51
|
Elucidating the molecular and developmental biology of parasitic nematodes: Moving to a multiomics paradigm. ADVANCES IN PARASITOLOGY 2020; 108:175-229. [PMID: 32291085 DOI: 10.1016/bs.apar.2019.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the past two decades, significant progress has been made in the sequencing, assembly, annotation and analyses of genomes and transcriptomes of parasitic worms of socioeconomic importance. This progress has somewhat improved our knowledge and understanding of these pathogens at the molecular level. However, compared with the free-living nematode Caenorhabditis elegans, the areas of functional genomics, transcriptomics, proteomics and metabolomics of parasitic nematodes are still in their infancy, and there are major gaps in our knowledge and understanding of the molecular biology of parasitic nematodes. The information on signalling molecules, molecular pathways and microRNAs (miRNAs) that are known to be involved in developmental processes in C. elegans and the availability of some molecular resources (draft genomes, transcriptomes and some proteomes) for selected parasitic nematodes provide a basis to start exploring the developmental biology of parasitic nematodes. Indeed, some studies have identified molecules and pathways that might associate with developmental processes in related, parasitic nematodes, such as Haemonchus contortus (barber's pole worm). However, detailed information is often scant and 'omics resources are limited, preventing a proper integration of 'omic data sets and comprehensive analyses. Moreover, little is known about the functional roles of pheromones, hormones, signalling pathways and post-transcriptional/post-translational regulations in the development of key parasitic nematodes throughout their entire life cycles. Although C. elegans is an excellent model to assist molecular studies of parasitic nematodes, its use is limited when it comes to explorations of processes that are specific to parasitism within host animals. A deep understanding of parasitic nematodes, such as H. contortus, requires substantially enhanced resources and the use of integrative 'omics approaches for analyses. The improved genome and well-established in vitro larval culture system for H. contortus provide unprecedented opportunities for comprehensive studies of the transcriptomes (mRNA and miRNA), proteomes (somatic, excretory/secretory and phosphorylated proteins) and lipidomes (e.g., polar and neutral lipids) of this nematode. Such resources should enable in-depth explorations of its developmental biology at a level, not previously possible. The main aims of this review are (i) to provide a background on the development of nematodes, with a particular emphasis on the molecular aspects involved in the dauer formation and exit in C. elegans; (ii) to critically appraise the current state of knowledge of the developmental biology of parasitic nematodes and identify key knowledge gaps; (iii) to cover salient aspects of H. contortus, with a focus on the recent advances in genomics, transcriptomics, proteomics and lipidomics as well as in vitro culturing systems; (iv) to review recent advances in our knowledge and understanding of the molecular and developmental biology of H. contortus using an integrative multiomics approach, and discuss the implications of this approach for detailed explorations of signalling molecules, molecular processes and pathways likely associated with nematode development, adaptation and parasitism, and for the identification of novel intervention targets against these pathogens. Clearly, the multiomics approach established recently is readily applicable to exploring a wide range of interesting and socioeconomically significant parasitic worms (including also trematodes and cestodes) at the molecular level, and to elucidate host-parasite interactions and disease processes.
Collapse
|
52
|
Rödelsperger C, Athanasouli M, Lenuzzi M, Theska T, Sun S, Dardiry M, Wighard S, Hu W, Sharma DR, Han Z. Crowdsourcing and the feasibility of manual gene annotation: A pilot study in the nematode Pristionchus pacificus. Sci Rep 2019; 9:18789. [PMID: 31827189 PMCID: PMC6906410 DOI: 10.1038/s41598-019-55359-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/20/2019] [Indexed: 01/15/2023] Open
Abstract
Nematodes such as Caenorhabditis elegans are powerful systems to study basically all aspects of biology. Their species richness together with tremendous genetic knowledge from C. elegans facilitate the evolutionary study of biological functions using reverse genetics. However, the ability to identify orthologs of candidate genes in other species can be hampered by erroneous gene annotations. To improve gene annotation in the nematode model organism Pristionchus pacificus, we performed a genome-wide screen for C. elegans genes with potentially incorrectly annotated P. pacificus orthologs. We initiated a community-based project to manually inspect more than two thousand candidate loci and to propose new gene models based on recently generated Iso-seq and RNA-seq data. In most cases, misannotation of C. elegans orthologs was due to artificially fused gene predictions and completely missing gene models. The community-based curation raised the gene count from 25,517 to 28,036 and increased the single copy ortholog completeness level from 86% to 97%. This pilot study demonstrates how even small-scale crowdsourcing can drastically improve gene annotations. In future, similar approaches can be used for other species, gene sets, and even larger communities thus making manual annotation of large parts of the genome feasible.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany.
| | - Marina Athanasouli
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Maša Lenuzzi
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Tobias Theska
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Shuai Sun
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Mohannad Dardiry
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Sara Wighard
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Wen Hu
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Devansh Raj Sharma
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Ziduan Han
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany
| |
Collapse
|
53
|
Rödelsperger C, Prabh N, Sommer RJ. New Gene Origin and Deep Taxon Phylogenomics: Opportunities and Challenges. Trends Genet 2019; 35:914-922. [DOI: 10.1016/j.tig.2019.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/07/2019] [Accepted: 08/29/2019] [Indexed: 01/22/2023]
|
54
|
Sieriebriennikov B, Prabh N, Dardiry M, Witte H, Röseler W, Kieninger MR, Rödelsperger C, Sommer RJ. A Developmental Switch Generating Phenotypic Plasticity Is Part of a Conserved Multi-gene Locus. Cell Rep 2019; 23:2835-2843.e4. [PMID: 29874571 DOI: 10.1016/j.celrep.2018.05.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/04/2018] [Accepted: 05/02/2018] [Indexed: 01/20/2023] Open
Abstract
Switching between alternative complex phenotypes is often regulated by "supergenes," polymorphic clusters of linked genes such as in butterfly mimicry. In contrast, phenotypic plasticity results in alternative complex phenotypes controlled by environmental influences rather than polymorphisms. Here, we show that the developmental switch gene regulating predatory versus non-predatory mouth-form plasticity in the nematode Pristionchus pacificus is part of a multi-gene locus containing two sulfatases and two α-N-acetylglucosaminidases (nag). We provide functional characterization of all four genes, using CRISPR-Cas9-based reverse genetics, and show that nag genes and the previously identified eud-1/sulfatase have opposing influences. Members of the multi-gene locus show non-overlapping neuronal expression and epistatic relationships. The locus architecture is conserved in the entire genus Pristionchus. Interestingly, divergence between paralogs is counteracted by gene conversion, as inferred from phylogenies and genotypes of CRISPR-Cas9-induced mutants. Thus, we found that physical linkage accompanies regulatory linkage between switch genes controlling plasticity in P. pacificus.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Neel Prabh
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Mohannad Dardiry
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Manuela R Kieninger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany.
| |
Collapse
|
55
|
Moreno E, Lightfoot JW, Lenuzzi M, Sommer RJ. Cilia drive developmental plasticity and are essential for efficient prey detection in predatory nematodes. Proc Biol Sci 2019; 286:20191089. [PMID: 31575374 PMCID: PMC6790756 DOI: 10.1098/rspb.2019.1089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/16/2019] [Indexed: 01/08/2023] Open
Abstract
Cilia are complex organelles involved in a broad array of functions in eukaryotic organisms. Nematodes employ cilia for environmental sensing, which shapes developmental decisions and influences morphologically plastic traits and adaptive behaviours. Here, we assess the role of cilia in the nematode Pristionchus pacificus, and determine their importance in regulating the developmentally plastic mouth-form decision in addition to predatory feeding and self-recognition behaviours, all of which are not present in Caenorhabditis elegans. An analysis of a multitude of cilia-related mutants including representatives of the six protein subcomplexes required in intraflagellar transport (IFT) plus the regulatory factor X transcription factor daf-19 revealed that cilia are essential for processing the external cues influencing the mouth-form decision and for the efficient detection of prey. Surprisingly, we observed that loss-of-function mutations in the different IFT components resulted in contrasting mouth-form phenotypes and different degrees of predation deficiencies. This observation supports the idea that perturbing different IFT subcomplexes has different effects on signalling downstream of the cilium. Finally, self-recognition was maintained in the cilia deficient mutants tested, indicating that the mechanisms triggering self-recognition in P. pacificus may not require the presence of fully functional cilia.
Collapse
Affiliation(s)
| | | | | | - Ralf J. Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| |
Collapse
|
56
|
Loer C, Witte H, Sommer R, Hobert O. An antibody staining protocol variation for nematodes that adds heat-induced antigen retrieval (HIAR). MICROPUBLICATION BIOLOGY 2019; 2019. [PMID: 32550428 PMCID: PMC7252300 DOI: 10.17912/micropub.biology.000135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Curtis Loer
- Department of Biology, University of San Diego, CA, USA.,Department of Biological Sciences, HHMI, Columbia University, NY, USA [CL, while visiting scholar on sabbatical]
| | - Hanh Witte
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ralf Sommer
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Oliver Hobert
- Department of Biological Sciences, HHMI, Columbia University, NY, USA [CL, while visiting scholar on sabbatical]
| |
Collapse
|
57
|
Lightfoot JW, Wilecki M, Rödelsperger C, Moreno E, Susoy V, Witte H, Sommer RJ. Small peptide–mediated self-recognition prevents cannibalism in predatory nematodes. Science 2019; 364:86-89. [DOI: 10.1126/science.aav9856] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
Self-recognition is observed abundantly throughout the natural world, regulating diverse biological processes. Although ubiquitous, often little is known of the associated molecular machinery, and so far, organismal self-recognition has never been described in nematodes. We investigated the predatory nematode Pristionchus pacificus and, through interactions with its prey, revealed a self-recognition mechanism acting on the nematode surface, capable of distinguishing self-progeny from closely related strains. We identified the small peptide SELF-1, which is composed of an invariant domain and a hypervariable C terminus, as a key component of self-recognition. Modifications to the hypervariable region, including single–amino acid substitutions, are sufficient to eliminate self-recognition. Thus, the P. pacificus self-recognition system enables this nematode to avoid cannibalism while promoting the killing of competing nematodes.
