51
|
Schaefer N, Roemer V, Janzen D, Villmann C. Impaired Glycine Receptor Trafficking in Neurological Diseases. Front Mol Neurosci 2018; 11:291. [PMID: 30186111 PMCID: PMC6110938 DOI: 10.3389/fnmol.2018.00291] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
Ionotropic glycine receptors (GlyRs) enable fast synaptic neurotransmission in the adult spinal cord and brainstem. The inhibitory GlyR is a transmembrane glycine-gated chloride channel. The immature GlyR protein undergoes various processing steps, e.g., folding, assembly, and maturation while traveling from the endoplasmic reticulum to and through the Golgi apparatus, where post-translational modifications, e.g., glycosylation occur. The mature receptors are forward transported via microtubules to the cellular surface and inserted into neuronal membranes followed by synaptic clustering. The normal life cycle of a receptor protein includes further processes like internalization, recycling, and degradation. Defects in GlyR life cycle, e.g., impaired protein maturation and degradation have been demonstrated to underlie pathological mechanisms of various neurological diseases. The neurological disorder startle disease is caused by glycinergic dysfunction mainly due to missense mutations in genes encoding GlyR subunits (GLRA1 and GLRB). In vitro studies have shown that most recessive forms of startle disease are associated with impaired receptor biogenesis. Another neurological disease with a phenotype similar to startle disease is a special form of stiff-person syndrome (SPS), which is most probably due to the development of GlyR autoantibodies. Binding of GlyR autoantibodies leads to enhanced receptor internalization. Here we focus on the normal life cycle of GlyRs concentrating on assembly and maturation, receptor trafficking, post-synaptic integration and clustering, and GlyR internalization/recycling/degradation. Furthermore, this review highlights findings on impairment of these processes under disease conditions such as disturbed neuronal ER-Golgi trafficking as the major pathomechanism for recessive forms of human startle disease. In SPS, enhanced receptor internalization upon autoantibody binding to the GlyR has been shown to underlie the human pathology. In addition, we discuss how the existing mouse models of startle disease increased our current knowledge of GlyR trafficking routes and function. This review further illuminates receptor trafficking of GlyR variants originally identified in startle disease patients and explains changes in the life cycle of GlyRs in patients with SPS with respect to structural and functional consequences at the receptor level.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Vera Roemer
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Dieter Janzen
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
52
|
Mondal N, Dykstra B, Lee J, Ashline DJ, Reinhold VN, Rossi DJ, Sackstein R. Distinct human α(1,3)-fucosyltransferases drive Lewis-X/sialyl Lewis-X assembly in human cells. J Biol Chem 2018; 293:7300-7314. [PMID: 29593094 PMCID: PMC5950021 DOI: 10.1074/jbc.ra117.000775] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/23/2018] [Indexed: 12/21/2022] Open
Abstract
In humans, six α(1,3)-fucosyltransferases (α(1,3)-FTs: FT3/FT4/FT5/FT6/FT7/FT9) reportedly fucosylate terminal lactosaminyl glycans yielding Lewis-X (LeX; CD15) and/or sialyl Lewis-X (sLeX; CD15s), structures that play key functions in cell migration, development, and immunity. Prior studies analyzing α(1,3)-FT specificities utilized either purified and/or recombinant enzymes to modify synthetic substrates under nonphysiological reaction conditions or molecular biology approaches wherein α(1,3)-FTs were expressed in mammalian cell lines, notably excluding investigations using primary human cells. Accordingly, although significant insights into α(1,3)-FT catalytic properties have been obtained, uncertainty persists regarding their human LeX/sLeX biosynthetic range across various glycoconjugates. Here, we undertook a comprehensive evaluation of the lactosaminyl product specificities of intracellularly expressed α(1,3)-FTs using a clinically relevant primary human cell type, mesenchymal stem cells. Cells were transfected with modified mRNA encoding each human α(1,3)-FT, and the resultant α(1,3)-fucosylated lactosaminyl glycoconjugates were analyzed using a combination of flow cytometry and MS. The data show that biosynthesis of sLeX is driven by FTs-3, -5, -6, and -7, with FT6 and FT7 having highest potency. FT4 and FT9 dominantly biosynthesize LeX, and, among all FTs, FT6 holds a unique capacity in creating sLeX and LeX determinants across protein and lipid glycoconjugates. Surprisingly, FT4 does not generate sLeX on glycolipids, and neither FT4, FT6, nor FT9 synthesizes the internally fucosylated sialyllactosamine VIM-2 (CD65s). These results unveil the relevant human lactosaminyl glycans created by human α(1,3)-FTs, providing novel insights on how these isoenzymes stereoselectively shape biosynthesis of vital glycoconjugates, thereby biochemically programming human cell migration and tuning human immunologic and developmental processes.
Collapse
Affiliation(s)
- Nandini Mondal
- Department of Dermatology and Harvard Skin Disease Research Center, Boston, Massachusetts 02115; Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Brad Dykstra
- Department of Dermatology and Harvard Skin Disease Research Center, Boston, Massachusetts 02115; Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jungmin Lee
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - David J Ashline
- Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Molecular, Cellular, and Biomedical Sciences, The Glycomics Center, University of New Hampshire, Durham, New Hampshire 03828
| | - Vernon N Reinhold
- Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Molecular, Cellular, and Biomedical Sciences, The Glycomics Center, University of New Hampshire, Durham, New Hampshire 03828
| | - Derrick J Rossi
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Robert Sackstein
- Department of Dermatology and Harvard Skin Disease Research Center, Boston, Massachusetts 02115; Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
53
|
Erickson T, Morgan CP, Olt J, Hardy K, Busch-Nentwich E, Maeda R, Clemens R, Krey JF, Nechiporuk A, Barr-Gillespie PG, Marcotti W, Nicolson T. Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt). eLife 2017; 6:e28474. [PMID: 28534737 PMCID: PMC5462536 DOI: 10.7554/elife.28474] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/20/2017] [Indexed: 01/18/2023] Open
Abstract
Transmembrane O-methyltransferase (TOMT/LRTOMT) is responsible for non-syndromic deafness DFNB63. However, the specific defects that lead to hearing loss have not been described. Using a zebrafish model of DFNB63, we show that the auditory and vestibular phenotypes are due to a lack of mechanotransduction (MET) in Tomt-deficient hair cells. GFP-tagged Tomt is enriched in the Golgi of hair cells, suggesting that Tomt might regulate the trafficking of other MET components to the hair bundle. We found that Tmc1/2 proteins are specifically excluded from the hair bundle in tomt mutants, whereas other MET complex proteins can still localize to the bundle. Furthermore, mouse TOMT and TMC1 can directly interact in HEK 293 cells, and this interaction is modulated by His183 in TOMT. Thus, we propose a model of MET complex assembly where Tomt and the Tmcs interact within the secretory pathway to traffic Tmc proteins to the hair bundle.
Collapse
Affiliation(s)
- Timothy Erickson
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Clive P Morgan
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jennifer Olt
- Department of Biomedical Science, University of Sheffield, Sheffield, United States
| | - Katherine Hardy
- Department of Biomedical Science, University of Sheffield, Sheffield, United States
| | | | - Reo Maeda
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Rachel Clemens
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jocelyn F Krey
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Alex Nechiporuk
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, United States
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, United States
| | - Teresa Nicolson
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
54
|
Genetic Defects Underlie the Non-syndromic Autosomal Recessive Intellectual Disability (NS-ARID). Open Life Sci 2017. [DOI: 10.1515/biol-2017-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIntellectual disability (ID) is a neurodevelopmental disorder which appears frequently as the result of genetic mutations and may be syndromic (S-ID) or non-syndromic (NS-ID). ID causes an important economic burden, for patient's family, health systems, and society. Identifying genes that cause S-ID can easily be evaluated due to the clinical symptoms or physical anomalies. However, in the case of NS-ID due to the absence of co-morbid features, the latest molecular genetic techniques can be used to understand the genetic defects that underlie it. Recent studies have shown that non-syndromic autosomal recessive (NS-ARID) is extremely heterogeneous and contributes much more than X-linked ID. However, very little is known about the genes and loci involved in NS-ARID relative to X-linked ID, and whose complete genetic etiology remains obscure. In this review article, the known genetic etiology of NS-ARID and possible relationships between genes and the associated molecular pathways of their encoded proteins has been reviewed which will enhance our understanding about the underlying genes and mechanisms in NS-ARID.
Collapse
|
55
|
N-Glycan Modification of a Recombinant Protein via Coexpression of Human Glycosyltransferases in Silkworm Pupae. Sci Rep 2017; 7:1409. [PMID: 28469195 PMCID: PMC5431099 DOI: 10.1038/s41598-017-01630-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/29/2017] [Indexed: 01/27/2023] Open
Abstract
Recombinant proteins produced in insect cells and insects, unlike those produced in mammalian cells, have pauci-mannose-type N-glycans. In this study, we examined complex-type N-glycans on recombinant proteins via coexpression of human β-1,2-N-acetylglucosaminyltransferase II (hGnT II) and human β1,4-galactosyltransferase (hGalT I) in silkworm pupae, by using the Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid system. The actin A3 promoter from B. mori and the polyhedrin promoter from Autographa californica multiple nucleopolyhedroviruses (AcMNPVs) were used to coexpress hGnT II and hGalT I. These recombinant BmNPVs were coexpressed with human IgG (hIgG), hGnT II and hGalT I in silkworm pupae. When hIgG was coexpressed with hGnT II, approximately 15% of all N-glycans were biantennary, with both arms terminally modified with N-acetylglucosamine (GlcNAc). In contrast, when hIgG was coexpressed with both hGnT II and hGalT I under the control of the polyhedrin promoter, 27% of all N-glycans were biantennary and terminally modified with GlcNAc, with up to 5% carrying one galactose and 11% carrying two. The obtained N-glycan structure was dependent on the promoters used for coexpression of hGnT II or hGalT I. This is the first report of silkworm pupae producing a biantennary, terminally galactosylated N-glycan in a recombinant protein. These results suggest that silkworms can be used as alternatives to insect and mammalian hosts to produce recombinant glycoproteins with complex N-glycans.
