51
|
Zabot GP, Carvalhal GF, Marroni NP, Licks F, Hartmann RM, da Silva VD, Fillmann HS. Glutamine prevents oxidative stress in a model of portal hypertension. World J Gastroenterol 2017; 23:4529-4537. [PMID: 28740341 PMCID: PMC5504368 DOI: 10.3748/wjg.v23.i25.4529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/03/2017] [Accepted: 06/12/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To evaluate the protective effects of glutamine in a model of portal hypertension (PH) induced by partial portal vein ligation (PPVL).
METHODS Male Wistar rats were housed in a controlled environment and were allowed access to food and water ad libitum. Twenty-four male Wistar rats were divided into four experimental groups: (1) control group (SO) - rats underwent exploratory laparotomy; (2) control + glutamine group (SO + G) - rats were subjected to laparotomy and were treated intraperitoneally with glutamine; (3) portal hypertension group (PPVL) - rats were subjected to PPVL; and (4) PPVL + glutamine group (PPVL + G) - rats were treated intraperitoneally with glutamine for seven days. Local injuries were determined by evaluating intestinal segments for oxidative stress using lipid peroxidation and the activities of glutathione peroxidase (GPx), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) after PPVL.
RESULTS Lipid peroxidation of the membrane was increased in the animals subjected to PH (P < 0.01). However, the group that received glutamine for seven days after the PPVL procedure showed levels of lipid peroxidation similar to those of the control groups (P > 0.05). The activity of the antioxidant enzyme GTx was decreased in the gut of animals subjected to PH compared with that in the control group of animals not subjected to PH (P < 0.01). However, the group that received glutamine for seven days after the PPVL showed similar GTx activity to both the control groups not subjected to PH (P > 0.05). At least 10 random, non-overlapping images of each histological slide with 200 × magnification (44 pixel = 1 μm) were captured. The sum means of all areas, of each group were calculated. The mean areas of eNOS staining for both of the control groups were similar. The PPVL group showed the largest area of staining for eNOS. The PPVL + G group had the second highest amount of staining, but the mean value was much lower than that of the PPVL group (P < 0.01). For iNOS, the control (SO) and control + G (SO + G) groups showed similar areas of staining. The PPVL group contained the largest area of iNOS staining, followed by the PPVL + G group; however, this area was significantly smaller than that of the group that underwent PH without glutamine (P < 0.01).
CONCLUSION Treatment with glutamine prevents gut mucosal injury after PH in rats.
Collapse
|
52
|
Filho HM, Betros C, Gordon M, Manso H, Watford M, McKeever K. Exercise training, Glut-4 protein abundance and glutamine in skeletal muscle of mature and very old horses. COMPARATIVE EXERCISE PHYSIOLOGY 2017. [DOI: 10.3920/cep170003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two groups of unfit Standardbred mares (adult: 9-14 years, 540 kg, n=7) and old (20-25 years, 530 kg, n=5) were used to test two hypotheses, first, that aging and training would alter plasma and muscle glutamine [Gln] and glutamate [Glu] and second, that aging and training would alter Glut-4 expression in skeletal muscle. All animals were housed on pasture with free access to grass and all received hay and supplementation with a commercially prepared supplement (15% crude protein and 3.00 Mcal/kg dry matter) in individual stalls. Mares were fed to meet or exceed NRC (2007) nutrient recommendations for moderate to heavy exercise. The mares were exercise trained in a free-stall motorised circular exercise machine for 30 min/d, 5 d/week, for 8 weeks. Work intensity during training was set at a relative intensity of ~60% of the maximum heart rate, previously determined during an incremental exercise test (GXT). Blood samples and muscle biopsies (gluteus) obtained before and after 8 weeks of training were used for measurement of [Gln], [Glu] and Glut-4 abundance. Samples were collected before the initiation of training and at 24 h after cessation of last bout of exercise in the training period. All samples were immediately frozen in liquid nitrogen and stored at -80 °C until enzymatic analysis for [Gln], [Glu] and Western Blot analysis for Glut-4 protein abundance. Data were analysed by one-way or two-way ANOVA for repeated measures and the Pearson correlation method. Post-hoc differences were identified with the Tukey test. Significance was set at P<0.05. There were no differences (P>0.05) in muscle [Glu] due to aging. Training decreased (P<0.05) muscle [Glu] from 7,561±701 nmol/g of tissue (mean ± standard error) in pre-training samples to 4,491±701 nmol/g of tissue post-training. Plasma [Gln] decreased (P<0.05) with training (368±14 nmol/ml vs 317±14 nmol/ml). There was a trend (P=0.063) towards an effect of aging. There were significant interactions between age and training for plasma [Gln]. Old mares had lower (P<0.05) post-exercise plasma [Gln] (224±21 nmol/ml) when compared with pre-exercise plasma [Gln] (372±21 nmol/ml). Post-training, plasma [Gln] was lower (P<0.05) in the old mares compared to adult mares [Gln] (224±21 nmol/ml vs 410±18 nmol/ml). There was an effect (P<0.05) of age on muscle [Gln] (old = 6,126 ±870 nmol/g of tissue; adult = 3,176±735 nmol/g of tissue); however, there were no changes (P>0.05) due to training. Glut-4 abundance analysis did not differ (P>0.05) between the young adult and old horses; however, there was a trend (P=0.063) towards an effect of training when samples from both groups were pooled. It was concluded that training and aging produce changes in plasma and muscle [Gln], which may affect immune function in athletic horses, but not in Glut-4.
Collapse
Affiliation(s)
- H.C. Manso Filho
- Equine Science Center, Department of Animal Sciences, Rutgers the State University, 84 Lipman Drive, New Brunswick, NJ 08901, USA
- Department of Animal Sciences, Federal Rural University of Pernambuco, Rua Manuel de Medeiros s/n, 52171-900 Recife, PE, Brazil
| | - C.L. Betros
- Equine Science Center, Department of Animal Sciences, Rutgers the State University, 84 Lipman Drive, New Brunswick, NJ 08901, USA
| | - M.E. Gordon
- Equine Science Center, Department of Animal Sciences, Rutgers the State University, 84 Lipman Drive, New Brunswick, NJ 08901, USA
| | - H.E.C.C.C. Manso
- Department of Animal Sciences, Federal Rural University of Pernambuco, Rua Manuel de Medeiros s/n, 52171-900 Recife, PE, Brazil
- Department of Nutritional Sciences, Rutgers University, 65 Dudley Rd., New Brunswick, NJ 08901, USA
| | - M. Watford
- Department of Nutritional Sciences, Rutgers University, 65 Dudley Rd., New Brunswick, NJ 08901, USA
| | - K.H. McKeever
- Equine Science Center, Department of Animal Sciences, Rutgers the State University, 84 Lipman Drive, New Brunswick, NJ 08901, USA
| |
Collapse
|
53
|
|
54
|
Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence. mSphere 2016; 1:mSphere00111-15. [PMID: 27303724 PMCID: PMC4894682 DOI: 10.1128/msphere.00111-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/03/2016] [Indexed: 11/20/2022] Open
Abstract
Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the burn wound environment and for in vitro analysis of the initial step in the development of burn wound infections.
