51
|
Yildiz K, Gokpinar S, Gazyagci AN, Babur C, Sursal N, Azkur AK. Role of NETs in the difference in host susceptibility to Toxoplasma gondii between sheep and cattle. Vet Immunol Immunopathol 2017; 189:1-10. [PMID: 28669381 DOI: 10.1016/j.vetimm.2017.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/10/2017] [Accepted: 05/09/2017] [Indexed: 12/23/2022]
Abstract
The main aim of this study was to compare extracellular traps (NETs) formation by polymorphonuclear neutrophils (PMNs) of cattle and sheep when exposed to T. gondii tachyzoites in vitro. The effects of parasite concentrations and different incubation periods on NETs development in cattle and sheep PMNs were studied. The effect of NET structures on host cell invasion by tachyzoites was also studied. This is the first report of NETs development by sheep and cattle PMNs against T. gondii in vitro. T. gondii-induced extracellular DNA production from PMNs was dependent on tachyzoite concentrations and incubation time in both sheep and cattle. Many nuclear and cytoplasmic changes were observed in sheep and cattle PMNs after exposure to T. gondii tachyzoites. The typical appearance of NETs, with MPO, NE and histone (H3) attached to extracellular DNA, was observed. Tachyzoites were entrapped within this structure. Myeloperoxidase (MPO) activity was higher in the cattle PMN-tachyzoite co-cultures than sheep. NETs structures released from sheep PMNs caused mechanical immobilisation of T. gondii tachyzoites, however, NET structures released from cattle PMNs may be lethal to tachyzoites. Bovine MPO may have a lethal effect on T. gondii tachyzoites in vitro during a 3h incubation. Besides other mechanisms that effect on host susceptibility to T. gondii in sheep and cattle, extracellular traps formation as a part of immunological reactions may be play a role in host susceptibility to T. gondii.
Collapse
Affiliation(s)
- Kader Yildiz
- Kirikkale University Faculty of Veterinary Medicine Department of Parasitology, Turkey.
| | - Sami Gokpinar
- Kirikkale University Faculty of Veterinary Medicine Department of Parasitology, Turkey
| | - Aycan Nuriye Gazyagci
- Kirikkale University Faculty of Veterinary Medicine Department of Parasitology, Turkey
| | - Cahit Babur
- Ministry of Health, Public Health Institution of Turkey, Turkey
| | - Neslihan Sursal
- Ankara University Health Sciences Institute, Department of Parasitology, Turkey
| | - Ahmet Kursat Azkur
- Kirikkale University Faculty of Veterinary Medicine Department of Virology, Turkey
| |
Collapse
|
52
|
Chai N, Swem LR, Park S, Nakamura G, Chiang N, Estevez A, Fong R, Kamen L, Kho E, Reichelt M, Lin Z, Chiu H, Skippington E, Modrusan Z, Stinson J, Xu M, Lupardus P, Ciferri C, Tan MW. A broadly protective therapeutic antibody against influenza B virus with two mechanisms of action. Nat Commun 2017; 8:14234. [PMID: 28102191 PMCID: PMC5253702 DOI: 10.1038/ncomms14234] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/12/2016] [Indexed: 01/12/2023] Open
Abstract
Influenza B virus (IBV) causes annual influenza epidemics around the world. Here we use an in vivo plasmablast enrichment technique to isolate a human monoclonal antibody, 46B8 that neutralizes all IBVs tested in vitro and protects mice against lethal challenge of all IBVs tested when administered 72 h post infection. 46B8 demonstrates a superior therapeutic benefit over Tamiflu and has an additive antiviral effect in combination with Tamiflu. 46B8 binds to a conserved epitope in the vestigial esterase domain of hemagglutinin (HA) and blocks HA-mediated membrane fusion. After passage of the B/Brisbane/60/2008 virus in the presence of 46B8, we isolated three resistant clones, all harbouring the same mutation (Ser301Phe) in HA that abolishes 46B8 binding to HA at low pH. Interestingly, 46B8 is still able to protect mice against lethal challenge of the mutant viruses, possibly owing to its ability to mediate antibody-dependent cellular cytotoxicity (ADCC). Influenza B virus (IBV) co-circulates with influenza A virus to cause annual epidemics. Here, Chai et al. isolate a human monoclonal antibody that binds to a conserved epitope in the viral HA protein, neutralizes IBV strains in vitro, and protects mice against IBV infection.
Collapse
Affiliation(s)
- Ning Chai
- Department of Infectious Diseases, Genentech, South San Francisco, California 94080, USA
| | - Lee R Swem
- Department of Infectious Diseases, Genentech, South San Francisco, California 94080, USA
| | - Summer Park
- Department of Translational Immunology, Genentech, South San Francisco, California 94080, USA
| | - Gerald Nakamura
- Department of Antibody Engineering, Genentech, South San Francisco, California 94080, USA
| | - Nancy Chiang
- Department of Antibody Engineering, Genentech, South San Francisco, California 94080, USA
| | - Alberto Estevez
- Department of Structural Biology, Genentech, South San Francisco, California 94080, USA
| | - Rina Fong
- Department of Structural Biology, Genentech, South San Francisco, California 94080, USA
| | - Lynn Kamen
- Department of BioAnalytical Sciences, Genentech, South San Francisco, California 94080, USA
| | - Elviza Kho
- Department of BioAnalytical Sciences, Genentech, South San Francisco, California 94080, USA
| | - Mike Reichelt
- Department of Pathology, Genentech, South San Francisco, California 94080, USA
| | - Zhonghua Lin
- Department of Translational Immunology, Genentech, South San Francisco, California 94080, USA
| | - Henry Chiu
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, California 94080, USA
| | - Elizabeth Skippington
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, California 94080, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech, South San Francisco, California 94080, USA
| | - Jeremy Stinson
- Department of Molecular Biology, Genentech, South San Francisco, California 94080, USA
| | - Min Xu
- Department of Translational Immunology, Genentech, South San Francisco, California 94080, USA
| | - Patrick Lupardus
- Department of Structural Biology, Genentech, South San Francisco, California 94080, USA
| | - Claudio Ciferri
- Department of Structural Biology, Genentech, South San Francisco, California 94080, USA
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech, South San Francisco, California 94080, USA
| |
Collapse
|
53
|
Giaglis S, Stoikou M, Sur Chowdhury C, Schaefer G, Grimolizzi F, Rossi SW, Hoesli IM, Lapaire O, Hasler P, Hahn S. Multimodal Regulation of NET Formation in Pregnancy: Progesterone Antagonizes the Pro-NETotic Effect of Estrogen and G-CSF. Front Immunol 2016; 7:565. [PMID: 27994595 PMCID: PMC5136684 DOI: 10.3389/fimmu.2016.00565] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Human pregnancy is associated with a mild pro-inflammatory state, characterized by circulatory neutrophil activation. In order to explore the mechanism underlying this alteration, we examined NETosis during normal gestation. Our data indicate that neutrophils exhibit a pro-NETotic state, modulated in a multimodal manner during pregnancy. In general, circulatory granulocyte colony-stimulating factor, the levels of which increase during gestation, promotes neutrophil extracellular trap (NET) formation. Early in pregnancy, NETosis is enhanced by chorionic gonadotropin, whereas toward term is stimulated by estrogen. A complex interaction between estrogen and progesterone arises, wherein progesterone restrains the NETotic process. In this state, extensive histone citrullination is evident, yet full NETosis is inhibited. This coincides with the inability of neutrophil elastase to translocate from the cytoplasm to the nucleus and is regulated by progesterone. Our findings provide new insight concerning gestational and hormone-driven pathologies, since neutrophil recruitment, activation, and NET release could be associated with excessive endothelial and placental injury.
