51
|
Abstract
Groundbreaking research on the universality and diversity of microorganisms is now challenging the life sciences to upgrade fundamental theories that once seemed untouchable. To fully appreciate the change that the field is now undergoing, one has to place the epochs and foundational principles of Darwin, Mendel, and the modern synthesis in light of the current advances that are enabling a new vision for the central importance of microbiology. Animals and plants are no longer heralded as autonomous entities but rather as biomolecular networks composed of the host plus its associated microbes, i.e., "holobionts." As such, their collective genomes forge a "hologenome," and models of animal and plant biology that do not account for these intergenomic associations are incomplete. Here, we integrate these concepts into historical and contemporary visions of biology and summarize a predictive and refutable framework for their evaluation. Specifically, we present ten principles that clarify and append what these concepts are and are not, explain how they both support and extend existing theory in the life sciences, and discuss their potential ramifications for the multifaceted approaches of zoology and botany. We anticipate that the conceptual and evidence-based foundation provided in this essay will serve as a roadmap for hypothesis-driven, experimentally validated research on holobionts and their hologenomes, thereby catalyzing the continued fusion of biology's subdisciplines. At a time when symbiotic microbes are recognized as fundamental to all aspects of animal and plant biology, the holobiont and hologenome concepts afford a holistic view of biological complexity that is consistent with the generally reductionist approaches of biology.
Collapse
Affiliation(s)
- Seth R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kevin R. Theis
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
52
|
Abstract
Body surfaces are colonized by resident microbes that are remarkably resilient to recurrent immune responses. In the latest issue of Science, Cullen et al. (2015) report that, contrary to prevailing assumptions, bacteria of the colonizing microbiota are resistant to antimicrobial peptides, and identify a common mechanism of resistance.
Collapse
Affiliation(s)
- Charles L Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA.
| | - Andreas J Bäumler
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
53
|
Schroeder BO, Ehmann D, Precht JC, Castillo PA, Küchler R, Berger J, Schaller M, Stange EF, Wehkamp J. Paneth cell α-defensin 6 (HD-6) is an antimicrobial peptide. Mucosal Immunol 2015; 8:661-71. [PMID: 25354318 PMCID: PMC4424388 DOI: 10.1038/mi.2014.100] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/21/2014] [Indexed: 02/04/2023]
Abstract
Defensins protect human barriers from commensal and pathogenic microorganisms. Human α-defensin 6 (HD-6) is produced exclusively by small intestinal Paneth cells but, in contrast to other antimicrobial peptides (AMPs) for HD-6, no direct antibacterial killing activity has been detected so far. Herein, we systematically tested how environmental factors, like pH and reducing conditions, affect antimicrobial activity of different defensins against anaerobic bacteria of the human intestinal microbiota. Remarkably, by mimicking the intestinal milieu we detected for the first time antibacterial activity of HD-6. Activity was observed against anaerobic gut commensals but not against some pathogenic strains. Antibiotic activity was attributable to the reduced peptide and independent of free cysteines or a conserved histidine residue. Furthermore, the oxidoreductase thioredoxin, which is also expressed in Paneth cells, is able to reduce a truncated physiological variant of HD-6. Ultrastructural analyses revealed that reduced HD-6 causes disintegration of cytoplasmic structures and alterations in the bacterial cell envelope, while maintaining extracellular net-like structures. We conclude that HD-6 is an antimicrobial peptide. Our data suggest two distinct antimicrobial mechanisms by one peptide: HD-6 kills specific microbes depending on the local environmental conditions, whereas known microbial trapping by extracellular net structures is independent of the reducing milieu.
Collapse
Affiliation(s)
- B O Schroeder
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany,University of Tuebingen, Tuebingen, Germany,Department of Microbiology and Immunology, School of Medicine, University of California, Davis, California, USA
| | - D Ehmann
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany,University of Tuebingen, Tuebingen, Germany
| | - J C Precht
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany,University of Tuebingen, Tuebingen, Germany
| | - P A Castillo
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, California, USA
| | - R Küchler
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany,University of Tuebingen, Tuebingen, Germany
| | - J Berger
- Max-Planck-Institute for Developmental Biology, Electron Microscopy Unit, Tuebingen, Germany
| | - M Schaller
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - E F Stange
- Department of Internal Medicine I, Robert Bosch Hospital, Stuttgart, Germany
| | - J Wehkamp
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany,University of Tuebingen, Tuebingen, Germany,Department of Internal Medicine I, Robert Bosch Hospital, Stuttgart, Germany,Department of Internal Medicine I, University Hospital Tuebingen, Tuebingen, Germany,()
| |
Collapse
|
54
|
Stewart CJ, Cummings SP. Gut bacteria and necrotizing enterocolitis: cause or effect? Trends Microbiol 2015; 23:332-3. [PMID: 25936867 DOI: 10.1016/j.tim.2015.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 01/14/2023]
Abstract
Development of necrotising enterocolitis (NEC) is considered to be dependent on the bacterial colonisation of the gut. With little concordance between published data and a recent study failing to detect a common strain in infants with NEC, more questions than answers are arising about our understanding of this complex disease.
