51
|
Renato Romero J, Krause Neto W, Sabbag da Silva A, Luiz Dos Santos E, Aurélio Added M, Pianca E, Florencio Gama E, Rodrigues de Souza R. Chronic cachaça consumption affects the structure of tibial bone by decreasing bone density and density of mature collagen fibers in middle-aged Wistar rats. Aging Male 2020; 23:251-256. [PMID: 29856246 DOI: 10.1080/13685538.2018.1477932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Several studies have demonstrated that alcohol consumption can decrease bone density and alter its structure. However, most of the studies did not investigate the effects of specific alcoholic beverages. This study determined the effects of chronic consumption of cachaça (a Brazilian beverage containing alcohol) on body weight (BW), tibia bone density and on the tibia collagen density in middle-aged Wistar rats. Rats with 9 months old were submitted for 100 days, to a liquid diet of cachaça diluted in water with a progressive and controlled concentration (10°GL, 15°GL, 20°GL, 25°GL, and 30°GL). Chronic cachaça intake produced a significant decrease in BW and altered bone remodeling, decreasing trabecular bone density. In chronic cachaça-treated group (CT), the production of collagen fibers in bone tissue has predominantly green birefringence. It appears that they are immature fibers that do not exist in the control group, in which there are standard predominantly yellowish mature fibers. In conclusion, chronic cachaça consumption affects the structure of the tibial bone of middle-aged rats by decreasing the bone density and reducing the density of mature collagen fibers.
Collapse
Affiliation(s)
| | - Walter Krause Neto
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu University, São Paulo, Brazil
| | - Alexandre Sabbag da Silva
- Department of Physiotherapy, Guarulhos University, Guarulhos, Brazil
- Department of Physiotherapy, Faculdade das Américas, São Paulo, Brazil
- Department of Physiotherapy, Mackenzie University, São Paulo, Brazil
| | | | | | - Eduardo Pianca
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu University, São Paulo, Brazil
- Department of Physiotherapy, Faculdade Anhanguera, São Paulo, Brazil
| | - Eliane Florencio Gama
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu University, São Paulo, Brazil
| | - Romeu Rodrigues de Souza
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu University, São Paulo, Brazil
| |
Collapse
|
52
|
Courtoy GE, Leclercq I, Froidure A, Schiano G, Morelle J, Devuyst O, Huaux F, Bouzin C. Digital Image Analysis of Picrosirius Red Staining: A Robust Method for Multi-Organ Fibrosis Quantification and Characterization. Biomolecules 2020; 10:biom10111585. [PMID: 33266431 PMCID: PMC7709042 DOI: 10.3390/biom10111585] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Current understanding of fibrosis remains incomplete despite the increasing burden of related diseases. Preclinical models are used to dissect the pathogenesis and dynamics of fibrosis, and to evaluate anti-fibrotic therapies. These studies require objective and accurate measurements of fibrosis. Existing histological quantification methods are operator-dependent, organ-specific, and/or need advanced equipment. Therefore, we developed a robust, minimally operator-dependent, and tissue-transposable digital method for fibrosis quantification. The proposed method involves a novel algorithm for more specific and more sensitive detection of collagen fibers stained by picrosirius red (PSR), a computer-assisted segmentation of histological structures, and a new automated morphological classification of fibers according to their compactness. The new algorithm proved more accurate than classical filtering using principal color component (red-green-blue; RGB) for PSR detection. We applied this new method on established mouse models of liver, lung, and kidney fibrosis and demonstrated its validity by evidencing topological collagen accumulation in relevant histological compartments. Our data also showed an overall accumulation of compact fibers concomitant with worsening fibrosis and evidenced topological changes in fiber compactness proper to each model. In conclusion, we describe here a robust digital method for fibrosis analysis allowing accurate quantification, pattern recognition, and multi-organ comparisons useful to understand fibrosis dynamics.
Collapse
Affiliation(s)
- Guillaume E. Courtoy
- IREC Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium
- Correspondence: (I.L.); (C.B.)
| | - Antoine Froidure
- Pole of Pneumology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Guglielmo Schiano
- Mechanisms of Inherited Kidney Diseases Group, University of Zurich, 8057 Zurich, Switzerland; (G.S.); (O.D.)
| | - Johann Morelle
- Pole of Nephrology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Olivier Devuyst
- Mechanisms of Inherited Kidney Diseases Group, University of Zurich, 8057 Zurich, Switzerland; (G.S.); (O.D.)
- Pole of Nephrology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Caroline Bouzin
- IREC Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
- Correspondence: (I.L.); (C.B.)
| |
Collapse
|
53
|
Chen X, Guo Z, Zhang J, Li Y, Duan R. A new method for determining the denaturation temperature of collagen. Food Chem 2020; 343:128393. [PMID: 33406568 DOI: 10.1016/j.foodchem.2020.128393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/30/2020] [Accepted: 10/11/2020] [Indexed: 11/19/2022]
Abstract
The denaturation temperature of collagen has been determined using several methods, such as circular dichroism, fourier transform infrared spectroscopy, and differential scanning calorimetry, etc. Such methods need specific equipment or mass samples (more than 75 mg samples), which means higher inspection costs. In this study, Sirius red was employed to determine the Tds of collagen from calf tendon, silver carp skin, frog and salmon skins (38.2 °C, 32.6 °C, 33.8 °C, and 15.6 °C, respectively) to explore a new method that does not require special equipment and only needs 2-3 mg sample for one measurement. This method was suitable for the determination of the denaturation temperature of collagen from terrestrial, aquatic and amphibian animals. Analysis of variance and t-test revealed that no significant difference was found between Sirius Red and viscosity methods. However, the Sirius Red method needs simpler equipment and less sample than viscosity and other methods. So it could be used as a convenient approach to determine the denaturation temperature of collagen instead of the viscosity method.
Collapse
Affiliation(s)
- Xin Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China; College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Zhiwen Guo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China; College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Junjie Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China; College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Yingying Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China; College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Rui Duan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China; College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|
54
|
Sweeney M, Corden B, Cook SA. Targeting cardiac fibrosis in heart failure with preserved ejection fraction: mirage or miracle? EMBO Mol Med 2020; 12:e10865. [PMID: 32955172 PMCID: PMC7539225 DOI: 10.15252/emmm.201910865] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is central to the pathology of heart failure, particularly heart failure with preserved ejection fraction (HFpEF). Irrespective of the underlying profibrotic condition (e.g. ageing, diabetes, hypertension), maladaptive cardiac fibrosis is defined by the transformation of resident fibroblasts to matrix-secreting myofibroblasts. Numerous profibrotic factors have been identified at the molecular level (e.g. TGFβ, IL11, AngII), which activate gene expression programs for myofibroblast activation. A number of existing HF therapies indirectly target fibrotic pathways; however, despite multiple clinical trials in HFpEF, a specific clinically effective antifibrotic therapy remains elusive. Therapeutic inhibition of TGFβ, the master-regulator of fibrosis, has unfortunately proven toxic and ineffective in clinical trials to date, and new approaches are needed. In this review, we discuss the pathophysiology and clinical implications of interstitial fibrosis in HFpEF. We provide an overview of trials targeting fibrosis in HFpEF to date and discuss the promise of potential new therapeutic approaches and targets in the context of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Mark Sweeney
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- Wellcome Trust 4i/NIHR Clinical Research FellowImperial CollegeLondonUK
| | - Ben Corden
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Stuart A Cook
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart and Lung InstituteImperial College LondonLondonUK
| |
Collapse
|
55
|
Brayson D, Holohan S, Bardswell SC, Arno M, Lu H, Jensen HK, Tran PK, Barallobre‐Barreiro J, Mayr M, dos Remedios CG, Tsang VT, Frigiola A, Kentish JC. Right Ventricle Has Normal Myofilament Function But Shows Perturbations in the Expression of Extracellular Matrix Genes in Patients With Tetralogy of Fallot Undergoing Pulmonary Valve Replacement. J Am Heart Assoc 2020; 9:e015342. [PMID: 32805183 PMCID: PMC7660801 DOI: 10.1161/jaha.119.015342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Background Patients with repair of tetralogy of Fallot (rToF) who are approaching adulthood often exhibit pulmonary valve regurgitation, leading to right ventricle (RV) dilatation and dysfunction. The regurgitation can be corrected by pulmonary valve replacement (PVR), but the optimal surgical timing remains under debate, mainly because of the poorly understood nature of RV remodeling in patients with rToF. The goal of this study was to probe for pathologic molecular, cellular, and tissue changes in the myocardium of patients with rToF at the time of PVR. Methods and Results We measured contractile function of permeabilized myocytes, collagen content of tissue samples, and the expression of mRNA and selected proteins in RV tissue samples from patients with rToF undergoing PVR for severe pulmonary valve regurgitation. The data were compared with nondiseased RV tissue from unused donor hearts. Contractile performance and passive stiffness of the myofilaments in permeabilized myocytes were similar in rToF-PVR and RV donor samples, as was collagen content and cross-linking. The patients with rToF undergoing PVR had enhanced mRNA expression of genes associated with connective tissue diseases and tissue remodeling, including the small leucine-rich proteoglycans ASPN (asporin), LUM (lumican), and OGN (osteoglycin), although their protein levels were not significantly increased. Conclusions RV myofilaments from patients with rToF undergoing PVR showed no functional impairment, but the changes in extracellular matrix gene expression may indicate the early stages of remodeling. Our study found no evidence of major damage at the cellular and tissue levels in the RV of patients with rToF who underwent PVR according to current clinical criteria.
Collapse
Affiliation(s)
- Daniel Brayson
- School of Cardiovascular Medicine and SciencesKing's College London BHF Centre for Research ExcellenceLondonUnited Kingdom
| | - So‐Jin Holohan
- School of Cardiovascular Medicine and SciencesKing's College London BHF Centre for Research ExcellenceLondonUnited Kingdom
| | - Sonya C. Bardswell
- School of Cardiovascular Medicine and SciencesKing's College London BHF Centre for Research ExcellenceLondonUnited Kingdom
| | - Matthew Arno
- Genomics CentreFaculty of Life Sciences and MedicineKing’s College LondonLondonUnited Kingdom
| | - Han Lu
- Genomics CentreFaculty of Life Sciences and MedicineKing’s College LondonLondonUnited Kingdom
| | | | | | - Javier Barallobre‐Barreiro
- School of Cardiovascular Medicine and SciencesKing's College London BHF Centre for Research ExcellenceLondonUnited Kingdom
| | - Manuel Mayr
- School of Cardiovascular Medicine and SciencesKing's College London BHF Centre for Research ExcellenceLondonUnited Kingdom
| | | | | | - Alessandra Frigiola
- Great Ormond Street HospitalLondonUnited Kingdom
- Guys and St Thomas’ NHS Foundation TrustSt Thomas’ HospitalLondonUnited Kingdom
- School of Biomedical Engineering and Imaging SciencesKings CollegeLondonUnited Kingdom
| | - Jonathan C. Kentish
- School of Cardiovascular Medicine and SciencesKing's College London BHF Centre for Research ExcellenceLondonUnited Kingdom
| |
Collapse
|
56
|
Souza JM, Tuin SA, Robinson AG, de Souza JGO, Bianchini MA, Miguez PA. Effect of Flavonoid Supplementation on Alveolar Bone Healing-A Randomized Pilot Trial. Dent J (Basel) 2020; 8:E86. [PMID: 32759635 PMCID: PMC7560062 DOI: 10.3390/dj8030086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
We investigated the effects of two common dietary supplements on bone healing in dental extraction sockets in humans. In this randomized pilot trial, male subjects took Grape Seed Extract [GSE] or Grapefruit Extract [GFE] starting two weeks prior to dental extraction and maintained this regimen for sixty days after surgery. Extraction sockets were filled with a collagen plug. After 24 h, a socket sample was collected and processed for quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and an 84-gene wound healing assay. Sixty days after tooth extraction, a core of newly formed bone was obtained prior to dental implant placement and processed for histology. qRT-PCR revealed that GFE led to a significant decrease in platelet-derived growth factor and interleukin (IL)1-β compared to GSE, and a significant decrease in IL-6 and CXCL2 compared to control. GSE led to a significant increase in coagulation factor Von Willebrand and inflammatory marker IL1-β compared to GFE. WISP1 and CXCL5 were upregulated in both groups. Overall, GFE showed a downregulation of inflammation and GSE led to a decrease in collagen density and increased osteoclasts. This pilot trial highlights the need for further investigation on the mechanism of action of such supplements on bone healing and oral health.