Collapse
Affiliation(s)
- Stavros Giaglis
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Rheumatology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Maria Stoikou
- Department of Biomedicine, University Hospital Basel , Basel , Switzerland
| | | | - Guenther Schaefer
- Department of Biomedicine, University Hospital Basel , Basel , Switzerland
| | - Franco Grimolizzi
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department Clinical Sciences, Polytechnic University Marche, Ancona, Italy
| | - Simona W Rossi
- Department of Biomedicine, University Hospital Basel , Basel , Switzerland
| | | | - Olav Lapaire
- University Women's Hospital, University Hospital Basel , Basel , Switzerland
| | - Paul Hasler
- Department of Rheumatology, Cantonal Hospital Aarau , Aarau , Switzerland
| | - Sinuhe Hahn
- Department of Biomedicine, University Hospital Basel , Basel , Switzerland
| |
Collapse
|
54
|
Floyd M, Winn M, Cullen C, Sil P, Chassaing B, Yoo DG, Gewirtz AT, Goldberg JB, McCarter LL, Rada B. Swimming Motility Mediates the Formation of Neutrophil Extracellular Traps Induced by Flagellated Pseudomonas aeruginosa. PLoS Pathog 2016; 12:e1005987. [PMID: 27855208 PMCID: PMC5113990 DOI: 10.1371/journal.ppat.1005987] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections often characterized by robust neutrophilic infiltration. Neutrophils provide the first line of defense against P. aeruginosa. Aside from their defense conferred by phagocytic activity, neutrophils also release neutrophil extracellular traps (NETs) to immobilize bacteria. Although NET formation is an important antimicrobial process, the details of its mechanism are largely unknown. The identity of the main components of P. aeruginosa responsible for triggering NET formation is unclear. In this study, our focus was to identify the main bacterial factors mediating NET formation and to gain insight into the underlying mechanism. We found that P. aeruginosa in its exponential growth phase promoted strong NET formation in human neutrophils while its NET-inducing ability dramatically decreased at later stages of bacterial growth. We identified the flagellum as the primary component of P. aeruginosa responsible for inducing NET extrusion as flagellum-deficient bacteria remained seriously impaired in triggering NET formation. Purified P. aeruginosa flagellin, the monomeric component of the flagellum, does not stimulate NET formation in human neutrophils. P. aeruginosa-induced NET formation is independent of the flagellum-sensing receptors TLR5 and NLRC4 in both human and mouse neutrophils. Interestingly, we found that flagellar motility, not flagellum binding to neutrophils per se, mediates NET release induced by flagellated bacteria. Immotile, flagellar motor-deficient bacterial strains producing paralyzed flagella did not induce NET formation. Forced contact between immotile P. aeruginosa and neutrophils restored their NET-inducing ability. Both the motAB and motCD genetic loci encoding flagellar motor genes contribute to maximal NET release; however the motCD genes play a more important role. Phagocytosis of P. aeruginosa and superoxide production by neutrophils were also largely dependent upon a functional flagellum. Taken together, the flagellum is herein presented for the first time as the main organelle of planktonic bacteria responsible for mediating NET release. Furthermore, flagellar motility, rather than binding of the flagellum to flagellum-sensing receptors on host cells, is required for P. aeruginosa to induce NET release.
Collapse
Affiliation(s)
- Madison Floyd
- College of Veterinary Medicine, Department of Infectious Diseases, The University of Georgia, Athens, Georgia, United States of America
| | - Matthew Winn
- College of Veterinary Medicine, Department of Infectious Diseases, The University of Georgia, Athens, Georgia, United States of America
| | - Christian Cullen
- College of Veterinary Medicine, Department of Infectious Diseases, The University of Georgia, Athens, Georgia, United States of America
| | - Payel Sil
- College of Veterinary Medicine, Department of Infectious Diseases, The University of Georgia, Athens, Georgia, United States of America
| | - Benoit Chassaing
- Center for Inflammation, Immunity, & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Dae-goon Yoo
- College of Veterinary Medicine, Department of Infectious Diseases, The University of Georgia, Athens, Georgia, United States of America
| | - Andrew T. Gewirtz
- Center for Inflammation, Immunity, & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Joanna B. Goldberg
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Linda L. McCarter
- Carver College of Medicine, Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Balázs Rada
- College of Veterinary Medicine, Department of Infectious Diseases, The University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
55
|
Yamamoto T, Kida Y, Sakamoto Y, Kuwano K. Mpn491, a secreted nuclease ofMycoplasma pneumoniae, plays a critical role in evading killing by neutrophil extracellular traps. Cell Microbiol 2016; 19. [DOI: 10.1111/cmi.12666] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Takeshi Yamamoto
- Division of Microbiology, Department of Infectious Medicine; Kurume University School of Medicine; Kurume 830-0011 Japan
| | - Yutaka Kida
- Division of Microbiology, Department of Infectious Medicine; Kurume University School of Medicine; Kurume 830-0011 Japan
| | - Yuichi Sakamoto
- Division of Microbiology, Department of Infectious Medicine; Kurume University School of Medicine; Kurume 830-0011 Japan
| | - Koichi Kuwano
- Division of Microbiology, Department of Infectious Medicine; Kurume University School of Medicine; Kurume 830-0011 Japan
| |
Collapse
|
56
|
Lee HT, Wu TH, Lin CS, Lee CS, Wei YH, Tsai CY, Chang DM. The pathogenesis of systemic lupus erythematosus - From the viewpoint of oxidative stress and mitochondrial dysfunction. Mitochondrion 2016; 30:1-7. [DOI: 10.1016/j.mito.2016.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 01/26/2023]
|
57
|
Ávila EE, Salaiza N, Pulido J, Rodríguez MC, Díaz-Godínez C, Laclette JP, Becker I, Carrero JC. Entamoeba histolytica Trophozoites and Lipopeptidophosphoglycan Trigger Human Neutrophil Extracellular Traps. PLoS One 2016; 11:e0158979. [PMID: 27415627 PMCID: PMC4944907 DOI: 10.1371/journal.pone.0158979] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/24/2016] [Indexed: 12/17/2022] Open
Abstract
Neutrophil defense mechanisms include phagocytosis, degranulation and the formation of extracellular traps (NET). These networks of DNA are triggered by several immune and microbial factors, representing a defense strategy to prevent microbial spread by trapping/killing pathogens. This may be important against Entamoeba histolytica, since its large size hinders its phagocytosis. The aim of this study was to determine whether E. histolytica and their lipopeptidophosphoglycan (EhLPPG) induce the formation of NETs and the outcome of their interaction with the parasite. Our data show that live amoebae and EhLPPG, but not fixed trophozoites, induced NET formation in a time and dose dependent manner, starting at 5 min of co-incubation. Although immunofluorescence studies showed that the NETs contain cathelicidin LL-37 in close proximity to amoebae, the trophozoite growth was only affected when ethylene glycol tetra-acetic acid (EGTA) was present during contact with NETs, suggesting that the activity of enzymes requiring calcium, such as DNases, may be important for amoeba survival. In conclusion, E. histolytica trophozoites and EhLPPG induce in vitro formation of human NETs, which did not affect the parasite growth unless a chelating agent was present. These results suggest that NETs may be an important factor of the innate immune response during infection with E. histolytica.