Collapse
|
55
|
Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, Spector TD, Clark AG, Ley RE. Human genetics shape the gut microbiome. Cell 2015; 159:789-99. [PMID: 25417156 DOI: 10.1016/j.cell.2014.09.053] [Citation(s) in RCA: 2127] [Impact Index Per Article: 212.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/10/2014] [Accepted: 09/24/2014] [Indexed: 12/13/2022]
Abstract
Host genetics and the gut microbiome can both influence metabolic phenotypes. However, whether host genetic variation shapes the gut microbiome and interacts with it to affect host phenotype is unclear. Here, we compared microbiotas across >1,000 fecal samples obtained from the TwinsUK population, including 416 twin pairs. We identified many microbial taxa whose abundances were influenced by host genetics. The most heritable taxon, the family Christensenellaceae, formed a co-occurrence network with other heritable Bacteria and with methanogenic Archaea. Furthermore, Christensenellaceae and its partners were enriched in individuals with low body mass index (BMI). An obese-associated microbiome was amended with Christensenella minuta, a cultured member of the Christensenellaceae, and transplanted to germ-free mice. C. minuta amendment reduced weight gain and altered the microbiome of recipient mice. Our findings indicate that host genetics influence the composition of the human gut microbiome and can do so in ways that impact host metabolism.
Collapse
Affiliation(s)
- Julia K Goodrich
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Jillian L Waters
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Angela C Poole
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Jessica L Sutter
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Omry Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Ran Blekhman
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Michelle Beaumont
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - William Van Treuren
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Rob Knight
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA; Biofrontiers Institute, University of Colorado, Boulder, CO 80309, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ruth E Ley
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
56
|
Duarte S, e Silva FCDP, Zauli DAG, Nicoli JR, Araújo FG. Gram-negative intestinal indigenous microbiota from two Siluriform fishes in a tropical reservoir. Braz J Microbiol 2015; 45:1283-92. [PMID: 25763032 PMCID: PMC4323301 DOI: 10.1590/s1517-83822014000400019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/17/2014] [Indexed: 11/28/2022] Open
Abstract
The Gram-negative intestinal microbiota of Hypostomus auroguttatus and Pimelodus maculatus, a detritivorous and an omnivorous fish species, respectively, were compared between fishes from the reservoir and the stretch of the river below the dam of the Funil hydroelectric plant, Rio de Janeiro, Brazil. Four selective culture media were used under aerobic and two under anaerobic conditions. The omnivorous species had microbiota with higher population levels compared to the detritivorous species. The number of morphotypes and population levels of total bacteria, vibrio and Bacteroides tended to be higher in summer and autumn in the reservoir, and not different in the river. The number of morphotypes of enterobacteria and total bacteria were higher in the lotic environment compared with the lentic one. The bacteria Aeromonas hydrophila and Plesiomonas shigelloides and the obligate anaerobic Fusobacterium mortiferum were the most frequently identified microorganisms in the intestine of both H. auroguttatus and P. maculatus. Both season and habitat influenced the Gram-negative intestinal microbiota of H. auroguttatus and P. maculatus. Environmental factors influenced the Gram-negative intestinal microbiota of both species with possible impact on the interrelationship between the fishes and their digestive ecosystem, although the gut microbiota composition of fishes may result from host-specific selective pressures within the gut.
Collapse
Affiliation(s)
- Silvana Duarte
- Laboratório de Ecologia de Peixes Universidade Federal Rural do Rio de Janeiro SeropédicaRJ Brazil Laboratório de Ecologia de Peixes, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Flávia Cristina de Paula e Silva
- Departamento de Microbiologia Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo HorizonteMG Brazil Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle Alves Gomes Zauli
- Departamento de Microbiologia Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo HorizonteMG Brazil Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacques Robert Nicoli
- Departamento de Microbiologia Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo HorizonteMG Brazil Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Francisco Gerson Araújo
- Laboratório de Ecologia de Peixes Universidade Federal Rural do Rio de Janeiro SeropédicaRJ Brazil Laboratório de Ecologia de Peixes, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| |
Collapse
|
57
|
Abstract
Only few Candida species, e.g., Candida albicans, Candida glabrata, Candida dubliniensis, and Candida parapsilosis, are successful colonizers of a human host. Under certain circumstances these species can cause infections ranging from superficial to life-threatening disseminated candidiasis. The success of C. albicans, the most prevalent and best studied Candida species, as both commensal and human pathogen depends on its genetic, biochemical, and morphological flexibility which facilitates adaptation to a wide range of host niches. In addition, formation of biofilms provides additional protection from adverse environmental conditions. Furthermore, in many host niches Candida cells coexist with members of the human microbiome. The resulting fungal-bacterial interactions have a major influence on the success of C. albicans as commensal and also influence disease development and outcome. In this chapter, we review the current knowledge of important survival strategies of Candida spp., focusing on fundamental fitness and virulence traits of C. albicans.
Collapse
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
58
|
Schluter J, Nadell CD, Bassler BL, Foster KR. Adhesion as a weapon in microbial competition. THE ISME JOURNAL 2015; 9:139-49. [PMID: 25290505 PMCID: PMC4268496 DOI: 10.1038/ismej.2014.174] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/17/2014] [Accepted: 08/11/2014] [Indexed: 01/09/2023]
Abstract
Microbes attach to surfaces and form dense communities known as biofilms, which are central to how microbes live and influence humans. The key defining feature of biofilms is adhesion, whereby cells attach to one another and to surfaces, via attachment factors and extracellular polymers. While adhesion is known to be important for the initial stages of biofilm formation, its function within biofilm communities has not been studied. Here we utilise an individual-based model of microbial groups to study the evolution of adhesion. While adhering to a surface can enable cells to remain in a biofilm, consideration of within-biofilm competition reveals a potential cost to adhesion: immobility. Highly adhesive cells that are resistant to movement face being buried and starved at the base of the biofilm. However, we find that when growth occurs at the base of a biofilm, adhesion allows cells to capture substratum territory and force less adhesive, competing cells out of the system. This process may be particularly important when cells grow on a host epithelial surface. We test the predictions of our model using the enteric pathogen Vibrio cholerae, which produces an extracellular matrix important for biofilm formation. Flow cell experiments indicate that matrix-secreting cells are highly adhesive and form expanding clusters that remove non-secreting cells from the population, as predicted by our simulations. Our study shows how simple physical properties, such as adhesion, can be critical to understanding evolution and competition within microbial communities.
