51
|
Yurtsever A, Yoshida T, Badami Behjat A, Araki Y, Hanayama R, Fukuma T. Structural and mechanical characteristics of exosomes from osteosarcoma cells explored by 3D-atomic force microscopy. NANOSCALE 2021; 13:6661-6677. [PMID: 33885545 DOI: 10.1039/d0nr09178b] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exosomes have recently gained interest as mediators of cell-to-cell communication and as potential biomarkers for cancer and other diseases. They also have potential as nanocarriers for drug delivery systems. Therefore, detailed structural, molecular, and biomechanical characterization of exosomes is of great importance for developing methods to detect and identify the changes associated with the presence of cancer and other diseases. Here, we employed three-dimensional atomic force microscopy (3D-AFM) to reveal the structural and nanomechanical properties of exosomes at high spatial resolution in physiologically relevant conditions. The substructural details of exosomes released from three different cell types were determined based on 3D-AFM force mapping. The resulting analysis revealed the presence of distinct local domains bulging out from the exosome surfaces, which were associated with the exosomal membrane proteins present on the outer surface. The nanomechanical properties of individual exosomes were determined from the 3D-force maps. We found a considerably high elastic modulus, ranging from 50 to 350 MPa, as compared to that obtained for synthetic liposomes. Moreover, malignancy-dependent changes in the exosome mechanical properties were revealed by comparing metastatic and nonmetastatic tumor cell-derived exosomes. We found a clear difference in their Young's modulus values, suggesting differences in their protein profiles and other exosomal contents. Exosomes derived from a highly aggressive and metastatic k-ras-activated human osteosarcoma (OS) cell line (143B) showed a higher Young's modulus than that derived from a nonaggressive and nonmetastatic k-ras-wildtype human OS cell line (HOS). The increased elastic modulus of the 143B cell-derived exosomes was ascribed to the presence of abundant specific proteins responsible for elastic fiber formation as determined by mass spectroscopy and confirmed by western blotting and ELISA. Therefore, we conclude that exosomes derived from metastatic tumor cells carry an exclusive protein content that differs from their nonmetastatic counterparts, and thus they exhibit different mechanical characteristics. Discrimination between metastatic and nonmetastatic malignant cell-derived exosomes would be of great importance for studying exosome biological functions and using them as diagnostic biomarkers for various tumor types. Our findings further suggest that metastatic tumor cells release exosomes that express increased levels of elastic fiber-associated proteins to preserve their softness.
Collapse
Affiliation(s)
- Ayhan Yurtsever
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | | | | | | | | | | |
Collapse
|
52
|
Gazze SA, Thomas SJ, Garcia-Parra J, James DW, Rees P, Marsh-Durban V, Corteling R, Gonzalez D, Conlan RS, Francis LW. High content, quantitative AFM analysis of the scalable biomechanical properties of extracellular vesicles. NANOSCALE 2021; 13:6129-6141. [PMID: 33729236 DOI: 10.1039/d0nr09235e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extracellular vesicles (EVs) are studied extensively as natural biomolecular shuttles and for their diagnostic and therapeutic potential. This exponential rise in interest has highlighted the need for highly robust and reproducible approaches for EV characterisation. Here we optimise quantitative nanomechanical tools and demonstrate the advantages of EV population screening by atomic force microscopy (AFM). Our high-content informatics analytical tools are made available for use by the EV community for widespread, standardised determination of structural stability. Ultracentrifugation (UC) and sonication, the common mechanical techniques used for EV isolation and loading respectively, are used to demonstrate the utility of optimised PeakForce-Quantitative Nano Mechanics (PF-QNM) analysis. EVs produced at an industrial scale exhibited biochemical and biomechanical alterations after exposure to these common techniques. UC resulted in slight increases in physical dimensions, and decreased EV adhesion concurrent with a decrease in CD63 content. Sonicated EVs exhibited significantly reduced levels of CD81, a decrease in size, increased Young's modulus and decreased adhesive force. These biomechanical and biochemical changes highlight the effect of EV sample preparation techniques on critical properties linked to EV cellular uptake and biological function. PF-QNM offers significant additional information about the structural information of EVs following their purification and downstream processing, and the analytical tools will ensure consistency of analysis of AFM data by the EV community, as this technique continues to become more widely implemented.
Collapse
Affiliation(s)
- Salvatore Andrea Gazze
- Reproductive Biology and Gynaecological Oncology Group, Institute for Life Science 2, Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Smolarz M, Widlak P. Serum Exosomes and Their miRNA Load-A Potential Biomarker of Lung Cancer. Cancers (Basel) 2021; 13:cancers13061373. [PMID: 33803617 PMCID: PMC8002857 DOI: 10.3390/cancers13061373] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Early detection of lung cancer in screening programs is a rational way to reduce mortality associated with this malignancy. Low-dose computed tomography, a diagnostic tool used in lung cancer screening, generates a relatively large number of false-positive results, and its complementation with molecular biomarkers would greatly improve the effectiveness of such programs. Several biomarkers of lung cancer based on different components of blood, including miRNA signatures, were proposed. However, only a few of them have been positively validated in the context of early cancer detection yet, which imposes a constant need for new biomarker candidates. An emerging source of cancer biomarkers are exosomes and other types of extracellular vesicles circulating in body fluids. Hence, different molecular components of serum/plasma-derived exosomes were tested and showed different levels in lung cancer patients and healthy individuals. Several studies focused on the miRNA component of these vesicles. Proposed signatures of exosome miRNA had promising diagnostic value, though none of them have yet been clinically validated. These signatures involved a few dozen miRNA species overall, including a few species that recurred in different signatures. It is worth noting that all these miRNA species have cancer-related functions and have been associated with lung cancer progression. Moreover, a few of them, including known oncomirs miR-17, miR-19, miR-21, and miR-221, appeared in multiple miRNA signatures of lung cancer based on both the whole serum/plasma and serum/plasma-derived exosomes.
