51
|
Sheep (Ovis aries) integrins αvβ1 and αvβ6 related to foot-and-mouth disease virus infection: Molecular cloning, sequence analysis and comparison with homologues. Mol Cell Probes 2009; 23:247-57. [DOI: 10.1016/j.mcp.2009.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 06/04/2009] [Accepted: 06/15/2009] [Indexed: 11/19/2022]
|
52
|
Engler AJ, Humbert PO, Wehrle-Haller B, Weaver VM. Multiscale modeling of form and function. Science 2009; 324:208-12. [PMID: 19359578 DOI: 10.1126/science.1170107] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Topobiology posits that morphogenesis is driven by differential adhesive interactions among heterogeneous cell populations. This paradigm has been revised to include force-dependent molecular switches, cell and tissue tension, and reciprocal interactions with the microenvironment. It is now appreciated that tissue development is executed through conserved decision-making modules that operate on multiple length scales from the molecular and subcellular level through to the cell and tissue level and that these regulatory mechanisms specify cell and tissue fate by modifying the context of cellular signaling and gene expression. Here, we discuss the origin of these decision-making modules and illustrate how emergent properties of adhesion-directed multicellular structures sculpt the tissue, promote its functionality, and maintain its homeostasis through spatial segregation and organization of anchored proteins and secreted factors and through emergent properties of tissues, including tension fields and energy optimization.
Collapse
Affiliation(s)
- Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
53
|
Dinkins MB, Fratto VM, Lemosy EK. Integrin alpha chains exhibit distinct temporal and spatial localization patterns in epithelial cells of the Drosophila ovary. Dev Dyn 2009; 237:3927-39. [PMID: 19035354 DOI: 10.1002/dvdy.21802] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Integrins are heterodimeric transmembrane receptors that modulate cell adhesion, migration, and signaling. Multiple integrin chains contribute to development and morphogenesis of a given tissue. Here, we analyze the expression of Drosophila integrin alpha chains in the ovarian follicular epithelium, a model for tissue morphogenesis and cell migration. We find expression throughout development of the beta chain, betaPS. Alpha chains, however, exhibit both spatial and temporal expression differences. alphaPS1 and alphaPS2 integrins are detected during early and mid-oogenesis on apical, lateral, and basal membranes with the betaPS chain, whereas alphaPS3-family integrins (alphaPS3, alphaPS4, alphaPS5) are expressed in anterior cells late in oogenesis. Surprisingly, we find that alphaPS3-family integrins are dispensable for dorsal appendage morphogenesis but play a role in the final length of the egg, suggesting redundant functions of integrins in a simple tissue. We also demonstrate roles for alphaPS3betaPS integrin in border cell migration and in stretch cells.
Collapse
Affiliation(s)
- Michael B Dinkins
- Department of Cellular Biology, Medical College of Georgia, 1120 15th Street, CB1101, Augusta, GA 30912, USA
| | | | | |
Collapse
|
54
|
Structural requirements of KTS-disintegrins for inhibition of alpha(1)beta(1) integrin. Biochem J 2009; 417:95-101. [PMID: 18774946 DOI: 10.1042/bj20081403] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Obtustatin and viperistatin represent the shortest known snake venom monomeric disintegrins. In the present study, we have produced recombinant full-length wild-type and site-directed mutants of obtustatin to assess the role of the K(21)TS(23) tripeptide and C-terminal residues for specific inhibition of the alpha(1)beta(1) integrin. Thr(22) appeared to be the most critical residue for disintegrin activity, whereas substitution of the flanking lysine or serine residues for alanine resulted in a less pronounced decrease in the anti-alpha(1)beta(1) integrin activity of the disintegrin. The triple mutant A(21)AA(23) was devoid of blocking activity towards alpha(1)beta(1) integrin-mediated cell adhesion. The potency of recombinant KTS-disintegrins also depended on the residue C-terminally adjacent to the active motif. Substitution of Leu(24) of wild-type obtustatin for an alanine residue slightly decreased the inhibitory activity of the mutant, whereas an arginine residue in this position enhanced the potency of the mutant over wild-type obtustatin by 6-fold. In addition, the replacements L38V and P40Q may account for a further 25-fold increase in alpha(1)beta(1) inhibitory potency of viperistatin over KTSR-obtustatin.
Collapse
|
55
|
Integrins during evolution: evolutionary trees and model organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:779-89. [PMID: 19161977 DOI: 10.1016/j.bbamem.2008.12.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 12/03/2008] [Accepted: 12/23/2008] [Indexed: 11/23/2022]
Abstract
The integrins form a large family of cell adhesion receptors. All multicellular animals express integrins, indicating that the family evolved relatively early in the history of metazoans, and homologous sequences of the component domains of integrin alpha and beta subunits are seen in prokaryotes. Some integrins, however, seem to be much younger. For example, the alphaI domain containing integrins, including collagen receptors and leukocyte integrins, have been found in chordates only. Here, we will discuss what conclusions can be drawn about integrin function by studying the evolutionary conservation of integrins. We will also look at how studying integrins in organisms such as the fruit fly and mouse has helped our understanding of integrin evolution-function relationships. As an illustration of this, we will summarize the current understanding of integrin involvement in skeletal muscle formation.