Collapse
Affiliation(s)
- Jonas Schluter
- Department of Zoology, University of Oxford, Oxford, UK
- Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa, Japan
| | - Carey D Nadell
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford, UK
- Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
| |
Collapse
|
59
|
Burokas A, Moloney RD, Dinan TG, Cryan JF. Microbiota regulation of the Mammalian gut-brain axis. ADVANCES IN APPLIED MICROBIOLOGY 2015; 91:1-62. [PMID: 25911232 DOI: 10.1016/bs.aambs.2015.02.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The realization that the microbiota-gut-brain axis plays a critical role in health and disease has emerged over the past decade. The brain-gut axis is a bidirectional communication system between the central nervous system (CNS) and the gastrointestinal tract. Regulation of the microbiota-brain-gut axis is essential for maintaining homeostasis, including that of the CNS. The routes of this communication are not fully elucidated but include neural, humoral, immune, and metabolic pathways. A number of approaches have been used to interrogate this axis including the use of germ-free animals, probiotic agents, antibiotics, or animals exposed to pathogenic bacterial infections. Together, it is clear that the gut microbiota can be a key regulator of mood, cognition, pain, and obesity. Understanding microbiota-brain interactions is an exciting area of research which may contribute new insights into individual variations in cognition, personality, mood, sleep, and eating behavior, and how they contribute to a range of neuropsychiatric diseases ranging from affective disorders to autism and schizophrenia. Finally, the concept of psychobiotics, bacterial-based interventions with mental health benefit, is also emerging.
Collapse
Affiliation(s)
- Aurelijus Burokas
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Rachel D Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
60
|
Tralau T, Sowada J, Luch A. Insights on the human microbiome and its xenobiotic metabolism: what is known about its effects on human physiology? Expert Opin Drug Metab Toxicol 2014; 11:411-25. [PMID: 25476418 DOI: 10.1517/17425255.2015.990437] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Our microbiome harbours a metabolic capacity far beyond our own. Moreover, its gene pool is highly adaptable and subject to selective pressure, including host exposure to xenobiotics. Yet, the resulting adaptations do not necessarily follow host well-being and can therefore contribute to disease or unfavourable metabolite production. AREAS COVERED This review provides an overview of our host-microbiome relationship in light of bacterial (xenobiotic) metabolism, community dynamics, entero-endocrine crosstalk, dysbiosis and potential therapeutic targets. In addition, it will highlight the need for a systematic analysis of the microbiome's potential for substance toxification. EXPERT OPINION The influence of our microbiota reaches from primary metabolites to secondary effects such as substrate competition or the activation of eukaryotic Phase I and Phase II enzymes. Further on it plays a hitherto underestimated role in drug metabolism, toxicity and pathogenesis. These effects are partly caused by entero-endocrine crosstalk and interference with eukaryotic regulatory networks. On first sight, the resulting concept of a metabolically competent microbiome adds enormous complexity to human physiology. Yet, the potential specificity of microbial targets harbours therapeutic promise for diseases such as diabetes, cancer and psychiatric disorders. A better physiological and biochemical understanding of the microbiome is thus of high priority for academia and biomedical research.
Collapse
Affiliation(s)
- Tewes Tralau
- German Federal Institute for Risk Assessment (BfR), Department of Chemicals and Product Safety , Max-Dohrn Strasse 8-10, 10589 Berlin , Germany
| | | | | |
Collapse
|
61
|
Grasis JA, Lachnit T, Anton-Erxleben F, Lim YW, Schmieder R, Fraune S, Franzenburg S, Insua S, Machado G, Haynes M, Little M, Kimble R, Rosenstiel P, Rohwer FL, Bosch TCG. Species-specific viromes in the ancestral holobiont Hydra. PLoS One 2014; 9:e109952. [PMID: 25343582 PMCID: PMC4208763 DOI: 10.1371/journal.pone.0109952] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/13/2014] [Indexed: 12/24/2022] Open
Abstract
Recent evidence showing host specificity of colonizing bacteria supports the view that multicellular organisms are holobionts comprised of the macroscopic host in synergistic interdependence with a heterogeneous and host-specific microbial community. Whereas host-bacteria interactions have been extensively investigated, comparatively little is known about host-virus interactions and viral contribution to the holobiont. We sought to determine the viral communities associating with different Hydra species, whether these viral communities were altered with environmental stress, and whether these viruses affect the Hydra-associated holobiont. Here we show that each species of Hydra harbors a diverse host-associated virome. Primary viral families associated with Hydra are Myoviridae, Siphoviridae, Inoviridae, and Herpesviridae. Most Hydra-associated viruses are bacteriophages, a reflection of their involvement in the holobiont. Changes in environmental conditions alter the associated virome, increase viral diversity, and affect the metabolism of the holobiont. The specificity and dynamics of the virome point to potential viral involvement in regulating microbial associations in the Hydra holobiont. While viruses are generally regarded as pathogenic agents, our study suggests an evolutionary conserved ability of viruses to function as holobiont regulators and, therefore, constitutes an emerging paradigm shift in host-microbe interactions.
