 Yorba Linda Blvd, Fullerton, CA, 92831, USA
| | - Harvinder Brar
- Marshall B. Ketchum University, College of Pharmacy, 2575 Yorba Linda Blvd, Fullerton, CA, 92831, USA
| | - Lakshmi Kiran Chelluri
- Department of Transplant Immunology & Stem Cell Unit, Gleneagles Global Hospitals, Lakdi-ka-Pul, Hyderabad, 500 004, India.
| | - Charitha Madiraju
- Marshall B. Ketchum University, College of Pharmacy, 2575 Yorba Linda Blvd, Fullerton, CA, 92831, USA.
| |
Collapse
|
100
|
Li W, Sun J, Zhou X, Lu Y, Cui W, Miao L. Mini-Review: GSDME-Mediated Pyroptosis in Diabetic Nephropathy. Front Pharmacol 2021; 12:780790. [PMID: 34867412 PMCID: PMC8637879 DOI: 10.3389/fphar.2021.780790] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022] Open
Abstract
Pyroptosis is a recently identified type of lytic programmed cell death, in which pores form in the plasma membrane, and cells swell, rupture, and then release their contents, including inflammatory cytokines. Molecular studies indicated that pyroptosis may occur via a gasdermin D (GSDMD) and caspase-1 (Casp1) -dependent classical pathway, a GSDMD and Casp11/4/5-dependent non-classical pathway, or a gasdermin E (GSDME) and Casp3-dependent pathway. Studies of animal models and humans indicated that pyroptosis can exacerbate several complications of diabetes, including diabetic nephropathy (DN), a serious microvascular complication of diabetes. Many studies investigated the mechanism mediating the renoprotective effect of GSDMD regulation in the kidneys of patients and animal models with diabetes. As a newly discovered regulatory mechanism, GSDME and Casp3-dependent pyroptotic pathway in the progression of DN has also attracted people's attention. Z-DEVD-FMK, an inhibitor of Casp3, ameliorates albuminuria, improves renal function, and reduces tubulointerstitial fibrosis in diabetic mice, and these effects are associated with the inhibition of GSDME. Studies of HK-2 cells indicated that the molecular and histological features of secondary necrosis were present following glucose stimulation due to GSDME cleavage, such as cell swelling, and release of cellular contents. Therefore, therapies targeting Casp3/GSDME-dependent pyroptosis have potential for treatment of DN. A novel nephroprotective strategy that employs GSDME-derived peptides which are directed against Casp3-induced cell death may be a key breakthrough. This mini-review describes the discovery and history of research in this pyroptosis pathway and reviews the function of proteins in the gasdermin family, with a focus on the role of GSDME-mediated pyroptosis in DN. Many studies have investigated the impact of GSDME-mediated pyroptosis in kidney diseases, and these studies used multiple interventions, in vitro models, and in vivo models. We expect that further research on the function of GDSME in DN may provide valuable insights that may help to improve treatments for this disease.
Collapse
Affiliation(s)
| | | | | | | | - Wenpeng Cui
- *Correspondence: Lining Miao, ; Wenpeng Cui,
| | - Lining Miao
- *Correspondence: Lining Miao, ; Wenpeng Cui,
| |
Collapse
|