51
|
Two SNP in STAT5B gene and their association with breeding value of growth and egg production traits in Mazandaran Indigenous Chicken. Livest Sci 2012. [DOI: 10.1016/j.livsci.2012.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
52
|
Wang X, Crowe PJ, Goldstein D, Yang JL. STAT3 inhibition, a novel approach to enhancing targeted therapy in human cancers (review). Int J Oncol 2012; 41:1181-91. [PMID: 22842992 DOI: 10.3892/ijo.2012.1568] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/10/2012] [Indexed: 11/06/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) regulates many critical functions in human normal and malignant tissues, such as differentiation, proliferation, survival, angiogenesis and immune function. Constitutive activation of STAT3 is implicated in a wide range of human cancers. As such, STAT3 has been studied as a tumour therapeutic target. This review aimed principally to summarise the updated research on STAT3 inhibition studies and their therapeutic potential in solid tumours. Recent literature associated with STAT3 inhibition was reviewed through PubMed and Medline database, followed by critical comparison and analysis. Constitutive activation of STAT3 has been identified as abnormal and oncogenic. The pathway of STAT3 activation and signal transduction identifies 3 approaches for inhibition: modulating upstream positive or negative regulators, regulating RNA (DN-STAT3, anti-sense RNA, siRNA and microRNA) or targeting STAT3 protein at different domains. The last approach using small molecule STAT3 inhibitors has been the most examined so far with both preclinical and clinical studies. Targeting STAT3 using a specific inhibitor may be a useful cancer treatment approach, with the potential for a broad clinical impact.
Collapse
Affiliation(s)
- Xiaochun Wang
- Sarcoma Research Group, Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW, Australia
| | | | | | | |
Collapse
|
53
|
Lin JX, Li P, Liu D, Jin HT, He J, Ata Ur Rasheed M, Rochman Y, Wang L, Cui K, Liu C, Kelsall BL, Ahmed R, Leonard WJ. Critical Role of STAT5 transcription factor tetramerization for cytokine responses and normal immune function. Immunity 2012; 36:586-99. [PMID: 22520852 DOI: 10.1016/j.immuni.2012.02.017] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/25/2012] [Accepted: 02/07/2012] [Indexed: 01/05/2023]
Abstract
Cytokine-activated STAT proteins dimerize and bind to high-affinity motifs, and N-terminal domain-mediated oligomerization of dimers allows tetramer formation and binding to low-affinity tandem motifs, but the functions of dimers versus tetramers are unknown. We generated Stat5a-Stat5b double knockin (DKI) N-domain mutant mice in which STAT5 proteins form dimers but not tetramers, identified cytokine-regulated genes whose expression required STAT5 tetramers, and defined dimer versus tetramer consensus motifs. Whereas Stat5-deficient mice exhibited perinatal lethality, DKI mice were viable; thus, STAT5 dimers were sufficient for survival. Nevertheless, STAT5 DKI mice had fewer CD4(+)CD25(+) T cells, NK cells, and CD8(+) T cells, with impaired cytokine-induced and homeostatic proliferation of CD8(+) T cells. Moreover, DKI CD8(+) T cell proliferation after viral infection was diminished and DKI Treg cells did not efficiently control colitis. Thus, tetramerization of STAT5 is critical for cytokine responses and normal immune function, establishing a critical role for STAT5 tetramerization in vivo.
Collapse
Affiliation(s)
- Jian-Xin Lin
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Jatiani SS, Baker SJ, Silverman LR, Reddy EP. Jak/STAT pathways in cytokine signaling and myeloproliferative disorders: approaches for targeted therapies. Genes Cancer 2011; 1:979-93. [PMID: 21442038 DOI: 10.1177/1947601910397187] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hematopoiesis is the cumulative result of intricately regulated signaling pathways that are mediated by cytokines and their receptors. Studies conducted over the past 10 to 15 years have revealed that hematopoietic cytokine receptor signaling is largely mediated by a family of tyrosine kinases termed Janus kinases (JAKs) and their downstream transcription factors, termed STATs (signal transducers and activators of transcription). Aberrations in these pathways, such as those caused by the recently identified JAK2(V617F) mutation and translocations of the JAK2 gene, are underlying causes of leukemias and other myeloproliferative disorders. This review discusses the role of JAK/STAT signaling in normal hematopoiesis as well as genetic abnormalities associated with myeloproliferative and myelodisplastic syndromes. This review also summarizes the status of several small molecule JAK2 inhibitors that are currently at various stages of clinical development. Several of these compounds appear to improve the quality of life of patients with myeloproliferative disorders by palliation of disease-related symptoms. However, to date, these agents do not seem to significantly affect bone marrow fibrosis, alter marrow histopathology, reverse cytopenias, reduce red cell transfusion requirements, or significantly reduce allele burden. These results suggest the possibility that additional mutational events might be associated with the development of these neoplasms, and indicate the need for combination therapies as the nature and significance of these additional molecular events is better understood.
Collapse
Affiliation(s)
- Shashidhar S Jatiani
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
55
|
Heltemes-Harris LM, Willette MJL, Vang KB, Farrar MA. The role of STAT5 in the development, function, and transformation of B and T lymphocytes. Ann N Y Acad Sci 2011; 1217:18-31. [PMID: 21276004 DOI: 10.1111/j.1749-6632.2010.05907.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transcription factor signal transducer and activator of transcription 5 (STAT5) is activated by a number of cytokine and growth hormone receptors and plays a key role in the development and function of many organ systems. In this review, we focus on recent discoveries about the role of STAT5 in the development and function of B and T lymphocytes. Of particular interest is the growing appreciation for the function of STAT5 as a transcriptional repressor. Finally, we discuss recent discoveries about the role of STAT5 in transformation of B and T lymphocytes.
Collapse
|
56
|
Molecular cloning and expression analysis of signal transducer and activator of transcription (STAT) from the Chinese white shrimp Fenneropenaeus chinensis. Mol Biol Rep 2011; 38:5313-9. [DOI: 10.1007/s11033-011-0681-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 01/10/2011] [Indexed: 12/20/2022]
|
57
|
Abstract
The transcription factor Signal Tranducer and Activator of Transcription 5 (STAT5) plays an important role in numerous biological processes including, but not limited to, (i) homeostasis of hematopoietic stem cells, (ii) development of essentially all blood cell lineages, (iii) growth hormone effects, (iv) differentiation of mammary epithelium, and (v) central nervous system control of metabolism. Two key tools for deciphering STAT5 biology have involved the use of mice in which the Stat5a and Stat5b genes can be conditionally deleted (Stat5(FL/FL) mice) and the development of systems in which STAT5a or STAT5b is rendered constitutively active. In this chapter, the distinct mechanisms that have been developed to render STAT5 constitutively active and their use in probing biological processes are discussed.
Collapse
Affiliation(s)
- Michael A Farrar
- Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, USA
| |
Collapse
|
58
|
Hong MS, Song JY, Yun DH, Cho JJ, Chung JH. Increase of NADPH-diaphorase expression in hypothalamus of stat4 knockout mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:337-41. [PMID: 19915694 DOI: 10.4196/kjpp.2009.13.5.337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 10/09/2009] [Accepted: 10/19/2009] [Indexed: 11/15/2022]
Abstract
Signal transducer and activator of transcription 4 (STAT4), a STAT family member, mediates interleukin 12 (IL12) signal transduction. IL12 is known to be related to calorie-restricted status. In the central nervous system, IL12 also enhances the production of nitric oxide (NO), which regulates food intake. In this study, the expression of neuronal NO synthase (Nos1), which is also related to food intake, was investigated in the hypothalamic areas of Stat4 knockout (KO) mice using nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry, a marker for neurons expressing Nos1 enzyme. Western blots were also performed to evaluate Nos1 and Fos expression. Wild-type Balb/c (WT group, n=10 male) and Stat4 KO mice (Stat4 KO group, n=8 male) were used. The body weight and daily food intake in the WT group were 22.4+/-0.3 and 4.4 g per day, while those in the Stat4 KO group were 18.7+/-0.4 and 1.8 g per day, respectively. Stat4 mice had lower body weight and food intake than Balb/c mice. Optical intensities of NADPH-d-positive neurons in the paraventricular nucleus (PVN) and lateral hypothalamic area (LHA) of the Stat4 KO group were significantly higher than those of the WT group. Western blotting analysis revealed that the hypothalamic Nos1 and Fos expression of the Stat4 KO group was up-regulated, compared to that in the WT group. These results suggest that Stat4 may be related to the regulation of food intake and expression of Nos1 in the hypothalamus.