Collapse
Affiliation(s)
- Juris A. Grasis
- Department of Biology, San Diego State University, San Diego, California, United States of America
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Tim Lachnit
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | | | - Yan Wei Lim
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Robert Schmieder
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Sebastian Fraune
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Sören Franzenburg
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Santiago Insua
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - GloriaMay Machado
- Institute of Clinical Molecular Biology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Matthew Haynes
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Mark Little
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Robert Kimble
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Forest L. Rohwer
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Thomas C. G. Bosch
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| |
Collapse
|
62
|
Mastroianni JR, Lu W, Selsted ME, Ouellette AJ. Differential Susceptibility of Bacteria to Mouse Paneth Cell α-Defensins under Anaerobic Conditions. Antibiotics (Basel) 2014; 3:493-508. [PMID: 25383215 PMCID: PMC4220453 DOI: 10.3390/antibiotics3040493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Small intestinal Paneth cells secrete α-defensin peptides, termed cryptdins (Crps) in mice, into the intestinal lumen, where they confer immunity to oral infections and define the composition of the ileal microbiota. In these studies, facultative bacteria maintained under aerobic or anaerobic conditions displayed differential sensitivities to mouse α-defensins under in vitro assay conditions. Regardless of oxygenation, Crps 2 and 3 had robust and similar bactericidal activities against S. typhimurium and S. flexneri, but Crp4 activity against S. flexneri was attenuated in the absence of oxygen. Anaerobic bacteria varied in their susceptibility to Crps 2-4, with Crp4 showing less activity than Crps 2 and 3 against Enterococcus faecalis, and Bacteroides fragilis in anaerobic assays, but Fusobacterium necrophorum was killed only by Crp4 and not by Crps 2 and 3. The influence of anaerobiosis in modulating Crp bactericidal activities in vitro suggests that α-defensin effects on the enteric microbiota may be subject to regulation by local oxygen tension.
Collapse
Affiliation(s)
- Jennifer R. Mastroianni
- Department of Pathology and Laboratory Medicine, Keck School of Medicine of the University of Southern California, USC Norris Cancer Center, Los Angeles, CA 90089-9601, USA; E-Mails: (J.R.M.); (M.E.S.)
| | - Wuyuan Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Institute of Human Virology, Baltimore, MD 21201, USA; E-Mail:
| | - Michael E. Selsted
- Department of Pathology and Laboratory Medicine, Keck School of Medicine of the University of Southern California, USC Norris Cancer Center, Los Angeles, CA 90089-9601, USA; E-Mails: (J.R.M.); (M.E.S.)
| | - André J. Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine of the University of Southern California, USC Norris Cancer Center, Los Angeles, CA 90089-9601, USA; E-Mails: (J.R.M.); (M.E.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-323-442-7959
| |
Collapse
|
63
|
Bosch TC. Rethinking the role of immunity: lessons from Hydra. Trends Immunol 2014; 35:495-502. [DOI: 10.1016/j.it.2014.07.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 12/24/2022]
|
64
|
Twardziok SO, Pieper R, Aschenbach JR, Bednorz C, Brockmann GA, Fromm M, Klingspor S, Kreuzer S, Lodemann U, Martens H, Martin L, Richter JF, Scharek-Tedin L, Siepert BF, Starke IC, Tedin K, Vahjen W, Wieler LH, Zakrzewski SS, Zentek J, Wrede P. Cross-talk Between Host, Microbiome and Probiotics: A Systems Biology Approach for Analyzing the Effects of Probiotic Enterococcus faecium NCIMB 10415 in Piglets. Mol Inform 2014; 33:171-82. [PMID: 27485687 DOI: 10.1002/minf.201300147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/06/2014] [Indexed: 02/05/2023]
Abstract
A comprehensive data-set from a multidisciplinary feeding experiment with the probiotic Enterococcus faecium was analyzed to elucidate effects of the probiotic on growing piglets. Sixty-two piglets were randomly assigned to a control (no probiotic treatment) and a treatment group (E. faecium supplementation). Piglets were weaned at 26 d. Age-matched piglets were sacrificed for the collection of tissue samples at 12, 26, 34 and 54 d. In addition to zootechnical data, the composition and activity of intestinal microbiota, immune cell types, and intestinal responses were determined. Our systems analysis revealed clear effects on several measured variables in 26 and 34 days old animals, while response patterns varied between piglets from different age groups. Correlation analyses identified reduced associations between intestinal microbial communities and immune system reactions in the probiotic group. In conclusion, the developed model is useful for comparative analyses to unravel systems effects of dietary components and their time resolution. The model identified that effects of E. faecium supplementation most prominently affected the interplay between intestinal microbiota and the intestinal immune system. These effects, as well as effects in other subsystems, clustered around weaning, which is the age where piglets are most prone to diarrhea.
Collapse
Affiliation(s)
- S O Twardziok
- Molekularbiologie und Bioinformatik, Charité - Universitätsmedizin Berlin, Arnimallee 22, 14195 Berlin, Germany.