Collapse
|
58
|
Zhang YT, Jiang JY, Shi TQ, Sun XM, Zhao QY, Huang H, Ren LJ. Application of the CRISPR/Cas system for genome editing in microalgae. Appl Microbiol Biotechnol 2019; 103:3239-3248. [PMID: 30877356 DOI: 10.1007/s00253-019-09726-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022]
Abstract
Microalgae are arguably the most abundant single-celled eukaryotes and are widely distributed in oceans and freshwater lakes. Moreover, microalgae are widely used in biotechnology to produce bioenergy and high-value products such as polyunsaturated fatty acids (PUFAs), bioactive peptides, proteins, antioxidants and so on. In general, genetic editing techniques were adapted to increase the production of microalgal metabolites. The main genome editing tools available today include zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas nuclease system. Due to its high genome editing efficiency, the CRISPR/Cas system is emerging as the most important genome editing method. In this review, we summarized the available literature on the application of CRISPR/Cas in microalgal genetic engineering, including transformation methods, strategies for the expression of Cas9 and sgRNA, the CRISPR/Cas9-mediated gene knock-in/knock-out strategies, and CRISPR interference expression modification strategies.
Collapse
Affiliation(s)
- Yu-Ting Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Jia-Yi Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Tian-Qiong Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xiao-Man Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Quan-Yu Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, 210009, People's Republic of China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
59
|
Strategies for Efficient Genome Editing Using CRISPR-Cas9. Genetics 2019; 211:431-457. [PMID: 30504364 PMCID: PMC6366907 DOI: 10.1534/genetics.118.301775] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
The targetable DNA endonuclease CRISPR-Cas9 has transformed analysis of biological processes by enabling robust genome editing in model and nonmodel organisms. Although rules directing Cas9 to its target DNA via a guide RNA are straightforward, wide variation occurs in editing efficiency and repair outcomes for both imprecise error-prone repair and precise templated repair. We found that imprecise and precise DNA repair from double-strand breaks (DSBs) is asymmetric, favoring repair in one direction. Using this knowledge, we designed RNA guides and repair templates that increased the frequency of imprecise insertions and deletions and greatly enhanced precise insertion of point mutations in Caenorhabditis elegans We also devised strategies to insert long (10 kb) exogenous sequences and incorporate multiple nucleotide substitutions at a considerable distance from DSBs. We expanded the repertoire of co-conversion markers appropriate for diverse nematode species. These selectable markers enable rapid identification of Cas9-edited animals also likely to carry edits in desired targets. Lastly, we explored the timing, location, frequency, sex dependence, and categories of DSB repair events by developing loci with allele-specific Cas9 targets that can be contributed during mating from either male or hermaphrodite germ cells. We found a striking difference in editing efficiency between maternally and paternally contributed genomes. Furthermore, imprecise repair and precise repair from exogenous repair templates occur with high frequency before and after fertilization. Our strategies enhance Cas9-targeting efficiency, lend insight into the timing and mechanisms of DSB repair, and establish guidelines for achieving predictable precise and imprecise repair outcomes with high frequency.
Collapse
|
60
|
Haag ES, Fitch DHA, Delattre M. From "the Worm" to "the Worms" and Back Again: The Evolutionary Developmental Biology of Nematodes. Genetics 2018; 210:397-433. [PMID: 30287515 PMCID: PMC6216592 DOI: 10.1534/genetics.118.300243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Since the earliest days of research on nematodes, scientists have noted the developmental and morphological variation that exists within and between species. As various cellular and developmental processes were revealed through intense focus on Caenorhabditis elegans, these comparative studies have expanded. Within the genus Caenorhabditis, they include characterization of intraspecific polymorphisms and comparisons of distinct species, all generally amenable to the same laboratory culture methods and supported by robust genomic and experimental tools. The C. elegans paradigm has also motivated studies with more distantly related nematodes and animals. Combined with improved phylogenies, this work has led to important insights about the evolution of nematode development. First, while many aspects of C. elegans development are representative of Caenorhabditis, and of terrestrial nematodes more generally, others vary in ways both obvious and cryptic. Second, the system has revealed several clear examples of developmental flexibility in achieving a particular trait. This includes developmental system drift, in which the developmental control of homologous traits has diverged in different lineages, and cases of convergent evolution. Overall, the wealth of information and experimental techniques developed in C. elegans is being leveraged to make nematodes a powerful system for evolutionary cellular and developmental biology.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | - Marie Delattre
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS, INSERM, Ecole Normale Supérieure de Lyon, 69007, France
| |
Collapse
|
61
|
Moreno E, Lenuzzi M, Rödelsperger C, Prabh N, Witte H, Roeseler W, Riebesell M, Sommer RJ. DAF‐19/RFX controls ciliogenesis and influences oxygen‐induced social behaviors in
Pristionchus pacificus. Evol Dev 2018; 20:233-243. [DOI: 10.1111/ede.12271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Eduardo Moreno
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Maša Lenuzzi
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Christian Rödelsperger
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Neel Prabh
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Hanh Witte
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Waltraud Roeseler
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Metta Riebesell
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| | - Ralf J. Sommer
- Max Planck Institute for Developmental BiologyDepartment of Evolutionary BiologyTübingenGermany
| |
Collapse
|
62
|
Werner MS, Sieriebriennikov B, Prabh N, Loschko T, Lanz C, Sommer RJ. Young genes have distinct gene structure, epigenetic profiles, and transcriptional regulation. Genome Res 2018; 28:1675-1687. [PMID: 30232198 PMCID: PMC6211652 DOI: 10.1101/gr.234872.118] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
Abstract
Species-specific, new, or "orphan" genes account for 10%-30% of eukaryotic genomes. Although initially considered to have limited function, an increasing number of orphan genes have been shown to provide important phenotypic innovation. How new genes acquire regulatory sequences for proper temporal and spatial expression is unknown. Orphan gene regulation may rely in part on origination in open chromatin adjacent to preexisting promoters, although this has not yet been assessed by genome-wide analysis of chromatin states. Here, we combine taxon-rich nematode phylogenies with Iso-Seq, RNA-seq, ChIP-seq, and ATAC-seq to identify the gene structure and epigenetic signature of orphan genes in the satellite model nematode Pristionchus pacificus Consistent with previous findings, we find young genes are shorter, contain fewer exons, and are on average less strongly expressed than older genes. However, the subset of orphan genes that are expressed exhibit distinct chromatin states from similarly expressed conserved genes. Orphan gene transcription is determined by a lack of repressive histone modifications, confirming long-held hypotheses that open chromatin is important for new gene formation. Yet orphan gene start sites more closely resemble enhancers defined by H3K4me1, H3K27ac, and ATAC-seq peaks, in contrast to conserved genes that exhibit traditional promoters defined by H3K4me3 and H3K27ac. Although the majority of orphan genes are located on chromosome arms that contain high recombination rates and repressive histone marks, strongly expressed orphan genes are more randomly distributed. Our results support a model of new gene origination by rare integration into open chromatin near enhancers.
Collapse
Affiliation(s)
- Michael S Werner
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Bogdan Sieriebriennikov
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Neel Prabh
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Tobias Loschko
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Christa Lanz
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ralf J Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
63
|
Namdeo S, Moreno E, Rödelsperger C, Baskaran P, Witte H, Sommer RJ. Two independent sulfation processes regulate mouth-form plasticity in the nematode Pristionchus pacificus. Development 2018; 145:145/13/dev166272. [PMID: 29967123 DOI: 10.1242/dev.166272] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/17/2018] [Indexed: 12/15/2022]
Abstract
Sulfation of biomolecules, like phosphorylation, is one of the most fundamental and ubiquitous biochemical modifications with important functions during detoxification. This process is reversible, involving two enzyme classes: a sulfotransferase, which adds a sulfo group to a substrate; and a sulfatase that removes the sulfo group. However, unlike phosphorylation, the role of sulfation in organismal development is poorly understood. In this study, we find that two independent sulfation events regulate the development of mouth morphology in the nematode Pristionchus pacificus. This nematode has the ability to form two alternative mouth morphologies depending on environmental cues, an example of phenotypic plasticity. We found that, in addition to a previously described sulfatase, a sulfotransferase is involved in regulating the mouth-form dimorphism in P. pacificus However, it is unlikely that both of these sulfation-associated enzymes act upon the same substrates, as they are expressed in different cell types. Furthermore, animals mutant in genes encoding both enzymes show condition-dependent epistatic interactions. Thus, our study highlights the role of sulfation-associated enzymes in phenotypic plasticity of mouth structures in Pristionchus.