Collapse
Affiliation(s)
- Mee Sook Hong
- Kohwang Medical Research Institute, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | | | |
Collapse
|
59
|
Hutzen B, Willis W, Jones S, Cen L, Deangelis S, Fuh B, Lin J. Dietary agent, benzyl isothiocyanate inhibits signal transducer and activator of transcription 3 phosphorylation and collaborates with sulforaphane in the growth suppression of PANC-1 cancer cells. Cancer Cell Int 2009; 9:24. [PMID: 19712481 PMCID: PMC3224892 DOI: 10.1186/1475-2867-9-24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 08/27/2009] [Indexed: 12/15/2022] Open
Abstract
The Signal Transducer and Activator of Transcription (STAT) proteins comprise a family of latent transcription factors with diverse functions. STAT3 has well established roles in cell proliferation, growth and survival, and its persistent activation has been detected with high frequency in many human cancers. As constitutive activation of STAT3 appears to be vital for the continued survival of these cancerous cells, it has emerged as an attractive target for chemotherapeutics. We examined whether the inhibitory activities of bioactive compounds from cruciferous vegetables, such as Benzyl isothiocyanate (BITC) and sulforaphane, extended to STAT3 activation in PANC-1 human pancreatic cancer cells. BITC and sulforaphane were both capable of inhibiting cell viability and inducing apoptosis in PANC-1. Sulforaphane had minimal effect on the direct inhibition of STAT3 tyrosine phosphorylation, however, suggesting its inhibitory activities are most likely STAT3-independent. Conversely, BITC was shown to inhibit the tyrosine phosphorylation of STAT3, but not the phosphorylation of ERK1/2, MAPK and p70S6 kinase. These results suggest that STAT3 may be one of the targets of BITC-mediated inhibition of cell viability in PANC-1 cancer cells. In addition, we show that BITC can prevent the induction of STAT3 activation by Interleukin-6 in MDA-MB-453 breast cancer cells. Furthermore, combinations of BITC and sulforaphane inhibited cell viability and STAT3 phosphorylation more dramatically than either agent alone. These findings suggest that the combination of the dietary agents BITC and sulforaphane has potent inhibitory activity in pancreatic cancer cells and that they may have translational potential as chemopreventative or therapeutic agents.
Collapse
Affiliation(s)
- Brian Hutzen
- Department of Pediatrics, The Research Institute at Nationwide Childrens' Hospital, Columbus, OH, USA.
| | | | | | | | | | | | | |
Collapse
|
60
|
Erythropoietin in spinal cord injury. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2008; 18:314-23. [PMID: 19030901 DOI: 10.1007/s00586-008-0829-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 08/15/2008] [Accepted: 11/04/2008] [Indexed: 12/18/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition for individual patients and costly for health care systems requiring significant long-term expenditures. Cytokine erythropoietin (EPO) is a glycoprotein mediating cytoprotection in a variety of tissues, including spinal cord, through activation of multiple signaling pathways. It has been reported that EPO exerts its beneficial effects by apoptosis blockage, reduction of inflammation, and restoration of vascular integrity. Neuronal regeneration has been also suggested. In the present review, the pathophysiology of SCI and the properties of endogenous or exogenously administered EPO are briefly described. Moreover, an attempt to present the current traumatic, ischemic and inflammatory animal models that mimic SCI is made. Currently, a clearly effective pharmacological treatment is lacking. It is highlighted that administration of EPO or other recently generated EPO analogues such as asialo-EPO and carbamylated-EPO demonstrate exceptional preclinical characteristics, rendering the evaluation of these tissue-protective agents imperative in human clinical trials.
Collapse
|
61
|
Lieblein JC, Ball S, Hutzen B, Sasser AK, Lin HJ, Huang TH, Hall BM, Lin J. STAT3 can be activated through paracrine signaling in breast epithelial cells. BMC Cancer 2008; 8:302. [PMID: 18939993 PMCID: PMC2582243 DOI: 10.1186/1471-2407-8-302] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 10/21/2008] [Indexed: 01/09/2023] Open
Abstract
Background Many cancers, including breast cancer, have been identified with increased levels of phosphorylated or the active form of Signal Transducers and Activators of Transcription 3 (STAT3) protein. However, whether the tumor microenvironment plays a role in this activation is still poorly understood. Methods Conditioned media, which contains soluble factors from MDA-MB-231 and MDA-MB-468 breast cancer cells and breast cancer associated fibroblasts, was added to MCF-10A breast epithelial and MDA-MB-453 breast cancer cells. The stimulation of phosphorylated STAT3 (p-STAT3) levels by conditioned media was assayed by Western blot in the presence or absence of neutralized IL-6 antibody, or a JAK/STAT3 inhibitor, JSI-124. The stimulation of cell proliferation in MCF-10A cells by conditioned media in the presence or absence of JSI-124 was subjected to MTT analysis. IL-6, IL-10, and VEGF levels were determined by ELISA analysis. Results Our results demonstrated that conditioned media from cell lines with constitutively active STAT3 are sufficient to induce p-STAT3 levels in various recipients that do not possess elevated p-STAT3 levels. This signaling occurs through the JAK/STAT3 pathway, leading to STAT3 phosphorylation as early as 30 minutes and is persistent for at least 24 hours. ELISA analysis confirmed a correlation between elevated levels of IL-6 production and p-STAT3. Neutralization of the IL-6 ligand or gp130 was sufficient to block increased levels of p-STAT3 (Y705) in treated cells. Furthermore, soluble factors within the MDA-MB-231 conditioned media were also sufficient to stimulate an increase in IL-6 production from MCF-10A cells. Conclusion These results demonstrate STAT3 phosphorylation in breast epithelial cells can be stimulated by paracrine signaling through soluble factors from both breast cancer cells and breast cancer associated fibroblasts with elevated STAT3 phosphorylation. The induction of STAT3 phosphorylation is through the IL-6/JAK pathway and appears to be associated with cell proliferation. Understanding how IL-6 and other soluble factors may lead to STAT3 activation via the tumor microenvironment will provide new therapeutic regimens for breast carcinomas and other cancers with elevated p-STAT3 levels.
Collapse
|
62
|
Abstract
Characterization of how interferons (IFNs) mediate their biological response led to identification of the JAK-STAT signaling cascade, where JAKs are receptor-associated kinases and STATs the transcription factors they activate. Today, 4 JAKs and 7 STATs are known to transduce pivotal signals for the over 50 members of the four-helix bundle family of cytokines. This review will provide an overview and historical perspective of the JAK-STAT paradigm.
Collapse
|
63
|
Molenaar A, Wheeler TT, McCracken JY, Seyfert HM. TheSTAT3-encoding gene resides within the 40 kbp gap between theSTAT5A- andSTAT5B-encoding genes in cattle. Anim Genet 2008. [DOI: 10.1111/j.1365-2052.2000.00662.pp.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
64
|
Tan SH, Nevalainen MT. Signal transducer and activator of transcription 5A/B in prostate and breast cancers. Endocr Relat Cancer 2008; 15:367-90. [PMID: 18508994 PMCID: PMC6036917 DOI: 10.1677/erc-08-0013] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein kinase signaling pathways, such as Janus kinase 2-Signal transducer and activator of transcription 5A/B (JAK2-STAT5A/B), are of significant interest in the search for new therapeutic strategies in both breast and prostate cancers. In prostate cancer, the components of the JAK2-STAT5A/B signaling pathway provide molecular targets for small-molecule inhibition of survival and growth signals of the cells. At the same time, new evidence suggests that the STAT5A/B signaling pathway is involved in the transition of organ-confined prostate cancer to hormone-refractory disease. This implies that the active JAK2-STAT5A/B signaling pathway potentially provides the means for pharmacological intervention of clinical prostate cancer progression. In addition, active STAT5A/B may serve as a prognostic marker for identification of those primary prostate cancers that are likely to progress to aggressive disease. In breast cancer, the role of STAT5A/B is more complex. STAT5A/B may have a dual role in the regulation of malignant mammary epithelium. Data accumulated from mouse models of breast cancer suggest that in early stages of breast cancer STAT5A/B may promote malignant transformation and enhance growth of the tumor. This is in contrast to established breast cancer, where STAT5A/B may mediate the critical cues for maintaining the differentiation of mammary epithelium. In addition, present data suggest that activation of STAT5A/B in breast cancer predicts favorable clinical outcome. The dual nature of STAT5A/B action in breast cancer makes the therapeutic use of STAT5 A/B more complex.