Collapse
|
55
|
Girven M, Dugdale HF, Owens DJ, Hughes DC, Stewart CE, Sharples AP. l-glutamine Improves Skeletal Muscle Cell Differentiation and Prevents Myotube Atrophy After Cytokine (TNF-α) Stress Via Reduced p38 MAPK Signal Transduction. J Cell Physiol 2016; 231:2720-32. [PMID: 26991744 DOI: 10.1002/jcp.25380] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/15/2016] [Indexed: 02/06/2023]
Abstract
Tumour Necrosis Factor-Alpha (TNF-α) is chronically elevated in conditions where skeletal muscle loss occurs. As l-glutamine can dampen the effects of inflamed environments, we investigated the role of l-glutamine in both differentiating C2C12 myoblasts and existing myotubes in the absence/presence of TNF-α (20 ng · ml(-1) ) ± l-glutamine (20 mM). TNF-α reduced the proportion of cells in G1 phase, as well as biochemical (CK activity) and morphological differentiation (myotube number), with corresponding reductions in transcript expression of: Myogenin, Igf-I, and Igfbp5. Furthermore, when administered to mature myotubes, TNF-α induced myotube loss and atrophy underpinned by reductions in Myogenin, Igf-I, Igfbp2, and glutamine synthetase and parallel increases in Fox03, Cfos, p53, and Bid gene expression. Investigation of signaling activity suggested that Akt and ERK1/2 were unchanged, JNK increased (non-significantly) whereas P38 MAPK substantially and significantly increased in both myoblasts and myotubes in the presence of TNF-α. Importantly, 20 mM l-glutamine reduced p38 MAPK activity in TNF-α conditions back to control levels, with a corresponding rescue of myoblast differentiation and a reversal of atrophy in myotubes. l-glutamine resulted in upregulation of genes associated with growth and survival including; Myogenin, Igf-Ir, Myhc2 & 7, Tnfsfr1b, Adra1d, and restored atrophic gene expression of Fox03 back to baseline in TNF-α conditions. In conclusion, l-glutamine supplementation rescued suppressed muscle cell differentiation and prevented myotube atrophy in an inflamed environment via regulation of p38 MAPK. l-glutamine administration could represent an important therapeutic strategy for reducing muscle loss in catabolic diseases and inflamed ageing. J. Cell. Physiol. 9999: 231: 2720-2732, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthew Girven
- Stem Cells, Ageing and Molecular Physiology Research Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Hannah F Dugdale
- Stem Cells, Ageing and Molecular Physiology Research Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Daniel J Owens
- Stem Cells, Ageing and Molecular Physiology Research Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom.,Sorbonne Universités, UPMC University of Paris 06, INSERM UMRS974, CNRS FRE3617, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, Paris 13, France
| | - David C Hughes
- Stem Cells, Ageing and Molecular Physiology Research Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom.,Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California
| | - Claire E Stewart
- Stem Cells, Ageing and Molecular Physiology Research Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Adam P Sharples
- Stem Cells, Ageing and Molecular Physiology Research Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
56
|
Hapeshi A, Waterfield NR. Photorhabdus asymbiotica as an Insect and Human Pathogen. Curr Top Microbiol Immunol 2016; 402:159-177. [PMID: 27726002 DOI: 10.1007/82_2016_29] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Photorhabdus asymbiotica is a species of bacterium that is pathogenic to humans whilst retaining the ability to infect insect hosts. Currently, there are two recognised subspecies, P. asymbiotica subsp. asymbiotica and P. asymbiotica subsp. australis with strains isolated from various locations in the USA, Australia, Thailand, Nepal and Europe. Like other species of Photorhabdus, P. asymbiotica subsp. australis was shown to form a symbiotic relationship with a Heterorhabditis nematode. In contrast to most strains of Photorhabdus luminescens, P. asymbiotica can grow at 37 °C and this is a defining factor in its ability to cause human disease. Insights into other adaptations it has undergone that have enabled host switching to occur have come from whole genome sequencing and transcriptomic studies. P. asymbiotica has a smaller genome compared to P. luminenscens with a lower diversity of insecticidal toxins. However, it has acquired plasmids and several pathogenicity islands in its genome. These encode genes with similarity to effectors or systems found in other known human pathogens such as Salmonella and Yersinia and are therefore likely to contribute to human pathogenicity. Of crucial importance to virulence is the fact that P. asymbiotica undergoes a large metabolic shift at the human host temperature.
Collapse
Affiliation(s)
- Alexia Hapeshi
- Warwick Medical School, University of Warwick, Coventry, UK
| | | |
Collapse
|
57
|
Effects of dietary α-ketoglutarate supplementation on the growth performance, glutamine synthesis and amino acid concentrations of juvenile hybrid sturgeon Acipenser schrenckii ♀×Acipenser baerii ♂ fed high levels of soy protein concentrate. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2015.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
58
|
Ren M, Zhang SH, Zeng XF, Liu H, Qiao SY. Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1742-50. [PMID: 26580442 PMCID: PMC4647083 DOI: 10.5713/ajas.14.0131] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/30/2014] [Accepted: 06/24/2014] [Indexed: 12/29/2022]
Abstract
As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA) is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets (7.96±0.26 kg) were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON), a protein restricted diet (17% CP, PR) and a BCAA diet (BCAA supplementation in the PR diet) for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG) (p<0.05) and average daily feed intake (ADFI) (p<0.05) of weaned pigs in PR group were lower, while gain:feed ratio was lower than the CON group (p<0.05). Compared with PR group, BCAA group improved ADG (p<0.05), ADFI (p<0.05) and feed:gain ratio (p<0.05) of piglets. The growth performance data between CON and BCAA groups was not different (p>0.05). The PR and BCAA treatments had a higher (p<0.05) plasma concentration of methionine and threonine than the CON treatment. The level of some essential and functional amino acids (such as arginine, phenylalanine, histidine, glutamine etc.) in plasma of the PR group was lower (p<0.05) than that of the CON group. Compared with CON group, BCAA supplementation significantly increased BCAA concentrations (p<0.01) and decreased urea concentration (p<0.01) in pig plasma indicating that the efficiency of dietary nitrogen utilization was increased. Compared with CON group, the small intestine of piglets fed PR diet showed villous atrophy, increasing of intra-epithelial lymphocytes (IELs) number (p<0.05) and declining of the immunoglobulin concentration, including jejunal immunoglobulin A (IgA) (p = 0.04), secreted IgA (sIgA) (p = 0.03) and immunoglobulin M (p = 0.08), and ileal IgA (p = 0.01) and immunoglobulin G (p = 0.08). The BCAA supplementation increased villous height in the duodenum (p<0.01), reversed the trend of an increasing IELs number. Notably, BCAA supplementation increased levels of jejunal and ileal immunoglobulin mentioned above. In conclusion, BCAA supplementation to protein restricted diet improved intestinal immune defense function by protecting villous morphology and by increasing levels of intestinal immunoglobulins in weaned piglets. Our finding has the important implication that BCAA may be used to reduce the negative effects of a protein restricted diet on growth performance and intestinal immunity in weaned piglets.
Collapse
Affiliation(s)
- M Ren
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China ; Animal Science College, Anhui Science and Technology University, Anhui 233100, China
| | - S H Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - X F Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - H Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - S Y Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| |
Collapse
|
59
|
Xiao W, Chen P, Liu X, Zhao L. The Impaired Function of Macrophages Induced by Strenuous Exercise Could Not Be Ameliorated by BCAA Supplementation. Nutrients 2015; 7:8645-56. [PMID: 26506374 PMCID: PMC4632445 DOI: 10.3390/nu7105425] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/08/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate the effect of strenuous exercise on the functions of peritoneal macrophages in rats and to test the hypothesis that branched-chain amino acid (BCAA) supplementation will be beneficial to the macrophages of rats from strenuous exercise. Forty male Wistar rats were randomly divided into five groups: (C) Control, E) Exercise, (E1) Exercise with one week to recover, (ES) Exercise + Supplementation and (ES1) Exercise + Supplementation with 1 week to recover. All rats except those of the sedentary control were subjected to four weeks of strenuous exercise. Blood hemoglobin, serum testosterone and BCAA levels were tested. Peritoneal macrophages functions were also determined at the same time. The data showed that hemoglobin, testosterone, BCAA levels, and body weight in group E decreased significantly as compared with that of group C. Meanwhile, phagocytosis capacity (decreased by 17.07%, p = 0.031), reactive oxygen species (ROS) production (decreased by 26%, p = 0.003) and MHC II mRNA (decreased by 22%, p = 0.041) of macrophages decreased in the strenuous exercise group as compared with group C. However, the chemotaxis of macrophages did not change significantly. In addition, BCAA supplementation could slightly increase the serum BCAA levels of rats from strenuous exercise (increased by 6.70%, p > 0.05). Moreover, the body weight, the blood hemoglobin, the serum testosterone and the function of peritoneal macrophages in group ES did not change significantly as compared with group E. These results suggest that long-term intensive exercise impairs the function of macrophages, which is essential for microbicidal capability. This may represent a novel mechanism of immunosuppression induced by strenuous exercise. Moreover, the impaired function of macrophage induced by strenuous exercise could not be ameliorated by BCAA supplementation in the dosing and timing used for this study.
Collapse
Affiliation(s)
- Weihua Xiao
- Department of Sports Science, Shanghai University of Sport, Shanghai 200438, China.
| | - Peijie Chen
- Department of Sports Science, Shanghai University of Sport, Shanghai 200438, China.
| | - Xiaoguang Liu
- Department of Sports Science, Shanghai University of Sport, Shanghai 200438, China.
| | - Linlin Zhao
- Department of Sports Science, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
60
|
Cheng SC, Joosten LA, Netea MG. The interplay between central metabolism and innate immune responses. Cytokine Growth Factor Rev 2014; 25:707-13. [DOI: 10.1016/j.cytogfr.2014.06.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022]
|
61
|
Hong X, Qing Z, Chang-an W, Zhi-gang Z, Ling L, Lian-sheng W, Jin-nan L, Qi-you X. Effect of Dietary Alanyl-glutamine Supplementation on Growth Performance, Development of Intestinal Tract, Antioxidant Status and Plasma Non-specific Immunity of Young Mirror Carp (Cyprinus carpio L.). ACTA ACUST UNITED AC 2014. [DOI: 10.1016/s1006-8104(15)30018-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
62
|
Howie D, Waldmann H, Cobbold S. Nutrient Sensing via mTOR in T Cells Maintains a Tolerogenic Microenvironment. Front Immunol 2014; 5:409. [PMID: 25221554 PMCID: PMC4147234 DOI: 10.3389/fimmu.2014.00409] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/13/2014] [Indexed: 01/01/2023] Open
Abstract
We have proposed that tolerance can be maintained through the induction, by Treg cells, of a tolerogenic microenvironment within tolerated tissues that inhibits effector cell activity but which supports the generation of further Treg cells by “infectious tolerance.” Two important components of this tolerogenic microenvironment depend on metabolism and nutrient sensing. The first is due to the up-regulation of multiple enzymes that consume essential amino acids, which are sensed in naïve T cells primarily via inhibition of the mechanistic target of rapamycin (mTOR) pathway, which in turn encourages their further differentiation into FOXP3+ Treg cells. The second mechanism is the metabolism of extracellular ATP to adenosine by the ectoenzymes CD39 and CD73. These two enzymes are constitutively co-expressed on Treg cells, but can also be induced on a wide variety of cell types by TGFβ and the adenosine generated can be shown to be a potent inhibitor of T cell proliferation. This review will focus on mechanisms of nutrient sensing in T cells, how these are integrated with TCR and cytokine signals via the mTOR pathway, and what impact this has on intracellular metabolism and subsequently the control of differentiation into different effector or regulatory T cell subsets.