Collapse
Affiliation(s)
- Suryesh Namdeo
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076 Tuebingen, Germany
| | - Eduardo Moreno
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076 Tuebingen, Germany
| | - Christian Rödelsperger
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076 Tuebingen, Germany
| | - Praveen Baskaran
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076 Tuebingen, Germany
| | - Hanh Witte
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076 Tuebingen, Germany
| | - Ralf J Sommer
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076 Tuebingen, Germany
| |
Collapse
|
64
|
Sommer RJ, Dardiry M, Lenuzzi M, Namdeo S, Renahan T, Sieriebriennikov B, Werner MS. The genetics of phenotypic plasticity in nematode feeding structures. Open Biol 2018; 7:rsob.160332. [PMID: 28298309 PMCID: PMC5376706 DOI: 10.1098/rsob.160332] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/10/2017] [Indexed: 12/15/2022] Open
Abstract
Phenotypic plasticity has been proposed as an ecological and evolutionary concept. Ecologically, it can help study how genes and the environment interact to produce robust phenotypes. Evolutionarily, as a facilitator it might contribute to phenotypic novelty and diversification. However, the discussion of phenotypic plasticity remains contentious in parts due to the absence of model systems and rigorous genetic studies. Here, we summarize recent work on the nematode Pristionchus pacificus, which exhibits a feeding plasticity allowing predatory or bacteriovorous feeding. We show feeding plasticity to be controlled by developmental switch genes that are themselves under epigenetic control. Phylogenetic and comparative studies support phenotypic plasticity and its role as a facilitator of morphological novelty and diversity.
Collapse
Affiliation(s)
- Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tübingen, Germany
| | - Mohannad Dardiry
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tübingen, Germany
| | - Masa Lenuzzi
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tübingen, Germany
| | - Suryesh Namdeo
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tübingen, Germany
| | - Tess Renahan
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tübingen, Germany
| | - Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tübingen, Germany
| | - Michael S Werner
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tübingen, Germany
| |
Collapse
|
65
|
Rödelsperger C, Meyer JM, Prabh N, Lanz C, Bemm F, Sommer RJ. Single-Molecule Sequencing Reveals the Chromosome-Scale Genomic Architecture of the Nematode Model Organism Pristionchus pacificus. Cell Rep 2018; 21:834-844. [PMID: 29045848 DOI: 10.1016/j.celrep.2017.09.077] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/01/2017] [Accepted: 09/24/2017] [Indexed: 01/24/2023] Open
Abstract
The nematode Pristionchus pacificus is an established model for integrative evolutionary biology and comparative studies with Caenorhabditis elegans. While an existing genome draft facilitated the identification of several genes controlling various developmental processes, its high degree of fragmentation complicated virtually all genomic analyses. Here, we present a de novo genome assembly from single-molecule, long-read sequencing data consisting of 135 P. pacificus contigs. When combined with a genetic linkage map, 99% of the assembly could be ordered and oriented into six chromosomes. This allowed us to robustly characterize chromosomal patterns of gene density, repeat content, nucleotide diversity, linkage disequilibrium, and macrosynteny in P. pacificus. Despite widespread conservation of synteny between P. pacificus and C. elegans, we identified one major translocation from an autosome to the sex chromosome in the lineage leading to C. elegans. This highlights the potential of the chromosome-scale assembly for future genomic studies of P. pacificus.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.
| | - Jan M Meyer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Neel Prabh
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Christa Lanz
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Ralf J Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.
| |
Collapse
|
66
|
Falcke JM, Bose N, Artyukhin AB, Rödelsperger C, Markov GV, Yim JJ, Grimm D, Claassen MH, Panda O, Baccile JA, Zhang YK, Le HH, Jolic D, Schroeder FC, Sommer RJ. Linking Genomic and Metabolomic Natural Variation Uncovers Nematode Pheromone Biosynthesis. Cell Chem Biol 2018; 25:787-796.e12. [PMID: 29779955 DOI: 10.1016/j.chembiol.2018.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/28/2018] [Accepted: 04/04/2018] [Indexed: 11/17/2022]
Abstract
In the nematodes Caenorhabditis elegans and Pristionchus pacificus, a modular library of small molecules control behavior, lifespan, and development. However, little is known about the final steps of their biosynthesis, in which diverse building blocks from primary metabolism are attached to glycosides of the dideoxysugar ascarylose, the ascarosides. We combine metabolomic analysis of natural isolates of P. pacificus with genome-wide association mapping to identify a putative carboxylesterase, Ppa-uar-1, that is required for attachment of a pyrimidine-derived moiety in the biosynthesis of ubas#1, a major dauer pheromone component. Comparative metabolomic analysis of wild-type and Ppa-uar-1 mutants showed that Ppa-uar-1 is required specifically for the biosynthesis of ubas#1 and related metabolites. Heterologous expression of Ppa-UAR-1 in C. elegans yielded a non-endogenous ascaroside, whose structure confirmed that Ppa-uar-1 is involved in modification of a specific position in ascarosides. Our study demonstrates the utility of natural variation-based approaches for uncovering biosynthetic pathways.
Collapse
Affiliation(s)
- Jan M Falcke
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Neelanjan Bose
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Alexander B Artyukhin
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Christian Rödelsperger
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gabriel V Markov
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Joshua J Yim
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dominik Grimm
- Machine Learning and Computational Biology Research Group, Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany
| | - Marc H Claassen
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Oishika Panda
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Joshua A Baccile
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ying K Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Henry H Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dino Jolic
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Ralf J Sommer
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
67
|
Development of Phasmarhabditis hermaphrodita (and members of the Phasmarhabditis genus) as new genetic model nematodes to study the genetic basis of parasitism. J Helminthol 2018; 93:319-331. [PMID: 29607798 DOI: 10.1017/s0022149x18000305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The genetic mechanisms of how free-living nematodes evolved into parasites are unknown. Current genetic model nematodes (e.g. Caenorhabditis elegans) are not well suited to provide the answer, and mammalian parasites are expensive and logistically difficult to maintain. Here we propose the terrestrial gastropod parasite Phasmarhabditis hermaphrodita as a new alternative to study the evolution of parasitism, and outline the methodology of how to keep P. hermaphrodita in the lab for genetic experiments. We show that P. hermaphrodita (and several other Phasmarhabditis species) are easy to isolate and identify from slugs and snails from around the UK. We outline how to make isogenic lines using 'semi-natural' conditions to reduce in-lab evolution, and how to optimize growth using nematode growth media (NGM) agar and naturally isolated bacteria. We show that P. hermaphrodita is amenable to forward genetics and that unc and sma mutants can be generated using formaldehyde mutagenesis. We also detail the procedures needed to carry out genetic crosses. Furthermore, we show natural variation within our Phasmarhabditis collection, with isolates displaying differences in survival when exposed to high temperatures and pH, which facilitates micro and macro evolutionary studies. In summary, we believe that this genetically amenable parasite that shares many attributes with C. elegans as well as being in Clade 5, which contains many animal, plant and arthropod parasites, could be an excellent model to understand the genetic basis of parasitism in the Nematoda.
Collapse
|
68
|
Valfort AC, Launay C, Sémon M, Delattre M. Evolution of mitotic spindle behavior during the first asymmetric embryonic division of nematodes. PLoS Biol 2018; 16:e2005099. [PMID: 29357348 PMCID: PMC5794175 DOI: 10.1371/journal.pbio.2005099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/01/2018] [Accepted: 01/03/2018] [Indexed: 01/08/2023] Open
Abstract
Asymmetric cell division is essential to generate cellular diversity. In many animal cells, the cleavage plane lies perpendicular to the mitotic spindle, and it is the spindle positioning that dictates the size of the daughter cells. Although some properties of spindle positioning are conserved between distantly related model species and different cell types, little is known of the evolutionary robustness of the mechanisms underlying this event. We recorded the first embryonic division of 42 species of nematodes closely related to Caenorhabditis elegans, which is an excellent model system to study the biophysical properties of asymmetric spindle positioning. Our recordings, corresponding to 128 strains from 27 Caenorhabditis and 15 non-Caenorhabditis species (accessible at http://www.ens-lyon.fr/LBMC/NematodeCell/videos/), constitute a powerful collection of subcellular phenotypes to study the evolution of various cellular processes across species. In the present work, we analyzed our collection to the study of asymmetric spindle positioning. Although all the strains underwent an asymmetric first cell division, they exhibited large intra- and inter-species variations in the degree of cell asymmetry and in several parameters controlling spindle movement, including spindle oscillation, elongation, and displacement. Notably, these parameters changed frequently during evolution with no apparent directionality in the species phylogeny, with the exception of spindle transverse oscillations, which were an evolutionary innovation at the base of the Caenorhabditis genus. These changes were also unrelated to evolutionary variations in embryo size. Importantly, spindle elongation, displacement, and oscillation each evolved independently. This finding contrasts starkly with expectations based on C. elegans studies and reveals previously unrecognized evolutionary changes in spindle mechanics. Collectively, these data demonstrate that, while the essential process of asymmetric cell division has been conserved over the course of nematode evolution, the underlying spindle movement parameters can combine in various ways. Like other developmental processes, asymmetric cell division is subject to system drift.