Collapse
|
54
|
Lu Y, Zheng Z, Yuan Y, Pathak JL, Yang X, Wang L, Ye Z, Cho WC, Zeng M, Wu L. The Emerging Role of Exosomes in Oral Squamous Cell Carcinoma. Front Cell Dev Biol 2021; 9:628103. [PMID: 33718365 PMCID: PMC7951141 DOI: 10.3389/fcell.2021.628103] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Oral cancer constitutes approximately 2% of all cancers, while the most common type, oral squamous cell carcinoma (OSCC) represents 90% of oral cancers. Although the treatment of OSCC has improved recently, it still has a high rate of local recurrence and poor prognosis, with a 5-year survival rate of only 50%. Advanced stage OSCC tends to metastasize to lymph nodes. Thus, exploring new therapeutic strategies for OSCC is therefore an urgent priority. Exosomes, the small membrane vesicles derived from endosomes, have been detected in a wide array of bodily fluids. Exosomes contain a diversity of proteins, mRNAs, and non-coding RNAs, including microRNAs, long non-coding RNAs, piRNAs, circular RNAs, tsRNAs, and ribosomal RNAs, which are delivered to neighboring cells or even transported to distant sites. Exosomes have been associated with the tumorigenesis of OSCC, promote the proliferation, colonization, and metastasis of OSCC by transferring their contents to the target cells. Furthermore, exosomes are involved in the regulation of the tumor microenvironment to transform conditions favoring cancer progression in vivo. In this review, we summarize the crucial role of exosomes in the tumorigenesis and progression of OSCC and discuss the potential clinical application of exosomes in OSCC treatment.
Collapse
Affiliation(s)
- Yanhui Lu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
| | - Zhichao Zheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
| | - Yunyi Yuan
- Department of Orthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Janak L. Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xuechao Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
| | - Lijing Wang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Vascular Biology Research Institute, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhitong Ye
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Mingtao Zeng
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
| |
Collapse
|
55
|
Hiraga C, Yamamoto S, Hashimoto S, Kasahara M, Minamisawa T, Matsumura S, Katakura A, Yajima Y, Nomura T, Shiba K. Pentapartite fractionation of particles in oral fluids by differential centrifugation. Sci Rep 2021; 11:3326. [PMID: 33558596 PMCID: PMC7870959 DOI: 10.1038/s41598-021-82451-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 12/30/2022] Open
Abstract
Oral fluids (OFs) contain small extracellular vesicles (sEVs or exosomes) that carry disease-associated diagnostic molecules. However, cells generate extracellular vesicles (EVs) other than sEVs, so the EV population is quite heterogeneous. Furthermore, molecules not packaged in EVs can also serve as diagnostic markers. For these reasons, developing a complete picture of particulate matter in the oral cavity is important before focusing on specific subtypes of EVs. Here, we used differential centrifugation to fractionate human OFs from healthy volunteers and patients with oral squamous cell carcinoma into 5 fractions, and we characterized the particles, nucleic acids, and proteins in each fraction. Canonical exosome markers, including CD63, CD9, CD133, and HSP70, were found in all fractions, whereas CD81 and AQP5 were enriched in the 160K fraction, with non-negligible amounts in the 2K fraction. The 2K fraction also contained its characteristic markers that included short derivatives of EGFR and E-cadherin, as well as an autophagosome marker, LC3, and large multi-layered vesicles were observed by electronic microscopy. Most of the DNA and RNA was recovered from the 0.3K and 2K fractions, with some in the 160K fraction. These results can provide guideline information for development of purpose-designed OF-based diagnostic systems.
Collapse
Affiliation(s)
- Chiho Hiraga
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Ariake 3-8-31, Koto-ku, Tokyo, 135-8550, Japan
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, 5-11-13 Sugano, Ichikawa, Chiba, 272-8513, Japan
| | - Satoshi Yamamoto
- Department of Pharmacology, Tokyo Dental College, 2-1-14 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Sadamitsu Hashimoto
- Laboratory of Biology, Tokyo Dental College, 2-9-7 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Masataka Kasahara
- Department of Pharmacology, Tokyo Dental College, 2-1-14 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Tamiko Minamisawa
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Ariake 3-8-31, Koto-ku, Tokyo, 135-8550, Japan
| | - Sachiko Matsumura
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Ariake 3-8-31, Koto-ku, Tokyo, 135-8550, Japan
| | - Akira Katakura
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Yasutomo Yajima
- Department of Oral Implantology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Takeshi Nomura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, 5-11-13 Sugano, Ichikawa, Chiba, 272-8513, Japan
| | - Kiyotaka Shiba
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Ariake 3-8-31, Koto-ku, Tokyo, 135-8550, Japan.
| |
Collapse
|
56
|
Sahu S, Routray S. Assessing the analytical efficacy of TEX in diagnosing oral cancer using a systematic review approach. J Oral Pathol Med 2021; 50:123-128. [PMID: 33184963 DOI: 10.1111/jop.13126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022]
Abstract
The 5-year survival rates in OSCC depend on the stage at diagnosis. Patients have better survival and favourable outcomes if detected early, as compared to those diagnosed in advanced stages. Apart from biopsy and mucosal scraping examinations, exosomes from saliva and blood are emerging as an accessible source for diagnosis and providing additional information about the tumour's characteristics. Hence, the study of tumour-derived exosomal (TEX) biomarkers obtained from a liquid biopsy is emerging as a promising diagnostic tool. In this systematic review, our effort is to assess the role of TEX as a biomarker.
Collapse
Affiliation(s)
- Suchanda Sahu
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Samapika Routray
- Department of Dentistry, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
57
|
Wang X, Guo J, Yu P, Guo L, Mao X, Wang J, Miao S, Sun J. The roles of extracellular vesicles in the development, microenvironment, anticancer drug resistance, and therapy of head and neck squamous cell carcinoma. J Exp Clin Cancer Res 2021; 40:35. [PMID: 33478586 PMCID: PMC7819156 DOI: 10.1186/s13046-021-01840-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the main malignant tumours affecting human health, mainly due to delayed diagnosis and high invasiveness. Extracellular vehicles (EVs) are membranous vesicles released by cells into the extracellular matrix that carry important signalling molecules and stably and widely exist in various body fluids, such as plasma, saliva, cerebrospinal fluid, breast milk, urine, semen, lymphatic fluid, synovial fluid, amniotic fluid, and sputum. EVs transport almost all types of bioactive molecules (DNA, mRNAs, microRNAs (miRNAs), proteins, metabolites, and even pharmacological compounds). These "cargoes" can act on recipient cells, reshaping the surrounding microenvironment and altering distant targets, ultimately affecting their biological behaviour. The extensive exploration of EVs has deepened our comprehensive understanding of HNSCC biology. In this review, we not only summarized the effect of HNSCC-derived EVs on the tumour microenvironment but also described the role of microenvironment-derived EVs in HNSCC and discussed how the "mutual dialogue" between the tumour and microenvironment mediates the growth, metastasis, angiogenesis, immune escape, and drug resistance of tumours. Finally, the clinical application of EVS in HNSCC was assessed.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Junnan Guo
- The First Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Pingyang Yu
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Lunhua Guo
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Xionghui Mao
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Junrong Wang
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Susheng Miao
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China.