Collapse
|
56
|
Jiang N, Wiemels RE, Soya A, Whitley R, Held M, Faik A. Composition, Assembly, and Trafficking of a Wheat Xylan Synthase Complex. PLANT PHYSIOLOGY 2016; 170:1999-2023. [PMID: 26917684 PMCID: PMC4825154 DOI: 10.1104/pp.15.01777] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/23/2016] [Indexed: 05/18/2023]
Abstract
Xylans play an important role in plant cell wall integrity and have many industrial applications. Characterization of xylan synthase (XS) complexes responsible for the synthesis of these polymers is currently lacking. We recently purified XS activity from etiolated wheat (Triticum aestivum) seedlings. To further characterize this purified activity, we analyzed its protein composition and assembly. Proteomic analysis identified six main proteins: two glycosyltransferases (GTs) TaGT43-4 and TaGT47-13; two putative mutases (TaGT75-3 and TaGT75-4) and two non-GTs; a germin-like protein (TaGLP); and a vernalization related protein (TaVER2). Coexpression of TaGT43-4, TaGT47-13, TaGT75-3, and TaGT75-4 in Pichia pastoris confirmed that these proteins form a complex. Confocal microscopy showed that all these proteins interact in the endoplasmic reticulum (ER) but the complexes accumulate in Golgi, and TaGT43-4 acts as a scaffold protein that holds the other proteins. Furthermore, ER export of the complexes is dependent of the interaction between TaGT43-4 and TaGT47-13. Immunogold electron microscopy data support the conclusion that complex assembly occurs at specific areas of the ER before export to the Golgi. A di-Arg motif and a long sequence motif within the transmembrane domains were found conserved at the NH2-terminal ends of TaGT43-4 and homologous proteins from diverse taxa. These conserved motifs may control the forward trafficking of the complexes and their accumulation in the Golgi. Our findings indicate that xylan synthesis in grasses may involve a new regulatory mechanism linking complex assembly with forward trafficking and provide new insights that advance our understanding of xylan biosynthesis and regulation in plants.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Environmental and Plant Biology (N.J., R.E.W., A.S., R.W., A.F.) and Department of Chemistry and Biochemistry (M.H.), Ohio University, Athens, Ohio 45701
| | - Richard E Wiemels
- Department of Environmental and Plant Biology (N.J., R.E.W., A.S., R.W., A.F.) and Department of Chemistry and Biochemistry (M.H.), Ohio University, Athens, Ohio 45701
| | - Aaron Soya
- Department of Environmental and Plant Biology (N.J., R.E.W., A.S., R.W., A.F.) and Department of Chemistry and Biochemistry (M.H.), Ohio University, Athens, Ohio 45701
| | - Rebekah Whitley
- Department of Environmental and Plant Biology (N.J., R.E.W., A.S., R.W., A.F.) and Department of Chemistry and Biochemistry (M.H.), Ohio University, Athens, Ohio 45701
| | - Michael Held
- Department of Environmental and Plant Biology (N.J., R.E.W., A.S., R.W., A.F.) and Department of Chemistry and Biochemistry (M.H.), Ohio University, Athens, Ohio 45701
| | - Ahmed Faik
- Department of Environmental and Plant Biology (N.J., R.E.W., A.S., R.W., A.F.) and Department of Chemistry and Biochemistry (M.H.), Ohio University, Athens, Ohio 45701
| |
Collapse
|
57
|
Abstract
Protein glycosylation is an essential co- and post-translational modification of secretory and membrane proteins in all eukaryotes. The initial steps of N-glycosylation and N-glycan processing are highly conserved between plants, mammals and yeast. In contrast, late N-glycan maturation steps in the Golgi differ significantly in plants giving rise to complex N-glycans with β1,2-linked xylose, core α1,3-linked fucose and Lewis A-type structures. While the essential role of N-glycan modifications on distinct mammalian glycoproteins is already well documented, we have only begun to decipher the biological function of this ubiquitous protein modification in different plant species. In this review, I focus on the biosynthesis and function of different protein N-linked glycans in plants. Special emphasis is given on glycan-mediated quality control processes in the ER and on the biological role of characteristic complex N-glycan structures.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
58
|
Spahn PN, Hansen AH, Hansen HG, Arnsdorf J, Kildegaard HF, Lewis NE. A Markov chain model for N-linked protein glycosylation--towards a low-parameter tool for model-driven glycoengineering. Metab Eng 2016; 33:52-66. [PMID: 26537759 PMCID: PMC5031499 DOI: 10.1016/j.ymben.2015.10.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/09/2015] [Accepted: 10/20/2015] [Indexed: 11/19/2022]
Abstract
Glycosylation is a critical quality attribute of most recombinant biotherapeutics. Consequently, drug development requires careful control of glycoforms to meet bioactivity and biosafety requirements. However, glycoengineering can be extraordinarily difficult given the complex reaction networks underlying glycosylation and the vast number of different glycans that can be synthesized in a host cell. Computational modeling offers an intriguing option to rationally guide glycoengineering, but the high parametric demands of current modeling approaches pose challenges to their application. Here we present a novel low-parameter approach to describe glycosylation using flux-balance and Markov chain modeling. The model recapitulates the biological complexity of glycosylation, but does not require user-provided kinetic information. We use this method to predict and experimentally validate glycoprofiles on EPO, IgG as well as the endogenous secretome following glycosyltransferase knock-out in different Chinese hamster ovary (CHO) cell lines. Our approach offers a flexible and user-friendly platform that can serve as a basis for powerful computational engineering efforts in mammalian cell factories for biopharmaceutical production.
Collapse
Affiliation(s)
- Philipp N Spahn
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, United States; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, La Jolla, CA 92093, United States
| | - Anders H Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Henning G Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Johnny Arnsdorf
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Helene F Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
59
|
Bovine Herpesvirus 4 Modulates Its β-1,6-N-Acetylglucosaminyltransferase Activity through Alternative Splicing. J Virol 2015; 90:2039-51. [PMID: 26656682 DOI: 10.1128/jvi.01722-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/01/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Carbohydrates play major roles in host-virus interactions. It is therefore not surprising that, during coevolution with their hosts, viruses have developed sophisticated mechanisms to hijack for their profit different pathways of glycan synthesis. Thus, the Bo17 gene of Bovine herpesvirus 4 (BoHV-4) encodes a homologue of the cellular core 2 protein β-1,6-N-acetylglucosaminyltransferase-mucin type (C2GnT-M), which is a key player for the synthesis of complex O-glycans. Surprisingly, we show in this study that, as opposed to what is observed for the cellular enzyme, two different mRNAs are encoded by the Bo17 gene of all available BoHV-4 strains. While the first one corresponds to the entire coding sequence of the Bo17 gene, the second results from the splicing of a 138-bp intron encoding critical residues of the enzyme. Antibodies generated against the Bo17 C terminus showed that the two forms of Bo17 are expressed in BoHV-4 infected cells, but enzymatic assays revealed that the spliced form is not active. In order to reveal the function of these two forms, we then generated recombinant strains expressing only the long or the short form of Bo17. Although we did not highlight replication differences between these strains, glycomic analyses and lectin neutralization assays confirmed that the splicing of the Bo17 gene gives the potential to BoHV-4 to fine-tune the global level of core 2 branching activity in the infected cell. Altogether, these results suggest the existence of new mechanisms to regulate the activity of glycosyltransferases from the Golgi apparatus. IMPORTANCE Viruses are masters of adaptation that hijack cellular pathways to allow their growth. Glycans play a central role in many biological processes, and several studies have highlighted mechanisms by which viruses can affect glycosylation. Glycan synthesis is a nontemplate process regulated by the availability of key glycosyltransferases. Interestingly, bovine herpesvirus 4 encodes one such enzyme which is a key enzyme for the synthesis of complex O-glycans. In this study, we show that, in contrast to cellular homologues, this virus has evolved to alternatively express two proteins from this gene. While the first one is enzymatically active, the second results from the alternative splicing of the region encoding the catalytic site of the enzyme. We postulate that this regulatory mechanism could allow the virus to modulate the synthesis of some particular glycans for function at the location and/or the moment of infection.
Collapse
|
60
|
Krüger AT, Engel J, Buettner FFR, Routier FH. Aspergillus fumigatus Cap59-like protein A is involved in α1,3-mannosylation of GPI-anchors. Glycobiology 2015; 26:30-8. [PMID: 26369907 DOI: 10.1093/glycob/cwv078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/09/2015] [Indexed: 01/06/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) attaches a variety of eukaryotic proteins to the outer leaflet of the plasma membrane. In fungi, these proteins may also be transferred to the cell wall, to which they are covalently linked via a remnant of the GPI-anchor. They play crucial physiological roles in cell-cell interactions, adhesion or cell wall biogenesis. The biosynthesis of GPI-anchors in the endoplasmic reticulum, their transfer to proteins, early remodelling and transport to the Golgi apparatus has been fairly well described. In contrast, almost nothing is known about the genes and enzymes involved in adding glycan side chains to GPI after protein attachment. In this study, we characterized an α1,3-mannosyltransferase involved in maturation of GPI-anchors from the pathogenic fungus Aspergillus fumigatus. This enzyme shows homology to Cryptococcus neoformans Cap59p, a putative glycosyltransferase involved in capsule formation and virulence, and was thus named Cap59-like protein A (ClpA). Targeted deletion of the clpA gene in A. fumigatus led to absence of α1,3-mannose from mature GPI-anchors. The enzyme was further located to the Golgi-like apparatus of A. fumigatus and was shown to be active in the yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Anke Tina Krüger
- Department of Cellular Chemistry OE 4330, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jakob Engel
- Department of Cellular Chemistry OE 4330, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Falk F R Buettner
- Department of Cellular Chemistry OE 4330, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Françoise H Routier
- Department of Cellular Chemistry OE 4330, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
61
|
Chugh S, Gnanapragassam VS, Jain M, Rachagani S, Ponnusamy MP, Batra SK. Pathobiological implications of mucin glycans in cancer: Sweet poison and novel targets. Biochim Biophys Acta Rev Cancer 2015; 1856:211-25. [PMID: 26318196 DOI: 10.1016/j.bbcan.2015.08.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/15/2015] [Accepted: 08/25/2015] [Indexed: 12/13/2022]
Abstract
Mucins are large glycoproteins expressed on the epithelia that provide a protective barrier against harsh insults from toxins and pathogenic microbes. These glycoproteins are classified primarily as being secreted and membrane-bound; both forms are involved in pathophysiological functions including inflammation and cancer. The high molecular weight of mucins is attributed to their large polypeptide backbone that is extensively covered by glycan moieties that modulate the function of mucins and, hence, play an important role in physiological functions. Deregulation of glycosylation machinery during malignant transformation results in altered mucin glycosylation. This review describes the functional implications and pathobiological significance of altered mucin glycosylation in cancer. Further, this review delineates various factors such as glycosyltransferases and tumor microenvironment that contribute to dysregulation of mucin glycosylation during cancer. Finally, this review discusses the scope of mucin glycan epitopes as potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Seema Chugh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Vinayaga S Gnanapragassam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
62
|
Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:473-510. [PMID: 25621663 DOI: 10.1146/annurev-pathol-012414-040438] [Citation(s) in RCA: 624] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neoplastic transformation results in a wide variety of cellular alterations that impact the growth, survival, and general behavior of affected tissue. Although genetic alterations underpin the development of neoplastic disease, epigenetic changes can exert an equally significant effect on neoplastic transformation. Among neoplasia-associated epigenetic alterations, changes in cellular glycosylation have recently received attention as a key component of neoplastic progression. Alterations in glycosylation appear to not only directly impact cell growth and survival but also facilitate tumor-induced immunomodulation and eventual metastasis. Many of these changes may support neoplastic progression, and unique alterations in tumor-associated glycosylation may also serve as a distinct feature of cancer cells and therefore provide novel diagnostic and even therapeutic targets.