Collapse
Affiliation(s)
- Aurore-Cécile Valfort
- Department of Pharmacology & Physiology (Colin Flaveny lab), Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Caroline Launay
- UnivLyon, ENS de Lyon, Univ Claude Bernard, Laboratory of Biology and Modelling of the Cell, Lyon University, Lyon, France
| | - Marie Sémon
- UnivLyon, ENS de Lyon, Univ Claude Bernard, Laboratory of Biology and Modelling of the Cell, Lyon University, Lyon, France
| | - Marie Delattre
- UnivLyon, ENS de Lyon, Univ Claude Bernard, Laboratory of Biology and Modelling of the Cell, Lyon University, Lyon, France
| |
Collapse
|
69
|
Abstract
Nematodes, such as Caenorhabditis elegans, form one of the most species-rich animal phyla. By now more than 30 nematode genomes have been published allowing for comparative genomic analyses at various different time-scales. The majority of a nematode's gene repertoire is represented by either duplicated or so-called orphan genes of unknown origin. This indicates the importance of mechanisms that generate new genes during the course of evolution. While it is certain that nematodes have acquired genes by horizontal gene transfer from various donors, this process only explains a small portion of the nematode gene content. As evolutionary genomic analyses strongly support that most orphan genes are indeed protein-coding, future studies will have to decide, whether they are result from extreme divergence or evolved de novo from previously noncoding sequences. In this contribution, I summarize several studies investigating gene loss and gain in nematodes and discuss the strengths and weaknesses of individual approaches and datasets. These approaches can be used to ask nematode-specific questions such as associated with the evolution of parasitism or with switches in mating systems, but also can complement studies in other animal phyla like vertebrates and insects to broaden our general view on genome evolution.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076, Tübingen, Germany.
| |
Collapse
|
70
|
Yoshida K, Herrmann M, Kanzaki N, Weiler C, Rödelsperger C, Sommer RJ. Two New Species of Pristionchus (Nematoda: Diplogastridae) from Taiwan and the Definition of the pacificus Species-Complex Sensu Stricto. J Nematol 2018; 50:355-368. [PMID: 30451420 PMCID: PMC6909367 DOI: 10.21307/jofnem-2018-019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 11/11/2022] Open
Abstract
Pristionchus pacificus Sommer, Carta, Kim, and Sternberg, 1996 is an important model organism in evolutionary biology that aims to integrate developmental biology and evo-devo with population genetics and ecology. Functional studies in P. pacificus are supported by a well-established phylogenetic framework of around 30 species of the genus Pristionchus that have been described in the last decade based on their entomophilic and necromenic association with scarab beetles. Biogeographically, East Asia has emerged as a hotspot of Pristionchus speciation and recent samplings have therefore focused on Islands and mainland settings in East Asia. Here, we describe in a series of three publications the results of our sampling efforts in Taiwan, Japan, and Hongkong in 2016 and 2017. We describe a total of nine new species that cover different phylogenetic species-complexes of the Pristionchus genus. In this first publication, we describe two new species, Pristionchus sikae sp. n. and Pristionchus kurosawai sp. n. that are closely related to P. pacificus . Together with five previously described species they form the " pacificus species-complex sensu stricto" that is characterized by all species forming viable, but sterile F1 hybrids indicating reproductive isolation. P. sikae sp. n. and P. kurosawai sp. n. have a gonochorist mode of reproduction and they are described using morphology, morphometrics, mating experiments, and genome-wide sequence analysis. We discuss the extreme diversification in the pacificus species-complex sensu stricto in East Asia and its potential power to study speciation processes.
Collapse
Affiliation(s)
- Kohta Yoshida
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstraße 37, Tübingen, Germany
| | - Matthias Herrmann
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstraße 37, Tübingen, Germany
| | - Natsumi Kanzaki
- Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto 612-0855, Japan
| | - Christian Weiler
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstraße 37, Tübingen, Germany
| | - Christian Rödelsperger
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstraße 37, Tübingen, Germany
| | - Ralf J. Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstraße 37, Tübingen, Germany
| |
Collapse
|
71
|
Namai S, Sugimoto A. Transgenesis by microparticle bombardment for live imaging of fluorescent proteins in Pristionchus pacificus germline and early embryos. Dev Genes Evol 2018; 228:75-82. [PMID: 29353439 DOI: 10.1007/s00427-018-0605-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/09/2018] [Indexed: 01/26/2023]
Abstract
Pristionchus pacificus is a free-living nematode used as a model organism for evolutionary developmental and ecological biology. Although a transgenic technique to form complex arrays by microinjection has been established in P. pacificus, transgene expression from the array in the germline and early embryos tends to be silenced. Here, we established a method to integrate transgenes into the genome of P. pacificus using microparticle bombardment with hygromycin B selection. Additionally, we isolated a mutant exhibiting significantly lower autofluorescence in the germline and early embryos, facilitating visualization of transgene-derived fluorescent proteins for live imaging. Transgenic lines constructed using these tools successfully expressed GFP-tagged proteins in the germline and early embryos and enabled live imaging of chromosomes, microtubules, and centrosomes.
Collapse
Affiliation(s)
- Satoshi Namai
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Asako Sugimoto
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| |
Collapse
|
72
|
Moreno E, Sieriebriennikov B, Witte H, Rödelsperger C, Lightfoot JW, Sommer RJ. Regulation of hyperoxia-induced social behaviour in Pristionchus pacificus nematodes requires a novel cilia-mediated environmental input. Sci Rep 2017; 7:17550. [PMID: 29242625 PMCID: PMC5730589 DOI: 10.1038/s41598-017-18019-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/04/2017] [Indexed: 01/17/2023] Open
Abstract
Social behaviours are frequently utilised for defence and stress avoidance in nature. Both Caenorhabditis elegans and Pristionchus pacificus nematodes display social behaviours including clumping and bordering, to avoid hyperoxic stress conditions. Additionally, both species show natural variation in social behaviours with “social” and “solitary” strains. While the single solitary C. elegans N2 strain has evolved under laboratory domestication due to a gain-of-function mutation in the neuropeptide receptor gene npr-1, P. pacificus solitary strains are commonplace and likely ancestral. P. pacificus therefore provides an opportunity to further our understanding of the mechanisms regulating these complex behaviours and how they evolved within an ecologically relevant system. Using CRISPR/Cas9 engineering, we show that Ppa-npr-1 has minimal influence on social behaviours, indicating independent evolutionary pathways compared to C. elegans. Furthermore, solitary P. pacificus strains show an unexpected locomotive response to hyperoxic conditions, suggesting a novel regulatory mechanism counteracting social behaviours. By utilising both forward and reverse genetic approaches we identified 10 genes of the intraflagellar transport machinery in ciliated neurons that are essential for this inhibition. Therefore, a novel cilia-mediated environmental input adds an additional level of complexity to the regulation of hyperoxia-induced social behaviours in P. pacificus, a mechanism unknown in C. elegans.
Collapse
Affiliation(s)
- Eduardo Moreno
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - James W Lightfoot
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
| |
Collapse
|
73
|
Serotonin Drives Predatory Feeding Behavior via Synchronous Feeding Rhythms in the Nematode Pristionchus pacificus. G3-GENES GENOMES GENETICS 2017; 7:3745-3755. [PMID: 28903981 PMCID: PMC5677172 DOI: 10.1534/g3.117.300263] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Feeding behaviors in a wide range of animals are regulated by the neurotransmitter serotonin, although the exact neural circuits and associated mechanism are often unknown. The nematode Pristionchus pacificus can kill other nematodes by opening prey cuticles with movable teeth. Previous studies showed that exogenous serotonin treatment induces a predatory-like tooth movement and slower pharyngeal pumping in the absence of prey; however, physiological functions of serotonin during predation and other behaviors in P. pacificus remained completely unknown. Here, we investigate the roles of serotonin by generating mutations in Ppa-tph-1 and Ppa-bas-1, two key serotonin biosynthesis enzymes, and by genetic ablation of pharynx-associated serotonergic neurons. Mutations in Ppa-tph-1 reduced the pharyngeal pumping rate during bacterial feeding compared with wild-type. Moreover, the loss of serotonin or a subset of serotonergic neurons decreased the success of predation, but did not abolish the predatory feeding behavior completely. Detailed analysis using a high-speed camera revealed that the elimination of serotonin or the serotonergic neurons disrupted the timing and coordination of predatory tooth movement and pharyngeal pumping. This loss of synchrony significantly reduced the efficiency of successful predation events. These results suggest that serotonin has a conserved role in bacterial feeding and in addition drives the feeding rhythm of predatory behavior in Pristionchus.
Collapse
|
74
|
Riebesell M, Sommer RJ. Three-dimensional reconstruction of the pharyngeal gland cells in the predatory nematodePristionchus pacificus. J Morphol 2017; 278:1656-1666. [DOI: 10.1002/jmor.20739] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/23/2017] [Accepted: 07/25/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Metta Riebesell
- Department for Evolutionary Biology; Max-Planck Institute for Developmental Biology; Spemannstrasse 37, Tübingen 72076 Germany
| | - Ralf J. Sommer
- Department for Evolutionary Biology; Max-Planck Institute for Developmental Biology; Spemannstrasse 37, Tübingen 72076 Germany
| |
Collapse
|
75
|
Farboud B. Targeted genome editing in Caenorhabditis elegans using CRISPR/Cas9. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28810059 DOI: 10.1002/wdev.287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/04/2017] [Accepted: 07/05/2017] [Indexed: 12/26/2022]
Abstract
Utilization of programmable nucleases to generate DNA lesions at precise endogenous sequences has transformed the ability to edit genomes from microbes to plants and animals. This is especially true in organisms that previously lacked the means to engineer precise genomic changes, like Caenorhabditis elegans. C. elegans is a 1 mm long free-living, nonparasitic, nematode worm, which is easily cultivated in a laboratory. Its detailed genetic map and relatively compact genome (~100 megabases) helped make it the first metazoan to have its entire genome sequenced. With detailed sequence information came development of numerous molecular tools to dissect gene function. Initially absent from this toolbox, however, were methods to make precise edits at chosen endogenous loci. Adapting site-specific nucleases for use in C. elegans, revolutionized studies of C. elegans biology. Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and then CRISPR-associated protein 9 (Cas9) were used to target specific endogenous DNA sequences to make double-strand DNA breaks (DSBs). Precise changes could be engineered by providing repair templates targeting the DSB in trans. The ease of programming Cas9 to bind and cleave DNA sequences with few limitations has led to its widespread use in C. elegans research and sped the development of strategies to facilitate mutant recovery. Numerous innovative CRISPR/Cas9 methodologies are now primed for use in C. elegans. WIREs Dev Biol 2017, 6:e287. doi: 10.1002/wdev.287 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Behnom Farboud
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
76
|
Besnard F, Koutsovoulos G, Dieudonné S, Blaxter M, Félix MA. Toward Universal Forward Genetics: Using a Draft Genome Sequence of the Nematode Oscheius tipulae To Identify Mutations Affecting Vulva Development. Genetics 2017; 206:1747-1761. [PMID: 28630114 PMCID: PMC5560785 DOI: 10.1534/genetics.117.203521] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/15/2017] [Indexed: 12/30/2022] Open
Abstract
Mapping-by-sequencing has become a standard method to map and identify phenotype-causing mutations in model species. Here, we show that a fragmented draft assembly is sufficient to perform mapping-by-sequencing in nonmodel species. We generated a draft assembly and annotation of the genome of the free-living nematode Oscheius tipulae, a distant relative of the model Caenorhabditis elegans We used this draft to identify the likely causative mutations at the O. tipulae cov-3 locus, which affect vulval development. The cov-3 locus encodes the O. tipulae ortholog of C. elegans mig-13, and we further show that Cel-mig-13 mutants also have an unsuspected vulval-development phenotype. In a virtuous circle, we were able to use the linkage information collected during mutant mapping to improve the genome assembly. These results showcase the promise of genome-enabled forward genetics in nonmodel species.