Collapse
Affiliation(s)
- Jose Moises Souza
- Centro de Ciências da Saúde, Departamento de Odontologia, Campus Reitor David Ferreira Lima, Universidade Federal de Santa Catarina, Bairro Trindade, Florianópolis 88040-970, Brazil; (J.M.S.J.); (J.G.O.d.S.); (M.A.B.)
| | - Stephen A. Tuin
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, Koury Oral Health Sciences Building, Rm 4608, CB# 7455, University of North Carolina at Chapel Hill, 385 South Columbia Street, Chapel Hill, NC 27599-7455, USA; (S.A.T.); (A.G.R.)
| | - Adam G. Robinson
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, Koury Oral Health Sciences Building, Rm 4608, CB# 7455, University of North Carolina at Chapel Hill, 385 South Columbia Street, Chapel Hill, NC 27599-7455, USA; (S.A.T.); (A.G.R.)
| | - Joao Gustavo Oliveira de Souza
- Centro de Ciências da Saúde, Departamento de Odontologia, Campus Reitor David Ferreira Lima, Universidade Federal de Santa Catarina, Bairro Trindade, Florianópolis 88040-970, Brazil; (J.M.S.J.); (J.G.O.d.S.); (M.A.B.)
| | - Marco Aurelio Bianchini
- Centro de Ciências da Saúde, Departamento de Odontologia, Campus Reitor David Ferreira Lima, Universidade Federal de Santa Catarina, Bairro Trindade, Florianópolis 88040-970, Brazil; (J.M.S.J.); (J.G.O.d.S.); (M.A.B.)
| | - Patricia A. Miguez
- Division of Comprehensive Oral Health, Adams School of Dentistry, Koury Oral Health Sciences Building, Rm 4610, CB# 7455, University of North Carolina at Chapel Hill, Chapel Hill, NC 77599-7455, USA
| |
Collapse
|
57
|
Chevalier J, Yin H, Arpino JM, O'Neil C, Nong Z, Gilmore KJ, Lee JJ, Prescott E, Hewak M, Rice CL, Dubois L, Power AH, Hamilton DW, Pickering JG. Obstruction of Small Arterioles in Patients with Critical Limb Ischemia due to Partial Endothelial-to-Mesenchymal Transition. iScience 2020; 23:101251. [PMID: 32629616 PMCID: PMC7322363 DOI: 10.1016/j.isci.2020.101251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/03/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Critical limb ischemia (CLI) is a hazardous manifestation of atherosclerosis and treatment failure is common. Abnormalities in the arterioles might underlie this failure but the cellular pathobiology of microvessels in CLI is poorly understood. We analyzed 349 intramuscular arterioles in lower limb specimens from individuals with and without CLI. Arteriolar densities were 1.8-fold higher in CLI muscles. However, 33% of small (<20 μm) arterioles were stenotic and 9% were completely occluded. The lumens were closed by bulky, re-oriented endothelial cells expressing abundant N-cadherin that uniquely localized between adjacent and opposing endothelial cells. S100A4 and SNAIL1 were also expressed, supporting an endothelial-to-mesenchymal transition. SMAD2/3 was activated in occlusive endothelial cells and TGFβ1 was increased in the adjacent mural cells. These findings identify a microvascular closure process based on mesenchymal transitions in a hyper-TGFß environment that may, in part, explain the limited success of peripheral artery revascularization procedures. Small arterioles in patients with critical limb ischemia can be narrowed or closed Arteriolar occlusion is due to bulky endothelial cells Bulky endothelial cells have partially transitioned to mesenchymal cells Occlusive cells interlock laterally and apically via N-cadherin neo-adhesions
Collapse
Affiliation(s)
- Jacqueline Chevalier
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - John-Michael Arpino
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Caroline O'Neil
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Zengxuan Nong
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Kevin J Gilmore
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Canada; School of Kinesiology, Faculty of Health Sciences, Western University, London, Canada
| | - Jason J Lee
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Emma Prescott
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Matthew Hewak
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Charles L Rice
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Canada; School of Kinesiology, Faculty of Health Sciences, Western University, London, Canada
| | - Luc Dubois
- Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Adam H Power
- Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - J Geoffrey Pickering
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada.
| |
Collapse
|
58
|
Konhilas JP, Sanchez JN, Regan JA, Constantopoulos E, Lopez-Pier M, Cannon DK, Skaria R, McKee LA, Chen H, Lipovka Y, Pollow D, Brooks HL. Using 4-vinylcyclohexene diepoxide as a model of menopause for cardiovascular disease. Am J Physiol Heart Circ Physiol 2020; 318:H1461-H1473. [PMID: 32383991 PMCID: PMC7311698 DOI: 10.1152/ajpheart.00555.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a sharp rise in cardiovascular disease (CVD) risk and progression with the onset of menopause. The 4-vinylcyclohexene diepoxide (VCD) model of menopause recapitulates the natural, physiological transition through perimenopause to menopause. We hypothesized that menopausal female mice were more susceptible to CVD than pre- or perimenopausal females. Female mice were treated with VCD or vehicle for 20 consecutive days. Premenopausal, perimenopausal, and menopausal mice were administered angiotensin II (ANG II) or subjected to ischemia-reperfusion (I/R). Menopausal females were more susceptible to pathological ANG II-induced cardiac remodeling and cardiac injury from a myocardial infarction (MI), while perimenopausal, like premenopausal, females remained protected. Specifically, ANG II significantly elevated diastolic (130.9 ± 6.0 vs. 114.7 ± 6.2 mmHg) and systolic (156.9 ± 4.8 vs. 141.7 ± 5.0 mmHg) blood pressure and normalized cardiac mass (15.9 ± 1.0 vs. 7.7 ± 1.5%) to a greater extent in menopausal females compared with controls, whereas perimenopausal females demonstrated a similar elevation of diastolic (93.7 ± 2.9 vs. 100.5 ± 4.1 mmHg) and systolic (155.9 ± 7.3 vs. 152.3 ± 6.5 mmHg) blood pressure and normalized cardiac mass (8.3 ± 2.1 vs. 7.5 ± 1.4%) compared with controls. Similarly, menopausal females demonstrated a threefold increase in fibrosis measured by Picrosirus red staining. Finally, hearts of menopausal females (41 ± 5%) showed larger infarct sizes following I/R injury than perimenopausal (18.0 ± 5.6%) and premenopausal (16.2 ± 3.3, 20.1 ± 4.8%) groups. Using the VCD model of menopause, we provide evidence that menopausal females were more susceptible to pathological cardiac remodeling. We suggest that the VCD model of menopause may be critical to better elucidate cellular and molecular mechanisms underlying the transition to CVD susceptibility in menopausal women.NEW & NOTEWORTHY Before menopause, women are protected against cardiovascular disease (CVD) compared with age-matched men; this protection is gradually lost after menopause. We present the first evidence that demonstrates menopausal females are more susceptible to pathological cardiac remodeling while perimenopausal and cycling females are not. The VCD model permits appropriate examination of how increased susceptibility to the pathological process of cardiac remodeling accelerates from pre- to perimenopause to menopause.
Collapse
Affiliation(s)
- John P Konhilas
- Department of Physiology, University of Arizona, Tucson, Arizona.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Jessica N Sanchez
- Department of Physiology, University of Arizona, Tucson, Arizona.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Jessica A Regan
- Department of Physiology, University of Arizona, Tucson, Arizona.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Eleni Constantopoulos
- Department of Physiology, University of Arizona, Tucson, Arizona.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Marissa Lopez-Pier
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | | | - Rinku Skaria
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Laurel A McKee
- Department of Physiology, University of Arizona, Tucson, Arizona.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Hao Chen
- Department of Physiology, University of Arizona, Tucson, Arizona.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Yulia Lipovka
- Department of Physiology, University of Arizona, Tucson, Arizona.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Dennis Pollow
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Heddwen L Brooks
- Department of Physiology, University of Arizona, Tucson, Arizona
| |
Collapse
|
59
|
Jones TI, Chew GL, Barraza-Flores P, Schreier S, Ramirez M, Wuebbles RD, Burkin DJ, Bradley RK, Jones PL. Transgenic mice expressing tunable levels of DUX4 develop characteristic facioscapulohumeral muscular dystrophy-like pathophysiology ranging in severity. Skelet Muscle 2020; 10:8. [PMID: 32278354 PMCID: PMC7149937 DOI: 10.1186/s13395-020-00227-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND All types of facioscapulohumeral muscular dystrophy (FSHD) are caused by the aberrant activation of the somatically silent DUX4 gene, the expression of which initiates a cascade of cellular events ultimately leading to FSHD pathophysiology. Typically, progressive skeletal muscle weakness becomes noticeable in the second or third decade of life, yet there are many individuals who are genetically FSHD but develop symptoms much later in life or remain relatively asymptomatic throughout their lives. Conversely, FSHD may clinically present prior to 5-10 years of age, ultimately manifesting as a severe early-onset form of the disease. These phenotypic differences are thought to be due to the timing and levels of DUX4 misexpression. METHODS FSHD is a dominant gain-of-function disease that is amenable to modeling by DUX4 overexpression. We have recently created a line of conditional DUX4 transgenic mice, FLExDUX4, that develop a myopathy upon induction of human DUX4-fl expression in skeletal muscle. Here, we use the FLExDUX4 mouse crossed with the skeletal muscle-specific and tamoxifen-inducible line ACTA1-MerCreMer to generate a highly versatile bi-transgenic mouse model with chronic, low-level DUX4-fl expression and cumulative mild FSHD-like pathology that can be reproducibly induced to develop more severe pathology via tamoxifen induction of DUX4-fl in skeletal muscles. RESULTS We identified conditions to generate FSHD-like models exhibiting reproducibly mild, moderate, or severe DUX4-dependent pathophysiology and characterized progression of pathology. We assayed DUX4-fl mRNA and protein levels, fitness, strength, global gene expression, and histopathology, all of which are consistent with an FSHD-like myopathic phenotype. Importantly, we identified sex-specific and muscle-specific differences that should be considered when using these models for preclinical studies. CONCLUSIONS The ACTA1-MCM;FLExDUX4 bi-transgenic mouse model has mild FSHD-like pathology and detectable muscle weakness. The onset and progression of more severe DUX4-dependent pathologies can be controlled via tamoxifen injection to increase the levels of mosaic DUX4-fl expression, providing consistent and readily screenable phenotypes for assessing therapies targeting DUX4-fl mRNA and/or protein and are useful to investigate certain conserved downstream FSHD-like pathophysiology. Overall, this model supports that DUX4 expression levels in skeletal muscle directly correlate with FSHD-like pathology by numerous metrics.
Collapse
Affiliation(s)
- Takako I. Jones
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| | - Guo-Liang Chew
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Current Address: The Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Pamela Barraza-Flores
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| | - Spencer Schreier
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| | - Monique Ramirez
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| | - Ryan D. Wuebbles
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| | - Dean J. Burkin
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| | - Robert K. Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Peter L. Jones
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| |
Collapse
|
60
|
Zerbinati N, d'Este E, Farina A, Cornaglia AI, Jafferany M, Golubovic M, Binic I, Sigova J, Van Thuong N, Tirant M, Riva F, Protasoni M, Rauso R, Lotti T, Calligaro A. Remodeling of collagen constituting interlobular septa of subcutaneous adipose tissue following microwaves application. Dermatol Ther 2020; 33:e13362. [PMID: 32239616 DOI: 10.1111/dth.13362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 11/28/2022]
Abstract
In this study, the application of a recently introduced device based on electromagnetic energy transfer by microwaves for fat reduction, permitted to study specifically the modifications of thick fibrous collagen interlobular septa in the subcutaneous adipose tissue, related to the formation of large clusters of adipocytes. The use of Picrosirius red staining associated with circularly polarized microscopy gave evidence of appreciable modifications of the fibrous connective tissue forming septa. Compact fibrotic bundles of collagen I forming interlobular septa appeared reduced or dissolved, in part substituted by the increase of more diffuse and finely reticular collagen III. Remodeling of fibrous collagen, which formed bridles involved in the appearance at the surface of the skin of dimpling/orange peer pattern typical of cellulite, was observed.
Collapse
Affiliation(s)
- Nicola Zerbinati
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | | | - Aurora Farina
- Department of Public Health, Experimental and Forensic Medicine, Unit of Histology and Embryology, University of Pavia, Pavia, Italy
| | - Antonia I Cornaglia
- Department of Public Health, Experimental and Forensic Medicine, Unit of Histology and Embryology, University of Pavia, Pavia, Italy
| | | | - Masa Golubovic
- Department of Dermatology, Clinical Center, University of Nis, Serbia
| | - Iva Binic
- Department of Psychiatry, Clinical Center, University of Nis, Serbia
| | - Julia Sigova
- Department of Neonatology, Faculty of Continued Medical Education of Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Michael Tirant
- Department of Dermatology, Hanoi Medical University, Hanoi, Vietnam
| | - Federica Riva
- Department of Public Health, Experimental and Forensic Medicine, Unit of Histology and Embryology, University of Pavia, Pavia, Italy
| | - Marina Protasoni
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Raffaele Rauso
- Maxillofacial Surgery Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Torello Lotti
- Department of Dermatology, University of Rome G. Marconi, Rome, Italy
| | - Alberto Calligaro
- Department of Public Health, Experimental and Forensic Medicine, Unit of Histology and Embryology, University of Pavia, Pavia, Italy
| |
Collapse
|
61
|
Gorth DJ, Ottone OK, Shapiro IM, Risbud MV. Differential Effect of Long-Term Systemic Exposure of TNFα on Health of the Annulus Fibrosus and Nucleus Pulposus of the Intervertebral Disc. J Bone Miner Res 2020; 35:725-737. [PMID: 31800975 PMCID: PMC7145745 DOI: 10.1002/jbmr.3931] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/07/2019] [Accepted: 11/22/2019] [Indexed: 02/03/2023]
Abstract
The inflammatory cytokine tumor necrosis factor alpha (TNFα) is considered to play a key role in the pathogenesis of intervertebral disc disease. To evaluate the importance of this cytokine we examined the inflammatory environment and spinal phenotype of 9-month-old human TNFα overexpressing transgenic (hTNFα-TG) mice. The mice evidenced increased circulating levels of interleukin-1β (IL-1β), IL-2, keratinocyte chemoattractant/human growth-regulated oncogene (KC/GRO), and monocyte chemoattractant protein-1 (MCP-1) along with thinning of the cortical and trabecular vertebral bone. Surprisingly, although the nucleus pulposus (NP) of these mice was intact and healthy, the caudal annulus fibrosus (AF) evidenced robust cell death and immune cell infiltration. Despite these differences, there were no obvious alterations in the collagen or aggrecan content in the NP and AF. However, there was a reduction in cartilage oligomeric matrix protein (COMP), suggesting destabilization of the AF matrix. Microarray analysis of the NP from hTNFα-TG mice cells revealed minimal changes in global gene expression. These findings lend support to the notion that NP tissue is isolated from systemic inflammation. In contrast, the severe AF phenotype suggests that systemic inflammation interferes with AF health, predisposing discs to herniation as opposed to directly causing NP degeneration. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Deborah J Gorth
- Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Olivia K Ottone
- Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
62
|
Nabavizadeh A, Payen T, Iuga AC, Sagalovskiy IR, Desrouilleres D, Saharkhiz N, Palermo CF, Sastra SA, Oberstein PE, Rosario V, Kluger MD, Schrope BA, Chabot JA, Olive KP, Konofagou EE. Noninvasive Young's modulus visualization of fibrosis progression and delineation of pancreatic ductal adenocarcinoma (PDAC) tumors using Harmonic Motion Elastography (HME) in vivo. Theranostics 2020; 10:4614-4626. [PMID: 32292518 PMCID: PMC7150482 DOI: 10.7150/thno.37965] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background and aims: Poor specificity and predictive values of current cross-sectional radiological imaging methods in evaluation of pancreatic adenocarcinoma (PDAC) limit the clinical capability to accurately stage the tumor pre-operatively and provide optimal surgical treatment and improve patient outcomes. Methods: In this study, we applied Harmonic Motion Elastography (HME), a quantitative ultrasound-based imaging method to calculate Young's modulus (YM) in PDAC mouse models (n = 30) and human pancreatic resection specimens of PDAC (n=32). We compared the YM to the collagen assessment by Picrosirius red (PSR) stain on corresponding histologic sections. Results: HME is capable of differentiating between different levels of fibrosis in transgenic mice. In mice without pancreatic fibrosis, the measured YM was 4.2 ± 1.3 kPa, in fibrotic murine pancreata, YM was 5.5 ± 2.0 kPa and in murine PDAC tumors, YM was 11.3 ± 1.7 kPa. The corresponding PSR values were 2.0 ± 0.8 %, 9.8 ± 3.4 %, and 13.2 ± 1.2%, respectively. In addition, three regions within each human surgical PDAC specimen were assessed: tumor, which had both the highest Young's modulus (YM > 40 kPa) and collagen density (PSR > 40 %); non-neoplastic adjacent pancreas, which had the lowest Young's modulus (YM < 15 kPa) and collagen density (PSR < 10%) and a transitional peri-lesional region between the tumor and non-neoplastic pancreas with an intermediate value of measured Young's modulus (15 kPa < YM < 40 kPa) and collagen density (15% < PSR < 35 %). Conclusion: In conclusion, a non-invasive, quantitative imaging tool for detecting, staging and delineating PDAC tumor margins based on the change in collagen density was developed.