Collapse
Affiliation(s)
- Shyh-Han Tan
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, BLSB 309, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
65
|
Chen WY, Ho KC, Leu JH, Liu KF, Wang HC, Kou GH, Lo CF. WSSV infection activates STAT in shrimp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1142-1150. [PMID: 18460415 DOI: 10.1016/j.dci.2008.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 05/26/2023]
Abstract
Although the JAK/STAT signaling pathway is usually involved in antiviral defense, a recent study suggested that STAT might be annexed by WSSV (white spot syndrome virus) to enhance the expression of a viral immediate early gene in infected shrimps. In the present study, we clone and report the first full-length cDNA sequence for a crustacean STAT from Penaeus monodon. Alignment and comparison with the deduced amino acid sequences of other STATs identified several important conserved residues and functional domains, including the DNA binding domain, SH2 domain and C-terminal transactivation domain. Based on these conserved sequences, a phylogenetic analysis suggested that shrimp STAT belongs to the ancient STAT family, while the presence of the functional domains suggested that shrimp STAT might share similar functions and regulating mechanisms with the well-known STATs isolated from model organisms. Real-time PCR showed a decreased transcription level of shrimp STAT after WSSV infection, but a Western blot analysis using anti-phosphorylated STAT antibody showed an increased level of phosphorylated (activated) STAT in the lymphoid organ of shrimp after WSSV infection. We further show that a primary culture of lymphoid organ cells from WSSV-infected shrimp resulted in activated STAT being translocated from the cytoplasm to the nucleus. This report provides experimental evidence that shrimp STAT is activated in response to WSSV infection. Our results support an earlier finding that WSSV does not disrupt JAK/STAT pathway, but on the contrary benefits from STAT activation in the shrimp host.
Collapse
Affiliation(s)
- Wei Yu Chen
- Institute of Zoology, National Taiwan University, Taipei 106, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
The Jak-Stat-Socs pathway is an important component of cytokine receptor signaling. Not surprisingly, perturbation of this pathway is implicated in diseases of hematopoietic and immune origin, including leukemia, lymphoma and immune deficiencies. This review examines the role of a key component of this pathway, Stat5. This has been shown to be activated in a variety of leukemias and myeloproliferative disorders, including downstream of a range of key oncogenes where it has been shown to play an important role in mediating their effects. Therefore, Stat5 represents a useful pan-leukemia/myeloproliferative disorder diagnostic marker and key therapeutic end point, as well as representing an attractive therapeutic target for these disorders.
Collapse
Affiliation(s)
- Rowena S Lewis
- Cancer & Haematology Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, 3050, Australia.
| | | |
Collapse
|
67
|
Transcription Factors STAT5 and STAT3. Prostate Cancer 2008. [DOI: 10.1007/978-1-60327-079-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
68
|
|
69
|
Barash I. Stat5 in the mammary gland: controlling normal development and cancer. J Cell Physiol 2006; 209:305-13. [PMID: 16883580 DOI: 10.1002/jcp.20771] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The signal transducer and activator of transcription (Stat5) funnels extracellular signals of cytokines, hormones, and growth factors into transcriptional activity in the mammary gland. Postnatal development and functionality of this tissue is synchronized with the reproductive cycle. Consequently, Stat5 involvement in lobuloalveolar development, milk-protein synthesis, or tissue remodeling is dictated by the particular reproductive stage. Latent deregulation of Stat5 activity during the reproductive cycle predisposes the tissue to tumorigenesis at a later stage, when the female is no longer fertile. Accumulating data from studies with mouse models and breast-cancer specimens demonstrate a dual role for Stat5 in this context. It causes tumorigenesis, but delays metastasis progression. Consequently, Stat5 activity in breast-cancer specimens marks a better prognosis for survival.
Collapse
Affiliation(s)
- Itamar Barash
- Institute of Animal Science, ARO, The Volcani Center, Bet-Dagan, Israel.
| |
Collapse
|
70
|
Abstract
STAT transcription factors have been implicated in many biological processes, particularly host immune defense and development. Here we characterize a STAT orthologue from the nematode, C. elegans. We show that this protein, termed STA-1, is structurally and functionally related to other vertebrate and invertebrate STAT proteins, recognizing a cis DNA element conserved through phylogeny. Unexpectedly, STA-1 lacks the conserved amino-terminal oligomerization domain found in vertebrate and other invertebrate STAT proteins, a feature also lacking in orthologues from a distantly related nematode species and from the slime mold, Dictyostelium discoideum. This absence suggests that a primordial STAT protein lacked this domain, which was accreted later in evolution to provide further regulatory control of STAT signaling. Derivation of null mutants demonstrated that STA-1 is not required for nematode viability, despite its widespread expression in multiple tissues of the worm. However, mutant STA-1 proteins that lack functional coiled-coil and DNA binding domains could still be activated and accumulated in the nucleus, suggesting that DNA binding is not a necessary prerequisite for nuclear retention of activated STAT proteins. Our results shed new light on the evolution and function of the STAT signaling pathway and on the structural requirements for STAT activation.
Collapse
Affiliation(s)
- Yaming Wang
- Department of Pathology and NYU Cancer Institute, New York University School of Medicine, 550 1st Ave. MSB548, New York, New York 10016, USA
| | | |
Collapse
|
71
|
Lim CP, Cao X. Structure, function, and regulation of STAT proteins. MOLECULAR BIOSYSTEMS 2006; 2:536-50. [PMID: 17216035 DOI: 10.1039/b606246f] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Signal Transducer and Activator of Transcription (STAT) family of proteins was first discovered in the 1990's as key proteins in cytokine signaling. Since then, the field has greatly advanced in the past 15 years, providing significant insight into the structure, function, and regulation of STATs. STATs are latent cytoplasmic transcription factors consisting of seven mammalian members. They are Tyr phosphorylated upon activation, a post-translational modification critical for dimerization, nuclear import, DNA binding, and transcriptional activation. In recent years, unphosphorylated STATs have also been observed to dimerize and drive transcription, albeit by yet an obscure mechanism. In addition, the function of cytoplasmic STATs is beginning to emerge. Here, we describe the structure, function, and regulation of both unphosphorylated and phosphorylated STATs. STAT isoforms from alternative splicing or proteolytic processing, and post-translational modifications affecting STAT activities are also discussed.
Collapse
Affiliation(s)
- Cheh Peng Lim
- Signal Transduction Laboratory, Institute of Molecular and Cell Biology, Singapore, 138673, Republic of Singapore
| | | |
Collapse
|
72
|
Ballester M, Sardina MT, Folch JM. Polymorphism and chromosomal localization of the porcine signal transducer and activator of transcription 5B gene (STAT5B). J Anim Breed Genet 2006; 123:284-7. [PMID: 16882096 DOI: 10.1111/j.1439-0388.2006.00593.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Signal transducers and activators of transcription (STATs) are a family of transcription factors. STAT5A and 5B are two highly related proteins encoded by two distinct genes. Transgenic knockout mice studies have indicated the importance of STAT5 proteins for the regulation of both lactation and growth performance. Moreover, different studies determine the role of STAT5 proteins in the modulation of adipocyte function. In this study, we sequenced one fragment of STAT5B gene from animals of six breeds (Duroc, Iberian, Landrace, Large White, Piétrain and Meishan) to identify genetic variants. A G/A single nucleotide polymorphism in intron 14 creates a polymorphic PstI restriction site and was genotyped by polymerase chain reaction restriction fragment length polymorphism in the six breeds. Allele G was only present in Large White, Piétrain and Meishan populations, detecting only G allele in this last pig breed. The STAT5B gene was located by radiation hybrid mapping to porcine chromosome 12, within the confidence interval for the fatty acid composition quantitative trait loci, previously identified in an Iberian x Landrace cross.