Collapse
|
56
|
Heino J, Huhtala M, Käpylä J, Johnson MS. Evolution of collagen-based adhesion systems. Int J Biochem Cell Biol 2008; 41:341-8. [PMID: 18790075 DOI: 10.1016/j.biocel.2008.08.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 12/22/2022]
Abstract
Collagens are large, triple-helical proteins that form fibrils and network-like structures in the extracellular matrix. The collagens may have participated in the evolution of the metazoans from their very earliest origins. Cell adhesion receptors, such as the integrins, are at least as old as the collagens. Still, the early metazoan cells might not have been able to anchor directly to collagen fibrils, since the integrin-type collagen receptors have only been identified in vertebrates. Instead, the early metazoans may have used integrin-type receptors in the recognition of collagen-binding glycoproteins. It is possible that specialized, high-avidity collagen-receptor integrins have become instrumental for the evolution of bone, cartilage, circulatory and immune systems in the chordates. In vertebrates, specific collagen-binding receptor tyrosine kinases send signals into cells after adhesion to collagen. These receptors are members of the discoidin domain receptor (DDR) group. The evolutionary history of DDRs is poorly known at this time. DDR orthologs have been found in many invertebrates, but their ability to function as collagen receptors has not yet been tested. The two main categories of collagens, fibrillar and non-fibrillar, already exist in the most primitive metazoans, such as the sponges. Interestingly, both integrin and DDR families seem to have members that favor either one or the other of these two groups of collagens.
Collapse
Affiliation(s)
- Jyrki Heino
- Department of Biochemistry and Food Chemistry, University of Turku, FI-20014 Turku, Finland.
| | | | | | | |
Collapse
|
57
|
Magie CR, Martindale MQ. Cell-cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis. THE BIOLOGICAL BULLETIN 2008; 214:218-232. [PMID: 18574100 DOI: 10.2307/25470665] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cell adhesion is a major aspect of cell biology and one of the fundamental processes involved in the development of a multicellular animal. Adhesive mechanisms, both cell-cell and between cell and extracellular matrix, are intimately involved in assembling cells into the three-dimensional structures of tissues and organs. The modulation of adhesive complexes could therefore be seen as a central component in the molecular control of morphogenesis, translating information encoded within the genome into organismal form. The availability of whole genomes from early-branching metazoa such as cnidarians is providing important insights into the evolution of adhesive processes by allowing for the easy identification of the genes involved in adhesion in these organisms. Discovery of the molecular nature of cell adhesion in the early-branching groups, coupled with comparisons across the metazoa, is revealing the ways evolution has tinkered with this vital cellular process in the generation of the myriad forms seen across the animal kingdom.
Collapse
Affiliation(s)
- Craig R Magie
- Kewalo Marine Laboratory, Pacific Biomedical Research Center, University of Hawai'i Honolulu, Hawaii 96813, USA
| | | |
Collapse
|
58
|
Knack BA, Iguchi A, Shinzato C, Hayward DC, Ball EE, Miller DJ. Unexpected diversity of cnidarian integrins: expression during coral gastrulation. BMC Evol Biol 2008; 8:136. [PMID: 18466626 PMCID: PMC2397394 DOI: 10.1186/1471-2148-8-136] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 05/09/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adhesion mediated through the integrin family of cell surface receptors is central to early development throughout the Metazoa, playing key roles in cell-extra cellular matrix adhesion and modulation of cadherin activity during the convergence and extension movements of gastrulation. It has been suggested that Caenorhabditis elegans, which has a single beta and two alpha integrins, might reflect the ancestral integrin complement. Investigation of the integrin repertoire of anthozoan cnidarians such as the coral Acropora millepora is required to test this hypothesis and may provide insights into the original roles of these molecules. RESULTS Two novel integrins were identified in Acropora. AmItgalpha1 shows features characteristic of alpha integrins lacking an I-domain, but phylogenetic analysis gives no clear indication of its likely binding specificity. AmItgbeta2 lacks consensus cysteine residues at positions 8 and 9, but is otherwise a typical beta integrin. In situ hybridization revealed that AmItgalpha1, AmItgbeta1, and AmItgbeta2 are expressed in the presumptive endoderm during gastrulation. A second anthozoan, the sea anemone Nematostella vectensis, has at least four beta integrins, two resembling AmItgbeta1 and two like AmItgbeta2, and at least three alpha integrins, based on its genomic sequence. CONCLUSION In two respects, the cnidarian data do not fit expectations. First, the cnidarian integrin repertoire is more complex than predicted: at least two betas in Acropora, and at least three alphas and four betas in Nematostella. Second, whereas the bilaterian alphas resolve into well-supported groups corresponding to those specific for RGD-containing or laminin-type ligands, the known cnidarian alphas are distinct from these. During early development in Acropora, the expression patterns of the three known integrins parallel those of amphibian and echinoderm integrins.
Collapse
Affiliation(s)
- Brent A Knack
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia.