Collapse
|
63
|
Petrosyan A, Ali MF, Cheng PW. Keratin 1 plays a critical role in golgi localization of core 2 N-acetylglucosaminyltransferase M via interaction with its cytoplasmic tail. J Biol Chem 2015; 290:6256-69. [PMID: 25605727 PMCID: PMC4358263 DOI: 10.1074/jbc.m114.618702] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/14/2015] [Indexed: 11/06/2022] Open
Abstract
Core 2 N-acetylglucosaminyltransferase 2/M (C2GnT-M) synthesizes all three β6GlcNAc branch structures found in secreted mucins. Loss of C2GnT-M leads to development of colitis and colon cancer. Recently we have shown that C2GnT-M targets the Golgi at the Giantin site and is recycled by binding to non-muscle myosin IIA, a motor protein, via the cytoplasmic tail (CT). But how this enzyme is retained in the Golgi is not known. Proteomics analysis identifies keratin type II cytoskeletal 1 (KRT1) as a protein pulled down with anti-c-Myc antibody or C2GnT-M CT from the lysate of Panc1 cells expressing bC2GnT-M tagged with c-Myc. Yeast two-hybrid analysis shows that the rod domain of KRT1 interacts directly with the WKR(6) motif in the C2GnT-M CT. Knockdown of KRT1 does not affect Golgi morphology but increases the interaction of C2GnT-M with non-muscle myosin IIA and its transportation to the endoplasmic reticulum, ubiquitination, and degradation. During Golgi recovery after brefeldin A treatment, C2GnT-M forms a complex with Giantin before KRT1, demonstrating CT-mediated sequential events of Golgi targeting and retention of C2GnT-M. In HeLa cells transiently expressing C2GnT-M-GFP, knockdown of KRT1 does not affect Golgi morphology but leaves C2GnT-M outside of the Golgi, resulting in the formation of sialyl-T antigen. Interaction of C2GnT-M and KRT1 was also detected in the goblet cells of human colon epithelial tissue and primary culture of colonic epithelial cells. The results indicate that glycosylation and thus the function of glycoconjugates can be regulated by a protein that helps retain a glycosyltransferase in the Golgi.
Collapse
Affiliation(s)
- Armen Petrosyan
- From the VA Nebraska-Western Iowa Health Care System, Department of Research Service, Omaha, Nebraska 68105 and Department of Biochemistry and Molecular Biology, College of Medicine and
| | - Mohamed F Ali
- From the VA Nebraska-Western Iowa Health Care System, Department of Research Service, Omaha, Nebraska 68105 and Department of Biochemistry and Molecular Biology, College of Medicine and
| | - Pi-Wan Cheng
- From the VA Nebraska-Western Iowa Health Care System, Department of Research Service, Omaha, Nebraska 68105 and Department of Biochemistry and Molecular Biology, College of Medicine and Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
64
|
Subcellular Targeting of Proteins Involved in Modification of Plant N- and O-Glycosylation. Methods Mol Biol 2015; 1321:249-67. [PMID: 26082228 DOI: 10.1007/978-1-4939-2760-9_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Plants are attractive expression hosts for the production of recombinant glycoprotein therapeutics. The quality and efficiency of these biopharmaceuticals are very often influenced by the glycosylation profile. Consequently, approaches are needed that enable the production of recombinant glycoproteins with customized and homogenous N- and O-glycan structures. Here, we describe convenient tools that allow targeting and retention of glycan-modifying enzymes in the early secretory pathway of plants. These protocols can be used to fine-tune the subcellular localization of glycosyltransferases and glycosidases in plants and consequently to increase the homogeneity of glycosylation on recombinant glycoproteins.
Collapse
|
65
|
Lund CH, Bromley JR, Stenbæk A, Rasmussen RE, Scheller HV, Sakuragi Y. A reversible Renilla luciferase protein complementation assay for rapid identification of protein-protein interactions reveals the existence of an interaction network involved in xyloglucan biosynthesis in the plant Golgi apparatus. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:85-97. [PMID: 25326916 PMCID: PMC4265154 DOI: 10.1093/jxb/eru401] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A growing body of evidence suggests that protein-protein interactions (PPIs) occur amongst glycosyltransferases (GTs) required for plant glycan biosynthesis (e.g. cell wall polysaccharides and N-glycans) in the Golgi apparatus, and may control the functions of these enzymes. However, identification of PPIs in the endomembrane system in a relatively fast and simple fashion is technically challenging, hampering the progress in understanding the functional coordination of the enzymes in Golgi glycan biosynthesis. To solve the challenges, we adapted and streamlined a reversible Renilla luciferase protein complementation assay (Rluc-PCA), originally reported for use in human cells, for transient expression in Nicotiana benthamiana. We tested Rluc-PCA and successfully identified luminescence complementation amongst Golgi-localizing GTs known to form a heterodimer (GAUT1 and GAUT7) and those which homooligomerize (ARAD1). In contrast, no interaction was shown between negative controls (e.g. GAUT7, ARAD1, IRX9). Rluc-PCA was used to investigate PPIs amongst Golgi-localizing GTs involved in biosynthesis of hemicelluloses. Although no PPI was identified among six GTs involved in xylan biosynthesis, Rluc-PCA confirmed three previously proposed interactions and identified seven novel PPIs amongst GTs involved in xyloglucan biosynthesis. Notably, three of the novel PPIs were confirmed by a yeast-based split-ubiquitin assay. Finally, Gateway-enabled expression vectors were generated, allowing rapid construction of fusion proteins to the Rluc reporters and epitope tags. Our results show that Rluc-PCA coupled with transient expression in N. benthamiana is a fast and versatile method suitable for analysis of PPIs between Golgi resident proteins in an easy and mid-throughput fashion in planta.
Collapse
Affiliation(s)
- Christian H Lund
- University of Copenhagen, Department of Plant Biology and Biotechnology, Frederiksberg, DK-1871, Denmark
| | - Jennifer R Bromley
- University of Copenhagen, Department of Plant Biology and Biotechnology, Frederiksberg, DK-1871, Denmark Joint BioEnergy Institute, Feedstocks Division, Emeryville, CA 94608, USA Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anne Stenbæk
- University of Copenhagen, Department of Plant Biology and Biotechnology, Frederiksberg, DK-1871, Denmark
| | - Randi E Rasmussen
- University of Copenhagen, Department of Plant Biology and Biotechnology, Frederiksberg, DK-1871, Denmark
| | - Henrik V Scheller
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, CA 94608, USA Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Yumiko Sakuragi
- University of Copenhagen, Department of Plant Biology and Biotechnology, Frederiksberg, DK-1871, Denmark
| |
Collapse
|
66
|
Schoberer J, Liebminger E, Vavra U, Veit C, Castilho A, Dicker M, Maresch D, Altmann F, Hawes C, Botchway SW, Strasser R. The transmembrane domain of N -acetylglucosaminyltransferase I is the key determinant for its Golgi subcompartmentation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:809-22. [PMID: 25230686 PMCID: PMC4282539 DOI: 10.1111/tpj.12671] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/28/2014] [Accepted: 09/11/2014] [Indexed: 05/18/2023]
Abstract
Golgi-resident type-II membrane proteins are asymmetrically distributed across the Golgi stack. The intrinsic features of the protein that determine its subcompartment-specific concentration are still largely unknown. Here, we used a series of chimeric proteins to investigate the contribution of the cytoplasmic, transmembrane and stem region of Nicotiana benthamiana N-acetylglucosaminyltransferase I (GnTI) for its cis/medial-Golgi localization and for protein-protein interaction in the Golgi. The individual GnTI protein domains were replaced with those from the well-known trans-Golgi enzyme α2,6-sialyltransferase (ST) and transiently expressed in Nicotiana benthamiana. Using co-localization analysis and N-glycan profiling, we show that the transmembrane domain of GnTI is the major determinant for its cis/medial-Golgi localization. By contrast, the stem region of GnTI contributes predominately to homomeric and heteromeric protein complex formation. Importantly, in transgenic Arabidopsis thaliana, a chimeric GnTI variant with altered sub-Golgi localization was not able to complement the GnTI-dependent glycosylation defect. Our results suggest that sequence-specific features in the transmembrane domain of GnTI account for its steady-state distribution in the cis/medial-Golgi in plants, which is a prerequisite for efficient N-glycan processing in vivo.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Eva Liebminger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Christiane Veit
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Alexandra Castilho
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Martina Dicker
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Daniel Maresch
- Department of Chemistry, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Chris Hawes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes UniversityHeadington, Oxford, OX3 0BP, UK
| | - Stanley W Botchway
- Research Complex at Harwell, Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton LaboratoryHarwell-Oxford, Didcot, OX11 0QX, UK
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| |
Collapse
|
67
|
Ito Y, Uemura T, Nakano A. Formation and maintenance of the Golgi apparatus in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:221-87. [PMID: 24725428 DOI: 10.1016/b978-0-12-800180-6.00006-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Golgi apparatus plays essential roles in intracellular trafficking, protein and lipid modification, and polysaccharide synthesis in eukaryotic cells. It is well known for its unique stacked structure, which is conserved among most eukaryotes. However, the mechanisms of biogenesis and maintenance of the structure, which are deeply related to ER-Golgi and intra-Golgi transport systems, have long been mysterious. Now having extremely powerful microscopic technologies developed for live-cell imaging, the plant Golgi apparatus provides an ideal system to resolve the question. The plant Golgi apparatus has unique features that are not conserved in other kingdoms, which will also give new insights into the Golgi functions in plant life. In this review, we will summarize the features of the plant Golgi apparatus and transport mechanisms around it, with a focus on recent advances in Golgi biogenesis by live imaging of plants cells.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan.