Collapse
Affiliation(s)
- Duncan Howie
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | - Stephen Cobbold
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| |
Collapse
|
63
|
Shakeri M, Zulkifli I, Soleimani AF, O'Reilly EL, Eckersall PD, Anna AA, Kumari S, Abdullah FFJ. Response to dietary supplementation of L-glutamine and L-glutamate in broiler chickens reared at different stocking densities under hot, humid tropical conditions. Poult Sci 2014; 93:2700-8. [PMID: 25143595 DOI: 10.3382/ps.2014-03910] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A study was conducted to determine whether supplementing AminoGut (a commercial dietary supplement containing a mixture of l-glutamine and l-glutamic acid) to broiler chickens stocked at 2 different densities affected performance, physiological stress responses, foot pad dermatitis incidence, and intestinal morphology and microflora. A randomized design in a factorial arrangement with 4 diets [basal diet, basal diet + 0.5% AminoGut from d 1 to 21, basal diet + 0.5% AminoGut from d 1 to 42, and basal diet + virginiamycin (0.02%) for d 1 to 42] and 2 stocking densities [0.100 m(2)/bird (23 birds/pen; LD) or 0.067 m(2)/bird (35 birds/pen; HD)]. Results showed that villi length and crypt depth were not changed by different dietary treatments. However, birds in the HD group had smaller villi (P = 0.03) compared with those of the LD group. Regardless of diet, HD consistently increased the serum concentrations of ceruloplasmin, α-1 acid glycoprotein, ovotransferin, and corticosterone (P = 0.0007), and elevated heterophil to lymphocyte ratio (0.0005). Neither AminoGut supplementation nor stocking density affected cecal microflora counts. In conclusion, under the conditions of this study, dietary supplementation of AminoGut, irrespective of stocking density, had no beneficial effect on growth performance, intestinal morphology, and physiological adaptive responses of broiler chickens raised under hot and humid tropical conditions. However, AminoGut supplementation from d 1 to 42 was beneficial in reducing mortality rate. Also, the increased serum concentrations of a wide range of acute phase proteins together with elevated corticosterone and heterophil to lymphocyte ratio suggested that high stocking density induced an acute phase response either indirectly as a result of increased incidence of inflammatory diseases such as foot pad dermatitis or possibly as a direct physiological response to the stress of high stocking density.
Collapse
Affiliation(s)
- M Shakeri
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - I Zulkifli
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - A F Soleimani
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - E L O'Reilly
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, United Kingdom
| | - P D Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, United Kingdom
| | - A A Anna
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - S Kumari
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - F F J Abdullah
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
64
|
Witard OC, Turner JE, Jackman SR, Kies AK, Jeukendrup AE, Bosch JA, Tipton KD. High dietary protein restores overreaching induced impairments in leukocyte trafficking and reduces the incidence of upper respiratory tract infection in elite cyclists. Brain Behav Immun 2014; 39:211-9. [PMID: 24120932 DOI: 10.1016/j.bbi.2013.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/24/2013] [Accepted: 10/02/2013] [Indexed: 12/28/2022] Open
Abstract
The present study examined whether a high protein diet prevents the impaired leukocyte redistribution in response to acute exercise caused by a large volume of high-intensity exercise training. Eight cyclists (VO2max: 64.2±6.5mLkg(-1)min(-1)) undertook two separate weeks of high-intensity training while consuming either a high protein diet (3gkg(-1)proteinBM(-1)day(-1)) or an energy and carbohydrate-matched control diet (1.5gkg(-1)proteinBM(-1)day(-1)). High-intensity training weeks were preceded by a week of normal-intensity training under the control diet. Leukocyte and lymphocyte sub-population responses to acute exercise were determined at the end of each training week. Self-reported symptoms of upper-respiratory tract infections (URTI) were monitored daily by questionnaire. Undertaking high-intensity training with a high protein diet restored leukocyte kinetics to similar levels observed during normal-intensity training: CD8(+) TL mobilization (normal-intensity: 29,319±13,130cells/μL×∼165min vs. high-intensity with protein: 26,031±17,474cells/μL×∼165min, P>0.05), CD8(+) TL egress (normal-intensity: 624±264cells/μL vs. high-intensity with protein: 597±478cells/μL, P>0.05). This pattern was driven by effector-memory populations mobilizing (normal-intensity: 6,145±6,227cells/μL×∼165min vs. high-intensity with protein: 6,783±8,203cells/μL×∼165min, P>0.05) and extravastating from blood (normal-intensity: 147±129cells/μL vs. high-intensity with protein: 165±192cells/μL, P>0.05). High-intensity training while consuming a high protein diet was associated with fewer symptoms of URTI compared to performing high-intensity training with a normal diet (P<0.05). To conclude, a high protein diet might reduce the incidence of URTI in athletes potentially mediated by preventing training-induced impairments in immune-surveillance.
Collapse
Affiliation(s)
- Oliver C Witard
- Health and Exercise Sciences Research Group, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | - James E Turner
- Department for Health, University of Bath, Bath BA2 7AY, UK
| | - Sarah R Jackman
- Sport & Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter EX1 2LU, Devon, UK
| | - Arie K Kies
- DSM Biotechnology Center, Delft, The Netherlands
| | | | - Jos A Bosch
- Department of Psychology, University of Amsterdam, The Netherlands; Mannheim Institute of Public Health, Social and Preventive Medicine (MIPH), Mannheim Medical Faculty, University of Heidelberg, Germany
| | - Kevin D Tipton
- Health and Exercise Sciences Research Group, University of Stirling, Stirling FK9 4LA, Scotland, UK
| |
Collapse
|
65
|
Imhasly S, Naegeli H, Baumann S, von Bergen M, Luch A, Jungnickel H, Potratz S, Gerspach C. Metabolomic biomarkers correlating with hepatic lipidosis in dairy cows. BMC Vet Res 2014; 10:122. [PMID: 24888604 PMCID: PMC4048253 DOI: 10.1186/1746-6148-10-122] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 05/20/2014] [Indexed: 11/15/2022] Open
Abstract
Background Hepatic lipidosis or fatty liver disease is a major metabolic disorder of high-producing dairy cows that compromises animal performance and, hence, causes heavy economic losses worldwide. This syndrome, occurring during the critical transition from gestation to early lactation, leads to an impaired health status, decreased milk yield, reduced fertility and shortened lifetime. Because the prevailing clinical chemistry parameters indicate advanced liver damage independently of the underlying disease, currently, hepatic lipidosis can only be ascertained by liver biopsy. We hypothesized that the condition of fatty liver disease may be accompanied by an altered profile of endogenous metabolites in the blood of affected animals. Results To identify potential small-molecule biomarkers as a novel diagnostic alternative, the serum samples of diseased dairy cows were subjected to a targeted metabolomics screen by triple quadrupole mass spectrometry. A subsequent multivariate test involving principal component and linear discriminant analyses yielded 29 metabolites (amino acids, phosphatidylcholines and sphingomyelines) that, in conjunction, were able to distinguish between dairy cows with no hepatic lipidosis and those displaying different stages of the disorder. Conclusions This proof-of-concept study indicates that metabolomic profiles, including both amino acids and lipids, distinguish hepatic lipidosis from other peripartal disorders and, hence, provide a promising new tool for the diagnosis of hepatic lipidosis. By generating insights into the molecular pathogenesis of hepatic lipidosis, metabolomics studies may also facilitate the prevention of this syndrome.