| | | | | | | | | | | |
Collapse
|
59
|
Hermann PM, Nicol JJ, Bulloch AGM, Wildering WC. RGD-dependent mechanisms in the endoneurial phagocyte response and axonal regeneration in the nervous system of the snail Lymnaea stagnalis. ACTA ACUST UNITED AC 2008; 211:491-501. [PMID: 18245625 DOI: 10.1242/jeb.013102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of phagocytic cells in the injury zone is a crucial step in the regeneration of peripheral axons. Many aspects of the mechanisms underlying the recruitment of active phagocytes remain, however, unclear. Notably, our understanding of the interactions between injury, extracellular matrix (ECM) degradation and phagocyte activation is limited. Most animal cell types, phagocytes included, interact with proteins of the ECM through one or more members of the integrin family, transmembrane cell adhesion receptors that typically bind their ligands through short linear amino acid sequences. This study focused on the role of one of the most common of such integrin recognition sequences, the Arg-Gly-Asp (RGD) motif in the recruitment and activation of endoneurial phagocytes in the injury response of the nervous system of the pond snail Lymnaea stagnalis. Like the mammalian nervous system, the Lymnaea nervous system responds to injury with recruitment and activation of endoneurial phagocytes (i.e. phagocytes residing in Lymnaea's nerves), a process involving substantial changes in the morphology, motility and adhesion status of these cells. Using synthetic water-soluble RGD-peptides, we investigated the relevance of RGD-dependent mechanisms in the activation of endoneurial phagocytes and injury response of the organ-cultured nervous system of Lymnaea. Our results show that RGD-peptides modulate various aspects of phagocyte activation (i.e. spreading response, particle engulfment, oxidative burst) in vitro and in situ and significantly affect nerve regeneration in this model system. Surprisingly, while linear RGD-analogues suppressed both phagocyte activation and axonal regeneration, a circularized RGD-peptide analogue modulated these parameters in a concentration-dependent, biphasic manner. Collectively, these results emphasize the significance of RGD-dependent mechanisms in the regenerative response of the Lymnaea nervous system and implicate regulation of the cellular immune response as one of the factors in this context.
Collapse
Affiliation(s)
- Petra M Hermann
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | | | | | | |
Collapse
|
60
|
Molecular cloning and characterization of the alphaX subunit from CD11c/CD18 horse integrin. Vet Immunol Immunopathol 2008; 122:326-34. [DOI: 10.1016/j.vetimm.2007.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 11/27/2007] [Accepted: 12/21/2007] [Indexed: 11/22/2022]
|
61
|
Jani K, Schöck F. Zasp is required for the assembly of functional integrin adhesion sites. ACTA ACUST UNITED AC 2008; 179:1583-97. [PMID: 18166658 PMCID: PMC2373490 DOI: 10.1083/jcb.200707045] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The integrin family of heterodimeric transmembrane receptors mediates cell–matrix adhesion. Integrins often localize in highly organized structures, such as focal adhesions in tissue culture and myotendinous junctions in muscles. Our RNA interference screen for genes that prevent integrin-dependent cell spreading identifies Z band alternatively spliced PDZ-motif protein (zasp), encoding the only known Drosophila melanogaster Alp/Enigma PDZ-LIM domain protein. Zasp localizes to integrin adhesion sites and its depletion disrupts integrin adhesion sites. In tissues, Zasp colocalizes with βPS integrin in myotendinous junctions and with α-actinin in muscle Z lines. Zasp also physically interacts with α-actinin. Fly larvae lacking Zasp do not form Z lines and fail to recruit α-actinin to the Z line. At the myotendinous junction, muscles detach in zasp mutants with the onset of contractility. Finally, Zasp interacts genetically with integrins, showing that it regulates integrin function. Our observations point to an important function for Zasp in the assembly of integrin adhesion sites both in cell culture and in tissues.
Collapse
Affiliation(s)
- Klodiana Jani
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | |
Collapse
|
62
|
Zhuang S, Kelo L, Nardi JB, Kanost MR. Multiple alpha subunits of integrin are involved in cell-mediated responses of the Manduca immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:365-79. [PMID: 17868866 DOI: 10.1016/j.dci.2007.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 07/27/2007] [Accepted: 07/28/2007] [Indexed: 05/17/2023]
Abstract
The cell-mediated responses of the insect innate immune system-phagocytosis, nodulation, encapsulation-involve multiple cell adhesion molecules of hemocyte surfaces. A hemocyte-specific (HS) integrin and a member of the immunoglobulin (Ig) superfamily (neuroglian) are involved in the encapsulation response of hemocytes in Manduca sexta. In addition, two new integrin alpha (alpha) subunits have been found on these hemocytes. The alpha2 subunit is mainly expressed in epidermis and Malphigian tubules, whereas the alpha3 subunit is primarily expressed on hemocytes and fat body cells. Of the three known alpha subunits, the alpha1 subunit found in HS integrin is the predominant subunit of hemocytes. Cell adhesion assays indicate that alpha2 belongs to the integrin family with RGD-binding motifs, confirming the phylogenetic analysis of alpha subunits based on the amino-acid sequence alignment of different alpha subunits. Double-stranded RNAs (dsRNAs) targeting each of these three integrin alpha subunits not only specifically decreased transcript expression of each alpha subunit in hemocytes, but also abolished the cell-mediated encapsulation response of hemocytes to foreign surfaces. The individual alpha subunits of M. sexta integrins, like their integrin counterparts in mammalian immune systems, have critical, individual roles in cell-substrate and cell-cell interactions during immune responses.