Collapse
|
63
|
Slimani A, Melchior J, de Meester C, Pierard S, Roy C, Amzulescu M, Bouzin C, Maes F, Pasquet A, Pouleur AC, Vancraeynest D, Gerber B, El Khoury G, Vanoverschelde JL. Relative Contribution of Afterload and Interstitial Fibrosis to Myocardial Function in Severe Aortic Stenosis. JACC Cardiovasc Imaging 2020; 13:589-600. [DOI: 10.1016/j.jcmg.2019.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 02/01/2023]
|
64
|
O'Callaghan EL, Lataro RM, Roloff EL, Chauhan AS, Salgado HC, Duncan E, Nogaret A, Paton JFR. Enhancing respiratory sinus arrhythmia increases cardiac output in rats with left ventricular dysfunction. J Physiol 2019; 598:455-471. [DOI: 10.1113/jp277293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/04/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Erin L. O'Callaghan
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences University of Bristol Bristol BS8 1TD UK
| | - Renata M. Lataro
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences University of Bristol Bristol BS8 1TD UK
- Department of Physiological Sciences, Center of Biological Sciences Federal University of Santa Catarina Florianópolis Santa Catarina Brazil
| | - Eva L. Roloff
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences University of Bristol Bristol BS8 1TD UK
| | - Ashok S. Chauhan
- Department of Physics University of Bath Claverton Down Bath BA2 7AY UK
| | - Helio C. Salgado
- Department of Physiology, School of Medicine of Ribeirão Preto University of São Paulo São Paulo Brazil
| | - Edward Duncan
- Department of Cardiology University Hospital Bristol NHS Trust Bristol UK
| | - Alain Nogaret
- Department of Physics University of Bath Claverton Down Bath BA2 7AY UK
| | - Julian F. R. Paton
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences University of Bristol Bristol BS8 1TD UK
- Department of Physiology, Faculty of Medical and Health Sciences University of Auckland Grafton Auckland New Zealand
| |
Collapse
|
65
|
Fereidouni F, Todd A, Li Y, Chang CW, Luong K, Rosenberg A, Lee YJ, Chan JW, Borowsky A, Matsukuma K, Jen KY, Levenson R. Dual-mode emission and transmission microscopy for virtual histochemistry using hematoxylin- and eosin-stained tissue sections. BIOMEDICAL OPTICS EXPRESS 2019; 10:6516-6530. [PMID: 31853414 PMCID: PMC6913420 DOI: 10.1364/boe.10.006516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 05/23/2023]
Abstract
In the clinical practice of pathology, trichrome stains are commonly used to highlight collagen and to help evaluate fibrosis. Such stains do delineate collagen deposits but are not molecularly specific and can suffer from staining inconsistencies. Moreover, performing histochemical stain evaluation requires the preparation of additional sections beyond the original hematoxylin- and eosin-stained slides, as well as additional staining steps, which together add cost, time, and workflow complications. We have developed a new microscopy approach, termed DUET (DUal-mode Emission and Transmission) that can be used to extract signals that would typically require special stains or advanced optical methods. Our preliminary analysis demonstrates the potential of using the resulting signals to generate virtual histochemical images that resemble trichrome-stained slides and can support clinical evaluation. We demonstrate advantages of this approach over images acquired from conventional trichrome-stained slides and compare them with images created using second harmonic generation microscopy.
Collapse
Affiliation(s)
- Farzad Fereidouni
- Department of Pathology and Laboratory Medicine, UC Davis Health, 4400 V Street, Sacramento, CA 95817, USA
| | - Austin Todd
- Department of Pathology and Laboratory Medicine, UC Davis Health, 4400 V Street, Sacramento, CA 95817, USA
| | - Yuheng Li
- Department of Computer Science, UC Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Che-Wei Chang
- Department of Pathology and Laboratory Medicine, UC Davis Health, 4400 V Street, Sacramento, CA 95817, USA
| | - Keith Luong
- Department of Electrical and Computer Engineering, UC Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Avi Rosenberg
- Renal Pathology, Department of Pathology, Johns Hopkins University and Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Yong-Jae Lee
- Department of Computer Science, UC Davis, One Shields Avenue, Davis, CA 95616, USA
| | - James W. Chan
- Department of Pathology and Laboratory Medicine, UC Davis Health, 4400 V Street, Sacramento, CA 95817, USA
| | - Alexander Borowsky
- Department of Pathology and Laboratory Medicine, UC Davis Health, 4400 V Street, Sacramento, CA 95817, USA
| | - Karen Matsukuma
- Department of Pathology and Laboratory Medicine, UC Davis Health, 4400 V Street, Sacramento, CA 95817, USA
| | - Kuang-Yu Jen
- Department of Pathology and Laboratory Medicine, UC Davis Health, 4400 V Street, Sacramento, CA 95817, USA
| | - Richard Levenson
- Department of Pathology and Laboratory Medicine, UC Davis Health, 4400 V Street, Sacramento, CA 95817, USA
| |
Collapse
|
66
|
Rieppo L, Janssen L, Rahunen K, Lehenkari P, Finnilä MAJ, Saarakkala S. Histochemical quantification of collagen content in articular cartilage. PLoS One 2019; 14:e0224839. [PMID: 31697756 PMCID: PMC6837441 DOI: 10.1371/journal.pone.0224839] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/22/2019] [Indexed: 11/18/2022] Open
Abstract
Background Articular cartilage (AC) is mainly composed of water, type II collagen, proteoglycans (PGs) and chondrocytes. The amount of PGs in AC is routinely quantified with digital densitometry (DD) from Safranin O-stained sections, but it is unclear whether similar method could be used for collagens. Objective The aim of this study was to clarify whether collagens can be quantified from histological AC sections using DD. Material and methods Sixteen human AC samples were stained with Masson’s trichrome or Picrosirius red. Optical densities of histological stains were compared to two commonly used collagen parameters (amide I and collagen CH2 side chain peak at 1338cm-1) measured using Fourier Transform Infrared (FTIR) spectroscopic imaging. Results Optical density of Modified Masson’s trichrome staining, which included enzymatic removal of PGs before staining, correlated significantly with FTIR-derived collagen parameters at almost all depths of cartilage. The other studied staining protocols displayed significant correlations with the reference parameters at only few depth layers. Conclusions Based on our findings, modified Masson’s trichrome staining protocol is suitable for quantification of AC collagen content. Enzymatic removal of PGs prior to staining is critical as us allows better staining of the collagen. Further optimization of staining protocols may improve the results in the future studies.
Collapse
Affiliation(s)
- Lassi Rieppo
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- * E-mail:
| | - Lauriane Janssen
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
| | - Krista Rahunen
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Petri Lehenkari
- Department of Surgery and Intensive Care, Oulu University Hospital, Oulu, Finland
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Mikko A. J. Finnilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Infotech Oulu, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
67
|
Toss MS, Miligy IM, Gorringe KL, AlKawaz A, Mittal K, Aneja R, Ellis IO, Green AR, Roxanis I, Rakha EA. Geometric characteristics of collagen have independent prognostic significance in breast ductal carcinoma in situ: an image analysis study. Mod Pathol 2019; 32:1473-1485. [PMID: 31175326 DOI: 10.1038/s41379-019-0296-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
Abstract
Collagen plays a key role in normal and malignant tissue homeostasis. While the prognostic significance of collagen fiber remodeling in invasive breast cancer has been studied, its role in ductal carcinoma in situ (DCIS) remains poorly defined. Using image analysis, we aimed to evaluate the prognostic significance of the geometric characteristics of collagen surrounding DCIS. A large well-characterized cohort of DCIS comprising pure DCIS (n = 610) and DCIS coexisting with invasive carcinoma (n = 180) were histochemically stained for collagen using picrosirius red. ImageJ software was used to assess collagen density, degree of collagen fiber dispersion and directionality in relation to DCIS ducts' boundary. We developed a collagen prognostic index and evaluated its prognostic significance. A poor index was observed in 24% of the pure DCIS and was associated with determinants of high-risk DCIS including higher nuclear grade, comedo type necrosis, hormonal receptor negativity, HER2 positivity and high proliferation index. High collagen prognostic index was associated with the collagen remodeling protein prolyl-4-hydroxlase alpha subunit 2 and the hypoxia-related protein hypoxia inducible factor 1α. DCIS coexisting with invasive breast cancer had a higher collagen prognostic index than pure DCIS ( p < 0.0001). High index was an independent poor prognostic factor for DCIS recurrence for all recurrences (HR = 2.3, p = 0.005) and just invasive recurrences (HR = 3.4, p = 0.003). Interaction between collagen prognostic index and radiotherapy showed that the index was associated with poor outcome even with adjuvant radiotherapy ( p = 0.0001). Collagen reorganization around DCIS is associated with poor outcome and provides a potential predictor for disease progression and resistance to radiotherapy. Mechanistic studies are warranted to decipher the underlying mechanisms.
Collapse
Affiliation(s)
- Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK.,Histopathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Islam M Miligy
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK.,Histopathology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Kylie L Gorringe
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Abdulbaqi AlKawaz
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK.,College of Dentistry, Al Mustansiriya University, Baghdad, Iraq
| | | | - Ritu Aneja
- Georgia State University, Atlanta, GA, USA
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Ioannis Roxanis
- Institute of Cancer Research, London, UK.,Royal Free London NHS Foundation Trust, London, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK. .,Histopathology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| |
Collapse
|
68
|
Alghadban S, Kenawy HI, Dudler T, Schwaeble WJ, Brunskill NJ. Absence of the Lectin Activation Pathway of Complement Ameliorates Proteinuria-Induced Renal Injury. Front Immunol 2019; 10:2238. [PMID: 31608060 PMCID: PMC6768126 DOI: 10.3389/fimmu.2019.02238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022] Open
Abstract
Proteinuria is an adverse prognostic feature in renal diseases. In proteinuric nephropathies, filtered proteins exert an injurious effect on the renal tubulointerstitium, resulting in inflammation and fibrosis. In the present study, we assessed to what extent complement activation via the lectin pathway may contribute to renal injury in response to proteinuria-related stress in proximal tubular cells. We used the well-established mouse model of protein overload proteinuria (POP) to assess the effect of lectin pathway inhibition on renal injury and fibrotic changes characteristic of proteinuric nephropathy. To this end, we compared experimental outcomes in wild type mice with MASP-2-deficient mice or wild type mice treated with MASP-2 inhibitor to block lectin pathway functional activity. Multiple markers of renal injury were assessed including renal function, proteinuria, macrophage infiltration, and cytokine release profiles. Both MASP-2-deficient and MASP-2 inhibitor-treated wild type mice exhibited renoprotection from proteinuria with significantly less tubulointerstitial injury when compared to isotype control antibody treated mice. This indicates that therapeutic targeting of MASP-2 in proteinuric nephropathies may offer a useful strategy in the clinical management of proteinuria associated pathologies in a variety of different underlying renal diseases.
Collapse
Affiliation(s)
- Samy Alghadban
- Department of Infection, Immunity and Inflammation, College of Life Sciences, University of Leicester, Leicester, United Kingdom.,Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Hany I Kenawy
- Department of Infection, Immunity and Inflammation, College of Life Sciences, University of Leicester, Leicester, United Kingdom.,Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | - Wilhelm J Schwaeble
- Department of Infection, Immunity and Inflammation, College of Life Sciences, University of Leicester, Leicester, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nigel J Brunskill
- Department of Infection, Immunity and Inflammation, College of Life Sciences, University of Leicester, Leicester, United Kingdom.,Department of Nephrology, Leicester General Hospital, Leicester, United Kingdom
| |
Collapse
|
69
|
Woessner AE, McGee JD, Jones JD, Quinn KP. Characterizing differences in the collagen fiber organization of skin wounds using quantitative polarized light imaging. Wound Repair Regen 2019; 27:711-714. [PMID: 31418977 DOI: 10.1111/wrr.12758] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/09/2019] [Indexed: 11/29/2022]
Abstract
Collagen fiber organization requires characterization in many biomedical applications, but it is difficult to objectively quantify in standard histology tissue sections. Quantitative polarized light imaging is a low-cost technique that allows for rapid measurement of collagen fiber orientation and thickness. In this study, we utilize a quantitative polarized light imaging system to characterize fiber orientation and thickness from wound sections. Full thickness skin wound sections that were previously stained with hematoxylin and eosin were used to assess collagen fiber content and organization at different points during the wound healing process. Overall, wounds exhibited a measurable increase in collagen fiber thickness and a nonlinear change in fiber reorganization within the wound. Our study demonstrates that quantitative polarized light imaging is an inexpensive alternative or supplement to standard histology protocols, requiring no additional stains or dyes, and yields repeatable quantitative assessments of collagen organization.