Collapse
Affiliation(s)
- M Ballester
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | | |
Collapse
|
73
|
Nakasato M, Shirakura Y, Ooga M, Iwatsuki M, Ito M, Kageyama SI, Sakai S, Nagata M, Aoki F. Involvement of the STAT5 signaling pathway in the regulation of mouse preimplantation development. Biol Reprod 2006; 75:508-17. [PMID: 16775227 DOI: 10.1095/biolreprod.105.047860] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The signal transducer and activator of transcription 5 (STAT5) is an essential factor in the signal transduction pathways for a number of cytokines that regulate the growth and differentiation of mammalian cells. In this study, we investigated the STAT5 signaling pathway in mouse embryos, to elucidate the mechanism of cytokine signal transduction that regulates preimplantation development. The results of the RT-PCR analysis showed that both STAT5A and B were expressed throughout preimplantation development. Immunocytochemistry revealed that the STAT5A/B proteins were located in the nucleus from the early 1-cell stage to the blastocyst stage. STAT5 activation appeared to be regulated by Janus kinases (JAKs) and SRC family kinases (SFKs), since inhibitors of these kinases inhibited the localization of STAT5 proteins to the nucleus. The JAK inhibitor Ag490 reduced both the developmental rate of the embryos and the expression levels of the downstream genes of the JAK-STAT5 signaling pathway. These findings suggest that STAT5 proteins function in preimplantation development by mediating the signals from cytokines.
Collapse
Affiliation(s)
- Makoto Nakasato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
The high-affinity binding interactions between interferons (IFNs) and their cognate cell surface receptors lead to the activation of receptor-associated Janus protein tyrosine kinases (Jaks) and subsequent phosphorylation and activation of a group of transcription factors, the signal transducers and activators of transcription (Stats). Upon IFN-induced activation, these Stat proteins form homodimeric and heterodimeric complexes that translocate to the nucleus and bind specific elements within the promoters of IFN-stimulated genes (ISGs). In addition to the well-studied IFN-induced ISG factor 3 (ISGF3) and Stat1:1 complexes, IFNs induce the formation of a number of other Stat-containing complexes, including Stat3:3 and Stat5:5 homodimers, as well as Stat2:1 and Stat5:CrkL heterodimers, that also mediate gene transcription. Moreover, emerging evidence suggests that particular amino acid residues within the individual Stat proteins contribute to different aspects of Stat function. These residues modulate the transcriptional activation potential of Stat-containing complexes and thereby influence the expression of ISGs. Indeed, the Stat proteins function in a multifaceted manner to regulate the expression of proteins that mediate IFN responses.
Collapse
Affiliation(s)
- Melissa M Brierley
- Division of Cell & Molecular Biology, Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 2M1, Canada
| | | |
Collapse
|
75
|
Abstract
Metazoan cells secrete small proteins termed cytokines that execute a variety of biological functions essential for the survival of organisms. Binding of cytokines that belong to the hematopoietin- or interferon-family, to their cognate receptors on the surface of target cells, induces receptor aggregation, which in turn sequentially triggers tyrosine-phosphorylation-dependent activation of receptor-associated Janus-family tyrosine kinases (JAKs), receptors, and signal transducers and activators of transcription (STATs). Phosphorylated STATs form dimers that migrate to the nucleus, bind to cognate enhancer elements and activate transcription of target genes. Each cytokine activates a specific set of genes to execute its biological functions with a certain degree of redundancy. Cytokine signals are, in general, transient in nature. Therefore, under normal physiological conditions, initiation and attenuation of cytokine signals are tightly controlled via multiple cellular and molecular mechanisms. Aberrant activation of cytokine signaling pathways is, however, found under a variety of patho-physiological conditions including cancer and immune diseases.
Collapse
Affiliation(s)
- S Jaharul Haque
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
76
|
Finelt N, Gazel A, Gorelick S, Blumenberg M. Transcriptional responses of human epidermal keratinocytes to Oncostatin-M. Cytokine 2005; 31:305-13. [PMID: 16023359 DOI: 10.1016/j.cyto.2005.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 04/06/2005] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
Oncostatin-M (OsM) plays an important role in inflammatory and oncogenic processes in skin, including psoriasis and Kaposi sarcoma. However, the molecular responses to OsM in keratinocytes have not been explored in depth. Here we show the results of transcriptional profiling in OsM-treated primary human epidermal keratinocytes, using high-density DNA microarrays. We find that OsM strongly and specifically affects the expression of many genes, in particular those involved with innate immunity, angiogenesis, adhesion, motility, tissue remodeling, cell cycle and transcription. The timing of the responses to OsM comprises two waves, early at 1h, and late at 48 h, with much fewer genes regulated in the intervening time points. Secreted cytokines and growth factors and their receptors, as well as nuclear transcription factors, are primary targets of OsM regulation, and these, in turn, effect the secondary changes.
Collapse
Affiliation(s)
- Nika Finelt
- Department of Dermatology, NYU School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | | | | | | |
Collapse
|
77
|
Abstract
Prolactin (PRL) and growth hormone (GH) act by way of their receptors as either hormones (systemically) or cytokines (locally). The Jak2/Stat5 pathway is the principal route by which PRL/GH activate target genes. The availability of knockout mice for each member of this signaling cascade has provided opportunities to understand their unique interactions. Jak2 is important in alternative signal transduction schema such as the MAP kinase and PI3K/Akt pathways. The putative Jak2/RUSH pathway is based on the fact that RUSH mediates the ability of PRL to augment progesterone-dependent gene transcription. New evidence shows that suppressors, regulators, and degraders control Jak2/Stat5. This review focuses on the most recent advances in the field of PRL/GH signal transduction.
Collapse
Affiliation(s)
- Beverly S Chilton
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | |
Collapse
|
78
|
Paukku K, Silvennoinen O. STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5. Cytokine Growth Factor Rev 2005; 15:435-55. [PMID: 15561601 DOI: 10.1016/j.cytogfr.2004.09.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Signal transducers and activators of transcription (Stats) comprise a family of seven transcription factors that are activated by a variety of cytokines, hormones and growth factors. Stats are activated through tyrosine phosphorylation, mainly by Jak kinases, that lead to their dimerization, nuclear translocation and regulation of target gene expression. Stat5 was originally identified as a transcription factor that regulates the beta-casein gene in response to prolactin (PRL), but Stat5 is activated also by several other cytokines and growth factors. The molecular mechanisms that underlie Stat5-mediated transcription involve interactions and cooperation with sequence specific transcription factors and transcriptional coregulators. Our studies identified p100 protein as a coactivator for Stat5, and suggest the existence of a positive regulatory loop in PRL-induced transcription, where PRL stabilizes p100 protein, which in turn can cooperate with Stat5 in transcriptional activation. Suppressors of cytokine signaling (SOCS) proteins are important negative regulators of Stats. A target gene for Stat5, the serine/threonine kinase Pim-1, was found to cooperate with SOCS-1 and SOCS-3 to inhibit Stat5 activity suggesting that Pim-1 together with SOCS-1 and SOCS-3 are components of a negative feedback mechanism that allows Stat5 to regulate its own activation.