Collapse
Affiliation(s)
- Shufei Zhuang
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
63
|
Zhuang S, Kelo L, Nardi JB, Kanost MR. An Integrin-Tetraspanin Interaction Required for Cellular Innate Immune Responses of an Insect, Manduca sexta. J Biol Chem 2007; 282:22563-72. [PMID: 17553801 DOI: 10.1074/jbc.m700341200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In their encounters with foreign intruders, the cells of the insect innate immune system, like those of the mammalian immune system, exhibit both humoral and cell-mediated responses. Some intruders can be dispatched by the humoral immune system alone, but many must be phagocytosed by individual hemocytes or encapsulated by interacting hemocytes. Surface proteins of hemocytes control the abrupt transition of hemocytes from resting, nonadherent cells to activated, adherent cells during these cell-mediated responses. Two of these surface proteins, an integrin and a tetraspanin, interact during this adhesive transition. As demonstrated with a hemocyte adhesion assay and a surface plasmon resonance assay, the large extracellular loop of tetraspanin D76 binds to a hemocyte-specific integrin of Manduca sexta. The interaction between the large extracellular loop domain and hemocyte-specific integrin is interrupted not only by a monoclonal antibody (MS13) that binds to a domain of beta-integrin known to be a ligand-binding site for cell adhesion but also by double-stranded beta-integrin RNA. Transfected S2 cells expressing tetraspanin mediate adhesion of hemocytes. A monoclonal antibody to tetraspanin D76 perturbs the cell-mediated immune response of encapsulation. These studies involving antibody blocking, RNA interference, and binding assays imply a trans interaction of integrin and tetraspanin on hemocyte surfaces.
Collapse
Affiliation(s)
- Shufei Zhuang
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | |
Collapse
|
64
|
Cheli Y, Kanaji S, Jacquelin B, Chang M, Nugent DJ, Kunicki TJ. Transcriptional and epigenetic regulation of the integrin collagen receptor locus ITGA1-PELO-ITGA2. ACTA ACUST UNITED AC 2007; 1769:546-58. [PMID: 17669516 PMCID: PMC2682338 DOI: 10.1016/j.bbaexp.2007.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/11/2007] [Accepted: 06/25/2007] [Indexed: 12/26/2022]
Abstract
The integrin collagen receptor locus on human chromosome 5q11.2 includes the integrin genes ITGA1 and ITGA2, and the cell cycle regulation gene PELO, embedded within ITGA1 intron 1. ITGA1 contains a CArG box that is bound by serum response factor (SRF), while PELO contains two Sp1 binding elements. A comparison of mRNA levels in megakaryocytic (MK) and non-megakaryocytic (non-MK) cell lines and an analysis of the transcriptional activity of promoter-LUC reporter gene constructs in transfected cells revealed that ITGA1 is selectively suppressed in the MK lineage. Sodium bisulfite genomic sequencing established that a CpG-rich ITGA1 promoter region (-209/+115) is fully methylated at 19 CpG sites in MK cells that do not express alpha1beta1, but completely demethylated in expressing cells. In vitro methylation of ITGA1 suppresses transcription, while treatment of megakaryocytic cells with 5-aza-2'-deoxycytidine, but not Trichostatin A, resulted in de novo expression of ITGA1. During thrombopoietin-induced in vitro differentiation of primary human cord blood mononuclear cells into megakaryocytes, we observed rapid, progressive CpG methylation of ITGA1, but not PELO or ITGA2. Thus, selective CpG methylation of the ITGA1 promoter is a specific feature of alpha1beta1 regulation that coincides with the initiation of megakaryocyte differentiation.
Collapse
MESH Headings
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Chromosomes, Human, Pair 5/genetics
- Chromosomes, Human, Pair 5/metabolism
- DNA Methylation/drug effects
- Decitabine
- Enzyme Inhibitors/pharmacology
- Epigenesis, Genetic/drug effects
- Epigenesis, Genetic/physiology
- HeLa Cells
- Humans
- Hydroxamic Acids/pharmacology
- Integrin alpha1/biosynthesis
- Integrin alpha1/genetics
- Integrin alpha1beta1/biosynthesis
- Integrin alpha1beta1/genetics
- Integrin alpha2/biosynthesis
- Integrin alpha2/genetics
- Introns/physiology
- K562 Cells
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/metabolism
- Megakaryocytes/cytology
- Megakaryocytes/metabolism
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/genetics
- Promoter Regions, Genetic/physiology
- Quantitative Trait Loci/physiology
- Thrombopoietin/pharmacology
- Transcription, Genetic
Collapse
Affiliation(s)
- Yann Cheli
- The Roon Research Center for Arteriosclerosis and Thrombosis, The Scripps Research Institute, La Jolla, CA 92037
| | - Sachiko Kanaji
- The Roon Research Center for Arteriosclerosis and Thrombosis, The Scripps Research Institute, La Jolla, CA 92037
- Division of Experimental Hemostasis and Thrombosis, The Scripps Research Institute, La Jolla, CA 92037
| | - Beatrice Jacquelin
- The Roon Research Center for Arteriosclerosis and Thrombosis, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Mei Chang
- Children’s Hospital of Orange County, Orange, CA 92868
| | | | - Thomas J. Kunicki
- The Roon Research Center for Arteriosclerosis and Thrombosis, The Scripps Research Institute, La Jolla, CA 92037
- Address correspondence to: Thomas J. Kunicki Ph.D., Department of Molecular and Experimental Medicine, Maildrop MEM150, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, Tel. 858-784-2668, Fax 858-784-2174,
| |
Collapse
|
65
|
Abstract
Proteins that mediate cell-cell and cell-extracellular matrix (ECM) adhesion have been fundamental in the evolution of multicellular animals. Fibrillar collagens, proteoglycans, integrins, and cadherins are present in all animals from sponges to mammals, and many other adhesion proteins have arisen during animal evolution. In general, adhesion proteins are large multidomain molecules and are encoded in larger gene families in vertebrates than in invertebrates. With the increasing availability of completely sequenced genomes representing different points on the animal tree of life, bioinformatics is proving to be a very valuable approach for the analysis of the domain organization and relationships of adhesion proteins, which can direct or enhance experimental tests. Here we describe, with examples from the literature, the major methods for identifying sequence homologies; analyzing domain organization and potential for oligomerization; analyzing sequence relationships by multiple sequence alignments and phylogenetic trees, and assessing adhesion proteins as components of functional pathways and tissue systems through comparative genomics.