Collapse
Affiliation(s)
| | - Hanspeter Naegeli
- University of Zürich-Vetsuisse, Institute of Pharmacology and Toxicology, Zürich CH-8057, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
66
|
Cell-based regenerative strategies for treatment of diabetic skin wounds, a comparative study between human umbilical cord blood-mononuclear cells and calves' blood haemodialysate. PLoS One 2014; 9:e89853. [PMID: 24643010 PMCID: PMC3958350 DOI: 10.1371/journal.pone.0089853] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/25/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Diabetes-related foot problems are bound to increase. However, medical therapies for wound care are limited; therefore, the need for development of new treatment modalities to improve wound healing in diabetic patients is essential and constitutes an emerging field of investigation. METHODS Animals were randomly divided into 8 groups (I-VIII) (32 rats/group), all were streptozotocin (STZ)-induced diabetics except groups III and VIII were non-diabetic controls. The study comprised two experiments; the first included 3 groups. Group I injected with mononuclear cells (MNCs) derived from human umbilical cord blood (HUCB), group II a diabetic control group (PBS i.v). The second experiment included 5 groups, groups IV, V, and VI received topical HUCB-haemodialysate (HD), calves' blood HD, and solcoseryl, respectively. Group VII was the diabetic control group (topical saline). Standard circular wounds were created on the back of rats. A sample of each type of HD was analyzed using the high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) system. Wound area measurement and photography were carried out every 4 days. Plasma glucose, catalase (CAT), malondialdehyde (MDA), nitric oxide (NO) and platelets count were assessed. Wound samples were excised for hydroxyproline (HP) and histopathological study. RESULTS Treatment with HUCB MNCs or HUCB-HD resulted in wound contraction, increased CAT, NO, platelets count, body weights, and HP content, and decreased MDA and glucose. CONCLUSION Systemic administration of HUCB MNCs and topical application of the newly prepared HUCB-HD or calves' blood HD significantly accelerated the rate of diabetic wound healing and would open the possibility of their future use in regenerative medicine.
Collapse
|
67
|
Enteral glutamine infusion modulates ubiquitination of heat shock proteins, Grp-75 and Apg-2, in the human duodenal mucosa. Amino Acids 2014; 46:1059-67. [PMID: 24449167 DOI: 10.1007/s00726-014-1670-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/08/2014] [Indexed: 12/16/2022]
Abstract
Glutamine, the most abundant amino acid in the human body, plays several important roles in the intestine. Previous studies showed that glutamine may affect protein expression by regulating ubiquitin-proteasome system. We thus aimed to evaluate the effects of glutamine on ubiquitinated proteins in human duodenal mucosa. Five healthy male volunteers were included and received during 5 h, on two occasions and in a random order, either an enteral infusion of maltodextrins alone (0.25 g kg(-1) h(-1), control), mimicking carbohydrate-fed state, or maltodextrins with glutamine (0.117 g kg(-1) h(-1), glutamine). Endoscopic duodenal biopsies were then taken. Total cellular protein extracts were separated by 2D gel electrophoresis and analyzed by an immunodetection using anti-ubiquitin antibody. Differentially ubiquitinated proteins were then identified by liquid chromatography-electrospray ionization MS/MS. Five proteins were differentially ubiquitinated between control and glutamine conditions. Among these proteins, we identified two chaperone proteins, Grp75 and hsp74. Grp75 was less ubiquitinated after glutamine infusion compared with control. In contrast, hsp74, also called Apg-2, was more ubiquitinated after glutamine. In conclusion, we provide evidence that glutamine may regulate ubiquitination processes of specific proteins, i.e., Grp75 and Apg-2. Grp75 has protective and anti-inflammatory properties, while Apg-2 indirectly regulates stress-induced cell survival and proliferation through interaction with ZO-1. Further studies should confirm these results in stress conditions.
Collapse
|
68
|
Jones S, Asokanathan C, Kmiec D, Irvine J, Fleck R, Xing D, Moore B, Parton R, Coote J. Protein coated microcrystals formulated with model antigens and modified with calcium phosphate exhibit enhanced phagocytosis and immunogenicity. Vaccine 2013; 32:4234-42. [PMID: 24120484 PMCID: PMC4101235 DOI: 10.1016/j.vaccine.2013.09.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 09/04/2013] [Accepted: 09/26/2013] [Indexed: 01/16/2023]
Abstract
Protein-coated microcrystals (PCMCs) were investigated as potential vaccine formulations for a range of model antigens. Presentation of antigens as PCMCs increased the antigen-specific IgG responses for all antigens tested, compared to soluble antigens. When compared to conventional aluminium-adjuvanted formulations, PCMCs modified with calcium phosphate (CaP) showed enhanced antigen-specific IgG responses and a decreased antigen-specific IgG1:IgG2a ratio, indicating the induction of a more balanced Th1/Th2 response. The rate of antigen release from CaP PCMCs, in vitro, decreased strongly with increasing CaP loading but their immunogenicity in vivo was not significantly different, suggesting the adjuvanticity was not due to a depot effect. Notably, it was found that CaP modification enhanced the phagocytosis of fluorescent antigen-PCMC particles by J774.2 murine monocyte/macrophage cells compared to soluble antigen or soluble PCMCs. Thus, CaP PCMCs may provide an alternative to conventional aluminium-based acellular vaccines to provide a more balanced Th1/Th2 immune response.
Collapse
Affiliation(s)
- Sarah Jones
- Institute of Infection, Immunity and Inflammation, College of Veterinary, Medical and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.
| | - Catpagavalli Asokanathan
- Division of Bacteriology, National Institute of Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK.
| | - Dorota Kmiec
- Division of Bacteriology, National Institute of Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK.
| | - June Irvine
- Institute of Infection, Immunity and Inflammation, College of Veterinary, Medical and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.
| | - Roland Fleck
- Division of Cellular Biology and Imaging, National Institute of Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK.
| | - Dorothy Xing
- Division of Bacteriology, National Institute of Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK.
| | - Barry Moore
- Department of P&A Chemistry, WestChem, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK; XstalBio Ltd., CIDS, Thomson Building, University Avenue, Glasgow G12 8QQ, UK.
| | - Roger Parton
- Institute of Infection, Immunity and Inflammation, College of Veterinary, Medical and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.
| | - John Coote
- Institute of Infection, Immunity and Inflammation, College of Veterinary, Medical and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.
| |
Collapse
|
69
|
Gestational exposure to a viral mimetic poly(i:C) results in long-lasting changes in mitochondrial function by leucocytes in the adult offspring. Mediators Inflamm 2013; 2013:609602. [PMID: 24174710 PMCID: PMC3793312 DOI: 10.1155/2013/609602] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/16/2013] [Indexed: 12/25/2022] Open
Abstract
Maternal immune activation (MIA) is a potential risk factor for autism spectrum disorder (ASD) and schizophrenia (SZ). In rodents, MIA results in changes in cytokine profiles and abnormal behaviors in the offspring that model these neuropsychiatric conditions. Given the central role that mitochondria have in immunity and other metabolic pathways, we hypothesized that MIA will result in a fetal imprinting that leads to postnatal deficits in the bioenergetics of immune cells. To this end, splenocytes from adult offspring exposed gestationally to the viral mimic poly(I:C) were evaluated for mitochondrial outcomes. A significant decrease in mitochondrial ATP production was observed in poly(I:C)-treated mice (45% of controls) mainly attributed to a lower complex I activity. No differences were observed between the two groups in the coupling of electron transport to ATP synthesis, or the oxygen uptake under uncoupling conditions. Concanavalin A- (ConA-) stimulated splenocytes from poly(I:C) animals showed no statistically significant changes in cytokine levels compared to controls. The present study reports for the first time that MIA activation by poly(I:C) at early gestation, which can lead to behavioral impairments in the offspring similar to SZ and ASD, leads to long-lasting effects in the bioenergetics of splenocytes of adult offspring.
Collapse
|
70
|
Dunstan RH, Sparkes DL, Roberts TK, Crompton MJ, Gottfries J, Dascombe BJ. Development of a complex amino acid supplement, Fatigue Reviva™, for oral ingestion: initial evaluations of product concept and impact on symptoms of sub-health in a group of males. Nutr J 2013; 12:115. [PMID: 23927677 PMCID: PMC3751078 DOI: 10.1186/1475-2891-12-115] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 07/11/2013] [Indexed: 01/12/2023] Open
Abstract
Background A new dietary supplement, Fatigue Reviva™, has been recently developed to address issues related to amino acid depletion following illness or in conditions of sub-health where altered amino acid homeostasis has been associated with fatigue. Complex formulations of amino acids present significant challenges due to solubility and taste constraints. This initial study sets out to provide an initial appraisal of product palatability and to gather pilot evidence for efficacy. Methods Males reporting symptoms of sub-health were recruited on the basis of being free from any significant medical or psychological condition. Each participant took an amino acid based dietary supplement (Fatigue Reviva™) daily for 30 days. Comparisons were then made between pre- and post-supplement general health symptoms and urinary amino acid profiles. Results Seventeen men took part in the study. Following amino acid supplementation the total Chalder fatigue score improved significantly (mean ± SEM, 12.5 ± 0.9 versus 10.0 ± 1.0, P<0.03). When asked whether they thought that the supplement had improved their health, 65% of participants responded positively. A subgroup of participants reported gastrointestinal symptoms which were attributed to the supplement and which were believed to result from the component fructooligosaccharide. Analysis of urinary amino acids revealed significant alterations in the relative abundances of a number of amino acids after supplementation including an increase in valine, isoleucine and glutamic acid and reduced levels of glutamine and ornithine. Discriminant function analysis of the urinary amino acid data revealed significant differences between the pre- and post-supplement urine excretion profiles. Conclusions The results indicated that Fatigue Reviva™ was palatable and that 65% of the study group reported that they felt the product had improved their health. The product could provide an effective tool for the management of unexplained fatigue and symptoms of sub-health. Further product development may yield additional options for those patients susceptible to fructooligosaccharide.