Collapse
Affiliation(s)
- Fabrice Besnard
- École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Biologie de l'École Normale Supérieure, Paris Sciences et Lettres Research University, 75005, France
| | | | - Sana Dieudonné
- École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Biologie de l'École Normale Supérieure, Paris Sciences et Lettres Research University, 75005, France
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, EH8 9YL, United Kingdom
| | - Marie-Anne Félix
- École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Biologie de l'École Normale Supérieure, Paris Sciences et Lettres Research University, 75005, France
| |
Collapse
|
77
|
Sieriebriennikov B, Markov GV, Witte H, Sommer RJ. The Role of DAF-21/Hsp90 in Mouth-Form Plasticity in Pristionchus pacificus. Mol Biol Evol 2017; 34:1644-1653. [PMID: 28333289 PMCID: PMC5455966 DOI: 10.1093/molbev/msx106] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Phenotypic plasticity is increasingly recognized to facilitate adaptive change in plants and animals, including insects, nematodes, and vertebrates. Plasticity can occur as continuous or discrete (polyphenisms) variation. In social insects, for example, in ants, some species have workers of distinct size classes while in other closely related species variation in size may be continuous. Despite the abundance of examples in nature, how discrete morphs are specified remains currently unknown. In theory, polyphenisms might require robustness, whereby the distribution of morphologies would be limited by the same mechanisms that execute buffering from stochastic perturbations, a function attributed to heat-shock proteins of the Hsp90 family. However, this possibility has never been directly tested because plasticity and robustness are considered to represent opposite evolutionary principles. Here, we used a polyphenism of feeding structures in the nematode Pristionchus pacificus to test the relationship between robustness and plasticity using geometric morphometrics of 20 mouth-form landmarks. We show that reducing heat-shock protein activity, which reduces developmental robustness, increases the range of mouth-form morphologies. Specifically, elevated temperature led to a shift within morphospace, pharmacological inhibition of all Hsp90 genes using radicicol treatment increased shape variability in both mouth-forms, and CRISPR/Cas9-induced Ppa-daf-21/Hsp90 knockout had a combined effect. Thus, Hsp90 canalizes the morphologies of plastic traits resulting in discrete polyphenism of mouth-forms.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Gabriel V. Markov
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, UPMC University of Paris 06, Roscoff, France
| | - Hanh Witte
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ralf J. Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
78
|
Lok JB, Shao H, Massey HC, Li X. Transgenesis in Strongyloides and related parasitic nematodes: historical perspectives, current functional genomic applications and progress towards gene disruption and editing. Parasitology 2017; 144:327-342. [PMID: 27000743 PMCID: PMC5364836 DOI: 10.1017/s0031182016000391] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 12/20/2022]
Abstract
Transgenesis for Strongyloides and Parastrongyloides was accomplished in 2006 and is based on techniques derived for Caenorhabditis elegans over two decades earlier. Adaptation of these techniques has been possible because Strongyloides and related parasite genera carry out at least one generation of free-living development, with adult males and females residing in soil contaminated by feces from an infected host. Transgenesis in this group of parasites is accomplished by microinjecting DNA constructs into the syncytia of the distal gonads of free-living females. In Strongyloides stercoralis, plasmid-encoded transgenes are expressed in promoter-regulated fashion in the F1 generation following gene transfer but are silenced subsequently. Stable inheritance and expression of transgenes in S. stercoralis requires their integration into the genome, and stable lines have been derived from integrants created using the piggyBac transposon system. More direct investigations of gene function involving expression of mutant transgene constructs designed to alter intracellular trafficking and developmental regulation have shed light on the function of the insulin-regulated transcription factor Ss-DAF-16. Transgenesis in Strongyloides and Parastrongyloides opens the possibility of powerful new methods for genome editing and transcriptional manipulation in this group of parasites. Proof of principle for one of these, CRISPR/Cas9, is presented in this review.
Collapse
Affiliation(s)
- J B Lok
- Department of Pathobiology,School of Veterinary Medicine,University of Pennsylvania,3800 Spruce Street,Philadelphia,PA 19104,USA
| | - H Shao
- Department of Pathobiology,School of Veterinary Medicine,University of Pennsylvania,3800 Spruce Street,Philadelphia,PA 19104,USA
| | - H C Massey
- Department of Pathobiology,School of Veterinary Medicine,University of Pennsylvania,3800 Spruce Street,Philadelphia,PA 19104,USA
| | - X Li
- Department of Pathobiology,School of Veterinary Medicine,University of Pennsylvania,3800 Spruce Street,Philadelphia,PA 19104,USA
| |
Collapse
|
79
|
Abstract
The evolutionary genetic mechanisms that are responsible for the transition of free-living nematodes to parasites are unknown and current nematode models used to study this have limitations. The gastropod parasitePhasmarhabditis hermaphroditacould be used as a new model to dissect the molecular mechanisms involved in the evolution of parasitism.Phasmarhabditis hermaphroditais a facultative parasite of slugs and snails that, likeCaenorhabditis elegansandPristionchus pacificus, can also be maintained easily under laboratory conditions.Phasmarhabditis hermaphroditaandPhasmarhabditisspecies are easy to isolate from the wild and have been found around the world. The phylogenetic position ofPhasmarhabditisis ideal for genomic comparison with other clade 9 species such asC. elegansandP. pacificus, as well as mammalian and insect parasites. These attributes could makeP. hermaphroditaan excellent choice of model to study the evolutionary emergence of parasitism.
Collapse
Affiliation(s)
- Robbie Rae
- School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
80
|
Two New Pristionchus Species (Nematoda: Diplogastridae) from Taiwan are Part of a Species-cluster Representing the Closest Known Relatives of the Model Organism P. pacificus. Zool Stud 2016; 55:e48. [PMID: 31966193 DOI: 10.6620/zs.2016.55-48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/29/2016] [Indexed: 11/18/2022]
Abstract
Matthias Herrmann, Christian Weiler, Christian Rödelsperger, Natsumi Kanzaki, and Ralf J. Sommer (2016) Pristionchus pacificus is an important model organism in evolutionary biology and has been used to establish integrative studies that link developmental biology with ecology and population genetics. This species is part of the P. pacificus species-complex of the genus, many members of which occur in East Asia. While P. pacificus is hermaphroditic, the two most closely related known species are P. exspectatus and P. arcanus from Japan, both of which are gonochorists. P. exspectatus is so far the closest known relative of P. pacificus and thus, considered to represent the sister species. Here, we describe two new species of Pristionchus, P. taiwanensis and P. occultus from Taiwan using morphology, morphometrics, mating experiments and genome- wide sequence analysis. Both species are gonochorists and they are morphologically indistinguishable from P. exspectatus, P. arcanus and P. pacificus. However, reproductive isolation, namely the inability to produce interfertile hybrids, separates all species pairs in the species-complex. Phylogeny inferred from more than 700,000 genome-wide variable sites that were genotyped in all species suggest that P. taiwanensis and P. occultus are the sister species of P. arcanus and P. exspectatus, respectively. P. taiwanensis and P. occultus together with P. exspectatus and P. arcanus form a species-cluster with P. pacificus. The identification of these two novel gonochoristic species is invaluable for studies of population genetics, speciation, and macroevolution in the genus. We discuss the biogeography of Pristionchus in East Asia and the origin of hermaphroditism in the P. pacificus species-complex.
Collapse
|
81
|
Moreno E, McGaughran A, Rödelsperger C, Zimmer M, Sommer RJ. Oxygen-induced social behaviours in Pristionchus pacificus have a distinct evolutionary history and genetic regulation from Caenorhabditis elegans. Proc Biol Sci 2016; 283:20152263. [PMID: 26888028 DOI: 10.1098/rspb.2015.2263] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Wild isolates of the nematode Caenorhabditis elegans perform social behaviours, namely clumping and bordering, to avoid hyperoxia under laboratory conditions. In contrast, the laboratory reference strain N2 has acquired a solitary behaviour in the laboratory, related to a gain-of-function variant in the neuropeptide Y-like receptor NPR-1. Here, we study the evolution and natural variation of clumping and bordering behaviours in Pristionchus pacificus nematodes in a natural context, using strains collected from 22 to 2400 metres above sea level on La Réunion Island. Through the analysis of 106 wild isolates, we show that the majority of strains display a solitary behaviour similar to C. elegans N2, whereas social behaviours are predominantly seen in strains that inhabit high-altitude locations. We show experimentally that P. pacificus social strains perform clumping and bordering to avoid hyperoxic conditions in the laboratory, suggesting that social strains may have adapted to or evolved a preference for the lower relative oxygen levels available at high altitude in nature. In contrast to C. elegans, clumping and bordering in P. pacificus do not correlate with locomotive behaviours in response to changes in oxygen conditions. Furthermore, QTL analysis indicates clumping and bordering to represent complex quantitative traits. Thus, clumping and bordering behaviours represent an example of phenotypic convergence with a different evolutionary history and distinct genetic control in both nematode species.