Collapse
Affiliation(s)
- Josephine C Adams
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | |
Collapse
|
66
|
Sanz L, Bazaa A, Marrakchi N, Pérez A, Chenik M, Bel Lasfer Z, El Ayeb M, Calvete J. Molecular cloning of disintegrins from Cerastes vipera and Macrovipera lebetina transmediterranea venom gland cDNA libraries: insight into the evolution of the snake venom integrin-inhibition system. Biochem J 2006; 395:385-92. [PMID: 16411889 PMCID: PMC1422776 DOI: 10.1042/bj20051678] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 01/03/2006] [Accepted: 01/13/2006] [Indexed: 11/17/2022]
Abstract
We report the cloning and sequence analysis of Cerastes vipera and Macrovipera lebetina transmediterranea cDNAs coding for short non-RGD (Arg-Gly-Asp) disintegrins and for dimeric disintegrin subunits. The mRNAs belong to the short-coding class, suggesting that these disintegrin mRNAs may be more widely distributed than previously thought. Our data also argue for a common ancestry of the mRNAs of short disintegrins and those coding for precursors of dimeric disintegrin chains. The Macrovipera lebetina transmediterranea dimeric disintegrin reported to inhibit the laminin-binding integrins alpha3beta1, alpha6beta1 and alpha7beta1 was analysed using a proteomic approach and was shown to bear MLD (Met-Leu-Asp) and VGD (Val-Gly-Asp) motifs. The results highlight the fact that disintegrins have evolved a restricted panel of integrin-blocking sequences that segregate with defined branches of the phylogenetic tree of the integrin alpha-chains, providing novel insights into the evolutionary adaptation of the snake venom antagonists to the ligand-binding sites of their target integrin receptors.
Collapse
Affiliation(s)
- Libia Sanz
- *Instituto de Biomedicina de Valencia, C.S.I.C., Jaume Roig 11, 46010 Valencia, Spain
| | - Amine Bazaa
- †Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, B.P. 74, 1002 Tunis-Belvédère, Tunisia
| | - Naziha Marrakchi
- †Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, B.P. 74, 1002 Tunis-Belvédère, Tunisia
| | - Alicia Pérez
- *Instituto de Biomedicina de Valencia, C.S.I.C., Jaume Roig 11, 46010 Valencia, Spain
| | - Mehdi Chenik
- ‡Laboratoire d'immunologie, Institut Pasteur de Tunis, B.P. 74, 1002 Tunis-Belvédère, Tunisia
| | - Zakaria Bel Lasfer
- †Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, B.P. 74, 1002 Tunis-Belvédère, Tunisia
| | - Mohamed El Ayeb
- †Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, B.P. 74, 1002 Tunis-Belvédère, Tunisia
| | - Juan J. Calvete
- *Instituto de Biomedicina de Valencia, C.S.I.C., Jaume Roig 11, 46010 Valencia, Spain
| |
Collapse
|
67
|
Huhtala M, Heino J, Casciari D, de Luise A, Johnson MS. Integrin evolution: insights from ascidian and teleost fish genomes. Matrix Biol 2005; 24:83-95. [PMID: 15890260 DOI: 10.1016/j.matbio.2005.01.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 01/13/2005] [Accepted: 01/24/2005] [Indexed: 10/25/2022]
Abstract
Integrins are a family of alphabeta heterodimeric receptors essential to cell adhesion in all metazoans. In humans, the family consists of 18 alpha and 8 beta subunits that combine to form 24 dimers. Here, we present phylogenetic reconstructions for the alpha and beta integrin subunits based on sequences from 24 invertebrate and vertebrate species, including the fully sequenced genomes of the ascidian Ciona intestinalis (a urochordate) and the pufferfish Takifugu rubripes (a teleost). Both genomes contain integrin alpha subunits that have the inserted alphaI domain. As for the one alphaI domain containing integrin alpha subunit discovered earlier from the ascidian Halocynthia roretzi, the Ciona alphaI domains are missing the distinctive characteristics of mammalian collagen receptors and segregate from all vertebrate alphaI domain integrins in a phylogenetic tree, forming a new subgroup of alpha subunits with alphaI domains. Each of the pufferfish alphaI domain sequences does have characteristics of the collagen receptor alphaI domains, but no leukocyte-specific alphaI domains were found in pufferfish. Comparative protein modeling suggests that several of these fish alphaI domains are structurally compatible with binding to a GFOGER sequence in a collagen triple helix.