| |
Collapse
|
68
|
Geisler C, Mabashi-Asazuma H, Kuo CW, Khoo KH, Jarvis DL. Engineering β1,4-galactosyltransferase I to reduce secretion and enhance N-glycan elongation in insect cells. J Biotechnol 2014; 193:52-65. [PMID: 25462875 DOI: 10.1016/j.jbiotec.2014.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 12/13/2022]
Abstract
β1,4-galactosyltransferase I (B4GALT1) is a Golgi-resident enzyme that elongates glycoprotein glycans, but a subpopulation of this enzyme is secreted following proteolytic cleavage in its stem domain. We hypothesized that engineering B4GALT1 to block cleavage and secretion would enhance its retention and, therefore, its function. To test this hypothesis, we replaced the cytoplasmic/transmembrane/stem (CTS) domains of B4GALT1 with those from human α1,3-fucosyltransferase 7 (FUT7), which is not cleaved and secreted. Expression of FUT7-CTS-B4GALT1 in insect cells produced lower levels of secreted and higher levels of intracellular B4GALT1 activity than the native enzyme. We also noted that the B4GALT1 used in our study had a leucine at position 282, whereas all other animal B4GALT1 sequences have an aromatic amino acid at this position. Thus, we examined the combined impact of changing the CTS domains and the amino acid at position 282 on intracellular B4GALT1 activity levels and N-glycan processing in insect cells. The results demonstrated a correlation between the levels of intracellular B4GALT1 activity and terminally galactosylated N-glycans, N-glycan branching, the appearance of hybrid structures, and reduced core fucosylation. Thus, engineering B4GALT1 to reduce its cleavage and secretion is an approach that can be used to enhance N-glycan elongation in insect cells.
Collapse
Affiliation(s)
- Christoph Geisler
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA; GlycoBac, LLC, Laramie, WY 82072, USA
| | | | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica 128, Nankang, Taipei 115, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica 128, Nankang, Taipei 115, Taiwan
| | - Donald L Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA; GlycoBac, LLC, Laramie, WY 82072, USA.
| |
Collapse
|
69
|
Eckert ESP, Reckmann I, Hellwig A, Röhling S, El-Battari A, Wieland FT, Popoff V. Golgi phosphoprotein 3 triggers signal-mediated incorporation of glycosyltransferases into coatomer-coated (COPI) vesicles. J Biol Chem 2014; 289:31319-29. [PMID: 25246532 PMCID: PMC4223332 DOI: 10.1074/jbc.m114.608182] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Indexed: 12/30/2022] Open
Abstract
Newly synthesized membrane and secreted proteins undergo a series of posttranslational modifications in the Golgi apparatus, including attachment of carbohydrate moieties. The final structure of so-formed glycans is determined by the order of execution of the different glycosylation steps, which seems intimately related to the spatial distribution of glycosyltransferases and glycosyl hydrolases within the Golgi apparatus. How cells achieve an accurate localization of these enzymes is not completely understood but might involve dynamic processes such as coatomer-coated (COPI) vesicle-mediated trafficking. In yeast, this transport is likely to be regulated by vacuolar protein sorting 74 (Vps74p), a peripheral Golgi protein able to interact with COPI coat as well as with a binding motif present in the cytosolic tails of some mannosyltransferases. Recently, Golgi phosphoprotein 3 (GOLPH3), the mammalian homolog of Vps74, has been shown to control the Golgi localization of core 2 N-acetylglucosamine-transferase 1. Here, we highlight a role of GOLPH3 in the spatial localization of α-2,6-sialyltransferase 1. We show, for the first time, that GOLPH3 supports incorporation of both core 2 N-acetylglucosamine-transferase 1 and α-2,6-sialyltransferase 1 into COPI vesicles. Depletion of GOLPH3 altered the subcellular localization of these enzymes. In contrast, galactosyltransferase, an enzyme that does not interact with GOLPH3, was neither incorporated into COPI vesicles nor was dependent on GOLPH3 for proper localization.
Collapse
Affiliation(s)
- Elias S P Eckert
- From the Heidelberg University Biochemistry Center (BZH), INF 328 and
| | - Ingeborg Reckmann
- From the Heidelberg University Biochemistry Center (BZH), INF 328 and
| | - Andrea Hellwig
- Interdisciplinary Center for Neurosciences (IZN), INF 364, Heidelberg University, 69120 Heidelberg, Germany and
| | - Simone Röhling
- From the Heidelberg University Biochemistry Center (BZH), INF 328 and
| | - Assou El-Battari
- INSERM UMR 911, Aix-Marseille Université, Centre de Recherche en Oncobiologie et Oncopharmacologie (CR02), 13284 Marseille, France
| | - Felix T Wieland
- From the Heidelberg University Biochemistry Center (BZH), INF 328 and
| | - Vincent Popoff
- From the Heidelberg University Biochemistry Center (BZH), INF 328 and
| |
Collapse
|
70
|
Hassinen A, Kellokumpu S. Organizational interplay of Golgi N-glycosyltransferases involves organelle microenvironment-dependent transitions between enzyme homo- and heteromers. J Biol Chem 2014; 289:26937-26948. [PMID: 25135644 DOI: 10.1074/jbc.m114.595058] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glycosylation of proteins and lipids takes place in the Golgi apparatus by the consecutive actions of functionally distinct glycosidases and glycosyltransferases. Current evidence indicates that they function as enzyme homomers and/or heteromers in the living cell. Here we investigate their organizational interplay and show that glycosyltransferase homomers are assembled in the endoplasmic reticulum. Upon transport to the Golgi, the majority of homomers are disassembled to allow the formation of enzyme heteromers between sequentially acting medial-Golgi enzymes GnT-I and GnT-II or trans-Golgi enzymes GalT-I and ST6Gal-I. This transition is driven by the acidic Golgi environment, as it was markedly inhibited by raising Golgi luminal pH with chloroquine. Our FRAP (fluorescence recovery after photobleaching) measurements showed that the complexes remain mobile Golgi membrane constituents that can relocate to the endoplasmic reticulum or to the scattered Golgi mini-stacks upon brefeldin A or nocodazole treatment, respectively. During this relocation, heteromers undergo a reverse transition back to enzyme homomers. These data unveil an unprecedented organizational interplay between Golgi N-glycosyltransferases that involves dynamic and organelle microenvironment-driven transitions between enzyme homomers and heteromers during their trafficking within the early secretory compartments.
Collapse
Affiliation(s)
- Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90220, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90220, Oulu, Finland.
| |
Collapse
|
71
|
Gao C, Cai Y, Wang Y, Kang BH, Aniento F, Robinson DG, Jiang L. Retention mechanisms for ER and Golgi membrane proteins. TRENDS IN PLANT SCIENCE 2014; 19:508-15. [PMID: 24794130 DOI: 10.1016/j.tplants.2014.04.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/27/2014] [Accepted: 04/03/2014] [Indexed: 05/18/2023]
Abstract
Unless there are mechanisms to selectively retain membrane proteins in the endoplasmic reticulum (ER) or in the Golgi apparatus, they automatically proceed downstream to the plasma or vacuole membranes. Two types of coat protein complex I (COPI)-interacting motifs in the cytosolic tails of membrane proteins seem to facilitate membrane retention in the early secretory pathway of plants: a dilysine (KKXX) motif (which is typical of p24 proteins) for the ER and a KXE/D motif (which occurs in the Arabidopsis endomembrane protein EMP12) for the Golgi apparatus. The KXE/D motif is highly conserved in all eukaryotic EMPs and is additionally present in hundreds of other proteins of unknown subcellular localization and function. This novel signal may represent a new general mechanism for Golgi targeting and the retention of polytopic integral membrane proteins.
Collapse
Affiliation(s)
- Caiji Gao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yejun Wang
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N5E3, Canada
| | - Byung-Ho Kang
- Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Valencia, Spain
| | - David G Robinson
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
72
|
Strasser R, Altmann F, Steinkellner H. Controlled glycosylation of plant-produced recombinant proteins. Curr Opin Biotechnol 2014; 30:95-100. [PMID: 25000187 DOI: 10.1016/j.copbio.2014.06.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 06/11/2014] [Accepted: 06/11/2014] [Indexed: 01/01/2023]
Abstract
Despite their recognized importance for therapeutic proteins, the production of structurally defined glycans is still a challenging issue. However, an increased understanding of glycosylation pathways, recent advances in analytical tools, and emerging technologies for subcellular targeting using chimeric glycosyltransferases are facilitating the rational design of new glycan biosynthetic pathways. Plants are particularly amenable to glyco-engineering approaches and thus they are increasingly being used for the production of recombinant proteins. Here we summarize the main achievements in the field of in planta glyco-engineering for the production of therapeutically relevant proteins.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, A-1190 Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, A-1190 Vienna, Austria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, A-1190 Vienna, Austria.
| |
Collapse
|
73
|
Mislocalization of phosphotransferase as a cause of mucolipidosis III αβ. Proc Natl Acad Sci U S A 2014; 111:3532-7. [PMID: 24550498 DOI: 10.1073/pnas.1401417111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The lysosomal storage disorder mucolipidosis III αβ is caused by mutations in the αβ subunits of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (phosphotransferase). This Golgi-localized enzyme mediates the first step in the synthesis of the mannose 6-phosphate recognition marker on lysosomal acid hydrolases, and loss of function results in impaired lysosomal targeting of these acid hydrolases and decreased lysosomal degradation. Here we show that two patient missense mutations, Lys4Gln and Ser15Tyr, in the N-terminal cytoplasmic tail of the α subunit of phosphotransferase impair retention of the catalytically active enzyme in the Golgi complex. This results in mistargeting of the mutant phosphotransferases to lysosomes, where they are degraded, or to the cell surface and release into the medium. The finding that mislocalization of active phosphotransferase is the basis for mucolipidosis III αβ in a subset of patients shows the importance of single residues in the cytoplasmic tail of a Golgi-resident protein for localization to this compartment.