Collapse
Affiliation(s)
- R Hugh Dunstan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | | | | | | | |
Collapse
|
71
|
Ruth MR, Field CJ. The immune modifying effects of amino acids on gut-associated lymphoid tissue. J Anim Sci Biotechnol 2013; 4:27. [PMID: 23899038 PMCID: PMC3750756 DOI: 10.1186/2049-1891-4-27] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022] Open
Abstract
The intestine and the gut-associated lymphoid tissue (GALT) are essential components of whole body immune defense, protecting the body from foreign antigens and pathogens, while allowing tolerance to commensal bacteria and dietary antigens. The requirement for protein to support the immune system is well established. Less is known regarding the immune modifying properties of individual amino acids, particularly on the GALT. Both oral and parenteral feeding studies have established convincing evidence that not only the total protein intake, but the availability of specific dietary amino acids (in particular glutamine, glutamate, and arginine, and perhaps methionine, cysteine and threonine) are essential to optimizing the immune functions of the intestine and the proximal resident immune cells. These amino acids each have unique properties that include, maintaining the integrity, growth and function of the intestine, as well as normalizing inflammatory cytokine secretion and improving T-lymphocyte numbers, specific T cell functions, and the secretion of IgA by lamina propria cells. Our understanding of this area has come from studies that have supplemented single amino acids to a mixed protein diet and measuring the effect on specific immune parameters. Future studies should be designed using amino acid mixtures that target a number of specific functions of GALT in order to optimize immune function in domestic animals and humans during critical periods of development and various disease states.
Collapse
Affiliation(s)
- Megan R Ruth
- Department of Agricultural, Food and Nutritional Science, 4-126A Li Ka Shing Health Research Innovation Centre, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | | |
Collapse
|
72
|
Nassiri Moghaddam H, Alizadeh-Ghamsari AH. Improved performance and small intestinal development of broiler chickens by dietary L-glutamine supplementation. JOURNAL OF APPLIED ANIMAL RESEARCH 2013. [DOI: 10.1080/09712119.2012.738214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
73
|
Sasaki E, Umeda T, Takahashi I, Arata K, Yamamoto Y, Tanabe M, Oyamada K, Hashizume E, Nakaji S. Effect of glutamine supplementation on neutrophil function in male judoists. LUMINESCENCE 2013; 28:442-9. [DOI: 10.1002/bio.2474] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/13/2012] [Accepted: 11/25/2012] [Indexed: 12/26/2022]
Affiliation(s)
- Eiji Sasaki
- Department of Social Medicine; Hirosaki University Graduate School of Medicine; Hirosaki; Aomori; Japan
| | - Takashi Umeda
- Department of Social Medicine; Hirosaki University Graduate School of Medicine; Hirosaki; Aomori; Japan
| | - Ippei Takahashi
- Department of Social Medicine; Hirosaki University Graduate School of Medicine; Hirosaki; Aomori; Japan
| | - Kojima Arata
- Department of Physical Education; Nippon Sport Science University; Setagaya; Tokyo; Japan
| | - Yousuke Yamamoto
- Department of Physical Education; Nippon Sport Science University; Setagaya; Tokyo; Japan
| | | | - Kazuyuki Oyamada
- Department of Social Medicine; Hirosaki University Graduate School of Medicine; Hirosaki; Aomori; Japan
| | - Erika Hashizume
- Healthcare Products Development Center; Kyowa Hakko Bio Co., Ltd.; Tsukuba; Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine; Hirosaki University Graduate School of Medicine; Hirosaki; Aomori; Japan
| |
Collapse
|
74
|
Impact of bioactive substances on the gastrointestinal tract and performance of weaned piglets: a review. Animal 2012; 3:1625-43. [PMID: 22443548 DOI: 10.1017/s175173110900398x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The EU ban on in-feed antibiotics has stimulated research on weaning diets as a way of reducing post-weaning gut disorders and growth check in pigs. Many bioactive components have been investigated but only few have shown to be effective. Amongst these, organic acids (OA) have been shown to exert a bactericidal action mediated by non-dissociated OA, by lowering gastric pH, increasing gut and pancreas enzyme secretion and improving gut wall morphology. It has been postulated that they may also enhance non-specific immune responses and improve disease resistance. In contrast, relatively little attention has been paid to the impact of OA on the stomach but recent data show they can differently affect gastric histology, acid secretion and gastric emptying. Butyrate and precursors of butyric acid have received special attention and although promising results have been obtained, their effects are dependent upon the dose, treatment duration, initial age of piglets, gastrointestinal site and other factors. The amino acids (AA) like glutamine, tryptophan and arginine are supportive in improving digestion, absorption and retention of nutrients by affecting tissue anabolism, stress and (or) immunity. Glutamine, cysteine and threonine are important for maintaining mucin and permeability of intestinal barrier function. Spray-dried plasma (SDP) positively affects gut morphology, inflammation and reduces acquired specific immune responses via specific and a-specific influences of immunoglobulins and other bioactive components. Effects are more pronounced in early-weaned piglets and under poorer health conditions. Little interaction between plasma protein and antibiotics has been found, suggesting distinct modes of action and additive effects. Bovine colostrum may act more or less similarly to SDP. The composition of essential oils is highly variable, depending on environmental and climatic conditions and distillation methods. These oils differ widely in their antimicrobial activity in vitro and some components of weaning diets may decrease their activity. Results in young pigs are highly variable depending upon the product and doses used. These studies suggest that relatively high concentrations of essential oils are needed for beneficial effects to be observed and it has been assumed that these plant extracts mimic most of the effects of antibiotics active on gut physiology, microbiology and immunology. Often, bioactive substances protective to the gut also stimulate feed intake and growth performance. New insights on the effects of selected OA and AA, protein sources (especially SDP, bovine colostrum) and plant extracts with anti-bacterial activities on the gut are reported in this review.
Collapse
|
75
|
Do Critically Ill Patients Need Enteral Glutamine Supplementation? TOP CLIN NUTR 2012. [DOI: 10.1097/tin.0b013e31826f9032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
76
|
Hirao T, Koikawa N, Aoki K, Sakuraba K, Shimmura Y, Suzuki Y, Sawaki K. Female distance runners show a different response to post-workout consumption of wheat gluten hydrolysate compared to their male counterparts. Exp Ther Med 2012; 3:641-644. [PMID: 22969944 DOI: 10.3892/etm.2012.446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 12/30/2011] [Indexed: 11/06/2022] Open
Abstract
Wheat gluten hydrolysate (WGH) is rich in glutamyl residue; glutamine is considered a conditionally essential amino acid under physical stress. WGH has been reported to suppress post-exercise rises in serum creatine kinase in male distance runners. This study aimed to reproduce the effects in female distance runners under similar conditions. The study was conducted in a double-blinded crossover manner. Six female collegiate distance runners ingested WGH or a placebo after a 2-h run at an intensity estimated as 60-70% of their maximum oxygen uptake. Blood was sampled before, immediately after, and at 10 and 24 h after the run. Unlike those in male runners, serum creatine kinase (CK) increased slightly, with a peak at 10 h after the run, while plasma glutamine kept declining. The anti-inflammatory effect of WGH was not evident since the post-exercise elevation of CK was ambiguous. Plasma glutamine concentrations also showed a different kinetics from that in men.
Collapse
Affiliation(s)
- Tomomi Hirao
- Department of Sports Science, School of Health and Sports Science, Juntendo University, Chiba 270-1695
| | | | | | | | | | | | | |
Collapse
|
77
|
Pohlenz C, Buentello A, Criscitiello MF, Mwangi W, Smith R, Gatlin DM. Synergies between vaccination and dietary arginine and glutamine supplementation improve the immune response of channel catfish against Edwardsiella ictaluri. FISH & SHELLFISH IMMUNOLOGY 2012; 33:543-551. [PMID: 22728565 DOI: 10.1016/j.fsi.2012.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 06/12/2012] [Accepted: 06/13/2012] [Indexed: 06/01/2023]
Abstract
Channel catfish was used to investigate the enhancement of vaccine efficacy following dietary supplementation with arginine (ARG, 4% of diet), glutamine (GLN, 2% of diet), or a combination of both. After vaccination against Edwardsiella ictaluri, humoral and cellular immune responses, along with lymphoid organ responses were evaluated. E. ictaluri-specific antibody titers in plasma were higher (P < 0.05) in fish fed the supplemented diets compared to those fed the basal diet as early as 7 d post-vaccination (dpv). B-cell proportion in head-kidney was higher (P < 0.05) at 14 dpv in vaccinated fish fed the GLN diet. The responsiveness of spleen and head-kidney lymphocytes against E. ictaluri was enhanced (P < 0.05) by dietary supplementation of ARG or GLN at 14 dpv. Additionally, at 7 dpv, vaccinated fish fed the GLN diet had higher (P < 0.05) head kidney weights relative to the other dietary treatments, and vaccinated fish fed ARG-supplemented diets had higher (P < 0.05) protein content in this tissue. Results from this study suggest that dietary supplementation of ARG and GLN may improve specific cellular and humoral mechanisms, enhancing the acquired immunity in vaccinated channel catfish.