Collapse
Affiliation(s)
- Mikko Huhtala
- Department of Biochemistry and Pharmacy, Abo Akademi University, Tykistökatu 6, FIN-20521 Turku, Finland
| | | | | | | | | |
Collapse
|
68
|
Aouacheria A, Brunet F, Gouy M. Phylogenomics of Life-Or-Death Switches in Multicellular Animals: Bcl-2, BH3-Only, and BNip Families of Apoptotic Regulators. Mol Biol Evol 2005; 22:2395-416. [PMID: 16093567 DOI: 10.1093/molbev/msi234] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this report, we conducted a comprehensive survey of Bcl-2 family members, a divergent group of proteins that regulate programmed cell death by an evolutionarily conserved mechanism. Using comparative sequence analysis, we found novel sequences in mammals, nonmammalian vertebrates, and in a number of invertebrates. We then asked what conclusions could be drawn from phyletic distribution, intron/exon structures, sequence/structure relationships, and phylogenetic analyses within the updated Bcl-2 family. First, multidomain members having a sequence pattern consistent with the conservation of the Bcl-X(L)/Bax/Bid topology appear to be restricted to multicellular animals and may share a common ancestry. Next, BNip proteins, which were originally identified based on their ability to bind to E1B 19K/Bcl-2 proteins, form three independent monophyletic branches with different evolutionary history. Lastly, a set of Bcl-2 homology 3-only proteins with unrelated secondary structures seems to have evolved after the origin of Metazoa and exhibits diverse expansion after speciation during vertebrate evolution.
Collapse
Affiliation(s)
- Abdel Aouacheria
- Laboratoire de Biométrie et Biologie Evolutive, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France.
| | | | | |
Collapse
|
69
|
Ewan R, Huxley-Jones J, Mould AP, Humphries MJ, Robertson DL, Boot-Handford RP. The integrins of the urochordate Ciona intestinalis provide novel insights into the molecular evolution of the vertebrate integrin family. BMC Evol Biol 2005; 5:31. [PMID: 15892888 PMCID: PMC1145181 DOI: 10.1186/1471-2148-5-31] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 05/13/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Integrins are a functionally significant family of metazoan cell surface adhesion receptors. The receptors are dimers composed of an alpha and a beta chain. Vertebrate genomes encode an expanded set of integrin alpha and beta chains in comparison with protostomes such as drosophila or the nematode worm. The publication of the genome of a basal chordate, Ciona intestinalis, provides a unique opportunity to gain further insight into how and when the expanded integrin supergene family found in vertebrates evolved. RESULTS The Ciona genome encodes eleven alpha and five beta chain genes that are highly homologous to their vertebrate homologues. Eight of the alpha chains contain an A-domain that lacks the short alpha helical region present in the collagen-binding vertebrate alpha chains. Phylogenetic analyses indicate the eight A-domain containing alpha chains cluster to form an ascidian-specific clade that is related to but, distinct from, the vertebrate A-domain clade. Two Ciona alpha chains cluster in laminin-binding clade and the remaining chain clusters in the clade that binds the RGD tripeptide sequence. Of the five Ciona beta chains, three form an ascidian-specific clade, one clusters in the vertebrate beta1 clade and the remaining Ciona chain is the orthologue of the vertebrate beta4 chain. CONCLUSION The Ciona repertoire of integrin genes provides new insight into the basic set of these receptors available at the beginning of vertebrate evolution. The ascidian and vertebrate alpha chain A-domain clades originated from a common precursor but radiated separately in each lineage. It would appear that the acquisition of collagen binding capabilities occurred in the chordate lineage after the divergence of ascidians.
Collapse
Affiliation(s)
- Richard Ewan
- Plant Molecular Science Group, University of Glasgow, Bower Building, G12 8QQ, UK.
| | | | | | | | | | | |
Collapse
|
70
|
Houzelstein D, Gonçalves IR, Fadden AJ, Sidhu SS, Cooper DNW, Drickamer K, Leffler H, Poirier F. Phylogenetic analysis of the vertebrate galectin family. Mol Biol Evol 2004; 21:1177-87. [PMID: 14963092 DOI: 10.1093/molbev/msh082] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Galectins form a family of structurally related carbohydrate binding proteins (lectins) that have been identified in a large variety of metazoan phyla. They are involved in many biological processes such as morphogenesis, control of cell death, immunological response, and cancer. To elucidate the evolutionary history of galectins and galectin-like proteins in chordates, we have exploited three independent lines of evidence: (i) location of galectin encoding genes (LGALS) in the human genome; (ii) exon-intron organization of galectin encoding genes; and (iii) sequence comparison of carbohydrate recognition domains (CRDs) of chordate galectins. Our results suggest that a duplication of a mono-CRD galectin gene gave rise to an original bi-CRD galectin gene, before or early in chordate evolution. The N-terminal and C-terminal CRDs of this original galectin subsequently diverged into two different subtypes, defined by exon-intron structure (F4-CRD and F3-CRD). We show that all vertebrate mono-CRD galectins known to date belong to either the F3- or F4- subtype. A sequence of duplication and divergence events of the different galectins in chordates is proposed.
Collapse
Affiliation(s)
- Denis Houzelstein
- Laboratoire de Genetique et Developpement des Mammiferes, Institut Jacques Monod, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Burke RD, Murray G, Rise M, Wang D. Integrins on eggs: the betaC subunit is essential for formation of the cortical actin cytoskeleton in sea urchin eggs. Dev Biol 2004; 265:53-60. [PMID: 14697352 DOI: 10.1016/j.ydbio.2003.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eggs of several metazoans have been demonstrated to express integrins; however, their function is unclear. Previous studies have shown that the betaC integrin subunit is expressed on unfertilized sea urchin eggs and proteolytically removed at fertilization. Here we report that the betaC subunit is reexpressed on the egg surface immediately after fertilization. Using morpholino antisense oligonucleotides to block translation, we show that without betaC expression, eggs undergo cleavage resulting in loosely adherent cells that fail to develop beyond a blastula. Without betaC containing integrins, the cortical actin network of the egg does not form, yet contractile rings appear. Coinjection of RNA encoding the betaC or chicken beta1 subunit, but lacking the morpholino target sequence, rescues the cortical actin network and normal embryos result. Coinjection of RNA encoding the betaC subunit lacking the cytoplasmic domain fails to rescue. These studies demonstrate that the cortical actin cytoskeleton is anchored by betaC integrins and contractile ring actin is not. We suggest that one important function of egg integrins is to organize the actin cortex.