Collapse
|
74
|
Holgersson J, Rydberg L, Breimer ME. Molecular deciphering of the ABO system as a basis for novel diagnostics and therapeutics in ABO incompatible transplantation. Int Rev Immunol 2013; 33:174-94. [PMID: 24350817 DOI: 10.3109/08830185.2013.857408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years ABO incompatible kidney transplantation (KTx) has become a more or less clinical routine procedure with graft and patient survival similar to those of ABO compatible transplants. Antigen-specific immunoadsorption (IA) for anti-A and anti-B antibody removal constitutes in many centers an important part of the treatment protocol. ABO antibody titration by hemagglutination is guiding the treatment; both if the recipient can be transplanted as well as in cases of suspected rejections if antibody removal should be performed. Despite the overall success of ABO incompatible KTx, there is still room for improvements and an extension of the technology to include other solid organs. Based on an increased understanding of the structural complexity and tissue distribution of ABH antigens and the fine epitope specificity of the ABO antibody repertoire, improved IA matrices and ABO antibody diagnostics should be developed. Furthermore, understanding the molecular mechanisms behind accommodation of ABO incompatible renal allografts could make it possible to induce long-term allograft acceptance also in human leukocyte antigen (HLA) sensitized recipients and, perhaps, also make clinical xenotransplantation possible.
Collapse
Affiliation(s)
- Jan Holgersson
- 1Department of Clinical Chemistry and Transfusion Medicine and
| | | | | |
Collapse
|
75
|
Kaur S, Kumar S, Momi N, Sasson AR, Batra SK. Mucins in pancreatic cancer and its microenvironment. Nat Rev Gastroenterol Hepatol 2013; 10:607-20. [PMID: 23856888 PMCID: PMC3934431 DOI: 10.1038/nrgastro.2013.120] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer remains a lethal malignancy with poor prognosis owing to therapeutic resistance, frequent recurrence and the absence of treatment strategies that specifically target the tumour and its supporting stroma. Deregulated cell-surface proteins drive neoplastic transformations and are envisioned to mediate crosstalk between the tumour and its microenvironment. Emerging studies have elaborated on the role of mucins in diverse biological functions, including enhanced tumorigenicity, invasiveness, metastasis and drug resistance through their characteristic O-linked and N-linked oligosaccharides (glycans), extended structures and unique domains. Multiple mucin domains differentially interact and regulate different components of the tumour microenvironment. This Review discusses: the expression pattern of various mucins in the pancreas under healthy, inflammatory, and cancerous conditions; the context-dependent attributes of mucins that differ under healthy and pathological conditions; the contribution of the tumour microenvironment in pancreatic cancer development and/or progression; diagnostic and/or prognostic efficacy of mucins; and mucin-based therapeutic strategies. Overall, this information should help to delineate the intricacies of pancreatic cancer by exploring the family of mucins, which, through various mechanisms in both tumour cells and the microenvironment, worsen disease outcome.
Collapse
Affiliation(s)
- Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Centre, 985870 Nebraska Medical Centre, Omaha, NE 68198-5870, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Centre, 985870 Nebraska Medical Centre, Omaha, NE 68198-5870, USA
| | - Navneet Momi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Centre, 985870 Nebraska Medical Centre, Omaha, NE 68198-5870, USA
| | - Aaron R. Sasson
- Department of Surgery, University of Nebraska Medical Centre, 985870 Nebraska Medical Centre, Omaha, NE 68198-5870, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Centre, 985870 Nebraska Medical Centre, Omaha, NE 68198-5870, USA
| |
Collapse
|
76
|
Wang X, Wang D, Jing P, Wu Y, Xia Y, Chen M, Hong L. A novel Golgi retention signal RPWS for tumor suppressor UBIAD1. PLoS One 2013; 8:e72015. [PMID: 23977195 PMCID: PMC3747158 DOI: 10.1371/journal.pone.0072015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 07/10/2013] [Indexed: 11/18/2022] Open
Abstract
UBIAD1 plays critical roles in physiology including vitamin K and CoQ10 biosynthesis as well as pathophysiology including dyslipimedia-induced SCD (Schnyder's corneal dystrophy), Parkinson's disease, cardiovascular disease and bladder carcinoma. Since the subcellular localization of UBIAD1 varies in different cell types, characterization of the exact subcellular localization of UBIAD1 in specific human disease is vital for understanding its molecular mechanism. As UBIAD1 suppresses bladder carcinoma, we studied its subcellular localization in human bladder carcinoma cell line T24. Since fluorescent images of UBIAD1-EGFP in T24, human prostate cancer cell line PC-3, human embryonic kidney cell line HEK293 and human hepatocyte cell line L02 are similar, these four cell lines were used for present study. Using a combination of fluorescent microscopy and immunohistochemistry, it was found that UBIAD1 localized on the Golgi and endoplasmic reticulum (ER), but not on the plasma membrane, of T24 and HEK293 cells. Using scanning electron microscopy and western blot analysis, we found that UBIAD1 is enriched in the Golgi fraction extracted from the L02 cells, verifying the Golgi localization of UBAID1. Site-directed mutagenesis showed that the RPWS motif, which forms an Arginine finger on the UBIAD1 N terminus, serves as the Golgi retention signal. With both cycloheximide and brefeldin A inhibition assays, it was shown that UBIAD1 may be transported from the endoplasmic reticulum (ER) to the Golgi by a COPII-mediated mechanism. Based upon flow cytometry analysis, it is shown that mutation of the RPWS motif reduced the UBIAD1-induced apoptosis of T24 cells, indicating that the proper Golgi localization of UBIAD1 influences its tumor suppressant activity. This study paves the way for further understanding the molecular mechanism of UBIAD1 in human diseases.
Collapse
Affiliation(s)
- Xian Wang
- Department of Genetics and Developmental Biology, College of Life Science and Technology,Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dangfeng Wang
- Department of Genetics and Developmental Biology, College of Life Science and Technology,Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pan Jing
- Department of Genetics and Developmental Biology, College of Life Science and Technology,Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuangan Wu
- Department of Genetics and Developmental Biology, College of Life Science and Technology,Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanzhi Xia
- Department of Genetics and Developmental Biology, College of Life Science and Technology,Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Maorong Chen
- Department of Biophysics, College of Life Science and Technology,Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Hong
- Department of Genetics and Developmental Biology, College of Life Science and Technology,Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
77
|
Wu YM, Liu CH, Huang MJ, Lai HS, Lee PH, Hu RH, Huang MC. C1GALT1 enhances proliferation of hepatocellular carcinoma cells via modulating MET glycosylation and dimerization. Cancer Res 2013; 73:5580-90. [PMID: 23832667 DOI: 10.1158/0008-5472.can-13-0869] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Altered glycosylation is a hallmark of cancer. The core 1 β1,3-galactosyltransferase (C1GALT1) controls the formation of mucin-type O-glycans, far overlooked and underestimated in cancer. Here, we report that C1GALT1 mRNA and protein are frequently overexpressed in hepatocellular carcinoma tumors compared with nontumor liver tissues, where it correlates with advanced tumor stage, metastasis, and poor survival. Enforced expression of C1GALT1 was sufficient to enhance cell proliferation, whereas RNA interference-mediated silencing of C1GALT1 was sufficient to suppress cell proliferation in vitro and in vivo. Notably, C1GALT1 attenuation also suppressed hepatocyte growth factor (HGF)-mediated phosphorylation of the MET kinase in hepatocellular carcinoma cells, whereas enforced expression of C1GALT1 enhanced MET phosphorylation. MET blockade with PHA665752 inhibited C1GALT1-enhanced cell viability. In support of these results, we found that the expression level of phospho-MET and C1GALT1 were associated in primary hepatocellular carcinoma tissues. Mechanistic investigations showed that MET was decorated with O-glycans, as revealed by binding to Vicia villosa agglutinin and peanut agglutinin. Moreover, C1GALT1 modified the O-glycosylation of MET, enhancing its HGF-induced dimerization and activation. Together, our results indicate that C1GALT1 overexpression in hepatocellular carcinoma activates HGF signaling via modulation of MET O-glycosylation and dimerization, providing new insights into how O-glycosylation drives hepatocellular carcinoma pathogenesis.
Collapse
Affiliation(s)
- Yao-Ming Wu
- Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
78
|
Donohoe BS, Kang BH, Gerl MJ, Gergely ZR, McMichael CM, Bednarek SY, Staehelin LA. Cis-Golgi cisternal assembly and biosynthetic activation occur sequentially in plants and algae. Traffic 2013; 14:551-67. [PMID: 23369235 DOI: 10.1111/tra.12052] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 12/18/2022]
Abstract
The cisternal progression/maturation model of Golgi trafficking predicts that cis-Golgi cisternae are formed de novo on the cis-side of the Golgi. Here we describe structural and functional intermediates of the cis cisterna assembly process in high-pressure frozen algae (Scherffelia dubia, Chlamydomonas reinhardtii) and plants (Arabidopsis thaliana, Dionaea muscipula; Venus flytrap) as determined by electron microscopy, electron tomography and immuno-electron microscopy techniques. Our findings are as follows: (i) The cis-most (C1) Golgi cisternae are generated de novo from cisterna initiators produced by the fusion of 3-5 COPII vesicles in contact with a C2 cis cisterna. (ii) COPII vesicles fuel the growth of the initiators, which then merge into a coherent C1 cisterna. (iii) When a C1 cisterna nucleates its first cisterna initiator it becomes a C2 cisterna. (iv) C2-Cn cis cisternae grow through COPII vesicle fusion. (v) ER-resident proteins are recycled from cis cisternae to the ER via COPIa-type vesicles. (vi) In S. dubia the C2 cisternae are capable of mediating the self-assembly of scale protein complexes. (vii) In plants, ∼90% of native α-mannosidase I localizes to medial Golgi cisternae. (viii) Biochemical activation of cis cisternae appears to coincide with their conversion to medial cisternae via recycling of medial cisterna enzymes. We propose how the different cis cisterna assembly intermediates of plants and algae may actually be related to those present in the ERGIC and in the pre-cis Golgi cisterna layer in mammalian cells.