Collapse
Affiliation(s)
- Camilo Pohlenz
- Department of Wildlife and Fisheries Sciences and Intercollegiate, Faculty of Nutrition, Texas A&M University, 216 Heep Laboratory Building, 2258 TAMUS, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
78
|
Regulation of intestinal protein metabolism by amino acids. Amino Acids 2012; 45:443-50. [DOI: 10.1007/s00726-012-1325-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/15/2012] [Indexed: 12/24/2022]
|
79
|
|
80
|
Viggiano E, Passavanti MB, Pace MC, Sansone P, Spaziano G, Viggiano A, Aurilio C, Monda M, Viggiano A, Pota V, De Luca B, De Luca E. Plasma glutamine decreases immediately after surgery and is related to incisiveness. J Cell Physiol 2012; 227:1988-91. [DOI: 10.1002/jcp.22928] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
81
|
Shiomi Y, Nishiumi S, Ooi M, Hatano N, Shinohara M, Yoshie T, Kondo Y, Furumatsu K, Shiomi H, Kutsumi H, Azuma T, Yoshida M. GCMS-based metabolomic study in mice with colitis induced by dextran sulfate sodium. Inflamm Bowel Dis 2011; 17:2261-74. [PMID: 21287666 DOI: 10.1002/ibd.21616] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 12/02/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND Metabolomics provides data about all the metabolic processes of a cell or organism. So far, the changes that occur in the levels of metabolites during the development of colitis have not been fully elucidated. Here we examined the changes of metabolite levels in the serum and colon tissue of colitis mice using gas chromatography mass spectrometry (GC/MS) with the aim of achieving a detailed understanding of the pathogenesis of inflammatory bowel disease (IBD). METHODS To induce colitis, C57BL/6J mice were administered 3.0% dextran sulfate sodium (DSS) in their drinking water for 5 days and were subsequently given drinking water alone. RESULTS A total of 77 and 92 metabolites were detected in serum and colon tissue, respectively, and among the metabolites the compositions of TCA cycle intermediates and amino acids changed depending on the degree of colitis. Then, partial least square discriminant analysis (PLS-DA), a multiple classification analysis, showed distinct clustering and clear separation of the groups according to the degree of colitis. Furthermore, PLS-DA loadings plots revealed that succinic acid, indole-3-acetic acid, glutamic acid, and glutamine were the main contributors to the separation of each stage of colitis. In addition, it was revealed that supplementation with glutamine, the level of which was significantly decreased in the acute phase of colonic inflammation, attenuated colitis induced by DSS. CONCLUSIONS Our results suggest that metabolomics is capable of representing the various degrees of colitis, and our findings will aid in the discovery of therapeutic agents for IBD and other inflammatory disorders by metabolomic approaches.
Collapse
Affiliation(s)
- Yuuki Shiomi
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Sacks GS. Effect of glutamine-supplemented parenteral nutrition on mortality in critically ill patients. Nutr Clin Pract 2011; 26:44-7. [PMID: 21266696 DOI: 10.1177/0884533610392923] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glutamine is recognized as a critical amino acid involved in immunity, intestinal health, and nitrogen transport between organs. Prior to the pivotal study by Griffiths and colleagues in 1997, no clinical trials had demonstrated a positive effect from glutamine supplementation on improving long-term survival in critically ill intensive care unit patients receiving parenteral nutrition. Subsequent investigations have confirmed these findings, but further data are needed to determine the optimal dose and timing of glutamine as well as the form of glutamine (ie, free vs dipeptide) that produces the most significant improvement in outcome parameters.
Collapse
|
83
|
Stangl R, Szijártó A, Ónody P, Tamás J, Tátrai M, Hegedűs V, Blázovics A, Lotz G, Kiss A, Módis K, Gerő D, Szabó C, Kupcsulik P, Harsányi L. Reduction of Liver Ischemia-Reperfusion Injury Via Glutamine Pretreatment. J Surg Res 2011; 166:95-103. [DOI: 10.1016/j.jss.2009.09.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 09/13/2009] [Accepted: 09/30/2009] [Indexed: 01/28/2023]
|
84
|
Wright G, Noiret L, Olde Damink SWM, Jalan R. Interorgan ammonia metabolism in liver failure: the basis of current and future therapies. Liver Int 2011; 31:163-75. [PMID: 20673233 DOI: 10.1111/j.1478-3231.2010.02302.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Hepatic encephalopathy complicates the course of both acute and chronic liver disease and its treatment remains an unmet clinical need. Ammonia is thought to be central in its pathogenesis and remains an important target of current and future therapeutic approaches. In liver failure, the main detoxification pathway of ammonia metabolism is compromised leading to hyperammonaemia. In this situation, the other ammonia-regulating pathways in multiple organs assume important significance. The present review focuses upon interorgan ammonia metabolism in health and disease describing the role of the key enzymes, glutamine synthase and glutaminase. Better understanding of these alternative pathways are leading to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Gavin Wright
- UCL Institute of Hepatology, Division of Medicine, University College London, London, UK
| | | | | | | |
Collapse
|
85
|
El-Sheikh NM, Khalil FA. L-arginine and L-glutamine as immunonutrients and modulating agents for oxidative stress and toxicity induced by sodium nitrite in rats. Food Chem Toxicol 2010; 49:758-62. [PMID: 21130833 DOI: 10.1016/j.fct.2010.11.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 11/23/2010] [Accepted: 11/26/2010] [Indexed: 01/09/2023]
Abstract
Sodium nitrite (NaNO(2)) is a flavoring, coloring and preservative agent in meat and fish products. The study aimed to evaluate the efficacy of L-arginine and L-glutamine supplementation as a potentially novel and useful strategy for the modulation of oxidative stress and toxicity induced by NaNO(2) in male rats. Rats were divided into six groups each of 10 rats and treated for 6 weeks: group 1 as normal control; group 2 fed standard diet containing 0.2% NaNO(2); group 3 and 4 fed the previous diet supplemented with 1% and 2% arginine, respectively; group 5 and 6 fed NaNO(2) diet supplemented with 1% and 2% glutamine, respectively. NaNO(2) treatment induced a significant increase in serum malondialdehyde, nitric oxide, arginase, glutathione-S-transferase activities, urea and creatinine as well as differential leucocytes%. However, a significant decrease was recorded in reduced glutathione, catalase activity, total protein, albumin and some hematological parameters as well as immunoglobulin G. On the other hand, arginine or glutamine showed a remarkable modulation of these abnormalities as indicated by reduction of malondialdehyde and improvement of the investigated antioxidant and hematological parameters. It can be concluded that arginine or glutamine supplementation may reduce oxidative stress and improve the hazard effects of NaNO(2).
Collapse
Affiliation(s)
- Nora M El-Sheikh
- Biochemistry and Nutrition Department, Women's College, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
86
|
DeGrandi-Hoffman G, Chen Y, Huang E, Huang MH. The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1184-91. [PMID: 20346950 DOI: 10.1016/j.jinsphys.2010.03.017] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 03/09/2010] [Accepted: 03/15/2010] [Indexed: 05/11/2023]
Abstract
Elucidating the mechanisms by which honey bees process pollen vs. protein supplements are important in the generation of artificial diets needed to sustain managed honeybees. We measured the effects of diet on protein concentration, hypopharyngeal gland development and virus titers in worker honey bees fed either pollen, a protein supplement (MegaBee), or a protein-free diet of sugar syrup. Workers consumed more pollen than protein supplement, but protein amounts and size of hypopharyngeal gland acini did not differ between the two feeding treatments. Bees fed sugar syrup alone had lower protein concentrations and smaller hypopharyngeal glands compared with the other feeding treatments especially as the bees aged. Deformed wing virus was detected in workers at the start of a trial. The virus concentrations increased as bees aged and were highest in those fed sugar syrup and lowest in bees fed pollen. Overall results suggest a connection between diet, protein levels and immune response and indicate that colony losses might be reduced by alleviating protein stress through supplemental feeding.
Collapse
|
87
|
Walrand S. Ornithine alpha-ketoglutarate: could it be a new therapeutic option for sarcopenia? J Nutr Health Aging 2010; 14:570-7. [PMID: 20818473 DOI: 10.1007/s12603-010-0109-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Our current knowledge on the causes of sarcopenia is still fragmentary. One of the most evident candidates to explain muscle loss in elderly includes imbalance in protein turnover, i.e. decreased muscle protein synthesis rate, notably in the post-prandial state. Nutritional strategies such as leucine supplementation, use of fast digested proteins or a pulse protein intake have been show to enhance the synthesis rate of muscle proteins in older individuals. Ornithine alpha-ketoglutarate (OKG) is a precursor of amino acids such as glutamine, arginine and proline, and increases the secretion of anabolic hormones, i.e. insulin and growth hormone. A beneficial anabolic action of OKG has been demonstrate in several pathological conditions associated with muscle loss. Therefore, OKG may be of a potential interest to modulate muscle protein metabolism and to maintain muscle mass during aging.