Collapse
Affiliation(s)
- Kirsi Paukku
- Department of Virology, Haartman Institute and Biomedicum Helsinki, University of Helsinki, PO Box 63, FIN-00014 Helsinki, Finland.
| | | |
Collapse
|
79
|
Litherland SA, Xie TX, Grebe KM, Davoodi-Semiromi A, Elf J, Belkin NS, Moldawer LL, Clare-Salzler MJ. Signal transduction activator of transcription 5 (STAT5) dysfunction in autoimmune monocytes and macrophages. J Autoimmun 2005; 24:297-310. [PMID: 15927792 PMCID: PMC2605968 DOI: 10.1016/j.jaut.2005.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 01/11/2005] [Accepted: 02/02/2005] [Indexed: 10/25/2022]
Abstract
Autocrine granulocyte macrophage-colony stimulating factor (GM-CSF) sequentially activates intracellular components in monocyte/macrophage production of the pro-inflammatory and immunoregulatory prostanoid, prostaglandin E2 (PGE2). GM-CSF first induces STAT5 signaling protein phosphorylation, then prostaglandin synthase 2 (COX2/PGS2) gene expression, and finally IL-10 production, to downregulate the cascade. Without activation, monocytes of at-risk, type 1 diabetic (T1D), and autoimmune thyroid disease (AITD) humans, and macrophages of nonobese diabetic (NOD) mice have aberrantly high GM-CSF, PGS2, and PGE2 expression, but normal levels of IL-10. After GM-CSF stimulation, repressor STAT5A and B isoforms (80-77kDa) in autoimmune human and NOD monocytes and activator STAT5A (96-94kDa) and B (94-92kDa) isoforms in NOD macrophages stay persistently tyrosine phosphorylated. This STAT5 phosphorylation persisted despite treatment in vitro with IL-10, anti-GM-CSF antibody, or the JAK2/3 inhibitor, AG490. Phosphorylated STAT5 repressor isoforms in autoimmune monocytes had diminished DNA binding capacity on GAS sequences found in the PGS2 gene enhancer. In contrast, STAT5 activator isoforms in NOD macrophages retained their DNA binding capacity on these sites much longer than in healthy control strain macrophages. These findings suggest that STAT5 dysfunction may contribute to dysregulation of GM-CSF signaling and gene activation, including PGS2, in autoimmune monocytes and macrophages.
Collapse
Affiliation(s)
- S A Litherland
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, 100275 JHMHC, 1600 SW Archer Road, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Caraglia M, Marra M, Pelaia G, Maselli R, Caputi M, Marsico SA, Abbruzzese A. Alpha-interferon and its effects on signal transduction pathways. J Cell Physiol 2005; 202:323-35. [PMID: 15389589 DOI: 10.1002/jcp.20137] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interferon-alpha (IFNalpha) is a recombinant protein widely used in the therapy of several neoplasms such as myeloma, renal cell carcinoma, epidermoid cervical and head and neck tumors, and melanoma. IFNalpha, the first cytokine to be produced by recombinant DNA technology, has emerged as an important regulator of cancer cell growth and differentiation, affecting cellular communication and signal transduction pathways. However, the way by which tumor cell growth is directly suppressed by IFNalpha is not well known. Wide evidence exists on the possibility that cancer cells undergo apoptosis after the exposure to the cytokine. Here we will review the consolidate signal transducer and activator of transcription (STAT)-dependent mechanism of action of IFNalpha. We will discuss data obtained by us and others on the triggering of the stress-dependent kinase pathway induced by IFNalpha and its correlations with the apoptotic process. The regulation of the expression of proteins involved in apoptosis occurrence will be also described. In this regard, IFNalpha is emerging as a post-translational controller of the intracellular levels of the apoptosis-related protein tissue transglutaminase (tTG). This new way of regulation of tTG occurs through the modulation of their proteasome-dependent degradation induced by the cytokine. Until today, inconsistent data have been obtained regarding the clinical effectiveness of IFNalpha in the therapy of solid tumors. In fact, the benefit of IFNalpha treatment is limited to some neoplasms while others are completely or partially resistant. The mechanisms of tumor resistance to IFNalpha have been studied in vitro. The alteration of JAK-STAT components of the IFNalpha-induced signaling, can be indeed a mechanism of resistance to IFN. However, we have recently described a reactive mechanism of protection of tumor cells from the apoptosis induced by IFNalpha dependent on the epidermal growth factor (EGF)-mediated Ras/extracellular signal regulated kinase (Erk) signaling. The involvement of the Ras-->Erk pathway in the protection of tumor cells from the apoptosis induced by IFNalpha is further demonstrated by both Ras inactivation by RASN17 transfection and mitogen extracellular signal regulated kinase 1 (Mek-1) inhibition by exposure to PD098059. These data strongly suggest that the specific disruption of the latter could be a useful approach to potentiate the antitumour activity of IFNalpha against human tumors based on the new mechanistic insights achieved in the last years.
Collapse
Affiliation(s)
- Michele Caraglia
- Department of Biochemistry and Biophysics, Second University of Naples, Via Costantinopoli, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
81
|
Litterst CM, Kliem S, Lodrini M, Pfitzner E. Coactivators in Gene Regulation by STAT5. VITAMINS & HORMONES 2005; 70:359-86. [PMID: 15727811 DOI: 10.1016/s0083-6729(05)70012-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Signal transducer and activator of transcription 5 (STAT5) is a member of the STAT family of transcription factors that relay the effect of diverse cytokines, hormones, and growth factors by regulating the transcription of distinct target genes. This function is emphasized by its crucial role in the development of the mammary gland and the hematopoietic system. Cytokine receptor-associated Janus kinases (JAKs) induce dimerization, nuclear translocation, and DNA binding through tyrosine phosphorylation of STAT5. STAT5 regulates the expression of cytokine target genes by binding to gamma interferon-activated sequence (GAS) motifs. Transcriptional activation requires the contact of STAT5 to coactivators and components of the transcription machinery. Another important point in transcriptional activation is the cooperation with other transcription factors that bind in close vicinity to the target gene promoters and enhancers. Their concerted action can result in an enhanced binding to the promoters or in cooperative recruitment of coactivators. In addition, cross-talk with other signaling pathways as well as secondary modifications of STAT5 have been described to affect transactivation function.
Collapse
Affiliation(s)
- Claudia M Litterst
- Georg-Speyer-Haus, Institute for Biomedical Research, D-60596 Frankfurt, Germany
| | | | | | | |
Collapse
|
82
|
Lewis RS, Ward AC. Conservation, duplication and divergence of the zebrafish stat5 genes. Gene 2004; 338:65-74. [PMID: 15302407 DOI: 10.1016/j.gene.2004.05.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 04/30/2004] [Accepted: 05/17/2004] [Indexed: 11/24/2022]
Abstract
There are seven mammalian signal transducer and activator of transcription (Stat) proteins that act downstream of cytokine and growth factor receptors to mediate rapid changes in gene expression. The mammalian Stat5a and Stat5b genes show high sequence identity and lie adjacent in a head-to-head configuration next to the Stat3 gene, apparently the result of a relatively recent mammal-specific gene duplication event. We have identified and characterized two stat5 homologues that are expressed in zebrafish, named stat5.1 and stat5.2. The stat5.1 gene shows a high level of conservation with the single stat5 gene found in other teleosts and lies next to the stat3 gene, in the same relative orientation as the mammalian Stat5b gene. In contrast, the stat5.2 gene lies on a different chromosome to stat5.1 and stat3, and has diverged from the stat5 genes of other teleosts, with no apparent orthologue. Together, these data suggest that the ancestral Stat5 gene has undergone two independent gene duplication events to generate a stat5.2 paralogue in zebrafish and a Stat5a paralogue in mammals.
Collapse
Affiliation(s)
- Rowena S Lewis
- Centre for Cellular and Molecular Biology, School of Biological and Chemical Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | | |
Collapse
|
83
|
Royer Y, Menu C, Liu X, Constantinescu SN. High-throughput gateway bicistronic retroviral vectors for stable expression in mammalian cells: exploring the biologic effects of STAT5 overexpression. DNA Cell Biol 2004; 23:355-65. [PMID: 15231069 DOI: 10.1089/104454904323145245] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stable expression of cloned genes in mammalian cells has been achieved in the past by retroviral transduction using bicistronic retroviral vectors. In these vectors, the use of an Internal Ribosome Entry Site (IRES) allows simultaneous expression of a protein of interest and a fluorescence marker. However, traditional cDNA cloning in these vectors is often difficult. Here we report the construction of a high-throughput retroviral vector using the Invitrogen "Gateway" Cloning system. The Gateway recombination sequences (attR) flanking the ccdB and chloramphenicol resistance genes were incorporated at the 5' of the IRES of pMX-IRES-GFP, -CD2, or -CD4 vectors. Through recombination, these vectors can acquire cDNAs coding for genes of interest, which will result in simultaneous expression of the recombined gene and the marker protein. We constructed Gateway bicistronic vectors coding for the erythropoietin receptor (EpoR) and GFP, CD4, or CD2. Epo-dependent proliferation assays and analysis of Jak2-dependent EpoR cell-surface expression showed that these vectors were able to function indistinguishable from the original pMX-EpoR-IRES-GFP. The expression levels of the genes cloned upstream the IRES were proportional to the levels of expression of GFP, which was cloned downstream of the IRES. We used the same approach and generated Ba/F3 cells that overexpress STAT5a, STAT5b, or a constitutively active form of STAT5. Overexpression of STAT5 lead to a significant effect on the intrinsic adherence to plastic of these cells, but did not change their proliferative responses to cytokines. We discuss possible applications of the new vectors for cell signaling and expression cloning.