Collapse
Affiliation(s)
- Eva E. Ávila
- Department of Biology, Division of Exact and Natural Sciences, Universidad de Guanajuato, 36050, Guanajuato, México
| | - Norma Salaiza
- Department of Experimental Medicine, Medical Faculty, Universidad Nacional Autónoma de México, 04510, México D.F., México
| | - Julieta Pulido
- Department of Biology, Division of Exact and Natural Sciences, Universidad de Guanajuato, 36050, Guanajuato, México
| | - Mayra C. Rodríguez
- Department of Biology, Division of Exact and Natural Sciences, Universidad de Guanajuato, 36050, Guanajuato, México
| | - César Díaz-Godínez
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, México D.F., México
| | - Juan P. Laclette
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, México D.F., México
| | - Ingeborg Becker
- Department of Experimental Medicine, Medical Faculty, Universidad Nacional Autónoma de México, 04510, México D.F., México
- * E-mail: (JCC); (IB)
| | - Julio C. Carrero
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, México D.F., México
- * E-mail: (JCC); (IB)
| |
Collapse
|
58
|
Far beyond Phagocytosis: Phagocyte-Derived Extracellular Traps Act Efficiently against Protozoan Parasites In Vitro and In Vivo. Mediators Inflamm 2016; 2016:5898074. [PMID: 27445437 PMCID: PMC4944069 DOI: 10.1155/2016/5898074] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/02/2016] [Accepted: 06/05/2016] [Indexed: 12/30/2022] Open
Abstract
Professional mononuclear phagocytes such as polymorphonuclear neutrophils (PMN), monocytes, and macrophages are considered as the first line of defence against invasive pathogens. The formation of extracellular traps (ETs) by activated mononuclear phagocytes is meanwhile well accepted as an effector mechanism of the early host innate immune response acting against microbial infections. Recent investigations showed evidence that ETosis is a widely spread effector mechanism in vertebrates and invertebrates being utilized to entrap and kill bacteria, fungi, viruses, and protozoan parasites. ETs are released in response to intact protozoan parasites or to parasite-specific antigens in a controlled cell death process. Released ETs consist of nuclear DNA as backbone adorned with histones, antimicrobial peptides, and phagocyte-specific granular enzymes thereby producing a sticky extracellular matrix capable of entrapping and killing pathogens. This review summarizes recent data on protozoa-induced ETosis. Special attention will be given to molecular mechanisms of protozoa-induced ETosis and on its consequences for the parasites successful reproduction and life cycle accomplishment.
Collapse
|
59
|
Shaikh SR, Fessler MB, Gowdy KM. Role for phospholipid acyl chains and cholesterol in pulmonary infections and inflammation. J Leukoc Biol 2016; 100:985-997. [PMID: 27286794 PMCID: PMC5069085 DOI: 10.1189/jlb.4vmr0316-103r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/19/2016] [Indexed: 12/15/2022] Open
Abstract
Review on how complex mixtures of bioactive lipids and cholesterol may influence the pulmonary immune response during infection. Bacterial and viral respiratory tract infections result in millions of deaths worldwide and are currently the leading cause of death from infection. Acute inflammation is an essential element of host defense against infection, but can be damaging to the host when left unchecked. Effective host defense requires multiple lipid mediators, which collectively have proinflammatory and/or proresolving effects on the lung. During pulmonary infections, phospholipid acyl chains and cholesterol can be chemically and enzymatically oxidized, as well as truncated and modified, producing complex mixtures of bioactive lipids. We review recent evidence that phospholipids and cholesterol and their derivatives regulate pulmonary innate and adaptive immunity during infection. We first highlight data that oxidized phospholipids generated in the lung during infection stimulate pattern recognition receptors, such as TLRs and scavenger receptors, thereby amplifying the pulmonary inflammatory response. Next, we discuss evidence that oxidation of endogenous pools of cholesterol during pulmonary infections produces oxysterols that also modify the function of both innate and adaptive immune cells. Last, we conclude with data that n‐3 polyunsaturated fatty acids, both in the form of phospholipid acyl chains and through enzymatic processing into endogenous proresolving lipid mediators, aid in the resolution of lung inflammation through distinct mechanisms. Unraveling the complex mechanisms of induction and function of distinct classes of bioactive lipids, both native and modified, may hold promise for developing new therapeutic strategies for improving pulmonary outcomes in response to infection.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Biochemistry and Molecular Biology, East Carolina Diabetes and Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University (ECU), Greenville, North Carolina, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIEHS/NIH), Research Triangle Park, North Carolina, USA
| | - Kymberly M Gowdy
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA;
| |
Collapse
|
60
|
Muñoz-Caro T, Machado Ribeiro da Silva L, Rentería-Solis Z, Taubert A, Hermosilla C. Neutrophil extracellular traps in the intestinal mucosa of Eimeria-infected animals. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
61
|
Giaglis S, Stoikou M, Grimolizzi F, Subramanian BY, van Breda SV, Hoesli I, Lapaire O, Hasler P, Than NG, Hahn S. Neutrophil migration into the placenta: Good, bad or deadly? Cell Adh Migr 2016; 10:208-25. [PMID: 26933824 PMCID: PMC4853040 DOI: 10.1080/19336918.2016.1148866] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Almost 2 decades have passed since the discovery that pregnancy is associated with a basal inflammatory state involving neutrophil activation, and that this is more overt in cases with preeclampsia, than in instances with sepsis. This pivotal observation paved the way for our report, made almost a decade ago, describing the first involvement of neutrophil extracellular traps (NETs) in a non-infectious human pathology, namely preeclampsia, where an abundance of these structures were detected directly in the placental intervillous space. Despite these remarkable findings, there remains a paucity of interest among reproductive biologists in further exploring the role or involvement of neutrophils in pregnancy and related pathologies. In this review we attempt to redress this deficit by highlighting novel recent findings including the discovery of a novel neutrophil subset in the decidua, the interaction of placental protein 13 (PP13) and neutrophils in modulating spiral artery modification, as well as the use of animal model systems to elucidate neutrophil function in implantation, gestation and parturition. These model systems have been particularly useful in identifying key components implicated in recurrent fetal loss, preeclampsia or new signaling molecules such as sphingolipids. Finally, the recent discovery that anti-phospolipid antibodies can trigger NETosis, supports our hypothesis that these structures may contribute to placental dysfunction in pertinent cases with recurrent fetal loss.
Collapse
Affiliation(s)
- Stavros Giaglis
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland.,b Department Rheumatology , Cantonal Hospital Aarau , Aarau , Switzerland
| | - Maria Stoikou
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| | - Franco Grimolizzi
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland.,c Polytechnic University Marche , Ancona , Italy
| | - Bibin Y Subramanian
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| | - Shane V van Breda
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| | - Irene Hoesli
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| | - Olav Lapaire
- d Department of Obstetrics , University Women's Hospital Basel , Basel , Switzerland
| | - Paul Hasler
- b Department Rheumatology , Cantonal Hospital Aarau , Aarau , Switzerland
| | - Nandor Gabor Than
- e Lendulet Reproduction Research Group, Institute of Enzymology , Research Center for Natural Sciences; Hungarian Academy of Sciences , Budapest , Hungary
| | - Sinuhe Hahn
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| |
Collapse
|
62
|
The human cathelicidin LL-37 — A pore-forming antibacterial peptide and host-cell modulator. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:546-66. [DOI: 10.1016/j.bbamem.2015.11.003] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 01/12/2023]
|
63
|
Zhang X, Zhuchenko O, Kuspa A, Soldati T. Social amoebae trap and kill bacteria by casting DNA nets. Nat Commun 2016; 7:10938. [PMID: 26927887 PMCID: PMC4773522 DOI: 10.1038/ncomms10938] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/03/2016] [Indexed: 01/01/2023] Open
Abstract
Extracellular traps (ETs) from neutrophils are reticulated nets of DNA decorated with anti-microbial granules, and are capable of trapping and killing extracellular pathogens. Various phagocytes of mammals and invertebrates produce ETs, however, the evolutionary history of this DNA-based host defence strategy is unclear. Here we report that Sentinel (S) cells of the multicellular slug stage of the social amoeba Dictyostelium discoideum produce ETs upon stimulation with bacteria or lipopolysaccharide in a reactive oxygen species-dependent manner. The production of ETs by S cells requires a Toll/Interleukin-1 receptor domain-containing protein TirA and reactive oxygen species-generating NADPH oxidases. Disruption of these genes results in decreased clearance of bacterial infections. Our results demonstrate that D. discoideum is a powerful model organism to study the evolution and conservation of mechanisms of cell-intrinsic immunity, and suggest that the origin of DNA-based ETs as an innate immune defence predates the emergence of metazoans. Neutrophils secrete net-like structures made of DNA and anti-microbial peptides, which can trap and kill extracellular pathogens. Here, the authors show that such nets are also produced by so-called Sentinel cells in the multicellular slug stage of the social amoeba Dictyostelium discoideum.