| | - Ji Sun
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
58
|
Leung LL, Riaz MK, Qu X, Chan J, Meehan K. Profiling of extracellular vesicles in oral cancer, from transcriptomics to proteomics. Semin Cancer Biol 2021; 74:3-23. [PMID: 33460766 DOI: 10.1016/j.semcancer.2021.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Oral cancers occurring in different subsites can have distinct etiologies' and are a significant problem worldwide. In general, the incidence of oral cancers has declined over the last decade due to improvements in modifiable risk factors (tobacco and alcohol consumption). However, recent data suggest that the incidence of squamous cell carcinomas in the oral tongue and oropharynx are increasing. Human papilloma virus (HPV) is an important risk factor for oropharyngeal cancer and is associated with better treatment responses when compared with HPV-unrelated oropharyngeal cancer. Regardless of the subsite, there are no clinically available biomarkers for the early detection of these cancers and many are detected at an advanced stage and are associated with poor 5-year survival rates. Tumor tissue and serial needle biopsies are used to diagnose and prognosticate oral cancers but have important limitations. Besides being invasive and physically painful, these types of biopsies offer a limited view of a complex tumor due to inter- and intra-tumoral heterogeneity and a dynamic tumor microenvironment. Liquid biopsies offer a promising and alternative way to measure disease in real-time. Extracellular vesicles (EVs) are small particles that are secreted by all cells types and can be readily isolated from a wide range of biofluids. EVs are structurally stable and can horizontally transfer bioactive molecules to distant sites throughout the body in concentrated forms that exceed what can be delivered in a soluble format. As EVs represent their cell of origin, biofluid derived EVs are heterogeneous and are comprised of a complex repertoire of host- and cancer-derived particles. This review article has focused on studies that have used transcriptomics and proteomics to explore the function and clinical significance of EVs in oral cavity and oropharyngeal cancers.
Collapse
Affiliation(s)
- Leanne L Leung
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Muhammad Kashif Riaz
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xinyu Qu
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jason Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Katie Meehan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
59
|
Liu J, Chen Y, Pei F, Zeng C, Yao Y, Liao W, Zhao Z. Extracellular Vesicles in Liquid Biopsies: Potential for Disease Diagnosis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6611244. [PMID: 33506022 PMCID: PMC7814955 DOI: 10.1155/2021/6611244] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 02/05/2023]
Abstract
Liquid biopsy is conducted through minimally invasive or noninvasive procedures, and the resulting material can be subjected to genomic, proteomic, and lipidomic analyses for early diagnosis of cancers and other diseases. Extracellular vesicles (EVs), one kind of promising tool for liquid biopsy, are nanosized bilayer particles that are secreted by all kinds of cells and that carry cargoes such as lipids, proteins, and nucleic acids, protecting them from enzymatic degradation in the extracellular environment. In this review, we provide a comprehensive introduction to the properties and applications of EVs, including their biogenesis, contents, sample collection, isolation, and applications in diagnostics based on liquid biopsy.
Collapse
Affiliation(s)
- Jialing Liu
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Ye Chen
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Fang Pei
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Chongmai Zeng
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yang Yao
- Department of Implantology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Wen Liao
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
60
|
Zhou XB, Feng H, Zhang HM, Li SY, Cui YY, Li N, Chen YB, Tong T. Exosomal TMEM88 protein as a potential biomarker in liquid biopsy for non-small-cell lung cancer. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2020. [DOI: 10.23736/s0393-3660.19.04167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
61
|
Jordan KR, Hall JK, Schedin T, Borakove M, Xian JJ, Dzieciatkowska M, Lyons TR, Schedin P, Hansen KC, Borges VF. Extracellular vesicles from young women's breast cancer patients drive increased invasion of non-malignant cells via the Focal Adhesion Kinase pathway: a proteomic approach. Breast Cancer Res 2020; 22:128. [PMID: 33225939 PMCID: PMC7681773 DOI: 10.1186/s13058-020-01363-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Extracellular vesicles (EVs) are small membrane particles that contribute to cancer progression and metastases by transporting biologically significant proteins and nucleic acids. They may also serve as biomarkers of various disease states or important therapeutic targets. Breast cancer EVs have the potential to change the behavior of other cells in their microenvironment. However, the proteomic content of EVs isolated from young women’s breast cancer patients and the mechanisms underlying the influence of EVs on tumor cell behavior have not yet been reported. Methods In our current translational studies, we compared the proteomic content of EVs isolated from invasive breast cancer cell lines and plasma samples from young women’s breast cancer (YWBC) patients and age-matched healthy donors using mass spectrometry. We analyzed the functionality of EVs in two dimensional tumor cell invasion assays and the gene expression changes in tumor cells after incubation with EVs. Results We found that treatment with EVs from both invasive breast cancer cell lines and plasma of YWBC patients altered the invasive properties of non-invasive breast cancer cells. Proteomics identified differences between EVs from YWBC patients and healthy donors that correlated with their altered function. Further, we identified gene expression changes in non-invasive breast cancer cells after treatment with EVs that implicate the Focal Adhesion Kinase (FAK) signaling pathway as a potential targetable pathway affected by breast cancer-derived EVs. Conclusions Our results suggest that the proteome of EVs from breast cancer patients reflects their functionality in tumor motility assays and may help elucidate the role of EVs in breast cancer progression.