Collapse
Affiliation(s)
- Bryon S Donohoe
- Molecular Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80306, USA.
| | | | | | | | | | | | | |
Collapse
|
79
|
Moon S, Kim SR, Zhao G, Yi J, Yoo Y, Jin P, Lee SW, Jung KH, Zhang D, An G. Rice glycosyltransferase1 encodes a glycosyltransferase essential for pollen wall formation. PLANT PHYSIOLOGY 2013; 161:663-75. [PMID: 23263792 PMCID: PMC3561011 DOI: 10.1104/pp.112.210948] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/13/2012] [Indexed: 05/21/2023]
Abstract
The pollen wall consists of an exine and an intine. The mechanism underlying its formation is not well understood. Glycosyltransferases catalyze the modification of biological molecules by attaching a single or multiple sugars and play key roles in a wide range of biological processes. We examined the role of GLYCOSYLTRANSFERASE1 (OsGT1) in pollen wall development in rice (Oryza sativa). This gene is highly expressed in mature pollen, and plants containing alleles caused by transfer DNA insertion do not produce homozygous progeny. Reciprocal crosses between OsGT1/osgt1 and the wild type indicated that the mutation leads to a male gametophyte defect. Microscopic analyses revealed that osgt1 pollen developed normally to the pollen mitosis stage but failed to produce mature grains. In osgt1 pollen, intine structure was disrupted. In addition, starch and protein levels were much lower in the mutant grains. Recombinant OsGT1 transferred glucose from UDP-glucose to the third and seventh positions of quercetin, a universal substrate of glycosyltransferases. Consistent with the role of OsGT1, an OsGT1-green fluorescent protein fusion protein was localized to the Golgi apparatus. Taken together, our results suggest that OsGT1 is a Golgi-localized glycosyltransferase essential for intine construction and pollen maturation, providing new insight into male reproductive development.
Collapse
|
80
|
Oikawa A, Lund CH, Sakuragi Y, Scheller HV. Golgi-localized enzyme complexes for plant cell wall biosynthesis. TRENDS IN PLANT SCIENCE 2013; 18:49-58. [PMID: 22925628 DOI: 10.1016/j.tplants.2012.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/13/2012] [Accepted: 07/18/2012] [Indexed: 05/18/2023]
Abstract
The plant cell wall mostly comprises complex glycans, which are synthesized by numerous enzymes located in the Golgi apparatus and plasma membrane. Protein-protein interactions have been shown to constitute an important organizing principle for glycan biosynthetic enzymes in mammals and yeast. Recent genetic and biochemical data also indicate that such interactions could be common in plant cell wall biosynthesis. In this review, we examine the new findings in protein-protein interactions among plant cell wall biosynthetic enzymes and discuss the possibilities for enzyme complexes in the Golgi apparatus. These new insights in the field may contribute to novel strategies for molecular engineering of the cell wall.
Collapse
Affiliation(s)
- Ai Oikawa
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, CA 94608, USA
| | | | | | | |
Collapse
|
81
|
Willnow TE, Andersen OM. Sorting receptor SORLA – a trafficking path to avoid Alzheimer disease. J Cell Sci 2013; 126:2751-60. [DOI: 10.1242/jcs.125393] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Excessive proteolytic breakdown of the amyloid precursor protein (APP) to neurotoxic amyloid β peptides (Aβ) by secretases in the brain is a molecular cause of Alzheimer disease (AD). According to current concepts, the complex route whereby APP moves between the secretory compartment, the cell surface and endosomes to encounter the various secretases determines its processing fate. However, the molecular mechanisms that control the intracellular trafficking of APP in neurons and their contribution to AD remain poorly understood. Here, we describe the functional elucidation of a new sorting receptor SORLA that emerges as a central regulator of trafficking and processing of APP. SORLA interacts with distinct sets of cytosolic adaptors for anterograde and retrograde movement of APP between the trans-Golgi network and early endosomes, thereby restricting delivery of the precursor to endocytic compartments that favor amyloidogenic breakdown. Defects in SORLA and its interacting adaptors result in transport defects and enhanced amyloidogenic processing of APP, and represent important risk factors for AD in patients. As discussed here, these findings uncovered a unique regulatory pathway for the control of neuronal protein transport, and provide clues as to why defects in this pathway cause neurodegenerative disease.
Collapse
|
82
|
Petrosyan A, Ali MF, Cheng PW. Glycosyltransferase-specific Golgi-targeting mechanisms. J Biol Chem 2012; 287:37621-7. [PMID: 22988244 PMCID: PMC3488040 DOI: 10.1074/jbc.c112.403006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/07/2012] [Indexed: 01/20/2023] Open
Abstract
Glycosylation of secreted and membrane-bound mucins is carried out by glycosyltransferases localized to specific Golgi compartments according to the step in which each enzyme participates. However, the Golgi-targeting mechanisms of these enzymes are not clear. Herein, we investigate the Golgi-targeting mechanisms of core 1 β3 galactosyltransferase (C1GalT1) and core 2 β1,6-N-acetylglucosaminyltransferase-2 or mucus type (C2GnT-M), which participate in the early O-glycosylation steps. siRNAs, co-immunoprecipitation, and confocal fluorescence microscopy were employed to identify the golgins involved in the Golgi docking of vesicular complexes (VCs) that carry these two enzymes. We have found that these VCs use different golgins for docking: C2GnT-M-carrying VC (C2GnT-M-VC) utilizes Giantin, whereas C1GalT1-VC employs GM130-GRASP65 complex. However, in the absence of GRASP65, C1GalT1-VC utilizes GM130-Giantin complex. Also, we have found that these VCs are 1.1-1.2 μm in diameter, specific for each enzyme, and independent of coat protein complex II and I (COPII and COPI). These two fluorescently tagged enzymes exhibit different fluorescence recovery times in the Golgi after photobleaching. Thus, novel enzyme-specific Golgi-targeting mechanisms are employed by glycosyltransferases, and multiple Golgi docking strategies are utilized by C1GalT1.
Collapse
Affiliation(s)
- Armen Petrosyan
- From the Department of Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105 and
- the Department of Biochemistry and Molecular Biology, College of Medicine and
| | - Mohamed F. Ali
- From the Department of Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105 and
- the Department of Biochemistry and Molecular Biology, College of Medicine and
| | - Pi-Wan Cheng
- From the Department of Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105 and
- the Department of Biochemistry and Molecular Biology, College of Medicine and
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
83
|
Ali MF, Chachadi VB, Petrosyan A, Cheng PW. Golgi phosphoprotein 3 determines cell binding properties under dynamic flow by controlling Golgi localization of core 2 N-acetylglucosaminyltransferase 1. J Biol Chem 2012; 287:39564-77. [PMID: 23027862 DOI: 10.1074/jbc.m112.346528] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Core 2 N-acetylglucosaminyltransferase 1 (C2GnT1) is a key enzyme participating in the synthesis of core 2-associated sialyl Lewis x (C2-O-sLe(x)), a ligand involved in selectin-mediated leukocyte trafficking and cancer metastasis. To accomplish that, C2GnT1 needs to be localized to the Golgi and this step requires interaction of its cytoplasmic tail (CT) with a protein that has not been identified. Employing C2GnT1 CT as the bait to perform a yeast two-hybrid screen, we have identified Golgi phosphoprotein 3 (GOLPH3) as a principal candidate protein that interacts with C2GnT1 and demonstrated that C2GnT1 binds to GOLPH3 via the LLRRR(9) sequence in the CT. Confocal fluorescence microscopic analysis shows substantial Golgi co-localization of C2GnT1 and GOLPH3. Upon GOLPH3 knockdown, C2GnT1 is found mainly in the endoplasmic reticulum and decorated with complex-type N-glycans, indicating that the enzyme has been transported to the Golgi but is not retained. Also, we have found that a recombinant protein consisting of C2GnT1 CT(1-16)-Leu(17-32)-Gly(33-42)-GFP is localized to the Golgi although the same construct with mutated CT (AAAAA(9)) is not. The data demonstrate that the C2GnT1 CT is necessary and sufficient for Golgi localization of C2GnT1. Furthermore, GOLPH3 knockdown results in reduced synthesis of C2-O-sLe(x) associated with P-selectin glycoprotein ligand-1, reduced cell tethering to and rolling on immobilized P- or E-selectin, and compromised E-selectin-induced activation of spleen tyrosine kinase and cell adhesion to intercellular adhesion molecule-1 under dynamic flow. Our results reveal that GOLPH3 can regulate cell-cell interaction by controlling Golgi retention of C2GnT1.
Collapse
Affiliation(s)
- Mohamed F Ali
- Department of Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, USA
| | | | | | | |
Collapse
|
84
|
Petrosyan A, Ali MF, Verma SK, Cheng H, Cheng PW. Non-muscle myosin IIA transports a Golgi glycosyltransferase to the endoplasmic reticulum by binding to its cytoplasmic tail. Int J Biochem Cell Biol 2012; 44:1153-65. [PMID: 22525330 PMCID: PMC4011501 DOI: 10.1016/j.biocel.2012.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/14/2012] [Accepted: 04/04/2012] [Indexed: 12/18/2022]
Abstract
The mechanism of the Golgi-to-ER transport of Golgi glycosyltransferases is not clear. We utilize a cell line expressing the core 2 N-acetylglucosaminyltransferase-M (C2GnT-M) tagged with c-Myc to explore this mechanism. By immunoprecipitation using anti-c-Myc antibodies coupled with proteomics analysis, we have identified several proteins including non-muscle myosin IIA (NMIIA), heat shock protein (HSP)-70 and ubiquitin activating enzyme E1 in the immunoprecipitate. Employing yeast-two-hybrid analysis and pulldown experiments, we show that the C-terminal region of the NMIIA heavy chain binds to the 1-6 amino acids in the cytoplasmic tail of C2GnT-M. We have found that NMIIA co-localizes with C2GnT-M at the periphery of the Golgi. In addition, inhibition or knockdown of NMIIA prevents the brefeldin A-induced collapse of the Golgi as shown by the inhibition of the migration of both Giantin, a Golgi matrix protein, and C2GnT-M, a Golgi non-matrix protein, to the ER. In contrast, knockdown of HSP70 retains Giantin in the Golgi but moves C2GnT-M to the ER, a process also blocked by inhibition or knockdown of NMIIA. Also, the intracellular distribution of C2GnT-M is not affected by knockdown of β-coatomer protein with or without inhibition of HSPs, suggesting that the Golgi-to-ER trafficking of C2GnT-M does not depend on coat protein complex-I. Further, inhibition of proteasome results in accumulation of ubiquitinated C2GnT-M, suggesting its degradation by proteasome. Therefore, NMIIA and not coat protein complex-I is responsible for transporting the Golgi glycosyltransferase to the ER for proteasomal degradation. The data suggest that NMIIA is involved in the Golgi remodeling.