Collapse
Affiliation(s)
- Eduardo Moreno
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Angela McGaughran
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany CSIRO Land and Water, Black Mountain Laboratories, Clunies Ross Street, Canberra, Australian Capital Territory 2601, Australia School of Biosciences, University of Melbourne, 30 Flemington Road, Melbourne, Victoria 3010, Australia
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Manuel Zimmer
- Research Institute of Molecular Pathology IMP, Vienna Biocenter VBC, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
82
|
Seybold AC, Wharton DA, Thorne MAS, Marshall CJ. Establishing RNAi in a Non-Model Organism: The Antarctic Nematode Panagrolaimus sp. DAW1. PLoS One 2016; 11:e0166228. [PMID: 27832164 PMCID: PMC5104476 DOI: 10.1371/journal.pone.0166228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 10/03/2016] [Indexed: 12/02/2022] Open
Abstract
The Antarctic nematode Panagrolaimus sp. DAW1 is one of the only organisms known to survive extensive intracellular freezing throughout its tissues. Although the physiological mechanisms of this extreme adaptation are partly understood, the molecular mechanisms remain largely unknown. RNAi is a method that allows the examination of gene function in a direct, targeted manner, by knocking out specific mRNAs and revealing the effects on the phenotype. In this study we have explored the viability of RNAi in Panagrolaimus sp. DAW1. In the first trial, nematodes were fed E. coli expressing Panagrolaimus sp. DAW1 dsRNA of the embryonic lethal genes rps-2 and dhc, and the blister gene duox. Pd-rps-2(RNAi)-treated nematodes showed a significant decrease in larval hatching. However, qPCR showed no significant decrease in the amount of rps-2 mRNA in Pd-rps-2(RNAi)-treated animals. Several soaking protocols for dsRNA uptake were investigated using the fluorescent dye FITC. Desiccation-enhanced soaking showed the strongest uptake of FITC and resulted in a significant and consistent decrease of mRNA levels of two of the four tested genes (rps-2 and tps-2a), suggesting effective uptake of dsRNA-containing solution by the nematode. These findings suggest that RNAi by desiccation-enhanced soaking is viable in Panagrolaimus sp. DAW1 and provide the first functional genomic approach to investigate freezing tolerance in this non-model organism. RNAi, in conjunction with qPCR, can be used to screen for candidate genes involved in intracellular freezing tolerance in Panagrolaimus sp. DAW1.
Collapse
Affiliation(s)
- Anna C. Seybold
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - David A. Wharton
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Michael A. S. Thorne
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Craig J. Marshall
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- * E-mail:
| |
Collapse
|
83
|
Sanghvi GV, Baskaran P, Röseler W, Sieriebriennikov B, Rödelsperger C, Sommer RJ. Life History Responses and Gene Expression Profiles of the Nematode Pristionchus pacificus Cultured on Cryptococcus Yeasts. PLoS One 2016; 11:e0164881. [PMID: 27741297 PMCID: PMC5065204 DOI: 10.1371/journal.pone.0164881] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/03/2016] [Indexed: 11/20/2022] Open
Abstract
Nematodes, the earth's most abundant metazoa are found in all ecosystems. In order to survive in diverse environments, they have evolved distinct feeding strategies and they can use different food sources. While some nematodes are specialists, including parasites of plants and animals, others such as Pristionchus pacificus are omnivorous feeders, which can live on a diet of bacteria, protozoans, fungi or yeast. In the wild, P. pacificus is often found in a necromenic association with beetles and is known to be able to feed on a variety of microbes as well as on nematode prey. However, in laboratory studies Escherichia coli OP50 has been used as standard food source, similar to investigations in Caenorhabditis elegans and it is unclear to what extent this biases the obtained results and how relevant findings are in real nature. To gain first insight into the variation in traits induced by a non-bacterial food source, we study Pristionchus-fungi interactions under laboratory conditions. After screening different yeast strains, we were able to maintain P. pacificus for at least 50-60 generations on Cryptococcus albidus and Cryptococcus curvatus. We describe life history traits of P. pacificus on both yeast strains, including developmental timing, survival and brood size. Despite a slight developmental delay and problems to digest yeast cells, which are both reflected at a transcriptomic level, all analyses support the potential of Cryptococcus strains as food source for P. pacificus. In summary, our work establishes two Cryptococcus strains as alternative food source for P. pacificus and shows change in various developmental, physiological and morphological traits, including the transcriptomic profiles.
Collapse
Affiliation(s)
- Gaurav V. Sanghvi
- Max Planck Institute for Developmental Biology, Department of Evolutionary Biology, Spemannstraße 37, Tübingen, Germany
| | - Praveen Baskaran
- Max Planck Institute for Developmental Biology, Department of Evolutionary Biology, Spemannstraße 37, Tübingen, Germany
| | - Waltraud Röseler
- Max Planck Institute for Developmental Biology, Department of Evolutionary Biology, Spemannstraße 37, Tübingen, Germany
| | - Bogdan Sieriebriennikov
- Max Planck Institute for Developmental Biology, Department of Evolutionary Biology, Spemannstraße 37, Tübingen, Germany
| | - Christian Rödelsperger
- Max Planck Institute for Developmental Biology, Department of Evolutionary Biology, Spemannstraße 37, Tübingen, Germany
| | - Ralf J. Sommer
- Max Planck Institute for Developmental Biology, Department of Evolutionary Biology, Spemannstraße 37, Tübingen, Germany
| |
Collapse
|
84
|
Lightfoot JW, Wilecki M, Okumura M, Sommer RJ. Assaying Predatory Feeding Behaviors in Pristionchus and Other Nematodes. J Vis Exp 2016. [PMID: 27684744 PMCID: PMC5091989 DOI: 10.3791/54404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This protocol provides multiple methods for the analysis and quantification of predatory feeding behaviors in nematodes. Many nematode species including Pristionchus pacificus display complex behaviors, the most striking of which is the predation of other nematode larvae. However, as these behaviors are absent in the model organism Caenorhabditis elegans, they have thus far only recently been described in detail along with the development of reliable behavioral assays 1. These predatory behaviors are dependent upon phenotypically plastic but fixed mouth morphs making the correct identification and categorization of these animals essential. In P. pacificus there are two mouth types, the stenostomatous and eurystomatous morphs 2, with only the wide mouthed eurystomatous containing an extra tooth and being capable of killing other nematode larvae. Through the isolation of an abundance of size matched prey larvae and subsequent exposure to predatory nematodes, assays including both "corpse assays" and "bite assays" on correctly identified mouth morph nematodes are possible. These assays provide a means to rapidly quantify predation success rates and provide a detailed behavioral analysis of individual nematodes engaged in predatory feeding activities. In addition, with the use of a high-speed camera, visualization of changes in pharyngeal activity including tooth and pumping dynamics are also possible.
Collapse
Affiliation(s)
- James W Lightfoot
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology
| | - Martin Wilecki
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology
| | - Misako Okumura
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology
| | - Ralf J Sommer
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology;
| |
Collapse
|
85
|
Ragsdale EJ, Ivers NA. Specialization of a polyphenism switch gene following serial duplications in Pristionchus nematodes. Evolution 2016; 70:2155-66. [PMID: 27436344 DOI: 10.1111/evo.13011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022]
Abstract
Polyphenism is an extreme manifestation of developmental plasticity, requiring distinct developmental programs and the addition of a switch mechanism. Because the genetic basis of polyphenism switches has only begun to be understood, how their mechanisms arise is unclear. In the nematode Pristionchus pacificus, which has a mouthpart polyphenism specialized for alternative diets, a gene (eud-1) executing the polyphenism switch was recently identified as the product of lineage-specific duplications. Here, we infer the role of gene duplications in producing a switch gene. Using reverse genetics and population genetic analyses, we examine evidence for competing scenarios of degeneration and complementation, neutral evolution, and functional specialization. Of the daughter genes, eud-1 alone has assumed switch-like regulation of the mouth polyphenism. Measurements of life-history traits in single, double, and triple sulfatase mutants did not, given a benign environment, identify alternative or complementary roles for eud-1 paralogs. Although possible roles are still unknown, selection analyses of the sister species and 104 natural isolates of P. pacificus detected purifying selection on the genes, suggesting their functionality by their fixation and evolutionary maintenance. Our approach shows the tractability of reverse genetics in a nontraditional model system to study evolution by gene duplication.