Collapse
Affiliation(s)
- Kimberly R Jordan
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. .,Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Jessica K Hall
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Troy Schedin
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michelle Borakove
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jenny J Xian
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Traci R Lyons
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Pepper Schedin
- Knight Cancer Institute and Department of Cell, Developmental & Cancer Biology, Oregon Health Science University, Portland, OR, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Virginia F Borges
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
62
|
Qu X, Li JW, Chan J, Meehan K. Extracellular Vesicles in Head and Neck Cancer: A Potential New Trend in Diagnosis, Prognosis, and Treatment. Int J Mol Sci 2020; 21:ijms21218260. [PMID: 33158181 PMCID: PMC7662588 DOI: 10.3390/ijms21218260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Head and neck cancer (HNC) is a fatal and debilitating disease that is characterized by steady, poor survival rates despite advances in treatment. There is an urgent and unmet need to improve our understanding of what drives this insidious cancer and causes poor outcomes. Extracellular vesicles (EVs) are small vesicles that originate from tumor cells, immune cells, and other cell types and are secreted into plasma, saliva, and other bio-fluids. EVs represent dynamic, real-time changes of cells and offer an exciting opportunity to improve our understanding of HNC biology that may translate to improved clinical practice. Considering the amplified interest in EVs, we have sought to provide a contemporary review of the most recent and salient literature that is shaping the field. Herein, we discuss the functionality of EVs in HNCs and their clinical potential with regards to biomarker and therapeutic capabilities.
Collapse
Affiliation(s)
- Xinyu Qu
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (X.Q.); (J.C.)
| | - Jing-Woei Li
- Department of Ear, Nose and Throat, Queen Elizabeth Hospital, Hong Kong, China;
- Department of Surgery, Queen Elizabeth Hospital, Hong Kong, China
| | - Jason Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (X.Q.); (J.C.)
| | - Katie Meehan
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (X.Q.); (J.C.)
- Correspondence: ; Tel.: +852-3763-6039
| |
Collapse
|
63
|
Zhao C, Zhang G, Liu J, Zhang C, Yao Y, Liao W. Exosomal cargoes in OSCC: current findings and potential functions. PeerJ 2020; 8:e10062. [PMID: 33194377 PMCID: PMC7646305 DOI: 10.7717/peerj.10062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy in head and neck cancer, with high recurrence and mortality. Early diagnosis and efficient therapeutic strategies are vital for the treatment of OSCC patients. Exosomes can be isolated from a broad range of different cell types, implicating them as important factors in the regulation of human physiological and pathological processes. Due to their abundant cargo including proteins, lipids, and nucleic acids, exosomes have played a valuable diagnostic and therapeutic role across multiple diseases, including cancer. In this review, we summarize recent findings concerning the content within and participation of exosomes relating to OSCC and their roles in tumorigenesis, proliferation, migration, invasion, metastasis, and chemoresistance. We conclude this review by looking ahead to their potential utility in providing new methods for treating OSCC to inspire further research in this field.
Collapse
Affiliation(s)
- Chengzhi Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Geru Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jialing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chenghao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
64
|
Wu M, Chen Z, Xie Q, Xiao B, Zhou G, Chen G, Bian Z. One-step quantification of salivary exosomes based on combined aptamer recognition and quantum dot signal amplification. Biosens Bioelectron 2020; 171:112733. [PMID: 33096430 DOI: 10.1016/j.bios.2020.112733] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
As promising fluid biomarkers for non-invasive diagnosis, naturally-occurring exosomes in saliva have attracted a wide interest for their potential application in oral diseases especially oral cancers. However, accurate quantification of salivary exosomes is still challenging due to the current difficulties in simultaneous identification and measurement of these nano-sized vesicles. In this study, we developed a novel fluorescent biosensor for one-step sensitive quantification of salivary exosomes based on magnetic and fluorescent bio-probes (MFBPs). Within the MFBPs, self-assembled DNA concatamers loaded with numerous quantum dots (QDs) were ingeniously tethered to aptamers, which were anchored on the surface of magnetic microspheres (MMs). Efficient recognition and capture of an exosome by the aptamer would simultaneously trigger the release of a DNA concatamer as the detection signal carrier, thereby generating a "one exosome-numerous QDs" amplification effect. As the result, this biosensor allowed one-step quantification with less assay time and achieved a high sensitivity with low limit of detection. Moreover, unique fluorescent properties of QDs and the superparamagnetism of MMs offered a strong anti-interference ability, enabling a robust quantification in complex matrices. Furthermore, this biosensor exhibited a good clinical feasibility with favorable accuracy comparable to nanoscale flow cytometry, and a superiority in label-free analysis and convenient operation. This study provides a novel and general strategy for one-step sensitive quantification of exosomes from body fluids, facilitating the development of exosome-based liquid biopsy for disease diagnosis.
Collapse
Affiliation(s)
- Min Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Zhuokun Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Qihui Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Bolin Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China.
| |
Collapse
|
65
|
Romanò S, Di Giacinto F, Primiano A, Mazzini A, Panzetta C, Papi M, Di Gaspare A, Ortolani M, Gervasoni J, De Spirito M, Nocca G, Ciasca G. Fourier Transform Infrared Spectroscopy as a useful tool for the automated classification of cancer cell-derived exosomes obtained under different culture conditions. Anal Chim Acta 2020; 1140:219-227. [PMID: 33218484 DOI: 10.1016/j.aca.2020.09.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Exosomes possess great potential as cancer biomarkers in personalized medicine due to their easy accessibility and capability of representing their parental cells. To boost the translational process of exosomes in diagnostics, the development of novel and effective strategies for their label-free and automated characterization is highly desirable. In this context, Fourier Transform Infrared Spectroscopy (FTIR) has great potential as it provides direct access to specific biomolecular bands that give compositional information on exosomes in terms of their protein, lipid and genetic content. Here, we used FTIR spectroscopy in the mid-Infrared (mid-IR) range to study exosomes released from human colorectal adenocarcinoma HT-29 cancer cells cultured in different media. To this purpose, cells were studied in well-fed condition of growth, with 10% of exosome-depleted FBS (EVd-FBS), and under serum starvation with 0.5% EVd-FBS. Our data show the presence of statistically significant differences in the shape of the Amide I and II bands in the two conditions. Based on these differences, we showed the possibility to automatically classify cancer cell-derived exosomes using Principal Component Analysis combined with Linear Discriminant Analysis (PCA-LDA); we tested the effectiveness of the classifier with a cross-validation approach, obtaining very high accuracy, precision, and recall. Aside from classification purposes, our FTIR data provide hints on the underlying cellular mechanisms responsible for the compositional differences in exosomes, suggesting a possible role of starvation-induced autophagy.