Collapse
Affiliation(s)
- Xuezhi Zhang
- Department of Biochemistry, Science II, University of Geneva, Geneva 1211, Switzerland
| | - Olga Zhuchenko
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030-3498, USA
| | - Adam Kuspa
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030-3498, USA
| | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
64
|
Giaglis S, Hahn S, Hasler P. "The NET Outcome": Are Neutrophil Extracellular Traps of Any Relevance to the Pathophysiology of Autoimmune Disorders in Childhood? Front Pediatr 2016; 4:97. [PMID: 27679792 PMCID: PMC5020135 DOI: 10.3389/fped.2016.00097] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/30/2016] [Indexed: 01/08/2023] Open
Abstract
Neutrophil extracellular trap (NET) formation represents a form of cell death distinct from apoptosis or necrosis, by which invading pathogens are simultaneously entangled and potentially eliminated. Increased NET formation is observed in systemic lupus erythematosus (SLE), rheumatoid arthritis, antineutrophil cytoplasmic antibody-associated small vessel vasculitis, antiphospholipid antibody syndrome (APS), and psoriasis. NETs contribute to the pathogenesis of autoimmunity by exposing cryptic autoepitopes, which may facilitate the generation of autoantibodies, induce the production of interferons, and activate the complement cascade. In SLE, augmented disease activity and renal disease are associated with increased NET formation, so that NETs could serve as a marker for the monitoring of disease activity. NETs can additionally cause endothelial cell damage and death and stimulate inflammation in atheromatous plaques, adding to the accelerated atherosclerosis witnessed in autoimmune disease. Since NETs induce production of interferons, assessing the extent of NET formation might facilitate the prediction of IFN-alpha levels and identification of SLE patients with presumably better responses to anti-IFN-alpha therapies or other novel therapeutic concepts, such as N-acetyl-cysteine and inhibitors of DNase 1 and peptidylarginine deiminase 4 (PAD4), which also target NETs. In summary, the study of NETs provides a novel approach to the understanding of autoimmune disease pathogenesis in childhood and opens new vistas in the development of sensitive disease markers and targeted therapies.
Collapse
Affiliation(s)
- Stavros Giaglis
- Laboratory of Prenantal Medicine, Department of Biomedicine, University Clinics Basel, Basel, Switzerland; Department of Rheumatology, Kantonsspital Aarau, Aarau, Switzerland
| | - Sinuhe Hahn
- Laboratory of Prenantal Medicine, Department of Biomedicine, University Clinics Basel, Basel, Switzerland; University Women's Hospital, University Clinics Basel, Basel, Switzerland
| | - Paul Hasler
- Department of Rheumatology, Kantonsspital Aarau , Aarau , Switzerland
| |
Collapse
|
65
|
Fadini GP, Menegazzo L, Scattolini V, Gintoli M, Albiero M, Avogaro A. A perspective on NETosis in diabetes and cardiometabolic disorders. Nutr Metab Cardiovasc Dis 2016; 26:1-8. [PMID: 26719220 DOI: 10.1016/j.numecd.2015.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 01/18/2023]
Abstract
AIMS To review the significance of a new type of neutrophil cell death (NETosis) in diabetes and cardiometabolic diseases. DATA SYNTHESIS Diabetes and the metabolic syndrome are characterized by activation of the innate immune system. In this framework, neutrophils are front line defences against infections, but can also turn deleterious if abnormally stimulated. NETosis refers to a type of cell death whereby neutrophils release nuclear material and granule enzymes that together form the NETs (neutrophil extracellular traps). As NETs entrap bacteria, NETosis is instrumental to the clearance of microorganisms, but an exaggerated NETosis response can also lead to tissue damage in several pathological conditions. In diabetes, the finely tuned balance of NETosis required to protect the human body from microorganisms yet avoiding self-damage seems to be lost. In fact, in vitro induction of NETosis and circulating concentrations of NET-associated proteins appear to be enhanced in diabetic patients. Furthermore, NETs contribute to endothelial damage, thrombosis, and ischemia/reperfusion injury, making it a novel player in the pathobiology of cardiovascular disease. Though the cellular events taking place during NETosis have been described and directly visualized, its molecular machinery is still incompletely understood. Protein kinase C (PKC) and NADPH oxidase (NOX) are two important targets to counter NETosis in the setting of diabetes. CONCLUSIONS NETosis appears to be part of an abnormal response to damage in diabetes that, in turn, can promote or aggravate end-organ complications. We suggest that this will be a hot topic of investigation in diabetology in the near future.
Collapse
Affiliation(s)
- G P Fadini
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy.
| | - L Menegazzo
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - V Scattolini
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - M Gintoli
- Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy
| | - M Albiero
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - A Avogaro
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| |
Collapse
|
66
|
Yamamoto S, Azuma E, Muramatsu M, Hamashima T, Ishii Y, Sasahara M. Significance of Extracellular Vesicles: Pathobiological Roles in Disease. Cell Struct Funct 2016; 41:137-143. [DOI: 10.1247/csf.16014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Seiji Yamamoto
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Erika Azuma
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
- Department of Technology Development, Toyama Technology Center, Astellas Pharma Tech Co., Ltd
| | | | - Takeru Hamashima
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Yoko Ishii
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Masakiyo Sasahara
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
67
|
Stephan A, Fabri M. The NET, the trap and the pathogen: neutrophil extracellular traps in cutaneous immunity. Exp Dermatol 2015; 24:161-6. [PMID: 25421224 DOI: 10.1111/exd.12599] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2014] [Indexed: 12/20/2022]
Abstract
Neutrophil extracellular traps (NETs), large chromatin structures casted with various proteins, are externalized by neutrophils upon induction by both self- and non-self-stimuli. It has become clear that NETs are potent triggers of inflammation in autoimmune skin diseases. Moreover, the ability of NETs to trap pathogens suggests a crucial role in innate host defense. However, the outcome of the encounter between pathogens and NETs remains highly controversial. Here, we discuss recent insights into the morphology and formation of NETs, their role in skin inflammation and how NETs might contribute to host protection in skin infection.
Collapse
|
68
|
Muñoz-Caro T, Rubio R MC, Silva LMR, Magdowski G, Gärtner U, McNeilly TN, Taubert A, Hermosilla C. Leucocyte-derived extracellular trap formation significantly contributes to Haemonchus contortus larval entrapment. Parasit Vectors 2015; 8:607. [PMID: 26610335 PMCID: PMC4661960 DOI: 10.1186/s13071-015-1219-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/19/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Polymorphonuclear neutrophil (PMN) and eosinophil extracellular trap (ETs) formation has recently been described as an important host effector mechanism against invading pathogens. So far, scarce evidence on metazoan-triggered ET formation has been published. We here describe for the first time Haemonchus contortus-triggered ETs being released by bovine PMN and ovine eosinophils in response to ensheathed and exsheathed third stage larvae (L3). METHODS The visualization of ETs was achieved by SEM analysis. The identification of classical ETs components was performed via fluorescence microscopy analysis. The effect of larval exsheathment and parasite integrity on ET formation was evaluated via Pico Green®- fluorescence intensities. ETs formation under acidic conditions was assessed by using media of different pH ranges. Parasite entrapment was evaluated microscopically after co-culture of PMN and L3. ET inhibition experiments were performed using inhibitors against NADPH oxidase, NE and MPO. Eosinophil-derived ETs were estimated via fluorescence microscopy analysis. RESULTS L3 significantly induced PMN-mediated ETs and significant parasite entrapment through ETs structures was rapidly observed after 60 min of PMN and L3 co-culture. Co-localization studies of PMN-derived extracellular DNA with histones (H3), neutrophil elastase (NE) and myeloperoxidase (MPO) in parasite-entrapping structures confirmed the classical characteristics of ETs. Haemonchus contortus-triggered ETs were significantly diminished by NADPH oxidase-, NE- and MPO-inhibition. Interestingly, different forms of ETs, i.e. aggregated (aggETs), spread (sprETs) and diffused (diffETs) ETs, were induced by L3. AggETs and sprETs firmly ensnared larvae in a time dependent manner. Significantly stronger aggETs reactions were detected upon exposure of PMN to ensheathed larvae than to exsheathed ones. Low pH conditions as are present in the abomasum did not block ETosis and led to a moderate decrease of ETs. Eosinophil-ETs were identified extruding DNA via fluorescence staining. CONCLUSION We postulate that ETs may limit the establishment of H. contortus within the definitive host by immobilizing the larvae and hampering them from migrating into the site of infection. Consequently, H. contortus-mediated ET formation might have an impact on the outcome of the disease. Finally, besides PMN-triggered ETs, we here present first indications of ETs being released by eosinophils upon H. contortus L3 exposure.