Collapse
Affiliation(s)
- Yohan Royer
- Ludwig Institute for Cancer Research, Brussels, Belgium
| | | | | | | |
Collapse
|
84
|
Crispi S, Sanzari E, Monfregola J, De Felice N, Fimiani G, Ambrosio R, D'Urso M, Ursini MV. Characterization of the human STAT5A and STAT5B promoters: evidence of a positive and negative mechanism of transcriptional regulation. FEBS Lett 2004; 562:27-34. [PMID: 15043997 DOI: 10.1016/s0014-5793(04)00166-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Revised: 02/12/2004] [Accepted: 02/12/2004] [Indexed: 11/23/2022]
Abstract
We recently published the genomic characterization of the STAT5A and STAT5B paralogous genes that are located head to head in the 17q21 chromosome and share large regions of sequence identity. We here demonstrate by transient in vitro transfection that STAT5A and STAT5B promoters are able to direct comparable levels of transcription. The expression of basal promoters is enhanced after Sp1 up-regulation in HeLa and SL2 cells while DNA methylation associated to the recruitment of MeCP2 methyl CpG binding protein down-regulates STAT5A and B promoters by interfering with Sp1-induced transcription. In addition, cross-species sequence comparison identified a bi-directional negative cis-acting regulatory element located in the STAT5 intergenic region.
Collapse
Affiliation(s)
- Stefania Crispi
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Davoodi-Semiromi A, Laloraya M, Kumar GP, Purohit S, Jha RK, She JX. A mutant Stat5b with weaker DNA binding affinity defines a key defective pathway in nonobese diabetic mice. J Biol Chem 2003; 279:11553-61. [PMID: 14701862 DOI: 10.1074/jbc.m312110200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A number of cytokines that finely regulate immune response have been implicated in the pathogenesis or protection of type 1 diabetes and other autoimmune diseases. It is, therefore, of pivotal importance to examine a family of proteins that serve as signal transducers and activators of transcription (STATs), which regulate the transcription of a variety of cytokines. We report here a defective gene (Stat5b) located on chromosome 11 within a previously mapped T1D susceptibility interval (Idd4) in the nonobese diabetic (NOD) mice. Our sequencing analysis revealed a unique mutation C1462A that results in a leucine to methionine (L327M) in Stat5b of NOD mice. Leu(327), the first residue in the DNA binding domain of STAT proteins, is conserved in all identified mammalian STAT proteins. Homology modeling predicted that the mutant Stat5b has a weaker DNA binding, which was confirmed by DNA-protein binding assays. The inapt transcriptional regulation ability of the mutated Stat5b is proved by decreased levels of RNA of Stat5b-regulated genes (IL-2Rbeta and Pim1). Consequently, IL-2Rbeta and Pim1 proteins were shown by Western blotting to have lower levels in NOD compared with normal B6 mice. These proteins have been implicated in immune regulation, apoptosis, activation-induced cell death, and control of autoimmunity. Therefore, the Stat5b pathway is a key molecular defect in NOD mice.
Collapse
Affiliation(s)
- Abdoreza Davoodi-Semiromi
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
86
|
Wiederkehr-Adam M, Ernst P, Müller K, Bieck E, Gombert FO, Ottl J, Graff P, Grossmüller F, Heim MH. Characterization of phosphopeptide motifs specific for the Src homology 2 domains of signal transducer and activator of transcription 1 (STAT1) and STAT3. J Biol Chem 2003; 278:16117-28. [PMID: 12591923 DOI: 10.1074/jbc.m300261200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal transducers and activators of transcription (STAT) 1 and STAT3 are activated by overlapping but distinct sets of cytokines. STATs are recruited to the different cytokine receptors through their Src homology (SH) 2 domains that make highly specific interactions with phosphotyrosine-docking sites on the receptors. We used a degenerate phosphopeptide library synthesized on 35-microm TentaGel beads and fluorescence-activated bead sorting to determine the sequence specificity of the peptide-binding sites of the SH2 domains of STAT1 and STAT3. The large bead library allowed not only peptide sequencing of pools of beads but also of single beads. The method was validated through surface plasmon resonance measurements of the affinities of different peptides to the STAT SH2 domains. Furthermore, when selected peptides were attached to a truncated erythropoietin receptor and stably expressed in DA3 cells, activation of STAT1 or STAT3 could be achieved by stimulation with erythropoietin. The combined analysis of pool sequencing, the individual peptide sequences, and plasmon resonance measurements allowed the definition of SH2 domain binding motifs. STAT1 preferentially binds peptides with the motif phosphotyrosine-(aspartic acid/glutamic acid)-(proline/arginine)-(arginine/proline/glutamine), whereby a negatively charged amino acid at +1 excludes a proline at +2 and vice versa. STAT3 preferentially binds peptides with the motif phosphotyrosine-(basic or hydrophobic)-(proline or basic)-glutamine. For both STAT1 and STAT3, specific high affinity phosphopeptides were identified that can be used for the design of inhibitory molecules.
Collapse
Affiliation(s)
- Michèle Wiederkehr-Adam
- Department of Research, University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Benekli M, Baer MR, Baumann H, Wetzler M. Signal transducer and activator of transcription proteins in leukemias. Blood 2003; 101:2940-54. [PMID: 12480704 DOI: 10.1182/blood-2002-04-1204] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins are a 7-member family of cytoplasmic transcription factors that contribute to signal transduction by cytokines, hormones, and growth factors. STAT proteins control fundamental cellular processes, including survival, proliferation, and differentiation. Given the critical roles of STAT proteins, it was hypothesized that inappropriate or aberrant activation of STATs might contribute to cellular transformation and, in particular, leukemogenesis. Constitutive activation of mutated STAT3 has in fact been demonstrated to result in transformation. STAT activation has been extensively studied in leukemias, and mechanisms of STAT activation and the potential role of STAT signaling in leukemogenesis are the focus of this review. A better understanding of mechanisms of dysregulation of STAT signaling pathways may serve as a basis for designing novel therapeutic strategies that target these pathways in leukemia cells.
Collapse
Affiliation(s)
- Mustafa Benekli
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
88
|
Sung SC, Fan TJ, Chou CM, Leu JH, Hsu YL, Chen ST, Hsieh YC, Huang CJ. Genomic structure, expression and characterization of a STAT5 homologue from pufferfish (Tetraodon fluviatilis). EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:239-52. [PMID: 12605675 DOI: 10.1046/j.1432-1033.2003.03380.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The STAT5 (signal transducer and activator of transcription 5) gene was isolated and characterized from a round-spotted pufferfish genomic library. This gene is composed of 19 exons spanning 11 kb. The full-length cDNA of Tetraodon fluviatilis STAT5 (TfSTAT5) contains 2461 bp and encodes a protein of 785 amino acid residues. From the amino acid sequence comparison, TfSTAT5 is most similar to mouse STAT5a and STAT5b with an overall identity of 76% and 78%, respectively, and has < 35% identity with other mammalian STATs. The exon/intron junctions of the TfSTAT5 gene were almost identical to those of mouse STAT5a and STAT5b genes, indicating that these genes are highly conserved at the levels of amino acid sequence and genomic structure. To understand better the biochemical properties of TfSTAT5, a chimeric STAT5 was generated by fusion of the kinase-catalytic domain of carp Janus kinase 1 (JAK1) to the C-terminal end of TfSTAT5. The fusion protein was expressed and tyrosine-phosphorylated by its kinase domain. The fusion protein exhibits specific DNA-binding and transactivation potential toward an artificial fish promoter as well as authentic mammalian promoters such as the beta-casein promoter and cytokine inducible SH2 containing protein (CIS) promoter when expressed in both fish and mammalian cells. However, TfSTAT5 could not induce the transcription of beta-casein promoter via rat prolactin and Nb2 prolactin receptor. To our knowledge, this is the first report describing detailed biochemical characterization of a STAT protein from fish.