Collapse
Affiliation(s)
- Sabrina Romanò
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Flavio Di Giacinto
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Aniello Primiano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Alberto Mazzini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Claudia Panzetta
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Alessandra Di Gaspare
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Michele Ortolani
- Dipartimento di Fisica, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy; Istituto Italiano di Tecnologia, Center for Life Nanoscience, Viale Regina Elena 291, I-00161, Rome, Italy
| | - Jacopo Gervasoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.
| | - Giuseppina Nocca
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.
| |
Collapse
|
66
|
Lakshmi JSJ, Nallusamy J, Manivasagam G, Ramalingam M, Sunil PM, Tom A. Exosomes in the Oral and Maxillofacial Region. J Pharm Bioallied Sci 2020; 12:S43-S48. [PMID: 33149429 PMCID: PMC7595554 DOI: 10.4103/jpbs.jpbs_144_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/09/2020] [Indexed: 11/16/2022] Open
Abstract
Exosomes are a type of extracellular vesicles, released from different tissues in a living individual. By virtue of their ability to be released from both the normal and diseased individual, they play an inevitable role in the diagnosis, prognosis, and therapeutic aspect of a disease. With this background, the untapped role of exosomes in the field of oral and maxillofacial region is unveiled.
Collapse
Affiliation(s)
- Jaisanghar Suman Jhansi Lakshmi
- Department of Oral Medicine and Radiology, KSR Institute of Dental Science and Research, Thiruchengodu, Tamil Nadu, India.,Centre for Stem Cell and Regenerative Medicine-SAMT, Kozhikode, Kerala, India
| | | | | | | | - Paramel Mohan Sunil
- Department of Oral and Maxillofacial Pathology, Sree Anjaneya Institute of Dental Sciences, Centre for Stem Cell and Regenerative Medicine-SAMT, Kozhikode, Kerala, India
| | - Arun Tom
- Department of Oral and Maxillofacial Pathology, Sree Anjaneya Institute of Dental Sciences, Kozhikode, Kerala, India
| |
Collapse
|
67
|
Detection of Salivary Small Extracellular Vesicles Associated Inflammatory Cytokines Gene Methylation in Gingivitis. Int J Mol Sci 2020; 21:ijms21155273. [PMID: 32722322 PMCID: PMC7432462 DOI: 10.3390/ijms21155273] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Salivary small extracellular vesicles (sEV) are emerging as a potential liquid biopsy for oral diseases. However, technical difficulties for salivary sEV isolation remain a challenge. Twelve participants (five periodontally healthy, seven gingivitis patients) were recruited and salivary sEV were isolated by ultracentrifuge (UC-sEV) and size exclusion chromatography (SEC-sEV). The effect of UC and SEC on sEV yield, DNA methylation of five cytokine gene promoters (interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, IL-8, and IL-10), and functional uptake by human primary gingival fibroblasts (hGFs) was investigated. The results demonstrated that SEC-sEV had a higher yield of particles and particle/protein ratios compared to UC-sEV, with a minimal effect on the detection of DNA methylation of five cytokine genes and functional uptake in hGFs (n = 3). Comparing salivary sEV characteristics between gingivitis and healthy patients, gingivitis-UC-sEV were increased compared to the healthy group; while no differences were found in sEV size, oral bacterial gDNA, and DNA methylation for five cytokine gene promoters, for both UC-sEV and SEC-sEV. Overall, the data indicate that SEC results in a higher yield of salivary sEV, with no significant differences in sEV DNA epigenetics, compared to UC.
Collapse
|
68
|
Salivary exosomes: properties, medical applications, and isolation methods. Mol Biol Rep 2020; 47:6295-6307. [PMID: 32676813 DOI: 10.1007/s11033-020-05659-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Salivary exosomes are extracellular vesicles (EVs) with abundant CD63 immunoreactivity on their surface. Based on their size and protein composition, these exosomes can be categorized into two classes of exosomes I (mean diameter of 83.5 nm) and II (mean diameter of 40.5 nm). We have attempted to review the features of these exosomes, including origin, composition, separation methods, and their application in medicine. Not only the composition of salivary exosomes is invaluable in term of diagnosis, but can also afford an understanding in roles of the contents and components of these exosomes in the fundamental pathophysiologic processes of different diseases. since these EVs can cross the epithelial barriers they may be essential for transporting of multifarious components from the blood into saliva. Thus, in comparison to other bodily fluids, salivary exosomes are probably a better and accessible tool to examine the function of exosomes in the diagnosis and treatment of disease.
Collapse
|
69
|
Xing X, Han S, Li Z, Li Z. Emerging role of exosomes in craniofacial and dental applications. Theranostics 2020; 10:8648-8664. [PMID: 32754269 PMCID: PMC7392016 DOI: 10.7150/thno.48291] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes, a specific subgroup of extracellular vesicles that are secreted by cells, have been recognized as important mediators of intercellular communication. They participate in a diverse range of physiological and pathological processes. Given the capability of exosomes to carry molecular cargos and transfer bioactive components, exosome-based disease diagnosis and therapeutics have been extensively studied over the past few decades. Herein, we highlight the emerging applications of exosomes as biomarkers and therapeutic agents in the craniofacial and dental field. Moreover, we discuss the current challenges and future perspectives of exosomes in clinical applications.
Collapse
Affiliation(s)
| | | | - Zhi Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zubing Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
70
|
Peng Q, Yang JY, Zhou G. Emerging functions and clinical applications of exosomes in human oral diseases. Cell Biosci 2020; 10:68. [PMID: 32489584 PMCID: PMC7245751 DOI: 10.1186/s13578-020-00424-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are cell-derived membranous vesicles of endosomal origin secreted by all type of cells and present in various body fluids. Exosomes are enriched in peptides, lipids, and nucleic acids, emerging as vital modulators in intercellular communication. Exosomes are increasingly being evaluated as biomarkers for diagnosis and prognosis of diseases, because the constituents of exosomes could be reprogrammed depending on the states of diseases. These features also make exosomes a research hotspot in oral diseases in recent years. In this review, we outlined the characteristics of exosomes, focused on the differential expressions and altered biological functions of exosomes in oral diseases, including oral squamous cell carcinoma, oral leukoplakia, periodontitis, primary Sjögren's syndrome, oral lichen planus, as well as hand foot and mouth disease. Besides, accumulated evidence documents that it is implementable to consider the natural nanostructured exosomes as a new strategy for disease treatment. Herein, we highlighted the therapeutic potential of exosomes in oral tissue regeneration, oncotherapy, wound healing, and their superiority as therapeutic drug delivery vehicles.