Collapse
Affiliation(s)
- Robert D Burke
- Departments of Biology and Biochemistry/Microbiology, University of Victoria, Victoria, BC, Canada.
| | | | | | | |
Collapse
|
72
|
Lavine MD, Strand MR. Haemocytes from Pseudoplusia includens express multiple alpha and beta integrin subunits. INSECT MOLECULAR BIOLOGY 2003; 12:441-452. [PMID: 12974949 DOI: 10.1046/j.1365-2583.2003.00428.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cellular immune responses such as encapsulation involve the adhesion of one or more classes of haemocytes. How insect haemocytes recognize encapsulation targets as foreign or the identity of the molecules regulating haemocyte adhesion is unknown. One of the most important classes of adhesion receptors in mammalian immune cells is the integrins, which form functional heterodimers through different combinations of alpha and beta subunits. Prior studies with the moth Pseudoplusia includens indicated that encapsulation depends on two classes of haemocytes called granulocytes and plasmatocytes. Here we report the cloning and identification of three alpha integrin subunits (alphaPi1-3) and one beta subunit (betaPi1) from P. includens. Northern blot analysis indicated that all four subunits are expressed in granulocytes and that three of the four subunits are expressed in plasmatocytes. Quantification of transcription patterns using real-time PCR revealed that expression of alphaPi2 and betaPi1 increased in granulocytes and plasmatocytes when binding to a foreign surface or forming a capsule. alphaPi2 transcription in plasmatocytes was further increased by granulocyte conditioned medium, plasmatocyte spreading peptide, and the integrin recognition peptide RGD. Collectively, these results suggest that one or more integrins play an important role in regulating haemocyte adhesion during encapsulation.
Collapse
Affiliation(s)
- M D Lavine
- Department of Entomology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
73
|
Abstract
In their roles as major adhesion receptors, integrins signal across the plasma membrane in both directions. Recent structural and cell biological data suggest models for how integrins transmit signals between their extracellular ligand binding adhesion sites and their cytoplasmic domains, which link to the cytoskeleton and to signal transduction pathways. Long-range conformational changes couple these functions via allosteric equilibria.
Collapse
Affiliation(s)
- Richard O Hynes
- Howard Hughes Medical Institute, Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
74
|
Gullberg DE, Lundgren-Akerlund E. Collagen-binding I domain integrins--what do they do? PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 2002; 37:3-54. [PMID: 11876085 DOI: 10.1016/s0079-6336(02)80008-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Collagens are the most abundant proteins in the mammalian body and it is well recognized that collagens fulfill an important structural role in the extracellular matrix in a number of tissues. Inactivation of the collagen alpha 1(I) gene in mice results in embryonic lethality and collagen mutations in humans cause defects leading to disease. Integrins constitute a major group of receptors for extracellular matrix components, including collagens. Currently four collagen-binding I domain-containing integrins are known, namely alpha 1 beta 1, alpha 2 beta 1, alpha 10 beta 1 and alpha 11 beta 1. Unlike the undisputed role of collagens as structural elements, the biological importance of integrin mediated cell-collagen interactions is far from clear. This is in part due to the limited information available on the most recent additions of the integrin family, alpha 10 beta 1 and alpha 11 beta 1. Future studies using gene inactivation of individual and multiple integrin genes will allow testing of the hypothesis that collagen-binding integrins have redundant functions but will also shed light on their importance in pathological conditions. In this review we will describe what is currently known about the collagen-binding integrins and discuss their biological functions.
Collapse
Affiliation(s)
- Donald E Gullberg
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Box 582, Uppsala University, S-75123 Uppsala, Sweden.
| | | |
Collapse
|
75
|
Bökel C, Brown NH. Integrins in development: moving on, responding to, and sticking to the extracellular matrix. Dev Cell 2002; 3:311-21. [PMID: 12361595 DOI: 10.1016/s1534-5807(02)00265-4] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Integrins are cell surface receptors of the extracellular matrix present in all animals. Genetic analysis in worms, flies, and vertebrates has revealed integrin involvement in key developmental processes, and we focus here on examples of integrin functions that are comparable across these model organisms. Integrins contribute to cell movement by providing traction to migrating cells, through assembly of extracellular matrices that can serve as tracks for migration, and by transmitting guidance signals that direct cells or cell processes to their targets. Integrins also participate in signaling events that govern tissue differentiation and organogenesis. Finally, adhesion by integrin-mediated junctions allows tissues to withstand mechanical load and is essential for tissue integrity.