Collapse
Affiliation(s)
- Erik J Ragsdale
- Department of Biology, Indiana University, Bloomington, Indiana, 47405.
| | - Nicholas A Ivers
- Department of Biology, Indiana University, Bloomington, Indiana, 47405
| |
Collapse
|
86
|
Chromatin remodelling and antisense-mediated up-regulation of the developmental switch gene eud-1 control predatory feeding plasticity. Nat Commun 2016; 7:12337. [PMID: 27487725 PMCID: PMC4976200 DOI: 10.1038/ncomms12337] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/23/2016] [Indexed: 12/27/2022] Open
Abstract
Phenotypic plasticity has been suggested to act through developmental switches, but little is known about associated molecular mechanisms. In the nematode Pristionchus pacificus, the sulfatase eud-1 was identified as part of a developmental switch controlling mouth-form plasticity governing a predatory versus bacteriovorous mouth-form decision. Here we show that mutations in the conserved histone-acetyltransferase Ppa-lsy-12 and the methyl-binding-protein Ppa-mbd-2 mimic the eud-1 phenotype, resulting in the absence of one mouth-form. Mutations in both genes cause histone modification defects and reduced eud-1 expression. Surprisingly, Ppa-lsy-12 mutants also result in the down-regulation of an antisense-eud-1 RNA. eud-1 and antisense-eud-1 are co-expressed and further experiments suggest that antisense-eud-1 acts through eud-1 itself. Indeed, overexpression of the antisense-eud-1 RNA increases the eud-1-sensitive mouth-form and extends eud-1 expression. In contrast, this effect is absent in eud-1 mutants indicating that antisense-eud-1 positively regulates eud-1. Thus, chromatin remodelling and antisense-mediated up-regulation of eud-1 control feeding plasticity in Pristionchus.
Collapse
|
87
|
Phenotypic plasticity and developmental innovations in nematodes. Curr Opin Genet Dev 2016; 39:8-13. [PMID: 27314167 DOI: 10.1016/j.gde.2016.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 12/19/2022]
Abstract
Developmental plasticity has been implicated as a facilitator for phenotypic diversification, but the molecular mechanisms controlling it are largely unknown. We review recent comparative analyses in non-Caenorhabditis nematodes that display polyphenisms in larval development, mouth morphology and reproductive mode. Some of the challenges ahead will be to connect how these phenotypic traits are linked to each other at the molecular level, and at the ecological level. This will require sampling of several nematode species, the characterization of their ecology and the employment of both classical genetics and recently developed technological advances, such as genome editing.
Collapse
|
88
|
Gang SS, Hallem EA. Mechanisms of host seeking by parasitic nematodes. Mol Biochem Parasitol 2016; 208:23-32. [PMID: 27211240 DOI: 10.1016/j.molbiopara.2016.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 10/21/2022]
Abstract
The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors.
Collapse
Affiliation(s)
- Spencer S Gang
- Department of Microbiology, Immunology, and Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States.
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
89
|
Markov GV, Meyer JM, Panda O, Artyukhin AB, Claaßen M, Witte H, Schroeder FC, Sommer RJ. Functional Conservation and Divergence of daf-22 Paralogs in Pristionchus pacificus Dauer Development. Mol Biol Evol 2016; 33:2506-14. [PMID: 27189572 DOI: 10.1093/molbev/msw090] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Small-molecule signaling in nematode dauer formation has emerged as a major model to study chemical communication in development and evolution. Developmental arrest as nonfeeding and stress-resistant dauer larvae represents the major survival and dispersal strategy. Detailed studies in Caenorhabditis elegans and Pristionchus pacificus revealed that small-molecule communication changes rapidly in evolution resulting in extreme structural diversity of small-molecule compounds. In C. elegans, a blend of ascarosides constitutes the dauer pheromone, whereas the P. pacificus dauer pheromone includes additional paratosides and integrates building blocks from diverse primary metabolic pathways. Despite this complexity of small-molecule structures and functions, little is known about the biosynthesis of small molecules in nematodes outside C. elegans Here, we show that the genes encoding enzymes of the peroxisomal β-oxidation pathway involved in small-molecule biosynthesis evolve rapidly, including gene duplications and domain switching. The thiolase daf-22, the most downstream factor in C. elegans peroxisomal β-oxidation, has duplicated in P. pacificus, resulting in Ppa-daf-22.1, which still contains the sterol-carrier-protein (SCP) domain that was lost in C. elegans daf-22, and Ppa-daf-22.2. Using the CRISPR/Cas9 system, we induced mutations in both P. pacificus daf-22 genes and identified an unexpected complexity of functional conservation and divergence. Under well-fed conditions, ascaroside biosynthesis proceeds exclusively via Ppa-daf-22.1 In contrast, starvation conditions induce Ppa-daf-22.2 activity, resulting in the production of a specific subset of ascarosides. Gene expression studies indicate a reciprocal up-regulation of both Ppa-daf-22 genes, which is, however, independent of starvation. Thus, our study reveals an unexpected functional complexity of dauer development and evolution.
Collapse
Affiliation(s)
- Gabriel V Markov
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, Germany
| | - Jan M Meyer
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, Germany
| | - Oishika Panda
- Boyce Thompson Institute, Cornell University Department of Chemistry and Chemical Biology, Cornell University
| | | | - Marc Claaßen
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, Germany
| | - Hanh Witte
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, Germany
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University Department of Chemistry and Chemical Biology, Cornell University
| | - Ralf J Sommer
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, Germany
| |
Collapse
|
90
|
Gasser RB, Schwarz EM, Korhonen PK, Young ND. Understanding Haemonchus contortus Better Through Genomics and Transcriptomics. ADVANCES IN PARASITOLOGY 2016; 93:519-67. [PMID: 27238012 DOI: 10.1016/bs.apar.2016.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parasitic roundworms (nematodes) cause substantial mortality and morbidity in animals globally. The barber's pole worm, Haemonchus contortus, is one of the most economically significant parasitic nematodes of small ruminants worldwide. Although this and related nematodes can be controlled relatively well using anthelmintics, resistance against most drugs in common use has become a major problem. Until recently, almost nothing was known about the molecular biology of H. contortus on a global scale. This chapter gives a brief background on H. contortus and haemonchosis, immune responses, vaccine research, chemotherapeutics and current problems associated with drug resistance. It also describes progress in transcriptomics before the availability of H. contortus genomes and the challenges associated with such work. It then reviews major progress on the two draft genomes and developmental transcriptomes of H. contortus, and summarizes their implications for the molecular biology of this worm in both the free-living and the parasitic stages of its life cycle. The chapter concludes by considering how genomics and transcriptomics can accelerate research on Haemonchus and related parasites, and can enable the development of new interventions against haemonchosis.
Collapse
Affiliation(s)
- R B Gasser
- The University of Melbourne, Parkville, VIC, Australia
| | - E M Schwarz
- The University of Melbourne, Parkville, VIC, Australia; Cornell University, Ithaca, NY, United States
| | - P K Korhonen
- The University of Melbourne, Parkville, VIC, Australia
| | - N D Young
- The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
91
|
Britton C, Roberts B, Marks ND. Functional Genomics Tools for Haemonchus contortus and Lessons From Other Helminths. ADVANCES IN PARASITOLOGY 2016; 93:599-623. [PMID: 27238014 DOI: 10.1016/bs.apar.2016.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The availability of genome and transcriptome data for parasitic nematodes, including Haemonchus contortus, has highlighted the need to develop functional genomics tools. Comparative genomic analysis, particularly using data from the free-living nematode Caenorhabditis elegans, can help predict gene function. Reliable approaches to study function directly in parasitic nematodes are currently lacking. However, gene knockdown by RNA interference (RNAi) is being successfully used in schistosome and planarian species to define gene functions. Lessons from these systems may be applied to improve RNAi in H. contortus. Previous studies in H. contortus and related nematodes demonstrated reliable RNAi-mediated silencing of some genes, but not others. Current data suggest that susceptibility to RNAi in these nematodes is limited to genes expressed in sites accessible to the environment, such as the gut, amphids and excretory cell. Therefore, RNAi is functional in H. contortus, but improvements are needed to develop this system as a functional genomics platform. Here, we summarize RNAi studies on H. contortus and discuss the optimization of RNA delivery and improvements to culture methods to enhance larval development, protein turnover and the induction of phenotypic effects in vitro. The transgenic delivery of RNA or dominant-negative gene constructs and the recently developed CRISPR/Cas genome-editing technique are considered as potential alternative approaches for gene knockout. This is a key time to devote greater effort in progressing from genome to function, to improve our understanding of the biology of Haemonchus and identify novel targets for parasite control.
Collapse
Affiliation(s)
- C Britton
- University of Glasgow, Glasgow, United Kingdom
| | - B Roberts
- University of Glasgow, Glasgow, United Kingdom
| | - N D Marks
- University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
92
|
Abstract
Classical and reverse genetics remain invaluable tools for the scientific investigation of model organisms. Genetic analysis of endoparasites is generally difficult because the sexual adults required for crossing and other manipulations are usually hidden within their host. Strongyloides spp. and Parastrongyloides spp. are notable exceptions to this and their free-living adults offer unique opportunities to manipulate these parasites experimentally. Here I review the modes of inheritance in the two generations of Strongyloides/Parastrongyloides and I discuss the opportunities and the limitations of the currently available methodology for the genetic analysis of these two genera.
Collapse
|
93
|
Susoy V, Sommer RJ. Stochastic and Conditional Regulation of Nematode Mouth-Form Dimorphisms. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
94
|
Genome Editing in C. elegans and Other Nematode Species. Int J Mol Sci 2016; 17:295. [PMID: 26927083 PMCID: PMC4813159 DOI: 10.3390/ijms17030295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/21/2015] [Accepted: 02/15/2016] [Indexed: 02/06/2023] Open
Abstract
Caenorhabditis elegans, a 1 mm long free-living nematode, is a popular model animal that has been widely utilized for genetic investigations of various biological processes. Characteristic features that make C. elegans a powerful model of choice for eukaryotic genetic studies include its rapid life cycle (development from egg to adult in 3.5 days at 20 °C), well-annotated genome, simple morphology (comprising only 959 somatic cells in the hermaphrodite), and transparency (which facilitates non-invasive fluorescence observations). However, early approaches to introducing mutations in the C. elegans genome, such as chemical mutagenesis and imprecise excision of transposons, have required large-scale mutagenesis screens. To avoid this laborious and time-consuming procedure, genome editing technologies have been increasingly used in nematodes including C. briggsae and Pristionchus pacificus, thereby facilitating their genetic analyses. Here, I review the recent progress in genome editing technologies using zinc-finger nucleases (ZFNs), transcriptional activator-like nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 in nematodes and offer perspectives on their use in the future.