Collapse
Affiliation(s)
- Qiao Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing-ya Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, Wuhan, China
| |
Collapse
|
71
|
Sun R, Wang H, Shi Y, Gao D, Sun Z, Chen Z, Jiang H, Zhang J. A Pilot Study of Urinary Exosomes in Alzheimer's Disease. NEURODEGENER DIS 2020; 19:184-191. [PMID: 32375155 DOI: 10.1159/000505851] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Exosomes are nano-sized extracellular vesicles secreted by most cell types and abundantly present in body fluids, including blood, saliva, urine, cerebrospinal fluid, and breast milk. Exosomes can spread toxic amyloid-beta (Aβ) and hyperphosphorylated tau between cells, contributing to neuronal loss in Alzheimer's disease (AD). OBJECTIVE To explore changes in the morphology, number, and pathological protein levels of urinary exosomes in AD patients compared with age-matched healthy subjects. METHODS In this study, enzyme-linked immunosorbent assay was used to detect the levels of Aβ1-42 and P-S396-tau (normalized by CD63) in urinary exosomes of AD patients and matched healthy subjects. We used transmission electron microscopy and nanoparticle tracking analysis to observe the exosomes. RESULTS We found that the levels of Aβ1-42 and P-S396-tau in the urinary exosomes of AD patients were higher than those of matched healthy controls. Exosomes taken from AD patients were more numerous. CONCLUSION The differences in levels of Aβ1-42 and P-S396-tau and the quantity of urinary exosomes between AD patients and healthy controls may provide a basis for early diagnosis of AD.
Collapse
Affiliation(s)
- Ruihua Sun
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Huayuan Wang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Shi
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Dandan Gao
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhikun Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhongcan Chen
- Department of Neurosurgery, Henan Cerebrovascular Disease Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Haisong Jiang
- Institute of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Jiewen Zhang
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China,
| |
Collapse
|
72
|
Yap T, Pruthi N, Seers C, Belobrov S, McCullough M, Celentano A. Extracellular Vesicles in Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders: A Systematic Review. Int J Mol Sci 2020; 21:E1197. [PMID: 32054041 PMCID: PMC7072764 DOI: 10.3390/ijms21041197] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are secreted from most cell types and utilized in a complex network of near and distant cell-to-cell communication. Insight into this complex nanoscopic interaction in the development, progression and treatment of oral squamous cell carcinoma (OSCC) and precancerous oral mucosal disorders, termed oral potentially malignant disorders (OPMDs), remains of interest. In this review, we comprehensively present the current state of knowledge of EVs in OSCC and OPMDs. A systematic literature search strategy was developed and updated to December 17, 2019. Fifty-five articles were identified addressing EVs in OSCC and OPMDs with all but two articles published from 2015, highlighting the novelty of this research area. Themes included the impact of OSCC-derived EVs on phenotypic changes, lymph-angiogenesis, stromal immune response, mechanisms of therapeutic resistance as well as utility of EVs for drug delivery in OSCC and OPMD. Interest and progress of knowledge of EVs in OSCC and OPMD has been expanding on several fronts. The oral cavity presents a unique and accessible microenvironment for nanoparticle study that could present important models for other solid tumours.
Collapse
Affiliation(s)
- Tami Yap
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (N.P.); (C.S.); (S.B.); (M.M.); (A.C.)
| | | | | | | | | | | |
Collapse
|
73
|
Rodríguez Zorrilla S, García García A, Blanco Carrión A, Gándara Vila P, Somoza Martín M, Gallas Torreira M, Pérez Sayans M. Exosomes in head and neck cancer. Updating and revisiting. J Enzyme Inhib Med Chem 2020; 34:1641-1651. [PMID: 31496355 PMCID: PMC6746279 DOI: 10.1080/14756366.2019.1662000] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exosomes have gone from being considered simple containers of intracellular waste substances to be considered important carriers of cellular signals. Its broad capacity to promote tumour growth, both in situ and metastatic, has greatly intensified scientific research on them. In the same way and depending on its content, its tumour suppressive properties have opened a window of light and hope in the fight against cancer. In the present review we try to gather in a simple and understandable way the most relevant knowledge to date on the role of exosomes in oral squamous cell carcinoma, helping to understand their process of formation, release and activity on the tumour microenvironment.
Collapse
Affiliation(s)
- Samuel Rodríguez Zorrilla
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Abel García García
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS) , Santiago de Compostela , Spain
| | - Andrés Blanco Carrión
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Pilar Gándara Vila
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Manuel Somoza Martín
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Mercedes Gallas Torreira
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Mario Pérez Sayans
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS) , Santiago de Compostela , Spain
| |
Collapse
|
74
|
Su KY, Lee WL. Fourier Transform Infrared Spectroscopy as a Cancer Screening and Diagnostic Tool: A Review and Prospects. Cancers (Basel) 2020; 12:E115. [PMID: 31906324 PMCID: PMC7017192 DOI: 10.3390/cancers12010115] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
Infrared spectroscopy has long been used to characterize chemical compounds, but the applicability of this technique to the analysis of biological materials containing highly complex chemical components is arguable. However, recent advances in the development of infrared spectroscopy have significantly enhanced the capacity of this technique in analyzing various types of biological specimens. Consequently, there is an increased number of studies investigating the application of infrared spectroscopy in screening and diagnosis of various diseases. The lack of highly sensitive and specific methods for early detection of cancer has warranted the search for novel approaches. Being more simple, rapid, accurate, inexpensive, non-destructive and suitable for automation compared to existing screening, diagnosis, management and monitoring methods, Fourier transform infrared spectroscopy can potentially improve clinical decision-making and patient outcomes by detecting biochemical changes in cancer patients at the molecular level. Besides the commonly analyzed blood and tissue samples, extracellular vesicle-based method has been gaining popularity as a non-invasive approach. Therefore, infrared spectroscopic analysis of extracellular vesicles could be a useful technique in the future for biomedical applications. In this review, we discuss the potential clinical applications of Fourier transform infrared spectroscopic analysis using various types of biological materials for cancer. Additionally, the rationale and advantages of using extracellular vesicles in the spectroscopic analysis for cancer diagnostics are discussed. Furthermore, we highlight the challenges and future directions of clinical translation of the technique for cancer.