Collapse
Affiliation(s)
- Tamara Muñoz-Caro
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany.
| | - Mario C Rubio R
- Faculty of Veterinary Medicine and Zootechny, Autonomous University of Sinaloa, Culiacán, Mexico.
| | - Liliana M R Silva
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany.
| | - Gerd Magdowski
- Institute of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany.
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany.
| | | | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany.
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
69
|
Kiran D, Podell BK, Chambers M, Basaraba RJ. Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review. Semin Immunopathol 2015; 38:167-83. [PMID: 26510950 PMCID: PMC4779125 DOI: 10.1007/s00281-015-0537-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/13/2015] [Indexed: 12/16/2022]
Abstract
Infection by the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb) is a major cause of morbidity and mortality worldwide. Slow progress has been made in lessening the impact of tuberculosis (TB) on human health, especially in parts of the world where Mtb is endemic. Due to the complexity of TB disease, there is still an urgent need to improve diagnosis, prevention, and treatment strategies to control global spread of disease. Active research targeting avenues to prevent infection or transmission through vaccination, to diagnose asymptomatic carriers of Mtb, and to improve antimicrobial drug treatment responses is ongoing. However, this research is hampered by a relatively poor understanding of the pathogenesis of early infection and the factors that contribute to host susceptibility, protection, and the development of active disease. There is increasing interest in the development of adjunctive therapy that will aid the host in responding to Mtb infection appropriately thereby improving the effectiveness of current and future drug treatments. In this review, we summarize what is known about the host response to Mtb infection in humans and animal models and highlight potential therapeutic targets involved in TB granuloma formation and resolution. Strategies designed to shift the balance of TB granuloma formation toward protective rather than destructive processes are discussed based on our current knowledge. These therapeutic strategies are based on the assumption that granuloma formation, although thought to prevent the spread of the tubercle bacillus within and between individuals contributes to manifestations of active TB disease in human patients when left unchecked. This effect of granuloma formation favors the spread of infection and impairs antimicrobial drug treatment. By gaining a better understanding of the mechanisms by which Mtb infection contributes to irreversible tissue damage, down regulates protective immune responses, and delays tissue healing, new treatment strategies can be rationally designed. Granuloma-targeted therapy is advantageous because it allows for the repurpose of existing drugs used to treat other communicable and non-communicable diseases as adjunctive therapies combined with existing and future anti-TB drugs. Thus, the development of adjunctive, granuloma-targeted therapy, like other host-directed therapies, may benefit from the availability of approved drugs to aid in treatment and prevention of TB. In this review, we have attempted to summarize the results of published studies in the context of new innovative approaches to host-directed therapy that need to be more thoroughly explored in pre-clinical animal studies and in human clinical trials.
Collapse
Affiliation(s)
- Dilara Kiran
- Department of Microbiology, Immunology and Pathology, Metabolism of Infectious Diseases Laboratory and Mycobacteria Research Laboratories, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 200 West Lake Street, 1619 Campus Delivery, Fort Collins, CO, 80523-1619, USA
| | - Brendan K Podell
- Department of Microbiology, Immunology and Pathology, Metabolism of Infectious Diseases Laboratory and Mycobacteria Research Laboratories, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 200 West Lake Street, 1619 Campus Delivery, Fort Collins, CO, 80523-1619, USA
| | - Mark Chambers
- Department of Bacteriology, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.,School of Veterinary Medicine Faculty of Health and Medical Sciences, University of Surrey, Vet School Main Building, Daphne Jackson Road, Guildford, GU2 7AL, UK
| | - Randall J Basaraba
- Department of Microbiology, Immunology and Pathology, Metabolism of Infectious Diseases Laboratory and Mycobacteria Research Laboratories, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 200 West Lake Street, 1619 Campus Delivery, Fort Collins, CO, 80523-1619, USA.
| |
Collapse
|
70
|
Muñoz-Caro T, Lendner M, Daugschies A, Hermosilla C, Taubert A. NADPH oxidase, MPO, NE, ERK1/2, p38 MAPK and Ca2+ influx are essential for Cryptosporidium parvum-induced NET formation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:245-254. [PMID: 26026247 DOI: 10.1016/j.dci.2015.05.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
Cryptosporidium parvum causes a zoonotic infection with worldwide distribution. Besides humans, cryptosporidiosis affects a wide range of animals leading to significant economic losses due to severe enteritis in neonatal livestock. Neutrophil extracellular trap (NET) formation has been demonstrated as an important host effector mechanism of PMN acting against several invading pathogens. In the present study, C. parvum-mediated NET formation was investigated in human and bovine PMN in vitro. We here demonstrate that C. parvum sporozoites indeed trigger NET formation in a time-dependent manner. Thereby, the classical characteristics of NETs were demonstrated by co-localization of extracellular DNA with histones, neutrophil elastase (NE) and myeloperoxidase (MPO). A significant reduction of NET formation was measured following treatments of PMN with NADPH oxidase-, NE- and MPO-inhibitors, confirming the key role of these enzymes in C. parvum-induced NETs. Additionally, sporozoite-triggered NETosis revealed as dependent on intracellular Ca(++) concentration and the ERK 1/2 and p38 MAPK-mediated signaling pathway. Moreover, sporozoite-triggered NET formation led to significant parasite entrapment since 15% of the parasites were immobilized in NET structures. Consequently, PMN-pre-exposed sporozoites showed significantly reduced infectivity for epithelial host cells confirming the capability of NETs to prevent active parasite invasion. Besides NETs, we here show that C. parvum significantly up-regulated CXCL8, IL6, TNF-α and of GM-CSF gene transcription upon sporozoite confrontation, indicating a pivotal role of PMN not only in the bovine and human system but most probably in other final hosts for C. parvum.
Collapse
Affiliation(s)
- Tamara Muñoz-Caro
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Matthias Lendner
- Institute of Parasitology, University of Leipzig, 04103 Leipzig, Germany.
| | - Arwid Daugschies
- Institute of Parasitology, University of Leipzig, 04103 Leipzig, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
71
|
Amaral EP, Lasunskaia EB, D'Império-Lima MR. Innate immunity in tuberculosis: how the sensing of mycobacteria and tissue damage modulates macrophage death. Microbes Infect 2015; 18:11-20. [PMID: 26369715 DOI: 10.1016/j.micinf.2015.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 12/16/2022]
Abstract
The success of Mycobacterium tuberculosis as a human pathogen has been attributed to the ability of the bacillus to proliferate inside macrophages and to induce cell death. This review describes how the sensors of the innate immune system modulate the cell death pathways in infected macrophages and, consequently, the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Eduardo P Amaral
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Elena B Lasunskaia
- Laboratory of Recognition Biology, Center of Biosciences and Biotechnology, State University of North Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | |
Collapse
|
72
|
von Nussbaum F, Li VMJ. Neutrophil elastase inhibitors for the treatment of (cardio)pulmonary diseases: Into clinical testing with pre-adaptive pharmacophores. Bioorg Med Chem Lett 2015; 25:4370-81. [PMID: 26358162 DOI: 10.1016/j.bmcl.2015.08.049] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 02/04/2023]
Abstract
Alpha-1 antitrypsin deficiency is linked with an increased risk of suffering from lung emphysema. This discovery from the 1960s led to the development of the protease-antiprotease (im)balance hypothesis: Overshooting protease concentrations, especially high levels of elastase were deemed to have an destructive effect on lung tissue. Consequently, it was postulated that efficient elastase inhibitors could alleviate the situation in patients. However, despite intensive drug discovery efforts, even five decades later, no neutrophil elastase inhibitors are available for a disease-modifying treatment of (cardio)pulmonary diseases such as chronic obstructive pulmonary disease. Here, we critically review the attempts to develop effective human neutrophil elastase inhibitors while strongly focussing on recent developments. On purpose and with perspective distortion we focus on recent developments. One aim of this review is to classify the known HNE inhibitors into several generations, according to their binding modes. In general, there seem to be three major challenges in the development of suitable elastase inhibitors: (1) assuring sufficient potency, (2) securing selectivity, and (3) achieving metabolic stability especially under pathophysiological conditions. Impressive achievements have been made since 2001 with the identification of potent nonreactive, reversible small molecule inhibitors. The most modern inhibitors bind HNE via an induced fit with a frozen bioactive conformation that leads to a significant boost in potency, selectivity, and stability ('pre-adaptive pharmacophores'). These 5th generation inhibitors might succeed in re-establishing the protease-antiprotease balance in patients for the first time.