Collapse
Affiliation(s)
- S Walrand
- INRA, UMR1019, Unité de Nutrition Humaine, Clermont-Ferrand, F-63000, France.
| |
Collapse
|
88
|
Fasina YO, Bowers JB, Hess JB, McKee SR. Effect of dietary glutamine supplementation on Salmonella colonization in the ceca of young broiler chicks. Poult Sci 2010; 89:1042-8. [PMID: 20371858 DOI: 10.3382/ps.2009-00415] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Live poultry is an important vehicle for transmitting Salmonella Typhimurium to humans that have salmonellosis. It is therefore imperative to reduce Salmonella Typhimurium levels in the gastrointestinal tract of live chickens. Glutamine is an established immunonutrient that is capable of alleviating disease conditions in humans and rats. Thus, 2 experiments that used Ross broiler chicks were conducted to evaluate the effect of glutamine supplementation at 1% level of the diet on cecal Salmonella Typhimurium levels in young broiler chicks. Experiment 1 consisted of i) treatment 1 (control, CN), in which chicks were given an unmedicated corn-soybean meal basal starter diet without glutamine supplementation or Salmonella Typhimurium challenge; ii) treatment 2 (CST), in which chicks were given the same diet as CN but challenged with 3.6 x 10(6) cfu Salmonella Typhimurium/mL at 3 d of age; and iii) treatment 3 (GST), in which chicks were given the unmedicated corn-soybean meal basal starter diet supplemented with glutamine at 1% level, and challenged with 3.6 x 10(6) cfu at 3 d of age. Experiment 2 used similar treatments (CN, CST, and GST), except that chicks in CST and GST were challenged with 7.4 x 10(7) cfu Salmonella Typhimurium/mL, and a fourth treatment was added. The fourth treatment consisted of chicks that were not challenged with Salmonella Typhimurium but given the same diet as in GST. Duration of each experiment was 14 d. Growth performance of chicks was monitored weekly, and cecal Salmonella Typhimurium concentration was microbiologically enumerated on d 4, 10, or 11 postchallenge. Results showed that glutamine supplementation improved BW and BW gain in experiment 2 (P < 0.05) but did not reduce cecal Salmonella Typhimurium levels in either experiment (P > 0.05). The optimum supplemental level of glutamine that will enhance intestinal resistance to Salmonella Typhimurium colonization should be determined.
Collapse
Affiliation(s)
- Y O Fasina
- Department of Poultry Science, Auburn University, 260 Lem Morrison Drive, Auburn, AL 36849-5416, USA.
| | | | | | | |
Collapse
|
89
|
|
90
|
Abstract
PURPOSE OF REVIEW Protein requirement in healthy young and old individuals is traditionally defined as the lowest protein intake sufficient to achieve neutral body protein balance. This concept, however, cannot be applied to those conditions characterized by unavoidable protein catabolism despite optimal nutrition, such as inactivity and diseases associated with systemic inflammation. RECENT FINDINGS The ability of dietary proteins to promote protein anabolism is reduced by inactivity and inflammatory mediators, whereas physical exercise ameliorates the efficiency in using dietary proteins. Consequently, the protein intake level associated with the lowest rate of catabolism in inactivity and/or inflammation is greater than the minimum protein intake required to achieve neutral protein balance in healthy, physically active individuals. A protein intake of 1.2 g.kg.day is currently recommended for inactive healthy individuals, whereas guidelines recommend up to 1.5 g.kg.day in patients with severe systemic inflammation, such as those affected by critical illness or cancer. High protein intake accelerates progression of renal insufficiency but does not affect renal function in healthy individuals. SUMMARY In inflammation and/or inactivity a relatively high protein intake may be required to promote synthesis of specific proteins, prevent depletion of selected amino acids (e.g., glutamine or arginine), modulate immune functions, counteract insulin resistance and redox unbalance. Thus, an optimal protein/amino acid intake may be greater than that required to decrease whole body protein wasting.
Collapse
Affiliation(s)
- Martina Guadagni
- Department of Medical, Technological and Translational Sciences, Division of Internal Medicine, University of Trieste, Trieste 39149, Italy
| | | |
Collapse
|
91
|
Walrand S. Place de l’alpha-cétoglutarate d’ornithine dans le traitement de la sarcopénie. NUTR CLIN METAB 2009. [DOI: 10.1016/j.nupar.2009.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
92
|
|
93
|
Chen W, Wang R, Wan H, Xiong X, Peng P, Peng J. Influence ofin ovoinjection of glutamine and carbohydrates on digestive organs and pectoralis muscle mass in the duck. Br Poult Sci 2009; 50:436-42. [DOI: 10.1080/00071660903114341] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
94
|
Schuster H, Blanc MC, Bonnefont-Rousselot D, Nakib S, Le Tourneau A, Fürst P, Cynober L, De Bandt JP. Protective effects of glutamine dipeptide and α-tocopherol against ischemia–reperfusion injury in the isolated rat liver. Clin Nutr 2009; 28:331-7. [DOI: 10.1016/j.clnu.2009.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Revised: 01/20/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
|
95
|
Kogut M. Impact of nutrition on the innate immune response to infection in poultry. J APPL POULTRY RES 2009. [DOI: 10.3382/japr.2008-00081] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
96
|
Brasse-Lagnel C, Lavoinne A, Husson A. Control of mammalian gene expression by amino acids, especially glutamine. FEBS J 2009; 276:1826-44. [PMID: 19250320 DOI: 10.1111/j.1742-4658.2009.06920.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular data rapidly accumulating on the regulation of gene expression by amino acids in mammalian cells highlight the large variety of mechanisms that are involved. Transcription factors, such as the basic-leucine zipper factors, activating transcription factors and CCAAT/enhancer-binding protein, as well as specific regulatory sequences, such as amino acid response element and nutrient-sensing response element, have been shown to mediate the inhibitory effect of some amino acids. Moreover, amino acids exert a wide range of effects via the activation of different signalling pathways and various transcription factors, and a number of cis elements distinct from amino acid response element/nutrient-sensing response element sequences were shown to respond to changes in amino acid concentration. Particular attention has been paid to the effects of glutamine, the most abundant amino acid, which at appropriate concentrations enhances a great number of cell functions via the activation of various transcription factors. The glutamine-responsive genes and the transcription factors involved correspond tightly to the specific effects of the amino acid in the inflammatory response, cell proliferation, differentiation and survival, and metabolic functions. Indeed, in addition to the major role played by nuclear factor-kappaB in the anti-inflammatory action of glutamine, the stimulatory role of activating protein-1 and the inhibitory role of C/EBP homology binding protein in growth-promotion, and the role of c-myc in cell survival, many other transcription factors are also involved in the action of glutamine to regulate apoptosis and intermediary metabolism in different cell types and tissues. The signalling pathways leading to the activation of transcription factors suggest that several kinases are involved, particularly mitogen-activated protein kinases. In most cases, however, the precise pathways from the entrance of the amino acid into the cell to the activation of gene transcription remain elusive.
Collapse
Affiliation(s)
- Carole Brasse-Lagnel
- Appareil Digestif, Environnement et Nutrition, EA 4311, Université de Rouen, France
| | | | | |
Collapse
|
97
|
Cytokine responses in very low birth weight infants receiving glutamine-enriched enteral nutrition. J Pediatr Gastroenterol Nutr 2009; 48:94-101. [PMID: 19172131 DOI: 10.1097/mpg.0b013e3181805116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Very low birth weight (VLBW) infants receiving glutamine-enriched enteral nutrition may present with a lower infection rate, which may result from enhanced antimicrobial innate or Th1 cytokine responses. We investigated whether glutamine-enriched enteral nutrition in VLBW infants increased these cytokine responses following in vitro stimulation of whole blood cells. METHODS In a double-blind, placebo-controlled, randomized controlled trial, VLBW infants (gestational age <32 weeks and/or birth weight <1500 g) received enteral glutamine supplementation (0.3 g x kg(-1) x day(-1)) or isonitrogenous placebo supplementation (alanine) between days 3 and 30 of life. Cytokine responses following in vitro whole blood cell stimulation with anti-(alpha)CD3/alphaCD28 or lipopolysaccharide were analyzed by cytometric bead array at 3 time points: before the start of the study, at day 7 of life, and at day 14 of life. RESULTS Baseline patient and nutritional characteristics were not different between groups. At least 2 blood samples were analyzed in 25 of 52 (48%) and 38 of 50 (76%) infants in the glutamine-supplemented and control groups, respectively. Glutamine-enriched enteral nutrition was not associated with significant alterations in cytokine responses (interferon-gamma, tumor necrosis factor-alpha, interleukin [IL]-2, IL-4, IL-5, and IL-10) of peripheral blood cells upon stimulation with either anti-alphaCD3/alphaCD28 or lipopolysaccharide. CONCLUSIONS We hypothesize that glutamine-enriched enteral nutrition decreases the infection rate in VLBW infants by influencing the mucosal and not the systemic immune system.