Collapse
Affiliation(s)
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia, Subang Jaya 47500, Malaysia
| |
Collapse
|
75
|
Assessment of candidate biomarkers in paired saliva and plasma samples from oral cancer patients by targeted mass spectrometry. J Proteomics 2020; 211:103571. [DOI: 10.1016/j.jprot.2019.103571] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022]
|
76
|
Cristaldi M, Mauceri R, Di Fede O, Giuliana G, Campisi G, Panzarella V. Salivary Biomarkers for Oral Squamous Cell Carcinoma Diagnosis and Follow-Up: Current Status and Perspectives. Front Physiol 2019; 10:1476. [PMID: 31920689 PMCID: PMC6914830 DOI: 10.3389/fphys.2019.01476] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
Oral cancer is the sixth most common cancer type in the world, and 90% of it is represented by oral squamous cell carcinoma (OSCC). Despite progress in preventive and therapeutic strategies, delay in OSCC diagnosis remains one of the major causes of high morbidity and mortality; indeed the majority of OSCC has been lately identified in the advanced clinical stage (i.e., III or IV). Moreover, after primary treatment, recurrences and/or metastases are found in more than half of the patients (80% of cases within the first 2 years) and the 5-year survival rate is still lower than 50%, resulting in a serious issue for public health. Currently, histological investigation represents the "gold standard" of OSCC diagnosis; however, recent studies have evaluated the potential use of non-invasive methods, such as "liquid biopsy," for the detection of diagnostic and prognostic biomarkers in body fluids of oral cancer patients. Saliva is a biofluid containing factors such as cytokines, DNA and RNA molecules, circulating and tissue-derived cells, and extracellular vesicles (EVs) that may be used as biomarkers; their analysis may give us useful information to do early diagnosis of OSCC and improve the prognosis. Therefore, the aim of this review is reporting the most recent data on saliva biomarker detection in saliva liquid biopsy from oral cancer patients, with particular attention to circulating tumor DNA (ctDNA), EVs, and microRNAs (miRNAs). Our results highlight that saliva liquid biopsy has several promising clinical uses in OSCC management; it is painless, accessible, and low cost and represents a very helpful source of diagnostic and prognostic biomarker detection. Even if standardized protocols for isolation, characterization, and evaluation are needed, recent data suggest that saliva may be successfully included in future clinical diagnostic processes, with a considerable impact on early treatment strategies and a favorable outcome.
Collapse
Affiliation(s)
- Marta Cristaldi
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Rodolfo Mauceri
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Olga Di Fede
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Giovanna Giuliana
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Giuseppina Campisi
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Vera Panzarella
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
77
|
Shi L, Kuhnell D, Borra VJ, Langevin SM, Nakamura T, Esfandiari L. Rapid and label-free isolation of small extracellular vesicles from biofluids utilizing a novel insulator based dielectrophoretic device. LAB ON A CHIP 2019; 19:3726-3734. [PMID: 31588942 PMCID: PMC7477750 DOI: 10.1039/c9lc00902g] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Exosomes are nano-scale membrane-encapsulated vesicles produced by the majority of cells and have emerged as a rich source of biomarkers for a wide variety of diseases. Although many approaches have been developed for exosome isolation from biofluids, most of them have substantial shortcomings including long processing time, inefficiency, high cost, lack of specificity and/or surface marker-dependency. To address these issues, here we report a novel insulator-based dielectrophoretic (iDEP) device predicated on an array of borosilicate micropipettes to rapidly isolate exosomes from conditioned cell culture media and biofluids, such as plasma, serum, and saliva. The device is capable of exosome isolation from small sample volumes of 200 μL within 20 minutes under a relatively low (10 V cm-1) direct current (DC). This device is easy to fabricate thus, no cleanroom facility and expensive equipment are needed. Therefore, the iDEP device offers a rapid and cost-effective strategy for exosome isolation from biofluids in timely manner while maintaining the yield and purity.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Damaris Kuhnell
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Vishnupriya J Borra
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Scott M Langevin
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, USA and Cincinnati Cancer Center, Cincinnati, OH, USA
| | - Takahisa Nakamura
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA and Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Leyla Esfandiari
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA and Cincinnati Cancer Center, Cincinnati, OH, USA and Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
78
|
Xiao C, Song F, Zheng YL, Lv J, Wang QF, Xu N. Exosomes in Head and Neck Squamous Cell Carcinoma. Front Oncol 2019; 9:894. [PMID: 31620359 PMCID: PMC6759986 DOI: 10.3389/fonc.2019.00894] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
Exosomes are small membranous vesicles that contain proteins, lipids, genetic material, and metabolites with abundant information from parental cells. Exosomes carry and deliver bioactive contents that can reprogram the functions of recipient cells and modulate the tumor microenvironment to induce pathological events through cell-to-cell communication and signal transduction. Tumor-derived exosomes (TDEs) in head and neck squamous cell carcinoma (HNSCC) are involved in most aspects of cancer initiation, invasion, progression, immunoregulation, therapeutic applications, and treatment resistance. In addition, HNSCC-derived exosomes can be used to obtain information on diagnostic and therapeutic biomarkers in circulating blood and saliva. Currently, the biology, mechanisms, and applications of TDEs in HNSCC are still unclear, and further research is required. In this review, we discuss various aspects of exosome biology, including exosomal components, exosomal biomarkers, and molecular mechanisms involved in immunoregulation, cancer metastasis, and therapy resistance. We also describe recent applications to update our understanding of exosomes in HNSCC.