Collapse
Affiliation(s)
| | - Volkhart M-J Li
- Bayer HealthCare AG, Lead Discovery Wuppertal, 42096 Wuppertal, Germany.
| |
Collapse
|
73
|
Dühring S, Germerodt S, Skerka C, Zipfel PF, Dandekar T, Schuster S. Host-pathogen interactions between the human innate immune system and Candida albicans-understanding and modeling defense and evasion strategies. Front Microbiol 2015; 6:625. [PMID: 26175718 PMCID: PMC4485224 DOI: 10.3389/fmicb.2015.00625] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/08/2015] [Indexed: 12/13/2022] Open
Abstract
The diploid, polymorphic yeast Candida albicans is one of the most important human pathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within the human host for a long time. However, alterations in the host environment can render C. albicans virulent. In this review, we describe the immunological cross-talk between C. albicans and the human innate immune system. We give an overview in form of pairs of human defense strategies including immunological mechanisms as well as general stressors such as nutrient limitation, pH, fever etc. and the corresponding fungal response and evasion mechanisms. Furthermore, Computational Systems Biology approaches to model and investigate these complex interactions are highlighted with a special focus on game-theoretical methods and agent-based models. An outlook on interesting questions to be tackled by Systems Biology regarding entangled defense and evasion mechanisms is given.
Collapse
Affiliation(s)
- Sybille Dühring
- Department of Bioinformatics, Friedrich-Schiller-University JenaJena, Germany
| | - Sebastian Germerodt
- Department of Bioinformatics, Friedrich-Schiller-University JenaJena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll InstituteJena, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll InstituteJena, Germany
- Friedrich-Schiller-University JenaJena, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biozentrum, Universitaet WuerzburgWuerzburg, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Friedrich-Schiller-University JenaJena, Germany
| |
Collapse
|
74
|
Tsai YF, Hwang TL. Neutrophil elastase inhibitors: a patent review and potential applications for inflammatory lung diseases (2010 - 2014). Expert Opin Ther Pat 2015; 25:1145-58. [PMID: 26118988 DOI: 10.1517/13543776.2015.1061998] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION The proteolytic activity of neutrophil elastase (NE) not only destroys pathogens but also degrades host matrix tissues by generating a localized protease-antiprotease imbalance. In humans, NE is well known to be involved in various acute and chronic inflammatory diseases, such as chronic obstructive pulmonary disease, emphysema, asthma, acute lung injury, acute respiratory distress syndrome and cystic fibrosis. The regulation of NE activity is thought to represent a promising therapeutic approach, and NE is considered as an important target for the development of novel selective inhibitors to treat these diseases. AREAS COVERED This article summarizes and analyzes patents on NE inhibitors and their therapeutic potential based on a review of patent applications disclosed between 2010 and 2014. EXPERT OPINION According to this review of recent NE inhibitor patents, all of the disclosed inhibitors can be classified into peptide- and non-peptide-based groups. The non-peptide NE inhibitors include heterocyclics, uracil derivatives and deuterium oxide. Among the heterocyclic analogs, derivatives of pyrimidinones, tetrahydropyrrolopyrimidinediones, pyrazinones, benzoxazinones and hypersulfated disaccharides were introduced. The literature has increasingly implicated NE in the pathogenesis of various diseases, of which inflammatory destructive lung diseases remain a major concern. However, only a few agents have been validated for therapeutic use in clinical settings to date.
Collapse
Affiliation(s)
- Yung-Fong Tsai
- a 1 Chang Gung University, Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine , Taoyuan 33302, Taiwan.,b 2 Chang Gung Memorial Hospital, Department of Anesthesiology , Kweishan, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- a 1 Chang Gung University, Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine , Taoyuan 33302, Taiwan.,c 3 Chang Gung University, Healthy Aging Research Center, Chinese Herbal Medicine Research Team , Taoyuan 33302, Taiwan.,d 4 Chang Gung University of Science and Technology, Department of Cosmetic Science and Research Center for Industry of Human Ecology , Taoyuan 33302, Taiwan.,e 5 Chang Gung University, Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine , Taoyuan 33302, Taiwan +88 6 3211 8506 ; +88 6 3211 8506 ;
| |
Collapse
|
75
|
Abstract
Sepsis is the leading cause of death in critically ill patients in intensive care units. Early recognition of sepsis and proper therapy are essential to reduce patient mortality. Moreover, treatment options for this deleterious inflammatory response to infection are limited. Neutrophils play an essential role in the innate immune response, providing the first line of host defense. It has recently been shown that these cells can trap and kill microorganisms by releasing neutrophil extracellular traps (NETs) composed of chromatin and antimicrobial proteins. Although the beneficial role of NETs during infections has been demonstrated, there is increasing evidence that NETs and their components contribute to the pathogenesis of several diseases, including sepsis. The aim of this review was to summarize the current evidence implicating NETs, as well as their components, in the development of sepsis and to discuss their potential use as novel therapeutic targets and as prognostic markers in septic patients.
Collapse
|
76
|
Reichel M, Muñoz-Caro T, Sanchez Contreras G, Rubio García A, Magdowski G, Gärtner U, Taubert A, Hermosilla C. Harbour seal (Phoca vitulina) PMN and monocytes release extracellular traps to capture the apicomplexan parasite Toxoplasma gondii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 50:106-115. [PMID: 25681075 DOI: 10.1016/j.dci.2015.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 06/04/2023]
Abstract
Extracellular traps (ETs) are composed of nuclear DNA as backbone adorned with histones, cytoplasmic antimicrobial peptides/proteins which are released from a range of vertebrate and invertebrate host immune cells in response to several invading pathogens. Until now this ancient novel innate defence mechanism has not been demonstrated in any marine mammal. Interactions of harbour seal (Phoca vitulina)-PMN and -monocytes with viable tachyzoites of Toxoplasma gondii were investigated in this respect in vitro. For the demonstration and quantification of harbour seal PMN- and monocyte-derived ETs, extracellular DNA was stained with Sytox Orange. Fluorescence assays as well as scanning electron microscopy (SEM) analyses demonstrated PMN- and monocyte-promoted ET formation rapidly being induced upon contact with T. gondii-tachyzoites. The co-localisation of extracellular DNA decorated with histones (H3), neutrophil elastase (NE) and myeloperoxidase (MPO) in parasite entrapping structures confirmed the classical characteristics of PMN- and monocyte-promoted ETs. Exposure of harbour seal PMN and monocytes to viable tachyzoites resulted in a significant induction of ETs when compared to negative controls. Harbour seal-ETs were efficiently abolished by DNase I treatment and were reduced after PMN and monocytes pre-incubation with the NADPH oxidase inhibitor diphenilane iodondium. Tachyzoites of T. gondii were firmly entrapped and immobilised within harbour seal-ET structures. To our best knowledge, we here report for the first time on T. gondii-induced ET formation in harbour seal-PMN and -monocytes. Our results strongly indicate that PMN- and monocyte-triggered ETs represent a relevant and ancient conserved effector mechanism of the pinniped innate immune system as reaction against the pathogenic protozoon T. gondii and probably against other foreign pathogens occurring in the ocean environment.