| | - R Pieper
- Institut für Tierernährung, Freie Universität Berlin, Berlin, Germany
| | - J R Aschenbach
- Institut für Veterinär-Physiologie, Freie Universität Berlin, Berlin, Germany
| | - C Bednorz
- Institut für Mikrobiologie und Tierseuchen, Freie Universität Berlin, Berlin, Germany
| | - G A Brockmann
- Züchtungsbiologie und molekulare Tierzüchtung,Humboldt Universität Berlin, Berlin, Germany
| | - M Fromm
- Institut für Klinische Physiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - S Klingspor
- Institut für Veterinär-Physiologie, Freie Universität Berlin, Berlin, Germany
| | - S Kreuzer
- Züchtungsbiologie und molekulare Tierzüchtung,Humboldt Universität Berlin, Berlin, Germany
| | - U Lodemann
- Institut für Veterinär-Physiologie, Freie Universität Berlin, Berlin, Germany
| | - H Martens
- Institut für Veterinär-Physiologie, Freie Universität Berlin, Berlin, Germany
| | - L Martin
- Institut für Tierernährung, Freie Universität Berlin, Berlin, Germany
| | - J F Richter
- Institut für Klinische Physiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institut für Anatomie II, Universitätsklinikum Jena, Jena, Germany
| | - L Scharek-Tedin
- Institut für Tierernährung, Freie Universität Berlin, Berlin, Germany
| | - B F Siepert
- Institut für Mikrobiologie und Tierseuchen, Freie Universität Berlin, Berlin, Germany
| | - I C Starke
- Institut für Tierernährung, Freie Universität Berlin, Berlin, Germany
| | - K Tedin
- Institut für Mikrobiologie und Tierseuchen, Freie Universität Berlin, Berlin, Germany
| | - W Vahjen
- Institut für Tierernährung, Freie Universität Berlin, Berlin, Germany
| | - L H Wieler
- Institut für Mikrobiologie und Tierseuchen, Freie Universität Berlin, Berlin, Germany
| | - S S Zakrzewski
- Institut für Klinische Physiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - J Zentek
- Institut für Tierernährung, Freie Universität Berlin, Berlin, Germany
| | - P Wrede
- Molekularbiologie und Bioinformatik, Charité - Universitätsmedizin Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
65
|
Abstract
The complex community of colonizing microbes inhabiting the mucosal surfaces of mammals is vital to homeostasis and normal physiology in the host. When the composition of this microbiota is unfavorably altered, termed dysbiosis, the host is rendered more susceptible to a variety of chronic diseases. In the mammalian small intestine, specialized secretory epithelial cells, named Paneth cells, produce a variety of secreted antimicrobial peptides that fundamentally influence the composition of the microbiota. Recent investigations have identified numerous genetic and environmental factors that can disrupt normal Paneth cell function, resulting in compromised antimicrobial peptide secretion and consequent dysbiosis. These findings suggest that Paneth cell dysfunction should be considered a common cause of dysbiosis.
Collapse
Affiliation(s)
- Nita H Salzman
- Division of Gastroenterology, Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | | |
Collapse
|
66
|
Abstract
The intestinal mucosa interfaces with a complex, dense community of microorganisms, including hundreds of species of resident microbiota and many transient microbes entering from food- and water-borne sources. In the small intestine, Paneth cells (specialized secretory epithelial cells) produce abundant quantities of α-defensins and several other antibiotic peptides. Human Paneth cells make two α-defensins: HD5 and HD6. Data from in vivo models indicate that Paneth cell α-defensins play a pivotal role in defense from food- and water-borne pathogens in the intestine. The mechanism by which these two α-defensins protect from enteric pathogens is quite distinct. HD5 is a potent antimicrobial that kills target microbes by membrane disruption, whereas HD6 is newly discovered to self-assemble to form fibrils and nanonets that surround and entangle bacteria. Recent data suggest that HD5 also serves to help shape the composition of the colonizing microbiota. Studies in humans suggest that reduced expression of HD5 and HD6 is a fundamental feature of ileal Crohn's disease. Mechanistically, the link between reduced Paneth cell α-defensin expression and ileal Crohn's disease pathogenesis may be a result of the weakened mucosal antimicrobial defense and/or alterations in the composition of commensal microbiota.
Collapse
Affiliation(s)
- Charles L Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California Davis, Davis, Calif., USA
| |
Collapse
|
67
|
Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc Natl Acad Sci U S A 2013; 110:E3730-8. [PMID: 24003149 DOI: 10.1073/pnas.1304960110] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Animals are colonized by coevolved bacterial communities, which contribute to the host's health. This commensal microbiota is often highly specific to its host-species, inferring strong selective pressures on the associated microbes. Several factors, including diet, mucus composition, and the immune system have been proposed as putative determinants of host-associated bacterial communities. Here we report that species-specific antimicrobial peptides account for different bacterial communities associated with closely related species of the cnidarian Hydra. Gene family extensions for potent antimicrobial peptides, the arminins, were detected in four Hydra species, with each species possessing a unique composition and expression profile of arminins. For functional analysis, we inoculated arminin-deficient and control polyps with bacterial consortia characteristic for different Hydra species and compared their selective preferences by 454 pyrosequencing of the bacterial microbiota. In contrast to control polyps, arminin-deficient polyps displayed decreased potential to select for bacterial communities resembling their native microbiota. This finding indicates that species-specific antimicrobial peptides shape species-specific bacterial associations.
Collapse
|
68
|
Abstract
Paneth cells are highly specialized epithelial cells of the small intestine, where they coordinate many physiological functions. First identified more than a century ago on the basis of their readily discernible secretory granules by routine histology, these cells are located at the base of the crypts of Lieberkühn, tiny invaginations that line the mucosal surface all along the small intestine. Investigations over the past several decades determined that these cells synthesize and secrete substantial quantities of antimicrobial peptides and proteins. More recent studies have determined that these antimicrobial molecules are key mediators of host-microbe interactions, including homeostatic balance with colonizing microbiota and innate immune protection from enteric pathogens. Perhaps more intriguing, Paneth cells secrete factors that help sustain and modulate the epithelial stem and progenitor cells that cohabitate in the crypts and rejuvenate the small intestinal epithelium. Dysfunction of Paneth cell biology contributes to the pathogenesis of chronic inflammatory bowel disease.