Collapse
Affiliation(s)
- Christian Bökel
- Department of Anatomy, Wellcome Trust/Cancer Research UK Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | | |
Collapse
|
76
|
Garbarino JE, Gibbons IR. Expression and genomic analysis of midasin, a novel and highly conserved AAA protein distantly related to dynein. BMC Genomics 2002; 3:18. [PMID: 12102729 PMCID: PMC117441 DOI: 10.1186/1471-2164-3-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2002] [Accepted: 07/08/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The largest open reading frame in the Saccharomyces genome encodes midasin (MDN1p, YLR106p), an AAA ATPase of 560 kDa that is essential for cell viability. Orthologs of midasin have been identified in the genome projects for Drosophila, Arabidopsis, and Schizosaccharomyces pombe. RESULTS Midasin is present as a single-copy gene encoding a well-conserved protein of approximately 600 kDa in all eukaryotes for which data are available. In humans, the gene maps to 6q15 and encodes a predicted protein of 5596 residues (632 kDa). Sequence alignments of midasin from humans, yeast, Giardia and Encephalitozoon indicate that its domain structure comprises an N-terminal domain (35 kDa), followed by an AAA domain containing six tandem AAA protomers (approximately 30 kDa each), a linker domain (260 kDa), an acidic domain (approximately 70 kDa) containing 35-40% aspartate and glutamate, and a carboxy-terminal M-domain (30 kDa) that possesses MIDAS sequence motifs and is homologous to the I-domain of integrins. Expression of hemagglutamin-tagged midasin in yeast demonstrates a polypeptide of the anticipated size that is localized principally in the nucleus. CONCLUSIONS The highly conserved structure of midasin in eukaryotes, taken in conjunction with its nuclear localization in yeast, suggests that midasin may function as a nuclear chaperone and be involved in the assembly/disassembly of macromolecular complexes in the nucleus. The AAA domain of midasin is evolutionarily related to that of dynein, but it appears to lack a microtubule-binding site.
Collapse
Affiliation(s)
- Joan E Garbarino
- Molecular and Cell Biology Department, University of California Berkeley, Berkeley CA 94720-3200, USA
| | - I R Gibbons
- Molecular and Cell Biology Department, University of California Berkeley, Berkeley CA 94720-3200, USA
| |
Collapse
|
77
|
Abstract
Extracellular matrix (ECM) proteins and their receptors, the integrins, actively participate in the control of many fundamental cellular functions in the developing nervous system, including the regulation of cell migration, differentiation, and survival and the control of neurite outgrowth. ECM-integrin interactions in the mature nervous system are commonly considered to be more static in nature and of little importance in the regulation of neuronal function. In contrast, we demonstrate that integrins and their ligands are capable of rapid neuromodulatory actions. Specifically, we show that integrin ligands can alter neuronal pacemaker properties, intracellular free Ca2+ levels, and voltage-gated Ca2+ currents in a matter of minutes. These findings indicate that ECM-integrin interactions play a dynamic role in regulating the physiological status of mature neurons, a process that may contribute to synaptic plasticity, neural regeneration, and neuropathology.
Collapse
|
78
|
Affiliation(s)
- Shaw-Yung Shai
- Departments of Physiology, Medicine, Cardiovascular Research Laboratories, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
79
|
Popovici C, Leveugle M, Birnbaum D, Coulier F. Coparalogy: physical and functional clusterings in the human genome. Biochem Biophys Res Commun 2001; 288:362-70. [PMID: 11606051 DOI: 10.1006/bbrc.2001.5794] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two rounds of large-scale duplications are thought to have occurred in early vertebrate ancestry; this is now known as the "2R hypothesis." They have led to the constitution of subfamilies of paralogous genes. Chromosomal regions that contain present-day paralogs (paralogous regions or paralogons) have been identified in mammals. We show that sets of paralogons (PGs) can be assembled in a tentative "human genome paralogy map" that includes all autosomes and X. A total of 14 PGs, containing more than 1600 genes, were assembled in this paralogy map. Genes that belong to the same PG are coparalogs. We show that identification of coparalogy can be used (i) to broaden data on gene mapping, (ii) to identify physical gene clusters that derive from early cis-duplications, and (iii) to speculate on coevolution and coregulation of genes sharing a common structure or function (functional clusters). Thus, coparalogy analyses should parallel phylogenetic analyses and can help draw hypotheses on gene and genome evolution.
Collapse
Affiliation(s)
- C Popovici
- U119 INSERM, IFR57, Laboratoire d'Oncologie Moléculaire, 27 boulevard Leï Roure, 13009 Marseille, France
| | | | | | | |
Collapse
|
80
|
Hughes AL, da Silva J, Friedman R. Ancient Genome Duplications Did Not Structure the Human Hox-Bearing Chromosomes. Genome Res 2001. [DOI: 10.1101/gr.160001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The fact that there are four homeobox (Hox) clusters in most vertebrates but only one in invertebrates is often cited as evidence for the hypothesis that two rounds of genome duplication by polyploidization occurred early in vertebrate history. In addition, it has been observed in humans and other mammals that numerous gene families include paralogs on two or more of the fourHox-bearing chromosomes (the chromosomes bearing theHox clusters; i.e., human chromosomes 2, 7, 12, and 17), and the existence of these paralogs has been taken as evidence that these genes were duplicated along with the Hox clusters by polyploidization. We tested this hypothesis by phylogenetic analysis of 42 gene families including members on two or more of the humanHox-bearing chromosomes. In 32 of these families there was evidence against the hypothesis that gene duplication occurred simultaneously with duplication of the Hox clusters. Phylogenies of 14 families supported the occurrence of one or more gene duplications before the origin of vertebrates, and of 15 gene duplication times estimated for gene families evolving in a clock-like manner, only six were dated to the same time period early in vertebrate history during which the Hox clusters duplicated. Furthermore, of gene families duplicated around the same time as the Hoxclusters, the majority showed topologies inconsistent with their having duplicated simultaneously with the Hox clusters. The results thus indicate that ancient events of genome duplication, if they occurred at all, did not play an important role in structuring the mammalian Hox-bearing chromosomes.
Collapse
|