Collapse
Affiliation(s)
- Maria Reichel
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Tamara Muñoz-Caro
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Ana Rubio García
- Seal Rehabilitation and Research Centre, Pieterburen, The Netherlands
| | - Gerd Magdowski
- Institute of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
77
|
Grabcanovic-Musija F, Obermayer A, Stoiber W, Krautgartner WD, Steinbacher P, Winterberg N, Bathke AC, Klappacher M, Studnicka M. Neutrophil extracellular trap (NET) formation characterises stable and exacerbated COPD and correlates with airflow limitation. Respir Res 2015; 16:59. [PMID: 25994149 PMCID: PMC4455316 DOI: 10.1186/s12931-015-0221-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/13/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND COPD is a progressive disease of the airways that is characterized by neutrophilic inflammation, a condition known to promote the excessive formation of neutrophil extracellular traps (NETs). The presence of large amounts of NETs has recently been demonstrated for a variety of inflammatory lung diseases including cystic fibrosis, asthma and exacerbated COPD. OBJECTIVE We test whether excessive NET generation is restricted to exacerbation of COPD or whether it also occurs during stable periods of the disease, and whether NET presence and amount correlates with the severity of airflow limitation. PATIENTS, MATERIALS AND METHODS Sputum samples from four study groups were examined: COPD patients during acute exacerbation, patients with stable disease, and smoking and non-smoking controls without airflow limitation. Sputum induction followed the ECLIPSE protocol. Confocal laser microscopy (CLSM) and electron microscopy were used to analyse samples. Immunolabelling and fluorescent DNA staining were applied to trace NETs and related marker proteins. CLSM specimens served for quantitative evaluation. RESULTS Sputum of COPD patients is clearly characterised by NETs and NET-forming neutrophils. The presence of large amounts of NET is associated with disease severity (p < 0.001): over 90 % in exacerbated COPD, 45 % in stable COPD, and 25 % in smoking controls, but less than 5% in non-smokers. Quantification of NET-covered areas in sputum preparations confirms these results. CONCLUSIONS NET formation is not confined to exacerbation but also present in stable COPD and correlates with the severity of airflow limitation. We infer that NETs are a major contributor to chronic inflammatory and lung tissue damage in COPD.
Collapse
Affiliation(s)
- Fikreta Grabcanovic-Musija
- University Clinic of Pneumology, Paracelsus Medical University, Müllner Hauptstraße 48, A-5020, Salzburg, Austria.
| | - Astrid Obermayer
- Department of Cell Biology, Biomedical Ultrastructure Research Group, University of Salzburg, Salzburg, Austria.
| | - Walter Stoiber
- Department of Cell Biology, Biomedical Ultrastructure Research Group, University of Salzburg, Salzburg, Austria.
| | - Wolf-Dietrich Krautgartner
- Department of Cell Biology, Biomedical Ultrastructure Research Group, University of Salzburg, Salzburg, Austria.
| | - Peter Steinbacher
- Department of Cell Biology, Biomedical Ultrastructure Research Group, University of Salzburg, Salzburg, Austria.
| | - Nicole Winterberg
- Department of Mathematics, University of Salzburg, Salzburg, Austria.
| | | | - Michaela Klappacher
- Department of Cell Biology, Biomedical Ultrastructure Research Group, University of Salzburg, Salzburg, Austria.
| | - Michael Studnicka
- University Clinic of Pneumology, Paracelsus Medical University, Müllner Hauptstraße 48, A-5020, Salzburg, Austria.
| |
Collapse
|
78
|
Mehraj V, Jenabian MA, Vyboh K, Routy JP. Immune Suppression by Myeloid Cells in HIV Infection: New Targets for Immunotherapy. Open AIDS J 2014; 8:66-78. [PMID: 25624956 PMCID: PMC4302459 DOI: 10.2174/1874613601408010066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/11/2014] [Accepted: 11/28/2014] [Indexed: 02/07/2023] Open
Abstract
Over thirty years of extensive research has not yet solved the complexity of HIV pathogenesis leading to a continued need for a successful cure. Recent immunotherapy-based approaches are aimed at controlling the infection by reverting immune dysfunction. Comparatively less appreciated than the role of T cells in the context of HIV infection, the myeloid cells including macrophages monocytes, dendritic cells (DCs) and neutrophils contribute significantly to immune dysfunction. Host restriction factors are cellular proteins expressed in these cells which are circumvented by HIV. Guided by the recent literature, the role of myeloid cells in HIV infection will be discussed highlighting potential targets for immunotherapy. HIV infection, which is mainly characterized by CD4 T cell dysfunction, also manifests in a vicious cycle of events comprising of inflammation and immune activation. Targeting the interaction of programmed death-1 (PD-1), an important regulator of T cell function; with PD-L1 expressed mainly on myeloid cells could bring promising results. Macrophage functional polarization from pro-inflammatory M1 to anti-inflammatory M2 and vice versa has significant implications in viral pathogenesis. Neutrophils, recently discovered low density granular cells, myeloid derived suppressor cells (MDSCs) and yolk sac macrophages provide new avenues of research on HIV pathogenesis and persistence. Recent evidence has also shown significant implications of neutrophil extracellular traps (NETs), antimicrobial peptides and opsonizing antibodies. Further studies aimed to understand and modify myeloid cell restriction mechanisms have the potential to contribute in the future development of more effective anti-HIV interventions that may pave the way to viral eradication.
Collapse
Affiliation(s)
- Vikram Mehraj
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada ; Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Département des Sciences Biologiques et Centre de recherche BioMed, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Kishanda Vyboh
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada ; Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada ; Research Institute, McGill University Health Centre, Montreal, QC, Canada ; Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
79
|
Weyrich AS. Platelets: more than a sack of glue. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2014; 2014:400-403. [PMID: 25696885 DOI: 10.1182/asheducation-2014.1.400] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Platelets are primary effector cells in hemostasis. Emerging evidence over the last decade, however, demonstrates that platelets also have critical roles in immunity and inflammation. These nontraditional functions of platelets influence the development, progression, and evolution of numerous diseases, including arthritis, cancer, cardiovascular disease, and infectious syndromes. This chapters reviews recently discovered attributes of platelets that contribute to human disease, paying particular attention to the inflammatory activities of this anucleate cytoplast.
Collapse
Affiliation(s)
- Andrew S Weyrich
- Molecular Medicine Program and the Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
80
|
Werner JL, Steele C. Innate receptors and cellular defense against pulmonary infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:3842-50. [PMID: 25281754 PMCID: PMC4185409 DOI: 10.4049/jimmunol.1400978] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the United States, lung infections consistently rank in the top 10 leading causes of death, accounting for >50,000 deaths annually. Moreover, >140,000 deaths occur annually as a result of chronic lung diseases, some of which may be complicated by an infectious process. The lung is constantly exposed to the environment and is susceptible to infectious complications caused by bacterial, viral, fungal, and parasitic pathogens. Indeed, we are continually faced with the threat of morbidity and mortality associated with annual influenza virus infections, new respiratory viruses (e.g., SARS-CoV), and lung infections caused by antibiotic-resistant "ESKAPE pathogens" (three of which target the lung). This review highlights innate immune receptors and cell types that function to protect against infectious challenges to the respiratory system yet also may be associated with exacerbations in chronic lung diseases.