Collapse
Affiliation(s)
- Hans C Clevers
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Uppsalalaan, Utrecht 3584CT, The Netherlands.
| | | |
Collapse
|
69
|
Abstract
The mucosal immune system mediates contact between the host and the trillions of microbes that symbiotically colonize the gastrointestinal tract. Failure to tolerate the antigens within this "extended self" can result in inflammatory bowel disease (IBD). Within the adaptive immune system, the most significant cells modulating this interaction are Foxp3 regulatory T (Treg) cells. Treg cells can be divided into 2 primary subsets: "natural" Treg cells and "adaptive" or "induced" Treg. Recent research suggests that these subsets serve to play both independent and synergistic roles in mucosal tolerance. Studies from both mouse models and human patients suggest that defects in Treg cells can play distinct causative roles in IBD. Numerous genetic, microbial, nutritional, and environmental factors that associate with IBD may also affect Treg cells. In this review, we summarize the development and function of Treg cells and how their regulatory mechanisms may fail, leading to a loss of mucosal tolerance. We discuss both animal models and studies of patients with IBD suggesting Treg cell involvement in IBD and consider how Treg cells may be used in future therapies.
Collapse
Affiliation(s)
- Christopher G. Mayne
- Section of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee WI 53226
| | - Calvin B. Williams
- Section of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee WI 53226
| |
Collapse
|
70
|
Berrington JE, Stewart CJ, Embleton ND, Cummings SP. Gut microbiota in preterm infants: assessment and relevance to health and disease. Arch Dis Child Fetal Neonatal Ed 2013; 98:F286-90. [PMID: 23009761 DOI: 10.1136/archdischild-2012-302134] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Janet Elizabeth Berrington
- Newcastle Neonatal Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle Upon Tyne, UK.
| | | | | | | |
Collapse
|
71
|
Abstract
Most epithelia in animals are colonized by microbial communities. These resident microbes influence fitness and thus ecologically important traits of their hosts, ultimately forming a metaorganism consisting of a multicellular host and a community of associated microorganisms. Recent discoveries in the cnidarian Hydra show that components of the innate immune system as well as transcriptional regulators of stem cells are involved in maintaining homeostasis between animals and their resident microbiota. Here I argue that components of the innate immune system with its host-specific antimicrobial peptides and a rich repertoire of pattern recognition receptors evolved in early-branching metazoans because of the need to control the resident beneficial microbes, not because of invasive pathogens. I also propose a mutual intertwinement between the stem cell regulatory machinery of the host and the resident microbiota composition, such that disturbances in one trigger a restructuring and resetting of the other.
Collapse
|
72
|
Alexeyev OA. Bacterial landscape of human skin: seeing the forest for the trees. Exp Dermatol 2013; 22:443-6. [DOI: 10.1111/exd.12160] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Oleg A. Alexeyev
- Department of Medical Biosciences/Pathology; Umeå University; Umeå Sweden
| |
Collapse
|
73
|
Embleton ND, Berrington JE, McGuire W, Stewart CJ, Cummings SP. Lactoferrin: Antimicrobial activity and therapeutic potential. Semin Fetal Neonatal Med 2013; 18:143-149. [PMID: 23507150 DOI: 10.1016/j.siny.2013.02.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lactoferrin is a highly conserved protein from an evolutionary perspective, with a wide range of roles related to protection from infection and promotion of nutritional status. Infection, malnutrition and intestinal pathologies are key inter-related problems, represent important threats to survival and are associated with adverse long-term health outcomes after preterm birth. Lactoferrin is available as a commercial extract from bovine milk and offers potential as a therapeutic intervention for preterm infants modulating infections and intestinal pathologies. In this review we explore the structure, direct antimicrobial effects, modification of host immune function and gastrointestinal effects of lactoferrin. Current trial data are reviewed, and research priorities and challenges identified and discussed.
Collapse
Affiliation(s)
- Nicholas D Embleton
- Newcastle Neonatal Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne NE1 4LP, UK; Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK.
| | - Janet E Berrington
- Newcastle Neonatal Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne NE1 4LP, UK; Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | - William McGuire
- National Institute for Health Research, Centre for Reviews and Dissemination, University of York, York, UK
| | - Chris J Stewart
- School of Life Sciences, University of Northumbria, Newcastle upon Tyne, UK
| | - Stephen P Cummings
- School of Life Sciences, University of Northumbria, Newcastle upon Tyne, UK
| |
Collapse
|
74
|
Neonatal immune adaptation of the gut and its role during infections. Clin Dev Immunol 2013; 2013:270301. [PMID: 23737810 PMCID: PMC3659470 DOI: 10.1155/2013/270301] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/03/2013] [Indexed: 12/22/2022]
Abstract
The intestinal tract is engaged in a relationship with a dense and complex microbial ecosystem, the microbiota. The establishment of this symbiosis is essential for host physiology, metabolism, and immune homeostasis. Because newborns are essentially sterile, the first exposure to microorganisms and environmental endotoxins during the neonatal period is followed by a crucial sequence of active events leading to immune tolerance and homeostasis. Contact with potent immunostimulatory molecules starts immediately at birth, and the discrimination between commensal bacteria and invading pathogens is essential to avoid an inappropriate immune stimulation and/or host infection. The dysregulation of these tight interactions between host and microbiota can be responsible for important health disorders, including inflammation and sepsis. This review summarizes the molecular events leading to the establishment of postnatal immune tolerance and how pathogens can avoid host immunity and induce neonatal infections and sepsis.