Collapse
|
98
|
Horio Y, Osawa S, Takagaki K, Hishida A, Furuta T, Ikuma M. Glutamine supplementation increases Th1-cytokine responses in murine intestinal intraepithelial lymphocytes. Cytokine 2008; 44:92-95. [PMID: 18701319 DOI: 10.1016/j.cyto.2008.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 06/27/2008] [Indexed: 11/23/2022]
Abstract
Intestinal intraepithelial lymphocytes (IELs) are major effector cells in the gut mucosal immune system, and are phenotypically distinct from thymic and peripheral T cells. Although nutritional supplementation with glutamine affects the intestinal immune response, it remains unclear whether this is a direct effect via the IEL-derived cytokines. This study examined changes in IEL-derived cytokine production following treatment with glutamine in vitro. Murine IELs were purified and activated with PMA plus ionomycin, and then cultured in the presence of various glutamine concentrations. IEL-derived cytokines were measured using a cytometric bead array (CBA) system, and IEL subsets were analyzed by flow cytometry. Treatment with glutamine increased the production of IL-2 and IFN-gamma from IELs in the presence of PMA plus ionomycin, but had no effect on TNFalpha, IL-4, or IL-5 production. Treatment with alanine or glucose had no regulatory effect on IEL-derived cytokines. Glutamine therefore had a direct effect on the production of selected IEL-derived Th1-cytokines, and enteral supplementation with glutamine may influence the intestinal immune responses mediated by IELs.
Collapse
Affiliation(s)
- Yoshiaki Horio
- First Department of Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | | | | | | | | | | |
Collapse
|
99
|
Estívariz CF, Griffith DP, Luo M, Szeszycki EE, Bazargan N, Dave N, Daignault NM, Bergman GF, McNally T, Battey CH, Furr CE, Hao L, Ramsay JG, Accardi CR, Cotsonis GA, Jones DP, Galloway JR, Ziegler TR. Efficacy of parenteral nutrition supplemented with glutamine dipeptide to decrease hospital infections in critically ill surgical patients. JPEN J Parenter Enteral Nutr 2008; 32:389-402. [PMID: 18596310 PMCID: PMC3062504 DOI: 10.1177/0148607108317880] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Nosocomial infections are an important cause of morbidity and mortality in the surgical intensive care unit (SICU). Clinical benefits of glutamine-supplemented parenteral nutrition may occur in hospitalized surgical patients, but efficacy data in different surgical subgroups are lacking. The objective was to determine whether glutamine-supplemented parenteral nutrition differentially affects nosocomial infection rates in selected subgroups of SICU patients. METHODS This was a double-blind, randomized, controlled study of alanyl-glutamine dipeptide-supplemented parenteral nutrition in SICU patients requiring parenteral nutrition and SICU care after surgery for pancreatic necrosis, cardiac, vascular, or colonic surgery. Subjects (n = 59) received isocaloric/isonitrogenous parenteral nutrition, providing 1.5 g/kg/d standard glutamine-free amino acids (STD-PN) or 1.0 g/kg/d standard amino acids + 0.5 g/kg/d glutamine dipeptide (GLN-PN). Enteral feedings were advanced as tolerated. Nosocomial infections were determined until hospital discharge. RESULTS Baseline clinical/metabolic data were similar between groups. Plasma glutamine concentrations were low in all groups and were increased by GLN-PN. GLN-PN did not alter infection rates after pancreatic necrosis surgery (17 STD-PN and 15 GLN-PN patients). In nonpancreatic surgery patients (12 STD-PN and 15 GLN-PN), GLN-PN was associated with significantly decreased total nosocomial infections (STD-PN 36 vs GLN-PN 13, P < .030), bloodstream infections (7 vs 0, P < .01), pneumonias (16 vs 6, P < .05), and infections attributed to Staphylococcus aureus (P < .01), fungi, and enteric Gram-negative bacteria (each P < .05). CONCLUSIONS Glutamine dipeptide-supplemented parenteral nutrition did not alter infection rates following pancreatic necrosis surgery but significantly decreased infections in SICU patients after cardiac, vascular, and colonic surgery.
Collapse
Affiliation(s)
- Concepción F. Estívariz
- Emory University Hospital Nutrition and Metabolic Support Service, Emory University, Atlanta, Georgia
- Department of Medicine, Emory University, Atlanta, Georgia
| | - Daniel P. Griffith
- Emory University Hospital Nutrition and Metabolic Support Service, Emory University, Atlanta, Georgia
- Center for Clinical and Molecular Nutrition, Emory University, Atlanta, Georgia
| | - Menghua Luo
- Emory University Hospital Nutrition and Metabolic Support Service, Emory University, Atlanta, Georgia
- Nutrition and Health Sciences Graduate Program, Emory University, Atlanta, Georgia
| | - Elaina E. Szeszycki
- Emory University Hospital Nutrition and Metabolic Support Service, Emory University, Atlanta, Georgia
| | - Niloofar Bazargan
- Emory University Hospital Nutrition and Metabolic Support Service, Emory University, Atlanta, Georgia
- Department of Medicine, Emory University, Atlanta, Georgia
| | - Nisha Dave
- Emory University Hospital Nutrition and Metabolic Support Service, Emory University, Atlanta, Georgia
- Center for Clinical and Molecular Nutrition, Emory University, Atlanta, Georgia
| | - Nicole M. Daignault
- Emory University Hospital Nutrition and Metabolic Support Service, Emory University, Atlanta, Georgia
| | - Glen F. Bergman
- Emory University Hospital Nutrition and Metabolic Support Service, Emory University, Atlanta, Georgia
| | - Therese McNally
- Emory University Hospital Nutrition and Metabolic Support Service, Emory University, Atlanta, Georgia
| | - Cindy H. Battey
- Emory University Hospital Nutrition and Metabolic Support Service, Emory University, Atlanta, Georgia
| | - Celeste E. Furr
- Emory University Hospital Nutrition and Metabolic Support Service, Emory University, Atlanta, Georgia
| | - Li Hao
- Department of Medicine, Emory University, Atlanta, Georgia
- Center for Clinical and Molecular Nutrition, Emory University, Atlanta, Georgia
| | - James G. Ramsay
- Department of Anesthesiology, Emory University, Atlanta, Georgia
| | - Carolyn R. Accardi
- Department of Medicine, Emory University, Atlanta, Georgia
- Nutrition and Health Sciences Graduate Program, Emory University, Atlanta, Georgia
- Center for Clinical and Molecular Nutrition, Emory University, Atlanta, Georgia
| | | | - Dean P. Jones
- Department of Medicine, Emory University, Atlanta, Georgia
- Nutrition and Health Sciences Graduate Program, Emory University, Atlanta, Georgia
- Center for Clinical and Molecular Nutrition, Emory University, Atlanta, Georgia
| | - John R. Galloway
- Emory University Hospital Nutrition and Metabolic Support Service, Emory University, Atlanta, Georgia
- Department of Surgery, Emory University, Atlanta, Georgia
- Center for Clinical and Molecular Nutrition, Emory University, Atlanta, Georgia
| | - Thomas R. Ziegler
- Emory University Hospital Nutrition and Metabolic Support Service, Emory University, Atlanta, Georgia
- Department of Medicine, Emory University, Atlanta, Georgia
- Nutrition and Health Sciences Graduate Program, Emory University, Atlanta, Georgia
- Center for Clinical and Molecular Nutrition, Emory University, Atlanta, Georgia
| |
Collapse
|
100
|
Abstract
Surgery, trauma, burns and injury induce an inflammatory response that can become excessive and damaging in some patients. This hyperinflammation can be followed by an immunosuppressed state which increases susceptibility to infection. The resulting septic syndromes are associated with significant morbidity and mortality. A range of nutrients are able to modulate inflammation (and the associated oxidative stress) and to maintain or improve immune function. These include several amino acids, antioxidant vitamins and minerals, long-chain n-3 fatty acids and nucleotides. Experimental studies support a role for each of these nutrients in surgical, injured or critically ill patients. There is good evidence that glutamine influences immune function in such patients and that this is associated with clinical improvement. Evidence is also mounting for the use of long-chain n-3 fatty acids in surgical and septic patients, but more evidence of clinical efficacy is required. Mixtures of antioxidant vitamins and minerals are also clinically effective, especially if they include selenium. Their action appears not to involve improved immune function, although an anti-inflammatory mode of action has not been ruled out. Enteral immunonutrient mixtures, usually including arginine, nucleotides and long-chain n-3 fatty acids, have been used widely in surgical and critically ill patients. Evidence of efficacy is good in surgical patients. However whether these same mixtures are beneficial, or should even be used, in critically ill patients remains controversial, since some studies show increased mortality with such mixtures. There is a view that this is due to a high arginine content driving nitric oxide production.
Collapse
|