Collapse
Affiliation(s)
- Jessica L Werner
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109; and
| | - Chad Steele
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
81
|
Feldman C, Anderson R. Review: Current and new generation pneumococcal vaccines. J Infect 2014; 69:309-25. [DOI: 10.1016/j.jinf.2014.06.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/16/2014] [Indexed: 12/22/2022]
|
82
|
|
83
|
The apicomplexan parasite Eimeria arloingi induces caprine neutrophil extracellular traps. Parasitol Res 2014; 113:2797-807. [PMID: 24849865 DOI: 10.1007/s00436-014-3939-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/30/2014] [Indexed: 12/13/2022]
Abstract
As a novel effector mechanism polymorphonuclear neutrophils (PMN) release neutrophil extracellular traps (NETs), which represent protein-labeled DNA matrices capable of extracellular trapping and killing of invasive pathogens. Here, we demonstrate for the first time NET formation performed by caprine PMN exposed to different stages (sporozoites and oocysts) of the goat apicomplexan protozoan parasite Eimeria arloingi. Scanning electron microscopy as well as fluorescence microscopy of sporozoites- and oocysts-PMN co-cultures revealed a fine network of DNA fibrils partially covering the parasites. Immunofluorescence analyses confirmed the co-localization of histones (H3), neutrophil elastase (NE), and myeloperoxidase (MPO) in extracellular traps released from caprine PMN. In addition, the enzymatic activity of NE was found significantly enhanced in sporozoite-exposed caprine PMN. The treatment of caprine NET structures with deoxyribonuclease (DNase) and the NADPH oxidase inhibitor diphenylene iodondium (DPI) significantly reduced NETosis confirming the classical characteristics of NETs. Caprine NETs efficiently trapped vital sporozoites of E. arloingi since 72% of these stages were immobilized-but not killed-in NET structures. As a consequence, early infection rates were significantly reduced when PMN-pre-exposed sporozoites were allowed to infect adequate host cells. These findings suggest that NETs may play an important role in the early innate host response to E. arloingi infection in goats.
Collapse
|
84
|
Gupta AK, Giaglis S, Hasler P, Hahn S. Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A. PLoS One 2014; 9:e97088. [PMID: 24819773 PMCID: PMC4018253 DOI: 10.1371/journal.pone.0097088] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/14/2014] [Indexed: 12/21/2022] Open
Abstract
Excessive or aberrant generation of neutrophil extracellular traps (NETs) has recently become implicated in the underlying aetiology of a number of human pathologies including preeclampsia, systemic lupus erythromatosus, rheumatoid arthritis, auto-antibody induced small vessel vasculitis, coagulopathies such as deep vein thrombosis or pulmonary complications. These results imply that effective pharmacological therapeutic strategies will need to be developed to counter overt NETosis in these and other inflammatory disorders. As calcium flux is implicated in the generation of reactive oxygen species and histone citrullination, two key events in NETosis, we analysed the roles of both extra- and intracellular calcium pools and their modulation by pharmacological agents in the NETotic process in detail. Interleukin-8 (IL-8) was used as a physiological stimulus of NETosis. Our data demonstrate that efficient induction of NETosis requires mobilisation of both extracellular and intracellular calcium pools. Since modulation of the calcineurin pathway by cyclosporine A has been described in neutrophils, we investigated its influence on NETosis. Our data indicate that IL-8 induced NETosis is reduced by ascomycin and cyclosporine A, antagonists of the calcineurin pathway, but not following treatment with rapamycin, which utilizes the mTOR pathway. The action of the G protein coupled receptor phospholipase C pathway appears to be essential for the induction of NETs by IL-8, as NETosis was diminished by treatment with either pertussis toxin, a G-protein inhibitor, the phospholipase C inhibitor, U73122, or staurosporine, an inhibitor of protein kinase C. The data regarding the calcineurin antagonists, ascomycin and cyclosporine A, open the possibility to therapeutically supress or modulate NETosis. They also provide new insight into the mechanism whereby such immune suppressive drugs render transplant patients susceptible to opportunistic fungal infections.
Collapse
Affiliation(s)
- Anurag Kumar Gupta
- Laboratory for Prenatal Medicine, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Stavros Giaglis
- Laboratory for Prenatal Medicine, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Department of Rheumatology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Paul Hasler
- Department of Rheumatology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Sinuhe Hahn
- Laboratory for Prenatal Medicine, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
85
|
The intriguing host innate immune response: novel anti-parasitic defence by neutrophil extracellular traps. Parasitology 2014; 141:1489-98. [PMID: 24721985 DOI: 10.1017/s0031182014000316] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The capacity of polymorphonuclear neutrophils (PMN) and other leucocytes of the innate immune system to expel their DNA in a controlled process into the extracellular environment to trap and kill pathogenic microorganisms led to a paradigm shift in our comprehension of host leucocyte-pathogen interactions. Formation of neutrophil extracellular traps (NETs) has recently been recognized as a novel effector mechanism of the host innate immune response against microbial infections. Meanwhile evidence has arisen that NET formation is a widely spread mechanism in vertebrates and invertebrates and extends not only to the entrapment of microbes, fungi and viruses but also to the capture of protozoan and metazoan parasites. PMN produce NETs after stimulation with mitogens, cytokines or pathogens in a controlled process which depends on reactive oxygen species (ROS) and the induction of the Raf-MEK-ERK-mediated signalling pathway cascade. NETs consist of nuclear DNA as a backbone decorated with histones, antimicrobial peptides, and PMN-specific granular enzymes thereby providing an extracellular matrix capable of entrapping and killing invasive pathogens. This review is intended to summarize parasite-related data on NETs. Special attention will be given to NET-associated mechanisms by which parasites, in particular apicomplexa, might be hampered in their ability to reproduce within the host cell and complete the life cycle.
Collapse
|
86
|
Overview of community-acquired pneumonia and the role of inflammatory mechanisms in the immunopathogenesis of severe pneumococcal disease. Mediators Inflamm 2013; 2013:490346. [PMID: 24453422 PMCID: PMC3886318 DOI: 10.1155/2013/490346] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/15/2013] [Accepted: 11/17/2013] [Indexed: 12/23/2022] Open
Abstract
Community-acquired pneumonia (CAP) remains a leading cause of morbidity and mortality among the infectious diseases. Despite the implementation of national pneumococcal polyvalent vaccine-based immunisation strategies targeted at high-risk groups, Streptococcus pneumoniae (the pneumococcus) remains the most common cause of CAP. Notwithstanding the HIV pandemic, major challenges confronting the control of CAP include the range of bacterial and viral pathogens causing this condition, the ever-increasing problem of antibiotic resistance worldwide, and increased vulnerability associated with steadily aging populations in developed countries. These and other risk factors, as well as diagnostic strategies, are covered in the first section of this review. Thereafter, the review is focused on the pneumococcus, specifically the major virulence factors of this microbial pathogen and their role in triggering overexuberant inflammatory responses which contribute to the immunopathogenesis of invasive disease. The final section of the review is devoted to a consideration of pharmacological, anti-inflammatory strategies with adjunctive potential in the antimicrobial chemotherapy of CAP. This is focused on macrolides, corticosteroids, and statins with respect to their modes of anti-inflammatory action, current status, and limitations.
Collapse
|
87
|
Barteneva NS, Maltsev N, Vorobjev IA. Microvesicles and intercellular communication in the context of parasitism. Front Cell Infect Microbiol 2013; 3:49. [PMID: 24032108 PMCID: PMC3764926 DOI: 10.3389/fcimb.2013.00049] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/20/2013] [Indexed: 01/18/2023] Open
Abstract
There is a rapidly growing body of evidence that production of microvesicles (MVs) is a universal feature of cellular life. MVs can incorporate microRNA (miRNA), mRNA, mtDNA, DNA and retrotransposons, camouflage viruses/viral components from immune surveillance, and transfer cargo between cells. These properties make MVs an essential player in intercellular communication. Increasing evidence supports the notion that MVs can also act as long-distance vehicles for RNA molecules and participate in metabolic synchronization and reprogramming eukaryotic cells including stem and germinal cells. MV ability to carry on DNA and their general distribution makes them attractive candidates for horizontal gene transfer, particularly between multi-cellular organisms and their parasites; this suggests important implications for the co-evolution of parasites and their hosts. In this review, we provide current understanding of the roles played by MVs in intracellular pathogens and parasitic infections. We also discuss the possible role of MVs in co-infection and host shifting.
Collapse
Affiliation(s)
- Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Children's Hospital Boston and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Natasha.Barteneva@ childrens.harvard.edu
| | | | | |
Collapse
|