Collapse
Affiliation(s)
- Alan E Woessner
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - James D McGee
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Jake D Jones
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Kyle P Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
70
|
Kazarine A, Gopal AA, Wiseman PW. Nonlinear microscopy of common histological stains reveals third harmonic generation harmonophores. Analyst 2019; 144:3239-3249. [PMID: 30920574 DOI: 10.1039/c9an00267g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since its invention over a hundred years ago, histological analysis using coloured dye staining remains the gold standard for histopathology. While these stains provide critical information for a variety of diagnostic purposes, they offer limited two-dimensional histological information. Extending classical histological analysis to three dimensions requires novel imaging approaches such as multiphoton microscopy. Multiphoton microscopy enables multimodal, three-dimensional imaging of histologically stained samples. Specifically, third harmonic generation (THG), a nonlinear optical process in which three incident photons are combined into one by the sample, allows high contrast imaging of tissues stained with absorbing dyes, which in turn act as harmonophores. While this technique has previously been applied to hematoxylin and eosin (H&E) tissue sections, we extend this approach to other commonly used histological stains to demonstrate further potential applications of the technique. We demonstrate THG imaging of both human skin and liver tissue stained with H&E, Verhoeff-Van Gieson (VVG) and Picrosirius Red stains. We find that these stains provide excellent contrast as THG harmonophores, enabling high resolution imaging of histological samples. THG imaging of the Verhoeff stain enables easy detection of elastic fibers while Picrosirius Red acts as an effective harmonophore for imaging collagen fibers of all sizes.
Collapse
Affiliation(s)
- Alexei Kazarine
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada.
| | | | | |
Collapse
|
71
|
Gorth DJ, Shapiro IM, Risbud MV. A New Understanding of the Role of IL-1 in Age-Related Intervertebral Disc Degeneration in a Murine Model. J Bone Miner Res 2019; 34:1531-1542. [PMID: 30875127 PMCID: PMC6697204 DOI: 10.1002/jbmr.3714] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/05/2019] [Accepted: 03/10/2019] [Indexed: 12/25/2022]
Abstract
Increased cytokine expression, in particular interleukin-1β (IL-1β), is considered a hallmark of intervertebral disc degeneration. However, the causative relationship between IL-1 and age-dependent degeneration has not been established. To investigate the role of IL-1 in driving age-related disc degeneration, we studied the spine phenotype of global IL-1α/β double knockout (IL-1KO) mice at 12 and 20 months. Multiplex ELISA analysis of blood revealed significant reductions in the concentrations of IFN-γ, IL-5, IL-15, TNF-α, IP-10, and a trend of reduced concentrations of IL-10, macrophage inflammatory protein 1α (MIP-1α), keratinocyte chemoattractant/human growth-regulated oncogene (KC/GRO), and IL-6. However, the circulating level of MIP-2, a neutrophil chemoattractant, was increased in the IL-1KO. The alterations in systemic cytokine levels coincided with altered bone morphology-IL-1KO mice exhibited significantly thicker caudal cortical bone at 12 and 20 months. Despite these systemic inflammatory and bony changes, IL-1 deletion only minimally affected disc health. Both wild-type (WT) and IL-1KO mice showed age-dependent disc degeneration. Unexpectedly, rather than protecting the animals from degeneration, the aging phenotype was more pronounced in IL-1KO animals: knockout mice evidenced significantly more degenerative changes in the annulus fibrosis (AF) together with alterations in collagen type and maturity. At 20 months, there were no changes in nucleus pulposus (NP) extracellular matrix composition or cellular marker expression; however, the IL-1KO NP cells occupied a smaller proportion of the NP compartment that those of WT controls. Taken together, these results show that IL-1 deletion altered the systemic inflammatory environment and vertebral bone morphology. However, instead of protecting discs from age-related disc degeneration, global IL-1 deletion amplified the degenerative phenotype. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Deborah J Gorth
- Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
72
|
Thompson RPM, Lamego EC, Melo SMP, Irigoyen LF, Fighera RA, Kommers GD. Clinical-epidemiological, anatomic-pathological, histochemical and immunohistochemical characterization of renal cystadenocarcinoma-nodular dermatofibrosis syndrome in 11 German Shepherd dogs. PESQUISA VETERINÁRIA BRASILEIRA 2019. [DOI: 10.1590/1678-6160-pvb-6342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: Eleven cases of renal cystadenoma/cystadenocarcinoma-nodular dermatofibrosis syndrome (RCND) are described in German Shepherd dogs diagnosed from January 1994 to January 2018 at the Veterinary Pathology Laboratory of the “Universidade Federal de Santa Maria” (LPV-UFSM). The study sample was composed of eight male and three female dogs at a ratio of 2.67:1. Age ranged from six to 12 years (mean=8.7 years). The main clinical signs reported in descending order of frequency were multiple cutaneous nodules (nodular dermatofibrosis), dyspnea, anorexia, weight loss, recurrent hematuria, vomiting, and polydipsia. Results demonstrated that it is not always easy to clinically recognize this syndrome, but its peculiar anatomical-pathological characteristics allow safe diagnosis. Histologically, it was possible to detect all phases (cysts, papillary intratubular hyperplasia, and cystadenomas or cystadenocarcinomas) of a possible pathological continuum of the renal lesions. Uterine leiomyomas were observed in only one of the cases. Through histochemical techniques, it was possible to identify the presence of type I collagen in both cutaneous and renal lesions and consider its possible involvement in the pathogenesis of renal cystadenocarcinoma. Immunohistochemistry (IHC) showed partially satisfactory results in the staining of epithelial cells of renal cysts and neoplasms for pan-cytokeratin.
Collapse
|
73
|
Sinpreechanon P, Boonzong U, Sricholpech M. Comparative evaluation of periodontal ligament fibroblasts stored in different types of milk: effects on viability and biosynthesis of collagen. Eur J Oral Sci 2019; 127:323-332. [PMID: 31185144 DOI: 10.1111/eos.12621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 01/18/2023]
Abstract
Milk remains one of the most frequently recommended solutions for storage of avulsed teeth because it can maintain cell viability and is easily accessible. However, some negative effects of milk on avulsed teeth have been reported, just as the effects of milk on the long-term functions of cells are not clear. This study aimed to evaluate the effects of different types of milk on the viability, proliferation, and functions of periodontal ligament fibroblasts (PDLF)s in vitro. Human PDLFs were culture-medium depleted for 5 min and stored in Hanks' balanced salt solution (HBSS), whole cow's milk, low-fat cow's milk, or almond milk for 1 h at 25°C. Cell viability and proliferation were assessed using MTT assays. Expression of the genes encoding type I collagen and its modifying enzymes were analyzed using real-time PCR. Collagen matrix production was evaluated using Picrosirius red polarization. Our results showed the overall efficiency of low-fat cow's milk in maintaining the viability and proliferation of PDLFs, and in enhancing the process of collagen production. Almond milk storage resulted in the highest rate of PDLF proliferation, and comparable collagen biosynthesis ability to the control. Therefore, besides low-fat cow's milk, almond milk may potentially be an alternative tooth-storage medium for PDLF preservation and PDL tissue regeneration.
Collapse
Affiliation(s)
- Phuttikarn Sinpreechanon
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand
| | - Utamaphorn Boonzong
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand
| | - Marnisa Sricholpech
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
74
|
Bedoya S, Souza M, Conceição L, Viloria M, Valente F, Loures F, Moreira J, Coelho P. Quantificação do colágeno dérmico equino por duas técnicas morfométricas: contagem de pontos e segmentação de cor. ARQ BRAS MED VET ZOO 2019. [DOI: 10.1590/1678-4162-10487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO Os colágenos tipos I e III apresentam diferentes tonalidades de birrefringência em cortes histológicos corados com Picrosirius red e analisados em microscópio sob luz polarizada. Com base nessa propriedade, os colágenos podem ser quantificados por histomorfometria. Entretanto, são muitas as variáveis que podem afetar a distribuição das cores na imagem histológica, e a escolha adequada dos parâmetros de análise têm grande influência no resultado final. O objetivo deste trabalho foi comparar a quantificação histomorfométrica de colágeno em pele equina pela morfometria por contagem de pontos e pela segmentação de cor com diversas configurações, a fim de se determinar o melhor método de avaliação. Para a morfometria por contagem de pontos, foram utilizadas três gratículas diferentes (391, 588 e 792 pontos de interseções) e, para a segmentação de cor, seis combinações de hue e brightness no software ImageJ. Os valores foram submetidos ao teste de Friedman, seguido pelo teste de Tukey com 5% de significância. Os resultados demonstraram que a quantificação dos colágenos na gratícula de 792 pontos foi equivalente aos resultados da segmentação de cor com brightness de 1-255 e hue de 0-42 e 43-120 para os colágenos tipos I e III, respectivamente. Dessa forma, conclui-se que a análise automática da segmentação de cor, utilizando configuração adequada para brightness e hue, pode substituir a morfometria por contagem de pontos de forma confiável e segura.
Collapse
|
75
|
Liu TT, Thomas S, Mclean DT, Roldan-Alzate A, Hernando D, Ricke EA, Ricke WA. Prostate enlargement and altered urinary function are part of the aging process. Aging (Albany NY) 2019; 11:2653-2669. [PMID: 31085797 PMCID: PMC6535061 DOI: 10.18632/aging.101938] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
Prostate disease incidence, both benign and malignant, directly correlates with age. Men under 40 years of age are rarely diagnosed with benign or malignant prostate disease, while 90% of men over the age of 80 have histological evidence of benign disease (benign prostatic hyperplasia; BPH). Although rodent models have been invaluable in the study of disease progression and treatment efficacy, the effect of age is often not considered. In examining aged (24-month-old) mice, we observed changes within the lower urinary tract that is typically associated with lower urinary tract dysfunction (LUTD) similar to models of BPH. In this study, we identify LUTD using functional testing as well as various imaging technologies. We also characterize the histological differences within the lower urinary tract between young (2-month-old) and aged mice including proliferation, stromal remodeling, and collagen deposition. Additionally, we examined serum steroid hormone levels, as steroid changes drive LUTD in mice and are known to change with age. We conclude that, with age, changes in prostate function, consistent with LUTD, are a consequence. Therapeutic targeting of endocrine and prostatic factors including smooth muscle function, prostate growth and fibrosis are likely to reestablish normal urinary function.
Collapse
Affiliation(s)
- Teresa T. Liu
- Department of Urology, University of Wisconsin – Madison, Madison, WI 53705, USA
- K12 Kure, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Samuel Thomas
- Molecular and Environmental Toxicology, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Dalton T. Mclean
- Department of Urology, University of Wisconsin – Madison, Madison, WI 53705, USA
- Cancer Biology, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Alejandro Roldan-Alzate
- K12 Kure, University of Wisconsin – Madison, Madison, WI 53706, USA
- Department of Mechanical Engineering, University of Wisconsin – Madison, Madison, WI 53706, USA
- Department of Radiology, University of Wisconsin – Madison, Madison, WI 53705, USA
| | - Diego Hernando
- Department of Radiology, University of Wisconsin – Madison, Madison, WI 53705, USA
- Department of Medical Physics, University of Wisconsin – Madison, Madison, WI 53705, USA
| | - Emily A. Ricke
- Department of Urology, University of Wisconsin – Madison, Madison, WI 53705, USA
| | - William A. Ricke
- Department of Urology, University of Wisconsin – Madison, Madison, WI 53705, USA
- George M. O’Brien Center of Research Excellence, University of Wisconsin – Madison, Madison, WI 53705, USA
| |
Collapse
|
76
|
Chapin K, Khalifa A, Mbimba T, McClellan P, Anderson J, Novitsky Y, Hijaz A, Akkus O. In vivo biocompatibility and time-dependent changes in mechanical properties of woven collagen meshes: A comparison to xenograft and synthetic mid-urethral sling materials. J Biomed Mater Res B Appl Biomater 2019; 107:479-489. [PMID: 29897162 PMCID: PMC7335430 DOI: 10.1002/jbm.b.34138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 02/23/2018] [Accepted: 03/25/2018] [Indexed: 12/16/2022]
Abstract
Meshes woven from highly aligned collagen threads crosslinked using either genipin or 1-ethyl-3-(3-dimethylaminopropyl) carboiimide and N-hydroxy succinimide (EDC/NHS) were implanted in a subcutaneous rat model to evaluate their biocompatibility (at 2 weeks, 2 months, and 5 months), mechanical properties (at baseline, 2 months, and 5 months) and ultimately their suitability for use as mid-urethral slings (MUS) for management of stress urinary incontinence. Porcine dermal (Xenmatrix) and monofilament polypropylene (Prolene) meshes were also implanted to provide comparison to clinically used materials. Quantitative histological scoring showed tissue integration in Xenmatrix was almost absent, while the open network of woven collagen and Prolene meshes allowed for cellular and tissue integration. However, strength and stiffness of genipin-crosslinked collagen (GCC), Prolene, and Xenmatrix meshes were not significantly different from those of native rectus fascia and vaginal tissues of animals at 5 months. EDC/NHS-crosslinked collagen (ECC) meshes were degraded so extensively at five months that samples could only be used for histological staining. Picrosirius red and Masson's trichrome staining revealed that integrated tissue within GCC meshes was more aligned (p = 0.02) and appeared more concentrated than ECC meshes at 5 months. Furthermore, immunohistochemical staining showed that GCC meshes attracted a greater number of cells expressing markers for M2 macrophages, those associated with regeneration, than ECC meshes (p = 0.01 for CD206+ cells, p = 0.001 CD163+ cells) at 5 months. As such, GCC meshes hold promise as a new MUS biomaterial based on favorable induction of fibrous tissue resulting in mechanical stiffness matching that of native tissue. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 479-489, 2019.