Collapse
Affiliation(s)
- Shu-Chiun Sung
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Kelly J, Spolski R, Imada K, Bollenbacher J, Lee S, Leonard WJ. A role for Stat5 in CD8+ T cell homeostasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:210-7. [PMID: 12496402 DOI: 10.4049/jimmunol.170.1.210] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokine signals are known to contribute to CD8+ memory T cell homeostasis, but an exact understanding of the mechanism(s) has remained elusive. We have now investigated the role of Stat5 proteins in this process. Whereas Stat5a and Stat5b KO mice have decreased numbers of CD8+ T cells, Stat5-transgenic mice have an increased number of these cells. Stat5b-transgenic mice exhibit increased Ag-induced cell death of CD4+ T cells and augmented proliferation and Bcl-2 expression in CD8+ T cells, providing a basis for this finding. Moreover, CD8+ memory T cells are substantially affected by Stat5 levels. These findings identify Stat5 proteins as critical signaling mediators used by cytokines to regulate CD8+ T cell homeostasis.
Collapse
Affiliation(s)
- John Kelly
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
90
|
Dell'Albani P, Santangelo R, Torrisi L, Nicoletti VG, Giuffrida Stella AM. Role of the JAK/STAT signal transduction pathway in the regulation of gene expression in CNS. Neurochem Res 2003; 28:53-64. [PMID: 12587663 DOI: 10.1023/a:1021644027850] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Over the last 20 years the JAK/STAT signal transduction pathway has been extensively studied. An enormous amount of data on different cell signal transduction pathways is now available. The JAK/STAT signal transduction pathway is one of the intracellular signaling pathways activated by cytokines and growth factors that was first studied in the hematopoietic system, but recent data demonstrate that this signal transduction is also greatly utilized by other systems. The JAK/STAT pathway is a signaling cascade that links the activation of specific cell membrane receptors to nuclear gene expression. This review is focused on the role of JAK/STAT signal transduction pathway activation in the central nervous system (CNS).
Collapse
Affiliation(s)
- P Dell'Albani
- Institute of Neurological Sciences, Section of Catania, National Research Council (CNR), v.le Regina Margherita 6, 95123-Catania, Italy.
| | | | | | | | | |
Collapse
|
91
|
Scott MJ, Godshall CJ, Cheadle WG. Jaks, STATs, Cytokines, and Sepsis. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2002; 9:1153-9. [PMID: 12414743 PMCID: PMC130124 DOI: 10.1128/cdli.9.6.1153-1159.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Melanie J Scott
- Department of Surgery and Price Institute for Surgical Research, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA.
| | | | | |
Collapse
|
92
|
Abstract
Hematopoiesis is the cumulative result of intricately regulated signal transduction cascades that are mediated by cytokines and their cognate receptors. Proper culmination of these diverse signaling pathways forms the basis for an orderly generation of different cell types and aberrations in these pathways is an underlying cause for diseases such as leukemias and other myeloproliferative and lymphoproliferative disorders. Over the past decade, downstream signal transduction events initiated upon cytokine/growth factor stimulation have been a major focus of basic and applied biomedical research. As a result, several key concepts have emerged allowing a better understanding of the complex signaling processes. A group of transcription factors, termed signal transducers and activators of transcription (STATs) appear to orchestrate the downstream events propagated by cytokine/growth factor interactions with their cognate receptors. Similarly, cytoplasmic Janus protein tyrosine kinases (JAKs) and Src family of kinases seem to play a critical role in diverse signal transduction pathways that govern cellular survival, proliferation, differentiation and apoptosis. Accumulating evidence suggests that STAT protein activation may be mediated by members of both JAK and Src family members following cytokine/growth factor stimulation. In addition, JAK kinases appear to be essential for the phosphorylation of the cytokine receptors which results in the creation of docking sites on the receptors for binding of SH2-containing proteins such as STATs, Src-kinases and other signaling intermediates. Cell and tissue-specificity of cytokine action appears to be determined by the nature of signal transduction pathways activated by cytokine/receptor interactions. The integration of these diverse signaling cues from active JAK kinases, members of the Src-family kinases and STAT proteins, leads to cell proliferation, cell survival and differentiation, the end-point of the cytokine/growth factor stimulus.
Collapse
Affiliation(s)
- Sushil G Rane
- Laboratory of Cell Regulation & Carcinogenesis, NCI, NIH, Bldg. 41, C629, 41 Library Drive, Bethesda, Maryland, MD 20892, USA
| | | |
Collapse
|
93
|
Leong PL, Xi S, Drenning SD, Dyer KF, Wentzel AL, Lerner EC, Smithgall TE, Grandis JR. Differential function of STAT5 isoforms in head and neck cancer growth control. Oncogene 2002; 21:2846-53. [PMID: 11973644 DOI: 10.1038/sj.onc.1205385] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2001] [Revised: 01/31/2002] [Accepted: 02/07/2002] [Indexed: 11/08/2022]
Abstract
Up-regulation of the epidermal growth factor receptor (EGFR) is critical for the loss of growth control in a variety of human cancers, including squamous cell carcinoma of the head and neck (SCCHN). Stimulation of EGFR results in activation of mitogenic signaling pathways including Signal Transducers and Activators of Transcription (STATs). Stat5 activation has been primarily demonstrated in hematopoietic malignancies. Gene disruption studies suggest potentially distinct functions of the Stat5 isoforms, Stat5a and Stat5b, which are encoded by two genes closely linked on human chromosome 17. To determine the function of Stat5 in SCCHN growth control, we studied the expression and constitutive activation of Stat5a and Stat5b in normal and transformed human squamous epithelial cells. Increased constitutive activation of Stat5 was detected in transformed compared with normal squamous cells. Blockade of TGF-alpha or EGFR, abrogated Stat5 activation. Targeting of Stat5b using antisense oligonucleotides inhibited SCCHN growth. In addition, SCCHN cells stably transfected with dominant negative mutant Stat5b failed to proliferate in vitro. In contrast, targeting of Stat5a using either antisense or dominant negative strategies had no effect on cell growth. These results suggest that TGF-alpha/EGFR-mediated autocrine growth of transformed epithelial cells is dependent on activation of Stat5b but not Stat5a.
Collapse
Affiliation(s)
- Paul L Leong
- Department of Otolaryngology, The University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Dong S, Tweardy DJ. Interactions of STAT5b-RARalpha, a novel acute promyelocytic leukemia fusion protein, with retinoic acid receptor and STAT3 signaling pathways. Blood 2002; 99:2637-46. [PMID: 11929748 DOI: 10.1182/blood.v99.8.2637] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) 5b-retinoic acid receptor (RAR) alpha is the fifth fusion protein identified in acute promyelocytic leukemia (APL). Initially described in a patient with all-trans retinoic acid (ATRA)-unresponsive disease, STAT5b-RARalpha resulted from an interstitial deletion on chromosome 17. To determine the molecular mechanisms of myeloid leukemogenesis and maturation arrest in STAT5b-RARalpha(+) APL and its unresponsiveness to ATRA, we examined the effect of STAT5b-RARalpha on the activity of myeloid transcription factors including RARalpha/retinoid X receptor (RXR) alpha, STAT3, and STAT5 as well as its molecular interactions with the nuclear receptor corepressor, SMRT, and nuclear receptor coactivator, TRAM-1. STAT5b-RARalpha bound to retinoic acid response elements (RAREs) both as a homodimer and as a heterodimer with RXRalpha and inhibited wild-type RARalpha/RXRalpha transactivation. Although STAT5b-RARalpha had no effect on ligand-induced STAT5b activation, it enhanced interleukin 6-induced STAT3-dependent reporter activity, an effect shared by other APL fusion proteins including promyelocytic leukemia-RARalpha and promyelocytic leukemia zinc finger (PLZF)-RARalpha. SMRT was released from STAT5b-RARalpha/SMRT complexes by ATRA at 10(-6) M, whereas TRAM-1 became associated with STAT5b-RARalpha at 10(-7) M. The coiled-coil domain of STAT5b was required for formation of STAT5b-RARalpha homodimers, for the inhibition of RARalpha/RXRalpha transcriptional activity, and for stability of the STAT5b-RARalpha/SMRT complex. Thus, STAT5b-RARalpha contributes to myeloid maturation arrest by binding to RARE as either a homodimer or as a heterodimer with RXRalpha resulting in the recruitment of SMRT and inhibition of RARalpha/RXRalpha transcriptional activity. In addition, STAT5b-RARalpha and other APL fusion proteins may contribute to leukemogenesis by interaction with the STAT3 oncogene pathway.