Collapse
|
75
|
Do bugs control our fate? The influence of the microbiome on autoimmunity. Curr Allergy Asthma Rep 2013; 12:511-9. [PMID: 22886439 DOI: 10.1007/s11882-012-0291-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Autoimmune disease has traditionally been thought to be due to the impact of environmental factors on genetically susceptible individuals causing immune dysregulation and loss of tolerance. However, recent literature has highlighted the importance of the microbiome, (a collective genome of microorganisms in a given niche) in immune homeostasis. Increasingly, it has been recognized that disruptions in the commensal microflora may lead to immune dysfunction and autoimmunity. This review summarizes recent studies investigating the interplay between the microbiome and immune-mediated organ-specific diseases. In particular, we review new findings on the role of the microbiome in inflammatory bowel disease, celiac disease, psoriasis, rheumatoid arthritis, type I diabetes, and multiple sclerosis.
Collapse
|
76
|
|
77
|
Koch H, Abrol DP, Li J, Schmid-Hempel P. Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol Ecol 2013; 22:2028-44. [PMID: 23347062 DOI: 10.1111/mec.12209] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 12/05/2012] [Accepted: 12/11/2012] [Indexed: 12/19/2022]
Abstract
The animal gut is a habitat for diverse communities of microorganisms (microbiota). Honeybees and bumblebees have recently been shown to harbour a distinct and species poor microbiota, which may confer protection against parasites. Here, we investigate diversity, host specificity and transmission mode of two of the most common, yet poorly known, gut bacteria of honeybees and bumblebees: Snodgrassella alvi (Betaproteobacteria) and Gilliamella apicola (Gammaproteobacteria). We analysed 16S rRNA gene sequences of these bacteria from diverse bee host species across most of the honeybee and bumblebee phylogenetic diversity from North America, Europe and Asia. These focal bacteria were present in 92% of bumblebee species and all honeybee species but were found to be absent in the two related corbiculate bee tribes, the stingless bees (Meliponini) and orchid bees (Euglossini). Both Snodgrassella alvi and Gilliamella apicola phylogenies show significant topological congruence with the phylogeny of their bee hosts, albeit with a considerable degree of putative host switches. Furthermore, we found that phylogenetic distances between Gilliamella apicola samples correlated with the geographical distance between sampling locations. This tentatively suggests that the environmental transmission rate, as set by geographical distance, affects the distribution of G. apicola infections. We show experimentally that both bacterial taxa can be vertically transmitted from the mother colony to daughter queens, and social contact with nest mates after emergence from the pupa greatly facilitates this transmission. Therefore, sociality may play an important role in vertical transmission and opens up the potential for co-evolution or at least a close association of gut bacteria with their hosts.
Collapse
Affiliation(s)
- Hauke Koch
- ETH Zürich, Institute of Integrative Biology (IBZ), Zürich, Switzerland.
| | | | | | | |
Collapse
|
78
|
Analysis of stomach and gut microbiomes of the eastern oyster (Crassostrea virginica) from coastal Louisiana, USA. PLoS One 2012; 7:e51475. [PMID: 23251548 PMCID: PMC3520802 DOI: 10.1371/journal.pone.0051475] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 11/05/2012] [Indexed: 01/02/2023] Open
Abstract
We used high throughput pyrosequencing to characterize stomach and gut content microbiomes of Crassostrea virginica, the Easter oyster, obtained from two sites, one in Barataria Bay (Hackberry Bay) and the other in Terrebonne Bay (Lake Caillou), Louisiana, USA. Stomach microbiomes in oysters from Hackberry Bay were overwhelmingly dominated by Mollicutes most closely related to Mycoplasma; a more rich community dominated by Planctomyctes occurred in Lake Caillou oyster stomachs. Gut communities for oysters from both sites differed from stomach communities, and harbored a relatively diverse assemblage of phylotypes. Phylotypes most closely related to Shewanella and a Chloroflexi strain dominated the Lake Caillou and Hackberry Bay gut microbiota, respectively. While many members of the stomach and gut microbiomes appeared to be transients or opportunists, a putative core microbiome was identified based on phylotypes that occurred in all stomach or gut samples only. The putative core stomach microbiome comprised 5 OTUs in 3 phyla, while the putative core gut microbiome contained 44 OTUs in 12 phyla. These results collectively revealed novel microbial communities within the oyster digestive system, the functions of the oyster microbiome are largely unknown. A comparison of microbiomes from Louisiana oysters with bacterial communities reported for other marine invertebrates and fish indicated that molluscan microbiomes were more similar to each other than to microbiomes of polychaetes, decapods and fish.
Collapse
|
79
|
Saavedra JM, Dattilo AM. Early development of intestinal microbiota: implications for future health. Gastroenterol Clin North Am 2012; 41:717-31. [PMID: 23101683 DOI: 10.1016/j.gtc.2012.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Gut microbiota constitute a highly complex ecosystem that interacts with the host and profoundly affects gastrointestinal and systemic immunologic functions. Specific microbial patterns are associated with healthy children and adults, and these patterns are greatly related to the early acquisition of microbes by the newborn and the development of gut microbial communities in the perinatal period. Although direct causation must be firmly established and mechanisms fully elucidated, strong and increasing evidence shows that the early acquisition, development, and maintenance of specific bacterial populations are critical to human health, and a better understanding of these offers great opportunities for intervention.