Collapse
Affiliation(s)
- Armen Petrosyan
- Omaha Western Iowa Health System, VA Service, Department of Veterans Affairs Medical Center, Omaha, NE, USA
| | | | | | | | | |
Collapse
|
85
|
Abstract
Protein glycosylation is a ubiquitous post-translational modification found in all domains of life. Despite their significant complexity in animal systems, glycan structures have crucial biological and physiological roles, from contributions in protein folding and quality control to involvement in a large number of biological recognition events. As a result, they impart an additional level of 'information content' to underlying polypeptide structures. Improvements in analytical methodologies for dissecting glycan structural diversity, along with recent developments in biochemical and genetic approaches for studying glycan biosynthesis and catabolism, have provided a greater understanding of the biological contributions of these complex structures in vertebrates.
Collapse
|
86
|
Ruiz-May E, Kim SJ, Brandizzi F, Rose JKC. The secreted plant N-glycoproteome and associated secretory pathways. FRONTIERS IN PLANT SCIENCE 2012; 3:117. [PMID: 22685447 PMCID: PMC3368311 DOI: 10.3389/fpls.2012.00117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/15/2012] [Indexed: 05/14/2023]
Abstract
N-Glycosylation is a common form of eukaryotic protein post-translational modification, and one that is particularly prevalent in plant cell wall proteins. Large scale and detailed characterization of N-glycoproteins therefore has considerable potential in better understanding the composition and functions of the cell wall proteome, as well as those proteins that reside in other compartments of the secretory pathway. While there have been numerous studies of mammalian and yeast N-glycoproteins, less is known about the population complexity, biosynthesis, structural variation, and trafficking of their plant counterparts. However, technical developments in the analysis of glycoproteins and the structures the glycans that they bear, as well as valuable comparative analyses with non-plant systems, are providing new insights into features that are common among eukaryotes and those that are specific to plants, some of which may reflect the unique nature of the plant cell wall. In this review we present an overview of the current knowledge of plant N-glycoprotein synthesis and trafficking, with particular reference to those that are cell wall localized.
Collapse
Affiliation(s)
- Eliel Ruiz-May
- Department of Plant Biology, Cornell UniversityIthaca, NY, USA
| | - Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, USA
- DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, USA
- DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
| | - Jocelyn K. C. Rose
- Department of Plant Biology, Cornell UniversityIthaca, NY, USA
- *Correspondence: Jocelyn K. C. Rose, Department of Plant Biology, Cornell University, 412 Mann Library Building, Ithaca, NY 14853 USA. e-mail:
| |
Collapse
|
87
|
Kraft B, Johswich A, Kauczor G, Scharenberg M, Gerardy-Schahn R, Bakker H. "Add-on" domains of Drosophila β1,4-N-acetylgalactosaminyltransferase B in the stem region and its pilot protein. Cell Mol Life Sci 2011; 68:4091-100. [PMID: 21598021 PMCID: PMC11114974 DOI: 10.1007/s00018-011-0725-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/27/2011] [Accepted: 05/03/2011] [Indexed: 01/10/2023]
Abstract
The glycolipid specific Drosophila melanogaster β1,4-N-acetylgalactosaminyltransferase B (β4GalNAcTB) depends on a zinc finger DHHC protein family member named GalNAcTB pilot (GABPI) for activity and translocation to the Golgi. The six-membrane spanning protein actually lacks the cysteine in the cytoplasmic DHHC motif, displaying DHHS instead. Here we show that the whole conserved region around the DHHS sequence, which is essential for palmitoylation in DHHC proteins, is not required for GABPI to interact with β4GalNAcTB. In contrast, the two luminal loops between transmembrane domain 3-4 and 5-6 contain conserved amino acids, which are crucial for activity. Besides the dependence on GABPI, β4GalNAcTB requires its exceptional short stem region for activity. A few hydrophobic amino acids positioned close to the transmembrane domain are essential for the interaction with GABPI. Along with its catalytic domain, β4GalNAcTB, thus, requires an area in its own stem region and two small luminal loops of GABPI as "add-on" domains. Moreover, some inactive GABPI mutants could be rescued by fusion with β4GalNAcTB, indicating their importance in direct GABPI-β4GalNAcTB interaction.
Collapse
Affiliation(s)
- Benjamin Kraft
- Department of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Anita Johswich
- Present Address: Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue R988, Toronto, ON M5G 1X5 Canada
| | - Gwenda Kauczor
- Department of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Meike Scharenberg
- Present Address: Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Rita Gerardy-Schahn
- Department of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Hans Bakker
- Department of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
88
|
Affiliation(s)
| | - Adam D. Linstedt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15232;
| |
Collapse
|
89
|
Affiliation(s)
- Ryan M Schmaltz
- The Department of Chemistry and Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
90
|
Hu H, Eggers K, Chen W, Garshasbi M, Motazacker MM, Wrogemann K, Kahrizi K, Tzschach A, Hosseini M, Bahman I, Hucho T, Mühlenhoff M, Gerardy-Schahn R, Najmabadi H, Ropers HH, Kuss AW. ST3GAL3 mutations impair the development of higher cognitive functions. Am J Hum Genet 2011; 89:407-14. [PMID: 21907012 DOI: 10.1016/j.ajhg.2011.08.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/02/2011] [Accepted: 08/17/2011] [Indexed: 12/17/2022] Open
Abstract
The genetic variants leading to impairment of intellectual performance are highly diverse and are still poorly understood. ST3GAL3 encodes the Golgi enzyme β-galactoside-α2,3-sialyltransferase-III that in humans predominantly forms the sialyl Lewis a epitope on proteins. ST3GAL3 resides on chromosome 1 within the MRT4 locus previously identified to associate with nonsyndromic autosomal recessive intellectual disability. We searched for the disease-causing mutations in the MRT4 family and a second independent consanguineous Iranian family by using a combination of chromosome sorting and next-generation sequencing. Two different missense changes in ST3GAL3 cosegregate with the disease but were absent in more than 1000 control chromosomes. In cellular and biochemical test systems, these mutations were shown to cause ER retention of the Golgi enzyme and drastically impair ST3Gal-III functionality. Our data provide conclusive evidence that glycotopes formed by ST3Gal-III are prerequisite for attaining and/or maintaining higher cognitive functions.
Collapse
Affiliation(s)
- Hao Hu
- Department for Human Molecular Genetics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
The protein composition of the Golgi is intimately linked to its structure and function. As the Golgi serves as the major protein-sorting hub for the secretory pathway, it faces the unique challenge of maintaining its protein composition in the face of constant influx and efflux of transient cargo proteins. Much of our understanding of how proteins are retained in the Golgi has come from studies on glycosylation enzymes, largely because of the compartment-specific distributions these proteins display. From these and other studies of Golgi membrane proteins, we now understand that a variety of retention mechanisms are employed, the majority of which involve the dynamic process of iterative rounds of retrograde and anterograde transport. Such mechanisms rely on protein conformation and amino acid-based sorting signals as well as on properties of transmembrane domains and their relationship with the unique lipid composition of the Golgi.
Collapse
Affiliation(s)
- David K Banfield
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China.
| |
Collapse
|
92
|
Kizuka Y, Kitazume S, Yoshida M, Taniguchi N. Brain-specific expression of N-acetylglucosaminyltransferase IX (GnT-IX) is regulated by epigenetic histone modifications. J Biol Chem 2011; 286:31875-84. [PMID: 21771782 DOI: 10.1074/jbc.m111.251173] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
It is well known that biosynthesis of glycans takes place in organ- and tissue-specific manners and glycan expression is controlled by various factors including glycosyltransferases. The expression mechanism of glycosyltransferases, however, is poorly understood. Here we investigated the expression mechanism of a brain-specific glycosyltransferase, GnT-IX (N-acetylglucosaminyltransferase IX, also designated as GnT-Vb), which synthesizes branched O-mannose glycan. Using an epigenetic approach, we revealed that the genomic region around the transcriptional start site of the GnT-IX gene was highly associated with active chromatin histone marks in a neural cell-specific manner, indicating that brain-specific GnT-IX expression is under control of an epigenetic "histone code." By EMSA and ChIP analyses we identified two regulatory proteins, NeuroD1 and CTCF that bind to and activate the GnT-IX promoter. We also revealed that GnT-IX expression was suppressed in CTCF- and NeuroD1-depleted cells, indicating that a NeuroD1- and CTCF-dependent epigenetic mechanism governs brain-specific GnT-IX expression. Several other neural glycosyltransferase genes are also found to be regulated by epigenetic histone modifications. This is the first report demonstrating a molecular mechanism at the chromatin level underlying tissue-specific glycan expression.
Collapse
Affiliation(s)
- Yasuhiko Kizuka
- Disease Glycomics Team, Systems Glycobiology Research Group, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
93
|
Varki A. Evolutionary forces shaping the Golgi glycosylation machinery: why cell surface glycans are universal to living cells. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005462. [PMID: 21525513 DOI: 10.1101/cshperspect.a005462] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite more than 3 billion years since the origin of life on earth, the powerful forces of biological evolution seem to have failed to generate any living cell that is devoid of a dense and complex array of cell surface glycans. Thus, cell surface glycans seem to be as essential for life as having a DNA genetic code, diverse RNAs, structural/functional proteins, lipid-based membranes, and metabolites that mediate energy flux and signaling. The likely reasons for this apparently universal law of biology are considered here, and include the fact that glycans have the greatest potential for generating diversity, and thus evading recognition by pathogens. This may also explain why in striking contrast to the genetic code, glycans show widely divergent patterns between taxa. On the other hand, glycans have also been coopted for myriad intrinsic functions, which can vary in their importance for organismal survival. In keeping with these considerations, a significant percentage of the genes in the typical genome are dedicated to the generation and/or turnover of glycans. Among eukaryotes, the Golgi is the subcellular organelle that serves to generate much of the diversity of cell surface glycans, carrying out various glycan modifications of glycoconjugates that transit through the Golgi, en route to the cell surface or extracellular destinations. Here I present an overview of general considerations regarding the selective forces shaping evolution of the Golgi glycosylation machinery, and then briefly discuss the common types of variations seen in each major class of glycans, finally focusing on sialic acids as an extreme example of evolutionary glycan diversity generated by the Golgi. Future studies need to address both the phylogenetic diversity the Golgi and the molecular mechanisms for its rapid responses to intrinsic and environmental stimuli.