Collapse
|
95
|
Molecular characterization of the Haemonchus contortus phosphoinositide-dependent protein kinase-1 gene (Hc-pdk-1). Parasit Vectors 2016; 9:65. [PMID: 26842781 PMCID: PMC4741024 DOI: 10.1186/s13071-016-1351-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/28/2016] [Indexed: 12/22/2022] Open
Abstract
Background Phosphoinositide-dependent protein kinase-1 (PDK-1), which functions downstream of phosphoinositide 3-kinase (AGE-1) and activates protein kinases of the AGC family, plays critical roles in regulating biology processes, such as metabolism, growth, development and survival. In the free-living nematode Caenorhabditis elegans, PDK-1 is a key component of the insulin-like signalling pathway, regulating the entry into and exit from dauer (arrested development). Although it is proposed that similar molecular mechanisms control the transition from the free-living to the parasitic stages of nematodes, nothing is known about PDK-1 in Haemonchus contortus, a socioeconomically important gastric nematode of ruminants. Methods Here, we isolated and characterized the pdk-1 gene (Hc-pdk-1) and its inferred product (Hc-PDK-1) from H. contortus. Using in vitro and in vivo methods, we then studied the transcriptional profiles of Hc-pdk-1 and anatomical gene expression patterns of Hc-PDK-1 in different developmental stages of C. elegans. Results In silico analysis of Hc-PDK-1 displayed conserved functional domains, such as protein kinase and pleckstrin homology (PH) domains and two predicted phosphorylation sites (Thr226/Tyr229), which are crucial for the phosphorylation of downstream signalling. The Hc-pdk-1 gene is transcribed in all of the main developmental stages of H. contortus, with its highest transcription in the infective third-stage larvae (iL3) compared with other stages. Transgene constructs, in which respective promoters were fused to the coding sequence for green fluorescent protein (GFP), were used to transform C. elegans, and to localize and compare the expression of Hc-pdk-1 and Ce-pdk-1. The expression of GFP under the control of the Hc-pdk-1 promoter was localized to the intestine, and head and tail neurons, contrasting somewhat the profile for the C. elegans ortholog, which is expressed in pharynx, intestine and head and tail neurons. Conclusions This is the first characterization of pdk-1/PDK-1 from a trichostrongyloid nematode. Taken together, the findings from this study provide a first glimpse of the involvement of Hc-pdk-1 in the insulin-like signalling pathway in H. contortus. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1351-6) contains supplementary material, which is available to authorized users.
Collapse
|
96
|
Abstract
Be it their pervasiveness, experimental tractability or their impact on human health and agriculture, nematode–bacterium associations are far-reaching research subjects. Although the omics hype did not spare them and helped reveal mechanisms of communication and exchange between the associated partners, a huge amount of knowledge still awaits to be harvested from their study. Here, I summarize and compare the kind of research that has been already performed on the model nematode Caenorhabditis elegans and on symbiotic nematodes, both marine and entomopathogenic ones. The emerging picture highlights how complementing genetic studies with ecological ones (in the case of well-established genetic model systems such as C. elegans) and vice versa (in the case of the yet uncultured Stilbonematinae) will deepen our understanding of how microbial symbioses evolved and how they impact our environment. Nematode–bacterium associations are major research subjects. Complementing genetic studies with ecological ones is necessary to boost our understanding of how microbial symbioses evolved and how they impact the environment.
Collapse
Affiliation(s)
- Silvia Bulgheresi
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
97
|
Ward JD. Rendering the Intractable More Tractable: Tools from Caenorhabditis elegans Ripe for Import into Parasitic Nematodes. Genetics 2015; 201:1279-94. [PMID: 26644478 PMCID: PMC4676526 DOI: 10.1534/genetics.115.182717] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022] Open
Abstract
Recent and rapid advances in genetic and molecular tools have brought spectacular tractability to Caenorhabditis elegans, a model that was initially prized because of its simple design and ease of imaging. C. elegans has long been a powerful model in biomedical research, and tools such as RNAi and the CRISPR/Cas9 system allow facile knockdown of genes and genome editing, respectively. These developments have created an additional opportunity to tackle one of the most debilitating burdens on global health and food security: parasitic nematodes. I review how development of nonparasitic nematodes as genetic models informs efforts to import tools into parasitic nematodes. Current tools in three commonly studied parasites (Strongyloides spp., Brugia malayi, and Ascaris suum) are described, as are tools from C. elegans that are ripe for adaptation and the benefits and barriers to doing so. These tools will enable dissection of a huge array of questions that have been all but completely impenetrable to date, allowing investigation into host-parasite and parasite-vector interactions, and the genetic basis of parasitism.
Collapse
Affiliation(s)
- Jordan D Ward
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158
| |
Collapse
|
98
|
Sommer RJ, Mayer MG. Toward a Synthesis of Developmental Biology with Evolutionary Theory and Ecology. Annu Rev Cell Dev Biol 2015; 31:453-71. [DOI: 10.1146/annurev-cellbio-102314-112451] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ralf J. Sommer
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| | - Melanie G. Mayer
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| |
Collapse
|
99
|
Paix A, Folkmann A, Rasoloson D, Seydoux G. High Efficiency, Homology-Directed Genome Editing in Caenorhabditis elegans Using CRISPR-Cas9 Ribonucleoprotein Complexes. Genetics 2015; 201:47-54. [PMID: 26187122 PMCID: PMC4566275 DOI: 10.1534/genetics.115.179382] [Citation(s) in RCA: 495] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/09/2015] [Indexed: 12/26/2022] Open
Abstract
Homology-directed repair (HDR) of breaks induced by the RNA-programmed nuclease Cas9 has become a popular method for genome editing in several organisms. Most HDR protocols rely on plasmid-based expression of Cas9 and the gene-specific guide RNAs. Here we report that direct injection of in vitro-assembled Cas9-CRISPR RNA (crRNA) trans-activating crRNA (tracrRNA) ribonucleoprotein complexes into the gonad of Caenorhabditis elegans yields HDR edits at a high frequency. Building on our earlier finding that PCR fragments with 35-base homology are efficient repair templates, we developed an entirely cloning-free protocol for the generation of seamless HDR edits without selection. Combined with the co-CRISPR method, this protocol is sufficiently robust for use with low-efficiency guide RNAs and to generate complex edits, including ORF replacement and simultaneous tagging of two genes with fluorescent proteins.
Collapse
Affiliation(s)
- Alexandre Paix
- Howard Hughes Medical Institute (HHMI) and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Andrew Folkmann
- Howard Hughes Medical Institute (HHMI) and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Dominique Rasoloson
- Howard Hughes Medical Institute (HHMI) and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Geraldine Seydoux
- Howard Hughes Medical Institute (HHMI) and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
100
|
Mayer MG, Rödelsperger C, Witte H, Riebesell M, Sommer RJ. The Orphan Gene dauerless Regulates Dauer Development and Intraspecific Competition in Nematodes by Copy Number Variation. PLoS Genet 2015; 11:e1005146. [PMID: 26087034 PMCID: PMC4473527 DOI: 10.1371/journal.pgen.1005146] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/13/2015] [Indexed: 12/04/2022] Open
Abstract
Many nematodes form dauer larvae when exposed to unfavorable conditions, representing an example of phenotypic plasticity and a major survival and dispersal strategy. In Caenorhabditis elegans, the regulation of dauer induction is a model for pheromone, insulin, and steroid-hormone signaling. Recent studies in Pristionchus pacificus revealed substantial natural variation in various aspects of dauer development, i.e. pheromone production and sensing and dauer longevity and fitness. One intriguing example is a strain from Ohio, having extremely long-lived dauers associated with very high fitness and often forming the most dauers in response to other strains' pheromones, including the reference strain from California. While such examples have been suggested to represent intraspecific competition among strains, the molecular mechanisms underlying these dauer-associated patterns are currently unknown. We generated recombinant-inbred-lines between the Californian and Ohioan strains and used quantitative-trait-loci analysis to investigate the molecular mechanism determining natural variation in dauer development. Surprisingly, we discovered that the orphan gene dauerless controls dauer formation by copy number variation. The Ohioan strain has one dauerless copy causing high dauer formation, whereas the Californian strain has two copies, resulting in strongly reduced dauer formation. Transgenic animals expressing multiple copies do not form dauers. dauerless is exclusively expressed in CAN neurons, and both CAN ablation and dauerless mutations increase dauer formation. Strikingly, dauerless underwent several duplications and acts in parallel or downstream of steroid-hormone signaling but upstream of the nuclear-hormone-receptor daf-12. We identified the novel or fast-evolving gene dauerless as inhibitor of dauer development. Our findings reveal the importance of gene duplications and copy number variations for orphan gene function and suggest daf-12 as major target for dauer regulation. We discuss the consequences of the novel vs. fast-evolving nature of orphans for the evolution of developmental networks and their role in natural variation and intraspecific competition.
Collapse
Affiliation(s)
- Melanie G. Mayer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christian Rödelsperger
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hanh Witte
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Metta Riebesell
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ralf J. Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|