Collapse
MESH Headings
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/drug effects
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Dimerization
- Drug Interactions
- Drug Resistance
- Humans
- Leukemia, Promyelocytic, Acute/etiology
- Leukemia, Promyelocytic, Acute/genetics
- Milk Proteins
- Nuclear Receptor Co-Repressor 2
- Nuclear Receptor Coactivator 3
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/pharmacology
- Protein Structure, Tertiary
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Retinoic Acid/physiology
- Repressor Proteins/drug effects
- Repressor Proteins/metabolism
- Response Elements
- Retinoic Acid Receptor alpha
- Retinoid X Receptors
- STAT3 Transcription Factor
- STAT5 Transcription Factor
- Signal Transduction
- Trans-Activators/chemistry
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Transcription Factors/drug effects
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transfection
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Shuo Dong
- Section of Infectious Disease, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
95
|
Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 2002; 285:1-24. [PMID: 12039028 DOI: 10.1016/s0378-1119(02)00398-0] [Citation(s) in RCA: 803] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Investigation into the mechanism of cytokine signaling led to the discovery of the JAK/STAT pathway. Following the binding of cytokines to their cognate receptor, signal transducers and activators of transcription (STATs) are activated by members of the janus activated kinase (JAK) family of tyrosine kinases. Once activated, they dimerize and translocate to the nucleus and modulate the expression of target genes. During the past several years significant progress has been made in the characterization of the JAK/STAT signaling cascade, including the identification of multiple STATs and regulatory proteins. Seven STATs have been identified in mammals. The vital role these STATs play in the biological response to cytokines has been demonstrated through the generation of murine 'knockout' models. These mice will be invaluable in carefully elucidating the role STATs play in regulating the host response to various stresses. Similarly, the solution of the crystal structure of two STATs has and will continue to facilitate our understanding of how STATs function. This review will highlight these exciting developments in JAK/STAT signaling.
Collapse
Affiliation(s)
- T Kisseleva
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
96
|
Ambrosio R, Fimiani G, Monfregola J, Sanzari E, De Felice N, Salerno MC, Pignata C, D'Urso M, Ursini MV. The structure of human STAT5A and B genes reveals two regions of nearly identical sequence and an alternative tissue specific STAT5B promoter. Gene 2002; 285:311-8. [PMID: 12039059 DOI: 10.1016/s0378-1119(02)00421-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
STAT5A and STAT5B genes belong to the signal transducer and activators of transcription (STAT) family of transcription factors. They show a high degree of sequence homology at levels of mRNA, however, in spite of their supposed redundancy, each STAT5 has distinct biological functions mainly related to the immune system, hematopoiesis, growth and mammary development. We isolated and sequenced both STAT5A and STAT5B encoding human genes finding that they are segmented in 20 and 19 exons, respectively, of comparable size except for the extreme 5' exons and the 3' exons. Two CpG islands, 23.2% CpG for STAT5A and 30.2% for STAT5B, are present at the 5' of both STAT5 genes covering the 5' untranslated regions. More surprisingly, the two genes share two major regions of almost identical sequence which diverge between the different species indicating an intra-species specific mechanism of preservation. Furthermore, we identified two alternative 5' exons in STAT5B genes and thus two alternative promoters. The second putative promoter is not embedded in a CpG island and it shows a tissue specific pattern of expression. Finally, the STAT5B gene was assessed as a candidate gene in a human disorder related to growth failure.
Collapse
Affiliation(s)
- Raffaele Ambrosio
- International Institute of Genetics and Biophysics (IIGB-CNR), Via G. Marconi, 10, 80125, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Shao H, Quintero AJ, Tweardy DJ. Identification and characterization of cis elements in the STAT3 gene regulating STAT3 alpha and STAT3 beta messenger RNA splicing. Blood 2001; 98:3853-6. [PMID: 11739197 DOI: 10.1182/blood.v98.13.3853] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an oncogene and a critical regulator of multiple cell-fate decisions, including myeloid cell differentiation. Two isoforms of STAT3 have been identified: alpha (p92) and beta (p83). These differ structurally in their C-terminal transactivation domains, resulting in distinct functional activities. The cis genetic elements that regulate the ratio of alpha to beta messenger RNA (mRNA) are unknown. In this study, cloning, sequencing, and splicing analysis of the human and murine STAT3 genes revealed a highly conserved 5' donor site for generation of both alpha and beta mRNA and distinct branch-point sequences, polypyrimidine tracts, and 3' acceptor sites (ASs) for each. The beta 3' AS was found to be located 50 nucleotides downstream of the alpha 3' AS in exon 23. Two additional cryptic 3' ASs (delta and epsilon) were also identified. Thus, we identified for the first time the cis regulatory sequences responsible for generation of STAT3 alpha and STAT3 beta mRNA.
Collapse
Affiliation(s)
- H Shao
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
98
|
Abstract
During the past few years studies from several laboratories have utilized gene disruption approaches to define the function of members of the Stat family of transcription factors. The results have demonstrated that each family member has unique, critical, non-redundant functions in signal transduction through members of the cytokine receptor superfamily. Many of the family members mediate functions associated with innate or acquired immunity. With the availability of mice deficient in one or more of the Stats, critical experiments are possible to evaluate the roles of Stat signal transduction pathways in cellular transformation as well as evaluating their specific roles in a range of cellular responses to cytokines.
Collapse
Affiliation(s)
- J N Ihle
- Department of Biochemistry, Howard Hughes Medical Institute, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, Tennessee 38105, USA.
| |
Collapse
|
99
|
Abstract
Cytoplasmic Janus protein tyrosine kinases (JAKs) are crucial components of diverse signal transduction pathways that govern cellular survival, proliferation, differentiation and apoptosis. Evidence to date, indicates that JAK kinase function may integrate components of diverse signaling cascades. While it is likely that activation of STAT proteins may be an important function attributed to the JAK kinases, it is certainly not the only function performed by this key family of cytoplasmic tyrosine kinases. Emerging evidence indicates that phosphorylation of cytokine and growth factor receptors may be the primary functional attribute of JAK kinases. The JAK-triggered receptor phosphorylation can potentially be a rate-limiting event for a successful culmination of downstream signaling events. In support of this hypothesis, it has been found that JAK kinase function is required for optimal activation of the Src-kinase cascade, the Ras-MAP kinase pathway, the PI3K-AKT pathway and STAT signaling following the interaction of cytokine/interferon receptors with their ligands. Aberrations in JAK kinase activity, that may lead to derailment of one or more of the above mentioned pathways could disrupt normal cellular responses and result in disease states. Thus, over-activation of JAK kinases has been implicated in tumorigenesis. In contrast, loss of JAK kinase function has been found to result in disease states such as severe-combined immunodeficiency. In summary, optimal JAK kinase activity is a critical determinant of normal transmission of cytokine and growth factor signals.
Collapse
Affiliation(s)
- S G Rane
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 N. Broad Street, Philadelphia, Pennsylvania, PA 19140, USA
| | | |
Collapse
|
100
|
Abstract
Signal transducer and activator of transcription (STAT) transcription factors are implicated in programming gene expression in biological events as diverse as embryonic development, programmed cell death, organogenesis, innate immunity, adaptive immunity and cell growth regulation in organisms ranging from slime molds to insects to man. Rapid progress has unearthed much about the activation of STATs by Janus kinases (JAKs) and other tyrosine kinases and their ability to interface with other signaling systems. Once inside the nucleus, the STATs bind to promoters and join other transcriptional activators in the regulation of gene expression.
Collapse
Affiliation(s)
- C M Horvath
- Immunobiology Center, Box 1630, East Building Room 12-20D, The Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|