Collapse
Affiliation(s)
- Katherine Chapin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106
| | - Ahmad Khalifa
- Faculty of Medicine in Urology, Menoufia University, Shebeen El-Kom, Egypt
- Department of Urology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, 44106
| | - Thomas Mbimba
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, 44106
| | - Phillip McClellan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, 44106
| | - James Anderson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, 44106
| | - Yuri Novitsky
- Department of General Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, 44106
| | - Adonis Hijaz
- Department of Urology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, 44106
| | - Ozan Akkus
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, 44106
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, 44106
| |
Collapse
|
77
|
Effects of Caffeine Treatment on Hepatopulmonary Syndrome in Biliary Cirrhotic Rats. Int J Mol Sci 2019; 20:ijms20071566. [PMID: 30925782 PMCID: PMC6480428 DOI: 10.3390/ijms20071566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatopulmonary syndrome (HPS) is a lethal complication of cirrhosis characterized by hypoxia and overt intrapulmonary shunting. In this study, we investigated the effect of caffeine in rats with common bile duct ligation (CBDL)-induced liver cirrhosis and HPS. CBDL rats were randomly allocated to receive caffeine or vehicle for 14 days. On the 28th day after CBDL, mortality rate, hemodynamics, liver, and renal biochemistry parameters and arterial blood gas analysis were evaluated. Lung and liver were dissected for the evaluation of inflammation, angiogenesis and protein expressions. In another series with parallel groups, the intrapulmonary shunting was determined. Caffeine significantly reduced portal pressure (caffeine vs. control: 10.0 ± 3.7 vs. 17.0 ± 8.1 mmHg, p < 0.05) in CBDL rats. The mortality rate, mean arterial pressure, biochemistry data and hypoxia were similar between caffeine-treated and control groups. Caffeine alleviated liver fibrosis and intrahepatic angiogenesis but intrapulmonary inflammation and angiogenesis were not ameliorated. The hepatic VEGF/Rho-A protein expressions were down-regulated but the pulmonary inflammation- and angiogenesis-related protein expressions were not significantly altered by caffeine. Caffeine did not reduce the intrapulmonary shunting, either. Caffeine has been shown to significantly improve liver fibrosis, intrahepatic angiogenesis and portal hypertension in cirrhotic rats, however, it does not ameliorate HPS.
Collapse
|
78
|
Armstrong JJ, Denstedt JT, Trelford CB, Li EA, Hutnik CML. Differential effects of dexamethasone and indomethacin on Tenon's capsule fibroblasts: Implications for glaucoma surgery. Exp Eye Res 2019; 182:65-73. [PMID: 30910611 DOI: 10.1016/j.exer.2019.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/28/2019] [Accepted: 03/19/2019] [Indexed: 12/16/2022]
Abstract
Dysregulated wound healing and subsequent fibrosis represents the most common cause of failure in glaucoma filtration surgery. Primary means to prevent this outcome are the anti-metabolite surgical adjuvants, however, topical corticosteroids are commonly used postoperatively to permit further control of wound healing and development of the filtration bleb. Unfortunately, they carry important side effects such as raised intraocular pressure, cataract and increased infection risk. Non-steroidal anti-inflammatory drugs (NSAIDs) show promising results in clinical trials as an alternative wound modulatory drug. NSAIDs exhibit non-inferiority to steroids in terms of post-operative intraocular pressure control and secondary IOP lowering interventions, however there is little known about the differing effects these drugs exert on human Tenon's capsule fibroblast (HTCF) mediated wound healing. The purpose of this study was to assess the individual effects of dexamethasone and indomethacin on the extracellular matrix modifying actions of HTCFs in vitro. To this end, HTCFs were cultured in 3D collagen matrices as well as in 2D monolayers and exposed to clinically relevant concentrations of dexamethasone or indomethacin for up to seven days. HTCF-mediated wound healing functions were assayed through collagen matrix contraction, extracellular matrix morphology, estimation of HCTF proliferation and differentiation into myofibroblasts within the collagen matrices, as well as western blot. Both drugs significantly reduced HTCF-mediated collagen contraction relative to control however there was a significant trend towards greater inhibition with indomethacin exposure compared to dexamethasone. Indomethacin exposure significantly reduced HTCF-mediated collagen remodelling activity compared vehicle control, whereas dexamethasone was unable to reduce remodelling activity at any of the studied exposures. Both drugs reduced myofibroblast differentiation, however indomethacin alone demonstrated an inhibitory effect on final cell number relative to control whereas dexamethasone had no significant effect at any studied exposure. These findings demonstrate that both steroidal and NSAID treatment can mitigate HTCF-mediated collagen contraction and αSMA expression. However, NSAIDs may function to better impede HTCF proliferation and remodelling activity. Taken in the context of previous glaucoma surgical trials, NSAIDs appear to be a viable alternative to steroids for post-operative wound modulation.
Collapse
Affiliation(s)
- James J Armstrong
- Schulich School of Medicine and Dentistry Department of Ophthalmology, London, Ontario, Canada; Schulich School of Medicine and Dentistry Department of Pathology and Laboratory Medicine, London, Ontario, Canada; Ivey Eye Institute, St. Joseph's Healthcare, London, Ontario, Canada.
| | - James T Denstedt
- Ivey Eye Institute, St. Joseph's Healthcare, London, Ontario, Canada
| | - Charles B Trelford
- Schulich School of Medicine and Dentistry Department of Pathology and Laboratory Medicine, London, Ontario, Canada
| | - Erica A Li
- Schulich School of Medicine and Dentistry Department of Pathology and Laboratory Medicine, London, Ontario, Canada
| | - Cindy M L Hutnik
- Schulich School of Medicine and Dentistry Department of Ophthalmology, London, Ontario, Canada; Schulich School of Medicine and Dentistry Department of Pathology and Laboratory Medicine, London, Ontario, Canada; Ivey Eye Institute, St. Joseph's Healthcare, London, Ontario, Canada
| |
Collapse
|
79
|
Mohamed HA, Elbastawisy YM, Elsaed WM. Attenuation of lipopolysaccharide-induced lung inflammation by ascorbic acid in rats: Histopathological and ultrastructural study. SAGE Open Med 2019; 7:2050312119828260. [PMID: 30783524 PMCID: PMC6365996 DOI: 10.1177/2050312119828260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
Introduction: Lipopolysaccharide is a bacterial endotoxin that induces acute lung injury in experimental animals, which is similar to acute respiratory distress syndrome in humans. The induced tissue trauma ends in fibrosis. Understanding the pathogenesis is important in the prevention and treatment of the complications. This study was assigned to investigate the long-term lipopolysaccharide-induced lung injury and the postulated protective effect of ascorbic acid on these changes. Materials and methods: Twenty-four adult male albino rats were divided into three groups. Group I was the controls, group II received lipopolysaccharide and group III received lipopolysaccharide and ascorbic acid. After 30 days of starting treatment, lung tissue samples were obtained. Results: Group II lung tissues showed marked thickening of the alveolar septa with collapsed alveolar sacs, detached bronchial epithelium, inflammatory cell infiltration and excessive deposition of collagen. Group III showed mild thickening of the alveolar walls, scanty inflammatory cell infiltration, mild parabronchial fibrosis and less marked collagen deposition. α-Smooth muscle actin staining of group II showed marked expression of the actin-positive cells. Less potential expression of the dye was found in group III. Ultrastructural examination of group II showed evident structural changes in pneumocytes with capillary basement membrane irregularity and interruption compared to uniform basement membrane in group III with less prominent intracellular changes in pneumocytes. Conclusion: Ascorbic acid attenuated the inflammatory response and fibrosis in the lungs of rats treated with lipopolysaccharide as evidenced by the histological, immunohistochemical and ultrastructural studies.
Collapse
Affiliation(s)
- Hazem Abdelhamid Mohamed
- Department of Anatomy and Embryology, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia.,Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Yasser M Elbastawisy
- Department of Anatomy and Embryology, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia.,Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia.,Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
80
|
Petrosino JM, Leask A, Accornero F. Genetic manipulation of CCN2/CTGF unveils cell-specific ECM-remodeling effects in injured skeletal muscle. FASEB J 2019; 33:2047-2057. [PMID: 30216109 PMCID: PMC6338641 DOI: 10.1096/fj.201800622rr] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/20/2018] [Indexed: 01/03/2023]
Abstract
In skeletal muscle, extracellular matrix (ECM) remodeling can either support the complete regeneration of injured muscle or facilitate pathologic fibrosis and muscle degeneration. Muscular dystrophy (MD) is a group of genetic disorders that results in a progressive decline in muscle function and is characterized by the abundant deposition of fibrotic tissue. Unlike acute injury, where ECM remodeling is acute and transient, in MD, remodeling persists until fibrosis obstructs the regenerative efforts of diseased muscles. Thus, understanding how ECM is deposited and organized is critical in the context of muscle repair. Connective tissue growth factor (CTGF or CCN2) is a matricellular protein expressed by multiple cell types in response to tissue injury. Although used as a general marker of fibrosis, the cell type-dependent role of CTGF in dystrophic muscle has not been elucidated. To address this question, a conditional Ctgf myofiber and fibroblast-knockout mouse lines were generated and crossed to a dystrophic background. Only myofiber-selective inhibition of CTGF protected δ-sarcoglycan-null ( Sgcd-/-) mice from the dystrophic phenotype, and it did so by affecting collagen organization in a way that allowed for improvements in dystrophic muscle regeneration and function. To confirm that muscle-specific CTGF functions to mediate collagen organization, we generated mice with transgenic muscle-specific overexpression of CTGF. Again, genetic modulation of CTGF in muscle was not sufficient to drive fibrosis, but altered collagen content and organization after injury. Our results show that the myofibers are critical mediators of the deleterious effects associated with CTGF in MD and acutely injured skeletal muscle.-Petrosino, J. M., Leask, A., Accornero, F. Genetic manipulation of CCN2/CTGF unveils cell-specific ECM-remodeling effects in injured skeletal muscle.
Collapse
Affiliation(s)
- Jennifer M. Petrosino
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Andrew Leask
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
81
|
Angel PM, Schwamborn K, Comte-Walters S, Clift C, Ball LE, Mehta AS, Drake RR. Extracellular Matrix Imaging of Breast Tissue Pathologies by MALDI-Imaging Mass Spectrometry. Proteomics Clin Appl 2019; 13:e1700152. [PMID: 30251340 PMCID: PMC6730639 DOI: 10.1002/prca.201700152] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/31/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE A new method accessing proteins from extracellular matrix by imaging mass spectrometry (ECM IMS) has been recently reported. ECM IMS is evaluated for use in exploring breast tissue pathologies. EXPERIMENTAL DESIGN A tissue microarray (TMA) is analyzed that has 176 cores of biopsies and lumpectomies spanning breast pathologies of inflammation, hyperplasia, fibroadenoma, invasive ductal carcinoma, and invasive lobular carcinoma and normal adjacent to tumor (NAT). NAT is compared to subtypes by area under the receiver operating curve (ROC) >0.7. A lumpectomy is also characterized for collagen organization by microscopy and stromal protein distribution by IMS. LC-based high-resolution accurate mass (HRAM) proteomics is used to identify proteins from the lumpectomy. RESULTS TMA analysis shows distinct spectral signatures reflecting a heterogeneous tissue microenvironment. Ninety-four peaks show an ROC > 0.7 compared to NAT; NAT has overall higher intensities. Lumpectomy analysis by IMS visualizes a complex central tumor region with distal tumor regions. A total of 39 stromal proteins are identified by HRAM LC-based proteomics. Accurate mass matches between image data and LC-based proteomics demonstrate a heterogeneous collagen type environment in the central tumor. CONCLUSIONS Data portray the heterogeneous stromal microenvironment of breast pathologies, including alteration of multiple collagen-type patterns. ECM IMS is a promising new tool for investigating the stromal microenvironment of breast tissue including cancer.
Collapse
Affiliation(s)
- Peggi M. Angel
- Department of Cell and Molecular Pharmacology; MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC
| | | | - Susana Comte-Walters
- Department of Cell and Molecular Pharmacology; MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC
| | - Cassandra Clift
- Department of Cell and Molecular Pharmacology; MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC
| | - Lauren E. Ball
- Department of Cell and Molecular Pharmacology; MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology; MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology; MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
82
|
Gorth DJ, Shapiro IM, Risbud MV. Transgenic mice overexpressing human TNF-α experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis 2018; 10:7. [PMID: 30584238 PMCID: PMC6315044 DOI: 10.1038/s41419-018-1246-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/02/2018] [Accepted: 11/21/2018] [Indexed: 01/07/2023]
Abstract
There is a well-established link between cytokine expression and the progression of intervertebral disc degeneration. Among these cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) are the most commonly studied. To investigate whether systemic hTNF-α overexpression affects intervertebral disc health, we studied the spine phenotype of Tg197 mice, a widely used hTNF-α transgenic line. These mice were studied at 12–16 weeks of age using comprehensive histochemical and immunohistological analysis of the spinal motion segment. Micro-CT analysis was performed to quantify vertebral trabecular bone architecture. The Tg197 mice evidenced spontaneous annular tears and herniation with increased vascularity in subchondral bone and significant immune cell infiltration. The full-thickness annular tear without nucleus pulposus (NP) extrusion resulted in neutrophil, macrophage, and mast cell infiltration into the disc, whereas the disc with full-thickness tear and pronounced NP herniation showed additional presence of CD4+ and CD8+ T cells. While the observed defects involved failure of the annular, endplate, and vertebral junction, there were no obvious alterations in the collagen or aggrecan content in the NP and annulus fibrosus or the maturity of collagen fibers in Tg197 mice. Despite elevated systemic inflammation and pronounced loss of trabecular bone in the vertebrae, intact Tg197 discs were healthy and showed an increase in NP cell number. The NP cells in intact discs preserved expression of phenotypic markers: CAIII, Glut1, and Krt19. In conclusion, elevated systemic TNF-α increases the susceptibility of mice to spontaneous disc herniation and possibly radiculopathy, without adversely affecting intact intervertebral disc health.