Collapse
Affiliation(s)
- Ajit Varki
- Glycobiology Research and Training Center, University of California at San Diego, La Jolla, 92093, USA.
| |
Collapse
|
94
|
Pokrovskaya ID, Willett R, Smith RD, Morelle W, Kudlyk T, Lupashin VV. Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery. Glycobiology 2011; 21:1554-69. [PMID: 21421995 DOI: 10.1093/glycob/cwr028] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell surface lectin staining, examination of Golgi glycosyltransferases stability and localization, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis were employed to investigate conserved oligomeric Golgi (COG)-dependent glycosylation defects in HeLa cells. Both Griffonia simplicifolia lectin-II and Galanthus nivalus lectins were specifically bound to the plasma membrane glycoconjugates of COG-depleted cells, indicating defects in activity of medial- and trans-Golgi-localized enzymes. In response to siRNA-induced depletion of COG complex subunits, several key components of Golgi glycosylation machinery, including MAN2A1, MGAT1, B4GALT1 and ST6GAL1, were severely mislocalized. MALDI-TOF analysis of total N-linked glycoconjugates indicated a decrease in the relative amount of sialylated glycans in both COG3 KD and COG4 KD cells. In agreement to a proposed role of the COG complex in retrograde membrane trafficking, all types of COG-depleted HeLa cells were deficient in the Brefeldin A- and Sar1 DN-induced redistribution of Golgi resident glycosyltransferases to the endoplasmic reticulum. The retrograde trafficking of medial- and trans-Golgi-localized glycosylation enzymes was affected to a larger extent, strongly indicating that the COG complex regulates the intra-Golgi protein movement. COG complex-deficient cells were not defective in Golgi re-assembly after the Brefeldin A washout, confirming specificity in the retrograde trafficking block. The lobe B COG subcomplex subunits COG6 and COG8 were localized on trafficking intermediates that carry Golgi glycosyltransferases, indicating that the COG complex is directly involved in trafficking and maintenance of Golgi glycosylation machinery.
Collapse
Affiliation(s)
- Irina D Pokrovskaya
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham, Slot 505, Little Rock, AR 72205, USA
| | | | | | | | | | | |
Collapse
|
95
|
Schoberer J, Strasser R. Sub-compartmental organization of Golgi-resident N-glycan processing enzymes in plants. MOLECULAR PLANT 2011; 4:220-8. [PMID: 21307368 PMCID: PMC3063520 DOI: 10.1093/mp/ssq082] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 12/17/2010] [Indexed: 05/17/2023]
Abstract
In all eukaryotes, the Golgi apparatus is the main site of protein glycosylation. It is widely accepted that the glycosidases and glycosyltransferases involved in N-glycan processing are found concentrated within the Golgi stack where they provide their function. This means that enzymes catalyzing early steps in the processing pathway are located mainly at the cis-side, whereas late-acting enzymes mostly locate to the trans-side of the stacks, creating a non-uniform distribution along the cis-trans axis of the Golgi. There is compelling evidence that the information for their sorting to specific Golgi cisternae depends on signals encoded in the proteins themselves as well as on the trafficking machinery that recognizes these signals and it is believed that cisternal sub-compartmentalization is achieved and maintained by a combination of retention and retrieval mechanisms. Yet, the signals, mechanism(s), and molecular factors involved are still unknown. Here, we address recent findings and summarize the current understanding of this fundamental process in plant cell biology.
Collapse
Affiliation(s)
- Jennifer Schoberer
- School of Life Sciences, Oxford Brookes University, Headington Campus, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- To whom correspondence should be addressed. E-mail , fax +43 1 47654 6392, tel. +43 1 47654 6700
| |
Collapse
|
96
|
Audry M, Jeanneau C, Imberty A, Harduin-Lepers A, Delannoy P, Breton C. Current trends in the structure-activity relationships of sialyltransferases. Glycobiology 2010; 21:716-26. [PMID: 21098518 DOI: 10.1093/glycob/cwq189] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sialyltransferases (STs) represent an important group of enzymes that transfer N-acetylneuraminic acid (Neu5Ac) from cytidine monophosphate-Neu5Ac to various acceptor substrates. In higher animals, sialylated oligosaccharide structures play crucial roles in many biological processes but also in diseases, notably in microbial infection and cancer. Cell surface sialic acids have also been found in a few microorganisms, mainly pathogenic bacteria, and their presence is often associated with virulence. STs are distributed into five different families in the CAZy database (http://www.cazy.org/). On the basis of crystallographic data available for three ST families and fold recognition analysis for the two other families, STs can be grouped into two structural superfamilies that represent variations of the canonical glycosyltransferase (GT-A and GT-B) folds. These two superfamilies differ in the nature of their active site residues, notably the catalytic base (a histidine or an aspartate residue). The observed structural and functional differences strongly suggest that these two structural superfamilies have evolved independently.
Collapse
Affiliation(s)
- Magali Audry
- CERMAV-CNRS, Grenoble University, Grenoble, France
| | | | | | | | | | | |
Collapse
|
97
|
Schoberer J, Runions J, Steinkellner H, Strasser R, Hawes C, Osterrieder A. Sequential depletion and acquisition of proteins during Golgi stack disassembly and reformation. Traffic 2010; 11:1429-44. [PMID: 20716110 PMCID: PMC3039244 DOI: 10.1111/j.1600-0854.2010.01106.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/22/2010] [Accepted: 07/22/2010] [Indexed: 12/22/2022]
Abstract
Herein, we report the stepwise transport of multiple plant Golgi membrane markers during disassembly of the Golgi apparatus in tobacco leaf epidermal cells in response to the induced expression of the GTP-locked Sar1p or Brefeldin A (BFA), and reassembly on BFA washout. The distribution of fluorescent Golgi-resident N-glycan processing enzymes and matrix proteins (golgins) with specific cis-trans-Golgi sub-locations was followed by confocal microscopy during disassembly and reassembly. The first event during Golgi disassembly was the loss of trans-Golgi enzymes and golgins from Golgi membranes, followed by a sequential redistribution of medial and cis-Golgi enzymes into the endoplasmic reticulum (ER), whilst golgins were relocated to the ER or cytoplasm. This event was confirmed by fractionation and immuno-blotting. The sequential redistribution of Golgi components in a trans-cis sequence may highlight a novel retrograde trafficking pathway between the trans-Golgi and the ER in plants. Release of Golgi markers from the ER upon BFA washout occurred in the opposite sequence, with cis-matrix proteins labelling Golgi-like structures before cis/medial enzymes. Trans-enzyme location was preceded by trans-matrix proteins being recruited back to Golgi membranes. Our results show that Golgi disassembly and reassembly occur in a highly ordered fashion in plants.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life SciencesVienna, Muthgasse 18, 1190 Vienna, Austria
| | - John Runions
- School of Life Sciences, Oxford Brookes University, Headington CampusGipsy Lane, Oxford OX3 0BP, UK
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life SciencesVienna, Muthgasse 18, 1190 Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life SciencesVienna, Muthgasse 18, 1190 Vienna, Austria
| | - Chris Hawes
- School of Life Sciences, Oxford Brookes University, Headington CampusGipsy Lane, Oxford OX3 0BP, UK
| | - Anne Osterrieder
- School of Life Sciences, Oxford Brookes University, Headington CampusGipsy Lane, Oxford OX3 0BP, UK
| |
Collapse
|
98
|
Petit D, Mir AM, Petit JM, Thisse C, Delannoy P, Oriol R, Thisse B, Harduin-Lepers A. Molecular phylogeny and functional genomics of beta-galactoside alpha2,6-sialyltransferases that explain ubiquitous expression of st6gal1 gene in amniotes. J Biol Chem 2010; 285:38399-414. [PMID: 20855889 DOI: 10.1074/jbc.m110.163931] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sialyltransferases are key enzymes in the biosynthesis of sialoglycoconjugates that catalyze the transfer of sialic residue from its activated form to an oligosaccharidic acceptor. β-Galactoside α2,6-sialyltransferases ST6Gal I and ST6Gal II are the two unique members of the ST6Gal family described in higher vertebrates. The availability of genome sequences enabled the identification of more distantly related invertebrates' st6gal gene sequences and allowed us to propose a scenario of their evolution. Using a phylogenomic approach, we present further evidence of an accelerated evolution of the st6gal1 genes both in their genomic regulatory sequences and in their coding sequence in reptiles, birds, and mammals known as amniotes, whereas st6gal2 genes conserve an ancestral profile of expression throughout vertebrate evolution.
Collapse
Affiliation(s)
- Daniel Petit
- Unité de Génétique Moléculaire Animale, Université de Limoges Faculté des Sciences et Techniques, INRA UMR 1061, 123 Avenue Albert Thomas, 87060 Limoges, France
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Liefhebber JM, Punt S, Spaan WJ, van Leeuwen HC. The human collagen beta(1-O)galactosyltransferase, GLT25D1, is a soluble endoplasmic reticulum localized protein. BMC Cell Biol 2010; 11:33. [PMID: 20470363 PMCID: PMC2877668 DOI: 10.1186/1471-2121-11-33] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 05/14/2010] [Indexed: 12/29/2022] Open
Abstract
Background Glycosyl transferases transfer glycosyl groups onto their substrate. Localization partially defines their function. Glycosyl transferase 25 domain 1 (GLT25D1) was recently shown to have galactosyltransferase activity towards collagens and another well known substrate, mannose binding lectin (MBL). To gain more insight in the role of galactosylation of lysines in the Gly-X-Lys repeats of collagenous proteins, we investigated the subcellular localization of GLT25D1. Results Immunofluorescence analysis of GLT25D1 expressed in the human hepatoma cell line (Huh7), revealed a perinuclear lattice like staining, resembling localization to the endoplasmic reticulum (ER). Possible targeting signals, an N-terminal signal sequence and a C-terminal ER-retention signal, were identified using prediction programs. These signals were then investigated by constructing a series of epitope-tagged forms of GLT25D1 that were analyzed by immunofluorescence and western blotting. In agreement with the predictions our results show that GLT25D1 is directed to the ER lumen as a soluble protein and retained there. Moreover, using two endoglycosidase enzymes EndoH and EndoF, we demonstrate that the putative bi-functional glycosyl transferase itself is a glycoprotein. Additionally we examined co-localization of GLT25D1 with MBL and lysyl hydroxylase 3 (LH3, PLOD3), which is a protein able to catalyze hydroxylation of lysine residues before they can be glycosylated. We demonstrate overlapping localization patterns of GLT25D1, MBL and LH3. Conclusions Taken together our data indicate that galactosylation of collagenous proteins by the soluble GLT25D1 occurs in the early secretory pathway.
Collapse
Affiliation(s)
- Jolanda Mp Liefhebber
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | |
Collapse
|