Collapse
Affiliation(s)
- José M Saavedra
- Department of Pediatrics, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| | | |
Collapse
|
80
|
Abstract
A computer model of the gut shows how a host can readily select friendly bacteria over harmful bacteria through a process called “selectivity amplification.” The human gut harbours a large and genetically diverse population of symbiotic microbes that both feed and protect the host. Evolutionary theory, however, predicts that such genetic diversity can destabilise mutualistic partnerships. How then can the mutualism of the human microbiota be explained? Here we develop an individual-based model of host-associated microbial communities. We first demonstrate the fundamental problem faced by a host: The presence of a genetically diverse microbiota leads to the dominance of the fastest growing microbes instead of the microbes that are most beneficial to the host. We next investigate the potential for host secretions to influence the microbiota. This reveals that the epithelium–microbiota interface acts as a selectivity amplifier: Modest amounts of moderately selective epithelial secretions cause a complete shift in the strains growing at the epithelial surface. This occurs because of the physical structure of the epithelium–microbiota interface: Epithelial secretions have effects that permeate upwards through the whole microbial community, while lumen compounds preferentially affect cells that are soon to slough off. Finally, our model predicts that while antimicrobial secretion can promote host epithelial selection, epithelial nutrient secretion will often be key to host selection. Our findings are consistent with a growing number of empirical papers that indicate an influence of host factors upon microbiota, including growth-promoting glycoconjugates. We argue that host selection is likely to be a key mechanism in the stabilisation of the mutualism between a host and its microbiota. The cells of our bodies are greatly outnumbered by the bacteria that live on us and, in particular, in our gut. It is now clear that many gut bacteria are highly beneficial, protecting us from pathogens and helping us with digestion. But what prevents beneficial bacteria from going bad? Why don't bacteria evolve to shirk on the help that they provide and simply use us as a food source? Here we explore this problem using a computer model that reduces the problem to its key elements. We first illustrate the basic problem faced by a host: Whenever beneficial bacteria grow slowly, the host will lose them to fast-growing species that provide no benefit. We then propose a solution to the host's problem: The host can use secretions—nutrients and toxins—to control the bacteria that grow on the epithelial cell layer of the gut. In particular, our model predicts that the epithelial surface acts as a “selectivity amplifier”. The host can thereby maintain beneficial bacteria with only small amounts of weakly selective secretions. Our model fits with a growing body of experimental data showing that hosts have diverse and important influences on their gut bacteria.
Collapse
|
81
|
Harder J, Schröder JM, Gläser R. The skin surface as antimicrobial barrier: present concepts and future outlooks. Exp Dermatol 2012; 22:1-5. [DOI: 10.1111/exd.12046] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Jürgen Harder
- Department of Dermatology; University Hospital of Schleswig-Holstein; Kiel; Germany
| | | | - Regine Gläser
- Department of Dermatology; University Hospital of Schleswig-Holstein; Kiel; Germany
| |
Collapse
|
82
|
Alternative sampling methods for detecting bacterial pathogens in children with upper respiratory tract infections. J Clin Microbiol 2012; 50:4134-7. [PMID: 23052306 DOI: 10.1128/jcm.02376-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nasopharyngeal sampling is used for detecting bacteria commonly involved in upper respiratory tract infections, but it requires training and may not always be well tolerated. We sampled children (n = 66) of ages 0 to 4 years, with rhinorrhea, by using a nasopharyngeal swab, a nasal swab, and nose blowing/wiping into a paper tissue. Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staphylococcus aureus were cultured at similar rates across methods with high concordance (80 to 97%), indicating that they are reliably detected by alternative means.
Collapse
|
83
|
Wong S, Rawls JF. Intestinal microbiota composition in fishes is influenced by host ecology and environment. Mol Ecol 2012; 21:3100-2. [PMID: 22916346 DOI: 10.1111/j.1365-294x.2012.05646.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The digestive tracts of vertebrates are colonized by complex assemblages of micro-organisms, collectively called the gut microbiota. Recent studies have revealed important contributions of gut microbiota to vertebrate health and disease, stimulating intense interest in understanding how gut microbial communities are assembled and how they impact host fitness (Sekirov et al. 2010). Although all vertebrates harbour a gut microbiota, current information on microbiota composition and function has been derived primarily from mammals. Comparisons of different mammalian species have revealed intriguing associations between gut microbiota composition and host diet, anatomy and phylogeny (Ley et al. 2008b). However, mammals constitute <10% of all vertebrate species, and it remains unclear whether similar associations exist in more diverse and ancient vertebrate lineages such as fish. In this issue, Sullam et al. (2012) make an important contribution toward identifying factors determining gut microbiota composition in fishes. The authors conducted a detailed meta-analysis of 25 bacterial 16S rRNA gene sequence libraries derived from the intestines of different fish species. To provide a broader context for their analysis, they compared these data sets to a large collection of 16S rRNA gene sequence data sets from diverse free-living and host-associated bacterial communities. Their results suggest that variation in gut microbiota composition in fishes is strongly correlated with species habitat salinity, trophic level and possibly taxonomy. Comparison of data sets from fish intestines and other environments revealed that fish gut microbiota compositions are often similar to those of other animals and contain relatively few free-living environmental bacteria. These results suggest that the gut microbiota composition of fishes is not a simple reflection of the micro-organisms in their local habitat but may result from host-specific selective pressures within the gut (Bevins & Salzman 2011).
Collapse
Affiliation(s)
- Sandi Wong
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7545, USA
| | | |
Collapse
|
84
|
Abstract
Any multicellular organism may be considered a metaorganism or holobiont-comprised of the macroscopic host and synergistic interdependence with bacteria, archaea, fungi, viruses, and numerous other microbial and eukaryotic species including algal symbionts. Defining the individual microbe-host conversations in these consortia is a challenging but necessary step on the path to understanding the function of the associations as a whole. Dissecting the fundamental principles that underlie all host-microbe interactions requires simple animal models with only a few specific bacterial species. Here I present Hydra as such a model with one of the simplest epithelia in the animal kingdom, with the availability of a fully sequenced genome and numerous genomic tools, and with few associated bacterial species.
Collapse
|