Collapse
Affiliation(s)
- Deborah J Gorth
- Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
83
|
Utino FL, Garcia M, Velho PENF, França AFEDC, Stelini RF, Pelegati VB, Cesar CL, de Souza EM, Cintra ML, Damiani GV. Second-harmonic generation imaging analysis can help distinguish sarcoidosis from tuberculoid leprosy. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-7. [PMID: 30516038 DOI: 10.1117/1.jbo.23.12.126001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Sarcoidosis and tuberculoid leprosy (TL) are prototypes of granulomatous inflammation in dermatology, which embody one of the histopathology limitations in distinguishing some diseases. Recent advances in the use of nonlinear optical microscopy in skin have enabled techniques, such as second-harmonic generation (SHG), to become powerful tools to study the physical and biochemical properties of skin. We use SHG images to analyze the collagen network, to distinguish differences between sarcoidosis and TL granulomas. SHG images obtained from skin biopsies of 33 patients with TL and 24 with sarcoidosis retrospectively were analyzed using first-order statistics (FOS) and second-order statistics, such as gray-level co-occurrence matrix (GLCM). Among the four parameters evaluated (optical density, entropy, contrast, and second angular moment), only contrast demonstrated statistical significance, being higher in sarcoidosis (p = 0.02; 4908.31 versus 2822.17). The results may indicate insufficient differentiating power for most tested FOS and GLCM parameters in classifying sarcoidosis and TL granulomas, when used individually. But in combination with histopathology (H&E and complementary stains, such as silver and fast acid stains), SHG analysis, like contrast, can contribute to distinguishing between these diseases. This study can provide a way to evaluate collagen distribution in granulomatous diseases.
Collapse
Affiliation(s)
- Fabiane Leonel Utino
- University of Campinas, Department of Pathology, Campinas, Brazil
- University of Campinas, Department of Dermatology, Campinas, Brazil
| | - Marina Garcia
- University of Campinas, Department of Pathology, Campinas, Brazil
| | | | | | | | - Vitor Bianchin Pelegati
- Technology on Photonics Applied to Cell Biology, Campinas, Brazil
- University of Campinas, "Gleb Wataghin" Institute of Physics, Campinas, Brazil
| | - Carlos Lenz Cesar
- Technology on Photonics Applied to Cell Biology, Campinas, Brazil
- University of Campinas, "Gleb Wataghin" Institute of Physics, Campinas, Brazil
- Federal University of Ceará, Department of Physics, Fortaleza, Brazil
| | | | | | - Gislaine Vieira Damiani
- Technology on Photonics Applied to Cell Biology, Campinas, Brazil
- Federal Institute of Education, Science and Technology, São Paulo, Brazil
| |
Collapse
|
84
|
Villiger M, Otsuka K, Karanasos A, Doradla P, Ren J, Lippok N, Shishkov M, Daemen J, Diletti R, van Geuns RJ, Zijlstra F, van Soest G, Libby P, Regar E, Nadkarni SK, Bouma BE. Coronary Plaque Microstructure and Composition Modify Optical Polarization: A New Endogenous Contrast Mechanism for Optical Frequency Domain Imaging. JACC Cardiovasc Imaging 2018; 11:1666-1676. [PMID: 29248662 PMCID: PMC5994172 DOI: 10.1016/j.jcmg.2017.09.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVES This study aimed to evaluate whether polarimetry, performed using a modified optical frequency domain imaging (OFDI) system, can improve the assessment of histological features relevant to characterizing human coronary atherosclerosis. BACKGROUND The microscopic structure and organization of the arterial wall influence the polarization of the infrared light used by OFDI. Modification of the OFDI apparatus, along with recently developed image reconstruction methods, permits polarimetric measurements simultaneously with conventional OFDI cross-sectional imaging through standard intravascular imaging catheters. METHODS The main coronary arteries of 5 cadaveric human hearts were imaged with an OFDI system capable of providing polarimetric assessment. Cross-sectional views of tissue birefringence, measured in refractive index units, and depolarization, expressed as the ratio of depolarized signal to total intensity, were reconstructed, together with conventional OFDI images. Following imaging, the vessels underwent histological evaluation to enable interpretation of the observed polarization features of individual tissue components. RESULTS Birefringence in fibrous tissue was significantly higher than in intimal tissue with minimal abnormality (0.44 × 10-3 vs. 0.33 × 10-3; p < 0.0001). Birefringence was highest in the tunica media (p < 0.0001), consistent with its high smooth muscle cell content, cells known to associate with birefringence. In fibrous areas, birefringence showed fine spatial features and close correspondence with the histological appearance of collagen. In contrast, necrotic cores and regions rich in lipid elicited significant depolarization (p < 0.0001). Depolarization was also evident in locations of cholesterol crystals and macrophages. CONCLUSIONS Intravascular measurements of birefringence and depolarization can be obtained using conventional OFDI catheters in conjunction with a modified console and signal processing algorithms. Polarimetric measurements enhance conventional OFDI by providing additional information related to the tissue composition and offer quantitative metrics enabling characterization of plaque features.
Collapse
Affiliation(s)
- Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Kenichiro Otsuka
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Antonios Karanasos
- Department of Interventional Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pallavi Doradla
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jian Ren
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Norman Lippok
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Milen Shishkov
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joost Daemen
- Department of Interventional Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Roberto Diletti
- Department of Interventional Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robert-Jan van Geuns
- Department of Interventional Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Felix Zijlstra
- Department of Interventional Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Gijs van Soest
- Department of Interventional Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Evelyn Regar
- Department of Interventional Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Seemantini K Nadkarni
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brett E Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
85
|
Broadberry E, McConnell J, Williams J, Yang N, Zindy E, Leek A, Waddington R, Joseph L, Howe M, Meng QJ, Streuli CH. Disrupted circadian clocks and altered tissue mechanics in primary human breast tumours. Breast Cancer Res 2018; 20:125. [PMID: 30348208 PMCID: PMC6198506 DOI: 10.1186/s13058-018-1053-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Circadian rhythms maintain tissue homeostasis during the 24-h day-night cycle. Cell-autonomous circadian clocks play fundamental roles in cell division, DNA damage responses and metabolism. Circadian disruptions have been proposed as a contributing factor for cancer initiation and progression, although definitive evidence for altered molecular circadian clocks in cancer is still lacking. In this study, we looked at circadian clocks in breast cancer. METHODS We isolated primary tumours and normal tissues from the same individuals who had developed breast cancer with no metastases. We assessed circadian clocks within primary cells of the patients by lentiviral expression of circadian reporters, and the levels of clock genes in tissues by qPCR. We histologically examined collagen organisation within the normal and tumour tissue areas, and probed the stiffness of the stroma adjacent to normal and tumour epithelium using atomic force microscopy. RESULTS Epithelial ducts were disorganised within the tumour areas. Circadian clocks were altered in cultured tumour cells. Tumour regions were surrounded by stroma with an altered collagen organisation and increased stiffness. Levels of Bmal1 messenger RNA (mRNA) were significantly altered in the tumours in comparison to normal epithelia. CONCLUSION Circadian rhythms are suppressed in breast tumour epithelia in comparison to the normal epithelia in paired patient samples. This correlates with increased tissue stiffness around the tumour region. We suggest possible involvement of altered circadian clocks in the development and progression of breast cancer.
Collapse
Affiliation(s)
- Eleanor Broadberry
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - James McConnell
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Jack Williams
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Nan Yang
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Egor Zindy
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Angela Leek
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Rachel Waddington
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Leena Joseph
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Miles Howe
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Charles H Streuli
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| |
Collapse
|
86
|
Kataoka T, Kokubu T, Muto T, Mifune Y, Inui A, Sakata R, Nishimoto H, Harada Y, Takase F, Ueda Y, Kurosawa T, Yamaura K, Kuroda R. Rotator cuff tear healing process with graft augmentation of fascia lata in a rabbit model. J Orthop Surg Res 2018; 13:200. [PMID: 30103783 PMCID: PMC6090682 DOI: 10.1186/s13018-018-0900-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022] Open
Abstract
Background Fascia lata augmentation of massive rotator cuff tears has shown good clinical results. However, its biological effect during the early healing process is not clearly understood. The purpose of the study was to evaluate the biological efficacy of fascia lata augmentation during the early healing process of rotator cuff tears using a rabbit rotator cuff defect model. Methods The infraspinatus tendon was resected from the greater tuberosity of a rabbit to create a rotator cuff tear. The tendon edge was directly sutured to the humeral head. The rotator cuff repaired site was augmented with a fascia lata autograft (augmentation group, group A). The rotator cuff defect in the contralateral shoulder was repaired without augmentation (reattachment group, group R). A group with intact rotator cuff was set as the control group. Histological examinations and mechanical analysis were conducted 4 and 8 weeks postoperatively. Results In the HE staining, the tendon maturing score of group A was higher than that of group R at 4 weeks postoperatively. In the safranin O staining, proteoglycan staining at the repaired enthesis in group A at 4 weeks postoperatively was stronger than that in group R. Picrosirius red staining showed that type III and type I collagen in group A was more strongly expressed than that in group R at 4 weeks postoperatively. The ultimate failure load of the infraspinatus tendon–humeral head complex in group A was statistically higher than that in group R at 4 weeks postoperatively. The ultimate failure load of group A was similar to that of the control group. Conclusion The biological and mechanical contribution of fascia lata augmentation for massive rotator cuff tears was analyzed in this study. Type III collagen was reported to be expressed during the tendon healing process. Although the biological action similar to natural ligament healing occurred around the fascia lata grafts, type III collagen was gradually replaced by type I collagen as the tissue matured. Our results suggest that fascia lata augmentation could stimulate biological healing and provide initial fixation strength of the repaired rotator cuff.
Collapse
Affiliation(s)
- Takeshi Kataoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Takeshi Kokubu
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Tomoyuki Muto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Ryosuke Sakata
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Hanako Nishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yoshifumi Harada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Fumiaki Takase
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yasuhiro Ueda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Takashi Kurosawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kohei Yamaura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
87
|
Guimarães D, Carvalho A, Ywasaki J, Neves C, Rodrigues A, Silveira L. Morfologia do coração e dos vasos da base do pinguim-de-magalhães (Spheniscus magellanicus). ARQ BRAS MED VET ZOO 2018. [DOI: 10.1590/1678-4162-9860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO O pinguim-de-magalhães é uma ave marinha de porte médio, de origem do hemisfério sul, com grandes colônias próximas à Patagônia. Em certas épocas do ano, alguns exemplares aparecem no litoral brasileiro, devido ao desvio de rotas de caça, e alguns indivíduos não conseguem retornar por debilidades na saúde. Foram utilizados 34 exemplares de Spheniscus magellanicus que vieram a óbito no litoral do estado de Espírito Santo. O presente estudo analisou a morfologia de câmaras e paredes cardíacas, valvas e artérias da base. Os fragmentos dessas regiões foram analisados histologicamente com coloração hematoxilina-eosina (HE) e Tricrômico de Gomori (TG), além da coloração Picrosirius Red (PSR) sob luz polarizada, visando observar, principalmente, a composição do tipo de colágeno existente em cada região descrita. Entre os 34 exemplares, nenhum apresentou discrepância em relação a sua morfologia. A tipificação do colágeno dessas regiões pelas colorações TG e PSR sob luz polarizada demonstrou a presença do colágeno tipo I em maior evidência que o tipo III, encontrada na maioria das estruturas, o que atribuiu a aparência avermelhada intensa a quase todas elas. Pode-se concluir que a anatomia cardíaca do pinguim-de-magalhães é semelhante à de outras aves, com predominância do colágeno do tipo I.
Collapse
Affiliation(s)
- D.F. Guimarães
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - A.P.M. Carvalho
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - J. Ywasaki
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - C.D. Neves
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | | | - L.S. Silveira
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| |
Collapse
|
88
|
How cell culture conditions affect the microstructure and nanomechanical properties of extracellular matrix formed by immortalized human mesenchymal stem cells: An experimental and modelling study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:149-159. [DOI: 10.1016/j.msec.2018.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/02/2018] [Accepted: 03/26/2018] [Indexed: 12/27/2022]
|
89
|
Nawabi J, Vohlen C, Dinger K, Thangaratnarajah C, Klaudt C, Lopez Garcia E, Hirani DV, Karakaya PH, Macheleidt I, Odenthal M, Nüsken KD, Dötsch J, Alejandre Alcazar MA. Novel functional role of GH/IGF-I in neonatal lung myofibroblasts and in rat lung growth after intrauterine growth restriction. Am J Physiol Lung Cell Mol Physiol 2018; 315:L623-L637. [PMID: 30047284 DOI: 10.1152/ajplung.00413.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a risk factor for neonatal chronic lung disease (CLD) characterized by reduced alveoli and perturbed matrix remodeling. Previously, our group showed an activation of myofibroblasts and matrix remodeling in rat lungs after IUGR. Because growth hormone (GH) and insulin-like growth factor I (IGF-I) regulate development and growth, we queried 1) whether GH/IGF-I signaling is dysregulated in lungs after IUGR and 2) whether GH/IGF-I signaling is linked to neonatal lung myofibroblast function. IUGR was induced in Wistar rats by isocaloric low-protein diet during gestation. Lungs were obtained at embryonic day (E) 21, postnatal day (P) 3, P12, and P23. Murine embryonic fibroblasts (MEF) or primary neonatal myofibroblasts from rat lungs of control (pnFCo) and IUGR (pnFIUGR) were used for cell culture studies. In the intrauterine phase (E21), we found a reduction in GH receptor (GH-R), Stat5 signaling and IGF-I expression in lungs after IUGR. In the postnatal phase (P3-P23), catchup growth after IUGR was linked to increased GH mRNA, GH-R protein, activation of proliferative Stat5/Akt signaling, cyclin D1 and PCNA in rat lungs. On P23, a thickening of the alveolar septae was related to increased vimentin and matrix deposition, indicating fibrosis. In cell culture studies, nutrient deprivation blocked GH-R/IGF-IR signaling and proliferation in MEFs; this was reversed by IGF-I. Proliferation and Stat5 activation were increased in pnFIUGR. IGF-I and GH induced proliferation and migration of pnFCo; only IGF-I had these effects on pnFIUGR. Thus, we show a novel mechanism by which the GH/IGF-I axis in lung myofibroblasts could account for structural lung changes after IUGR.
Collapse
Affiliation(s)
- Jawed Nawabi
- Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne , Cologne , Germany
| | - Christina Vohlen
- Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne , Cologne , Germany.,University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne , Cologne , Germany.,Center for Molecular Medicine of Cologne, University of Cologne , Cologne , Germany
| | - Katharina Dinger
- Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne , Cologne , Germany
| | - Chansutha Thangaratnarajah
- Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne , Cologne , Germany
| | - Christian Klaudt
- Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne , Cologne , Germany
| | - Eva Lopez Garcia
- Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne , Cologne , Germany
| | - Dharmesh V Hirani
- Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne , Cologne , Germany.,Center for Molecular Medicine of Cologne, University of Cologne , Cologne , Germany
| | - Pinar Haznedar Karakaya
- Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne , Cologne , Germany
| | - Iris Macheleidt
- Center for Molecular Medicine of Cologne, University of Cologne , Cologne , Germany.,Institute for Pathology, University Hospital of Cologne , Cologne , Germany
| | - Margarete Odenthal
- Center for Molecular Medicine of Cologne, University of Cologne , Cologne , Germany.,Institute for Pathology, University Hospital of Cologne , Cologne , Germany
| | - Kai D Nüsken
- University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne , Cologne , Germany
| | - Jörg Dötsch
- University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne , Cologne , Germany
| | - Miguel A Alejandre Alcazar
- Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne , Cologne , Germany.,University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne , Cologne , Germany.,Center for Molecular Medicine of Cologne, University of Cologne , Cologne , Germany
| |
Collapse
|
90
|
Caggiano LR, Lee JJ, Holmes JW. Surgical reinforcement alters collagen alignment and turnover in healing myocardial infarcts. Am J Physiol Heart Circ Physiol 2018; 315:H1041-H1050. [PMID: 30028201 DOI: 10.1152/ajpheart.00088.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have suggested that the composition and global mechanical properties of the scar tissue that forms after a myocardial infarction (MI) are key determinants of long-term survival, and emerging therapies such as biomaterial injection are designed in part to alter those mechanical properties. However, recent evidence suggests that local mechanics regulate scar formation post-MI, so that perturbing infarct mechanics could have unexpected consequences. We therefore tested the effect of changes in local mechanical environment on scar collagen turnover, accumulation, and alignment in 77 Sprague-Dawley rats at 1, 2, 3 and 6 wk post-MI by sewing a Dacron patch to the epicardium to eliminate circumferential strain while permitting continued longitudinal stretching with each heart beat. We found that collagen in healing infarcts aligned parallel to regional strain and perpendicular to the preinfarction muscle and collagen fiber direction, strongly supporting our hypothesis that mechanical environment is the primary determinant of scar collagen alignment. Mechanical reinforcement reduced levels of carboxy-terminal propeptide of type I procollagen (PICP; a biomarker for collagen synthesis) in samples collected by microdialysis significantly, particularly in the first 2 wk. Reinforcement also reduced carboxy-terminal telopeptide of type I collagen (ICTP; a biomarker for collagen degradation), particularly at later time points. These alterations in collagen turnover produced no change in collagen area fraction as measured by histology but significantly reduced wall thickness in the reinforced scars compared with untreated controls. Our findings confirm the importance of regional mechanics in regulating scar formation after infarction and highlight the potential for therapies that reduce stretch to also reduce wall thickness in healing infarcts. NEW & NOTEWORTHY This study shows that therapies such as surgical reinforcement, which reduce stretch in healing infarcts, can also reduce collagen synthesis and wall thickness and modify collagen alignment in postinfarction scars.
Collapse
Affiliation(s)
- Laura R Caggiano
- Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia
| | - Jia-Jye Lee
- Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia.,Department of Medicine, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
91
|
Fu X, Khalil H, Kanisicak O, Boyer JG, Vagnozzi RJ, Maliken BD, Sargent MA, Prasad V, Valiente-Alandi I, Blaxall BC, Molkentin JD. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest 2018; 128:2127-2143. [PMID: 29664017 PMCID: PMC5957472 DOI: 10.1172/jci98215] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/27/2018] [Indexed: 12/24/2022] Open
Abstract
Fibroblasts are a dynamic cell type that achieve selective differentiated states to mediate acute wound healing and long-term tissue remodeling with scarring. With myocardial infarction injury, cardiomyocytes are replaced by secreted extracellular matrix proteins produced by proliferating and differentiating fibroblasts. Here, we employed 3 different mouse lineage-tracing models and stage-specific gene profiling to phenotypically analyze and classify resident cardiac fibroblast dynamics during myocardial infarction injury and stable scar formation. Fibroblasts were activated and highly proliferative, reaching a maximum rate within 2 to 4 days after infarction injury, at which point they expanded 3.5-fold and were maintained long term. By 3 to 7 days, these cells differentiated into myofibroblasts that secreted abundant extracellular matrix proteins and expressed smooth muscle α-actin to structurally support the necrotic area. By 7 to 10 days, myofibroblasts lost proliferative ability and smooth muscle α-actin expression as the collagen-containing extracellular matrix and scar fully matured. However, these same lineage-traced initial fibroblasts persisted within the scar, achieving a new molecular and stable differentiated state referred to as a matrifibrocyte, which was also observed in the scars of human hearts. These cells express common and unique extracellular matrix and tendon genes that are more specialized to support the mature scar.
Collapse
Affiliation(s)
- Xing Fu
- Cincinnati Children’s Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Hadi Khalil
- Cincinnati Children’s Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Onur Kanisicak
- Cincinnati Children’s Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Justin G. Boyer
- Cincinnati Children’s Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ronald J. Vagnozzi
- Cincinnati Children’s Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Bryan D. Maliken
- Cincinnati Children’s Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michelle A. Sargent
- Cincinnati Children’s Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Vikram Prasad
- Cincinnati Children’s Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Iñigo Valiente-Alandi
- Cincinnati Children’s Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Burns C. Blaxall
- Cincinnati Children’s Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jeffery D. Molkentin
- Cincinnati Children’s Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- CCHMC, Howard Hughes Medical Institute, Cincinnati, Ohio, USA
| |
Collapse
|
92
|
Shinde AV, Su Y, Palanski BA, Fujikura K, Garcia MJ, Frangogiannis NG. Pharmacologic inhibition of the enzymatic effects of tissue transglutaminase reduces cardiac fibrosis and attenuates cardiomyocyte hypertrophy following pressure overload. J Mol Cell Cardiol 2018; 117:36-48. [PMID: 29481819 PMCID: PMC5892840 DOI: 10.1016/j.yjmcc.2018.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/26/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022]
Abstract
Tissue transglutaminase (tTG) is a multifunctional protein with a wide range of enzymatic and non-enzymatic functions. We have recently demonstrated that tTG expression is upregulated in the pressure-overloaded myocardium and exerts fibrogenic actions promoting diastolic dysfunction, while preventing chamber dilation. Our current investigation dissects the in vivo and in vitro roles of the enzymatic effects of tTG on fibrotic remodeling in pressure-overloaded myocardium. Using a mouse model of transverse aortic constriction, we demonstrated perivascular and interstitial tTG activation in the remodeling pressure-overloaded heart. tTG inhibition through administration of the selective small molecule tTG inhibitor ERW1041E attenuated left ventricular diastolic dysfunction and reduced cardiomyocyte hypertrophy and interstitial fibrosis in the pressure-overloaded heart, without affecting chamber dimensions and ejection fraction. In vivo, tTG inhibition markedly reduced myocardial collagen mRNA and protein levels and attenuated transcription of fibrosis-associated genes. In contrast, addition of exogenous recombinant tTG to fibroblast-populated collagen pads had no significant effects on collagen transcription, and instead increased synthesis of matrix metalloproteinase (MMP)3 and tissue inhibitor of metalloproteinases (TIMP)1 through transamidase-independent actions. However, enzymatic effects of matrix-bound tTG increased the thickness of pericellular collagen in fibroblast-populated pads. tTG exerts distinct enzymatic and non-enzymatic functions in the remodeling pressure-overloaded heart. The enzymatic effects of tTG are fibrogenic and promote diastolic dysfunction, but do not directly modulate the pro-fibrotic transcriptional program of fibroblasts. Targeting transamidase-dependent actions of tTG may be a promising therapeutic strategy in patients with heart failure and fibrosis-associated diastolic dysfunction.
Collapse
Affiliation(s)
- Arti V Shinde
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ya Su
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Brad A Palanski
- Department of Chemistry, Stanford University, Stanford, CA, United States
| | - Kana Fujikura
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mario J Garcia
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
93
|
Clemons TD, Bradshaw M, Toshniwal P, Chaudhari N, Stevenson AW, Lynch J, Fear MW, Wood FM, Iyer KS. Coherency image analysis to quantify collagen architecture: implications in scar assessment. RSC Adv 2018; 8:9661-9669. [PMID: 35540841 PMCID: PMC9078703 DOI: 10.1039/c7ra12693j] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/27/2018] [Indexed: 11/21/2022] Open
Abstract
An important histological difference between normal, uninjured dermis and scar tissue such as that found in keloid scars is the pattern (morphological architecture) in which the collagen is deposited and arranged. In the uninjured dermis, collagen bundle architecture appears randomly organized (or in a basket weave formation), whereas in pathological conditions such as keloid scar tissue, collagen bundles are often found in whorls or in a hypotrophic scar collagen is more densely packed in a parallel configuration. In the case of skin, a scar disables the dermis, leaving it weaker, stiff and with a loss of optimal functionality. The absence of objective and quantifiable assessments of collagen orientation is a major bottleneck in monitoring progression of scar therapeutics. In this article, a novel quantitative approach for analyzing collagen orientation is reported. The methodology is demonstrated using collagen produced by cells in a model scar environment and examines collagen remodeling post-TGFβ stimulation in vitro. The method is shown to be reliable and effective in identifying significant coherency differences in the collagen deposited by human keloid scar cells. The technique is also compared for analysing collagen architecture in rat sections of normal, scarred skin and tendon tissue. Results demonstrate that the proposed computational method provides a fast and robust way of analyzing collagen orientation in a manner surpassing existing methods. This study establishes this methodology as a preliminary means of monitoring in vitro and in tissue treatment modalities which are expected to alter collagen morphology.
Collapse
Affiliation(s)
- T D Clemons
- School of Molecular Sciences M313, The University of Western Australia 35 Stirling Hwy Crawley WA 6009 Australia
| | - M Bradshaw
- School of Molecular Sciences M313, The University of Western Australia 35 Stirling Hwy Crawley WA 6009 Australia
| | - P Toshniwal
- School of Molecular Sciences M313, The University of Western Australia 35 Stirling Hwy Crawley WA 6009 Australia
| | - N Chaudhari
- School of Molecular Sciences M313, The University of Western Australia 35 Stirling Hwy Crawley WA 6009 Australia
| | - A W Stevenson
- Fiona Wood Foundation and Burn Injury Research Unit, The University of Western Australia, M318 35 Stirling Hwy Crawley WA 6009 Australia
| | - J Lynch
- Fiona Wood Foundation and Burn Injury Research Unit, The University of Western Australia, M318 35 Stirling Hwy Crawley WA 6009 Australia
- Royal College of Surgeon's of Ireland 123 St Stephen's Green Dublin Ireland
| | - M W Fear
- Fiona Wood Foundation and Burn Injury Research Unit, The University of Western Australia, M318 35 Stirling Hwy Crawley WA 6009 Australia
| | - F M Wood
- Fiona Wood Foundation and Burn Injury Research Unit, The University of Western Australia, M318 35 Stirling Hwy Crawley WA 6009 Australia
| | - K Swaminathan Iyer
- School of Molecular Sciences M313, The University of Western Australia 35 Stirling Hwy Crawley WA 6009 Australia
| |
Collapse
|
94
|
Salvatore S, França K, Lotti T, Parma M, Palmieri S, Candiani M, D'Este E, Viglio S, Cornaglia AI, Farina A, Riva F, Calligaro A, Lotti J, Wollina U, Tchernev G, Zerbinati N. Early Regenerative Modifications of Human Postmenopausal Atrophic Vaginal Mucosa Following Fractional CO 2 Laser Treatment. Open Access Maced J Med Sci 2018; 6:6-14. [PMID: 29483970 PMCID: PMC5816317 DOI: 10.3889/oamjms.2018.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Postmenopausal women experience undesired symptoms that adversely affect their quality of life. In the recent years, a specific 12 - week fractional CO2 laser treatment has been introduced, with highly significant relief of symptoms. AIM The aim of this paper is the identification of the early modifications of structural components of atrophic vaginal mucosa induced by laser irradiation, which is responsible for the restorative processes. MATERIAL AND METHODS We investigated by microscopical, ultrastructural and biochemical methods the modifications of the structural components of postmenopausal atrophic vaginal mucosa tissues after 1 hour following a single fractional laser CO2 application. RESULTS In one hour, the mucosal epithelium thickens, with the maturation of epithelial cells and desquamation at the epithelial surface. In the connective tissue, new papillae indenting the epithelium with newly formed vessels penetrating them, new thin fibrils of collagen III are also formed in a renewed turnover of components due to the increase of metalloproteinase - 2. Specific features of fibroblasts support stimulation of their activity responsible of the renewal of the extracellular matrix, with an increase of mechanical support as connective tissue and stimulation of growth and maturation to epithelium thanks to new vessels and related factors delivered. CONCLUSION We found the activation of regenerative mechanisms expressed both in the connective tissue - with the formation of new vessels, new papillae, and new collagen - and in the epithelium with the associated thickening and desquamation of cells at the mucosal surface.
Collapse
Affiliation(s)
| | - Katlein França
- University of Miami School of Medicine, Miami, Florida, United States
| | - Torello Lotti
- University G. Marconi of Rome, Dermatology and Venereology, Rome, Italy
| | | | | | - Massimo Candiani
- IRCCS San Raffaele Hospital - Chair of Obstetrics and Gynecology, Milan, Italy
| | - Edoardo D'Este
- University of Pavia - Centro Medico Polispecialistico, Pavia, Italy
| | - Simona Viglio
- University of Pavia - Department of Molecular Medicine, Pavia, Italy
| | - Antonia Icaro Cornaglia
- University of Pavia - Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, Pavia, Italy
| | - Aurora Farina
- University of Pavia - Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, Pavia, Italy
| | - Federica Riva
- University of Pavia - Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, Pavia, Italy
| | - Alberto Calligaro
- University of Pavia - Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, Pavia, Italy
| | - Jacopo Lotti
- University of Rome "G. Marconi" - Dept. of Nuclear, Subnuclear and Radiation Physics, Rome, Italy
| | - Uwe Wollina
- Städtisches Klinikum Dresden, Department of Dermatology and Allergology, 01067 Dresden, Germany
| | - Georgi Tchernev
- Medical Institute of Ministry of Interior Department of General, Vascular and Abdominal Surgery, Sofia, Bulgaria
| | - Nicola Zerbinati
- Universita degli Studi dell'Insubria Dipartimento di Scienze Chirurgiche e Morfologiche, Varese, Italy
| |
Collapse
|
95
|
Zerbinati N, Calligaro A. Calcium hydroxylapatite treatment of human skin: evidence of collagen turnover through picrosirius red staining and circularly polarized microscopy. Clin Cosmet Investig Dermatol 2018; 11:29-35. [PMID: 29391818 PMCID: PMC5772396 DOI: 10.2147/ccid.s143015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Calcium hydroxylapatite (CaHA, Radiesse®) is a biocompatible, injectable filler for facial soft-tissue augmentation that provides volume to tissues, followed by a process of neocollagenesis for improved skin quality. Objective To examine the effects of CaHA treatment on the molecular organization of collagen using a combination of picrosirius red staining and circularly polarized light microscopy. Methods Five subjects received subdermal injection of 0.3 mL of CaHA in tissues scheduled for removal during abdominoplasty 2 months later. Tissue specimens from the CaHA injection site and a control untreated area were obtained from excised skin at the time of surgery. Processed tissue sections were stained with picrosirius red solution 0.1% and visualized under circularly polarized light microscopy for identification of thick mature (type I) and thin newly formed (type III) collagen fibers. Pixel signals from both the control and CaHA-treated areas were extracted from the images, and morphometric computerized hue analysis was performed to provide a quantitative evaluation of mature and newly formed collagen fibers. Results Under picrosirius red staining and circularly polarized light microscopy, green/yellow areas (thin newly formed collagen type III) were visible among the collagen fibers in tissue sections from the area of CaHA injection. In contrast, the majority of the collagen fibers appeared red (thick mature collagen type I) in control tissues. Morphometric analysis confirmed that, following CaHA treatment, the proportion of fibers represented by thin newly formed collagen type III increased significantly (p<0.01) in comparison with the proportion of thick mature collagen type I fibers. In contrast, collagen content of control tissues consisted almost exclusively of thick mature collagen type I fibers. Conclusion The use of picrosirius red staining and circularly polarized light microscopy provides evidence that subdermal injection of CaHA stimulates the formation of new collagen and dermal remodeling.
Collapse
Affiliation(s)
- Nicola Zerbinati
- Department of Surgical and Morphological Sciences, University of Insubria (Varese) and Polyspecialist Medical Center, Pavia
| | - Alberto Calligaro
- Department of Public Health, Experimental and Forensic Medicine, Unit of Histology and Embryology, University of Pavia, Pavia, Italy
| |
Collapse
|
96
|
Lindsey ML, Bolli R, Canty JM, Du XJ, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, Heusch G. Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 2018; 314:H812-H838. [PMID: 29351451 PMCID: PMC5966768 DOI: 10.1152/ajpheart.00335.2017] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myocardial infarction is a prevalent major cardiovascular event that arises from myocardial ischemia with or without reperfusion, and basic and translational research is needed to better understand its underlying mechanisms and consequences for cardiac structure and function. Ischemia underlies a broad range of clinical scenarios ranging from angina to hibernation to permanent occlusion, and while reperfusion is mandatory for salvage from ischemic injury, reperfusion also inflicts injury on its own. In this consensus statement, we present recommendations for animal models of myocardial ischemia and infarction. With increasing awareness of the need for rigor and reproducibility in designing and performing scientific research to ensure validation of results, the goal of this review is to provide best practice information regarding myocardial ischemia-reperfusion and infarction models. Listen to this article’s corresponding podcast at ajpheart.podbean.com/e/guidelines-for-experimental-models-of-myocardial-ischemia-and-infarction/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Roberto Bolli
- Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville , Louisville, Kentucky
| | - John M Canty
- Division of Cardiovascular Medicine, Departments of Biomedical Engineering and Physiology and Biophysics, The Veterans Affairs Western New York Health Care System and Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital , Würzburg , Germany
| | - Robert G Gourdie
- Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia Health System , Charlottesville, Virginia
| | - Steven P Jones
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes , Pasadena, California.,Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana
| | - Ronglih Liao
- Harvard Medical School , Boston, Massachusetts.,Division of Genetics and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Peipei Ping
- National Institutes of Health BD2KBig Data to Knowledge (BD2K) Center of Excellence and Department of Physiology, Medicine and Bioinformatics, University of California , Los Angeles, California
| | - Karin Przyklenk
- Cardiovascular Research Institute and Departments of Physiology and Emergency Medicine, Wayne State University School of Medicine , Detroit, Michigan
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Fondazione G. Monasterio, Pisa , Italy.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Lisa Schwartz Longacre
- Heart Failure and Arrhythmias Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California , Davis, California
| | - Jennifer E Van Eyk
- The Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center , Los Angeles, California
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School , Essen , Germany
| |
Collapse
|
97
|
Native T1 Mapping and Extracellular Volume Mapping for the Assessment of Diffuse Myocardial Fibrosis in Dilated Cardiomyopathy. JACC Cardiovasc Imaging 2018. [DOI: 10.1016/j.jcmg.2017.04.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
98
|
Non-contrast estimation of diffuse myocardial fibrosis with dual energy CT: A phantom study. J Cardiovasc Comput Tomogr 2017; 12:74-80. [PMID: 29242134 DOI: 10.1016/j.jcct.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/03/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Estimation of diffuse myocardial fibrosis, substrate for adverse events such as heart failure and arrhythmias in patients with various cardiac disorders, is presently done by histopathology or cardiac magnetic resonance. We sought to develop a non-contrast method to estimate the amount of diffuse myocardial fibrosis leveraging dual energy computed tomography (DECT) in phantoms and a suitable small animal model. METHODS AND RESULTS Phantoms consisted of homogenized bovine myocardium with varying amounts of Type 1 collagen. Fifteen mice underwent sham surgery, no procedure, or transverse aortic constriction (TAC) for 5 or 8 weeks to produce moderate or severe fibrosis, respectively. Phantoms and ex vivo mouse hearts were imaged on a single source, DECT scanner equipped with kVp switching. Monochromatic images were reconstructed at 40-140 keV. Linear discriminant analysis (LDA) was performed on mean myocardial CT numbers derived from single energy (70 keV) images as well as images reconstructed across multiple energies. Classification of myocardial fibrosis severity as low, moderate or severe was more often correct using the multi-energy CT/LDA approach vs. single energy CT/LDA in both phantoms (80.0% vs. 70.0%) and mice (93.3% vs. 33.3%). CONCLUSIONS DECT myocardial imaging with multi-energy analysis better classifies myocardial fibrosis severity compared to a single energy-based approach. Non-contrast DECT can accurately and non-invasively estimate the extent of diffuse myocardial fibrosis in phantom and animal models. These data support further evaluation of this approach for in vivo myocardial fibrosis estimation.
Collapse
|
99
|
Briley SM, Jasti S, McCracken JM, Hornick JE, Fegley B, Pritchard MT, Duncan FE. Reproductive age-associated fibrosis in the stroma of the mammalian ovary. Reproduction 2017; 152:245-260. [PMID: 27491879 DOI: 10.1530/rep-16-0129] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022]
Abstract
Under normal physiological conditions, tissue remodeling in response to injury leads to tissue regeneration without permanent damage. However, if homeostasis between synthesis and degradation of extracellular matrix (ECM) components is altered, fibrosis - or the excess accumulation of ECM - can disrupt tissue architecture and function. Several organs, including the heart, lung and kidney, exhibit age-associated fibrosis. Here we investigated whether fibrosis underlies aging in the ovary - an organ that ages chronologically before other organs. We used Picrosirius Red (PSR), a connective tissue stain specific for collagen I and III fibers, to evaluate ovarian fibrosis. Using bright-field, epifluorescence, confocal and polarized light microscopy, we validated the specific staining of highly ordered PSR-stained fibers in the ovary. We next examined ovarian PSR staining in two mouse strains (CD1 and CB6F1) across an aging continuum and found that PSR staining was minimal in ovaries from reproductively young adult animals, increased in distinct foci in animals of mid-to-advanced reproductive age, and was prominent throughout the stroma of the oldest animals. Consistent with fibrosis, there was a reproductive age-associated increase in ovarian hydroxyproline content. We also observed a unique population of multinucleated macrophage giant cells, which are associated with chronic inflammation, within the ovarian stroma exclusively in reproductively old mice. In fact, several genes central to inflammation had significantly higher levels of expression in ovaries from reproductively old mice relative to young mice. These results establish fibrosis as an early hallmark of the aging ovarian stroma, and this altered microenvironment may contribute to the age-associated decline in gamete quality.
Collapse
Affiliation(s)
- Shawn M Briley
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Susmita Jasti
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Jennifer M McCracken
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Jessica E Hornick
- Biological Imaging Facility, Northwestern University, Evanston, IL 60208
| | - Barbara Fegley
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160.,Electron Microscopy Research Laboratory, University of Kansas Medical Center, Kansas City, KS 66160
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Francesca E Duncan
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
100
|
Delannoy Y, Colard T, Cannet C, Mesli V, Hédouin V, Penel G, Ludes B. Characterization of bone diagenesis by histology in forensic contexts: a human taphonomic study. Int J Legal Med 2017; 132:219-227. [PMID: 28965197 DOI: 10.1007/s00414-017-1699-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
Abstract
The diagenesis of a bone in the postmortem period causes an identifiable deterioration in histology. This degradation is characterized by a collagenous alteration, which can be observed very early. In order to develop a method for determining a postmortem interval for medico-legal use, two ribs collected from six human bodies were studied prospectively over 2 years. Each bone was studied after staining with Sirius red to demonstrate the degradation of collagen as a function of time. This study demonstrated a time-based bone alteration characterized by the architectural degradation of the lamellar bone, without any microbial influence in this postmortem period. The staining was carried out by using Sirius red and correlated this alteration with a collagenic degradation by chemical hydrolysis owing to the affinity of this dye to the amino acids lysine, hydroxylysine, and arginine. Our work asserts that human bone samples that were studied in a controlled environment and analyzed for 24 months underwent a diagenetic trajectory whose main element was collagen hydrolysis.
Collapse
Affiliation(s)
- Yann Delannoy
- Institut Médico-Légal de Paris, Université Paris Descartes Sorbonne Cité, 75000, Paris, France. .,CHU de LILLE, 59000, Lille, France. .,EA 7367 Forensic Taphonomy Unit - Lille Forensic Institute, Lille University, 59000, Lille, France. .,Littoral Côte d'Opale, EA 4490, PMOI, Physiopathologie des Maladies Osseuses inflammatoires, Lille University, 59000, Lille, France. .,Institut de Médecine Légale - CHRU de Lille, rue André Verhaeghe, 59037, Lille Cedex, France.
| | - Thomas Colard
- CHU de LILLE, 59000, Lille, France.,EA 7367 Forensic Taphonomy Unit - Lille Forensic Institute, Lille University, 59000, Lille, France.,Littoral Côte d'Opale, EA 4490, PMOI, Physiopathologie des Maladies Osseuses inflammatoires, Lille University, 59000, Lille, France
| | - Catherine Cannet
- Laboratoire d'Histomorphométrie de Médecine Légale, Faculté de Médecine, 67000, Strasbourg, France
| | - Vadim Mesli
- CHU de LILLE, 59000, Lille, France.,EA 7367 Forensic Taphonomy Unit - Lille Forensic Institute, Lille University, 59000, Lille, France
| | - Valéry Hédouin
- CHU de LILLE, 59000, Lille, France.,EA 7367 Forensic Taphonomy Unit - Lille Forensic Institute, Lille University, 59000, Lille, France
| | - Guillaume Penel
- CHU de LILLE, 59000, Lille, France.,Littoral Côte d'Opale, EA 4490, PMOI, Physiopathologie des Maladies Osseuses inflammatoires, Lille University, 59000, Lille, France
| | - Bertrand Ludes
- Institut Médico-Légal de Paris, Université Paris Descartes Sorbonne Cité, 75000, Paris, France.,CNRS UMR 5288, AMIS, Toulouse University, 31000, Toulouse, France
| |
Collapse
|