Collapse
Affiliation(s)
- Cheng Xiao
- Department of Medical Oncology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Fang Song
- Department of Anesthesiology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yu Long Zheng
- Department of Medical Oncology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jiong Lv
- Department of Oral and Maxillofacial Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qiang Feng Wang
- Department of Medical Oncology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
79
|
Zhan C, Yang X, Yin X, Hou J. Exosomes and other extracellular vesicles in oral and salivary gland cancers. Oral Dis 2019; 26:865-875. [PMID: 31390111 DOI: 10.1111/odi.13172] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/20/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs, including exosomes) are a group of heterogeneous nanometer-sized vesicles that are released by all types of cells and serve as functional mediators of cell-to-cell communication. This ability is primarily due to their capacity to package and transport various proteins, lipids, and nucleic acids-namely DNA and messenger RNA (mRNA), but also microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These contents can influence the function and fate of both recipient and donor cells. More and more studies have shown that EVs are involved in every phase of cancer development, mediating bidirectional cross talk between cancer cells and their tissue microenvironment. More specifically, EVs can promote tumor progression by modifying vesicular contents and establishing a distant premetastatic niche with molecules that favor cancer cell proliferation, migration, invasion, metastasis, angiogenesis, and even drug resistance. Given that the packaging of these molecules is known to be tissue-specific, EVs can not only serve as novel prognostic and diagnostic markers but also be used as potential therapeutic targets and vehicles for drug delivery. The present review discusses the current understanding of the multifaceted roles of EVs in the progression of oral and salivary gland cancers, as well as their potential use in clinical applications.
Collapse
Affiliation(s)
- Chaoning Zhan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojun Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuemin Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
80
|
Chiabotto G, Gai C, Deregibus MC, Camussi G. Salivary Extracellular Vesicle-Associated exRNA as Cancer Biomarker. Cancers (Basel) 2019; 11:cancers11070891. [PMID: 31247906 PMCID: PMC6679099 DOI: 10.3390/cancers11070891] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/11/2019] [Accepted: 06/22/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) secreted in biological fluids contain several transcripts of the cell of origin, which may modify the functions and phenotype of proximal and distant cells. Cancer-derived EVs may promote a favorable microenvironment for cancer growth and invasion by acting on stroma and endothelial cells and may favor metastasis formation. The transcripts contained in cancer EVs may be exploited as biomarkers. Protein and extracellular RNA (exRNA) profiling in patient bio-fluids, such as blood and urine, was performed to identify molecular features with potential diagnostic and prognostic values. EVs are concentrated in saliva, and salivary EVs are particularly enriched in exRNAs. Several studies were focused on salivary EVs for the detection of biomarkers either of non-oral or oral cancers. The present paper provides an overview of the available studies on the diagnostic potential of exRNA profiling in salivary EVs.
Collapse
Affiliation(s)
- Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Torino 10126, Italy.
| | - Chiara Gai
- Department of Medical Sciences, University of Torino, Torino 10126, Italy.
| | - Maria Chiara Deregibus
- i3T Business Incubator and Technology Transfer, University of Torino, Torino 10126, Italy.
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Torino 10126, Italy.
| |
Collapse
|
81
|
Xie C, Ji N, Tang Z, Li J, Chen Q. The role of extracellular vesicles from different origin in the microenvironment of head and neck cancers. Mol Cancer 2019; 18:83. [PMID: 30954079 PMCID: PMC6451295 DOI: 10.1186/s12943-019-0985-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
The proliferation and metastasis ability of tumors are mediate by the "mutual dialogue" between cells in the tumor microenvironment (TME). Extracellular vesicles (EVs), mainly exosomes and microvesicles, play an important role in achieving intercellular substance transport and information transfer in the TME. Initially considered "garbage dumpsters" and later referred to as "signal boxes", EVs carry "cargo" (proteins, lipids, or nucleic acids) that can redirect the function of a recipient cell. Currently, the molecular mechanisms and clinical applications of EVs in head and neck cancers (HNCs) are still at an early stage and need to be further investigate. In this review, we provide insight into the TME of HNCs, classifying and summarizing EVs derived from different cell types and illuminating their complex signaling networks involved in mediating tumor proliferation, invasion and metastasis, vascular angiogenesis and cancer drug resistance. In addition, we highlight the application of EVs in HNCs, underlining the special pathological and physiological environment of HNCs. The application of tumor heterogeneous EVs in saliva and circulating blood diagnostics will provide a new perspective for the early screening, real-time monitoring and prognostic risk assessment of HNCs. Given the concept of precise and individual therapy, nanostructured EVs are equipped with superior characteristics of biocompatibility, low immunogenicity, loadability and modification ability, making these molecules one of the new strategies for HNCs treatment.
Collapse
Affiliation(s)
- Changqing Xie
- Department of Oral and Maxillofacial Surgery, Xiangya Stomalogical Hospital & School of Stomatology, Central South University, Changsha, 410078, Hunan, China.,State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhangui Tang
- Department of Oral and Maxillofacial Surgery, Xiangya Stomalogical Hospital & School of Stomatology, Central South University, Changsha, 410078, Hunan, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
82
|
Zlotogorski-Hurvitz A, Dekel BZ, Malonek D, Yahalom R, Vered M. FTIR-based spectrum of salivary exosomes coupled with computational-aided discriminating analysis in the diagnosis of oral cancer. J Cancer Res Clin Oncol 2019; 145:685-694. [PMID: 30603907 DOI: 10.1007/s00432-018-02827-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/15/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE To determine the Fourier-transform infrared (FTIR) spectra of salivary exosomes from oral cancer (OC) patients and healthy individuals (HI) and to assess its diagnostic potential using computational-aided models. METHODS Whole saliva samples were collected from 21 OC patients and 13 HI. Exosomes were pelleted using differential centrifugation (12,000g, 120,000g). The mid-infrared (IR) absorbance spectra (900-5000 cm- 1 range) were measured using MIR8025 Oriel Fourier-transform IR equipped with a PIKE MIRacle ZnSe attenuated total reflectance attachment. Machine learning techniques, utilized to build discrimination models for the absorbance data of OC and HI, included the principal component analysis-linear discriminant analysis (PCA-LDA) and support vector machine (SVM) classification. Sensitivity, specificity and the area under the receiver operating characteristic curve were calculated. RESULTS IR spectra of OC were consistently different from HI at 1072 cm- 1 (nucleic acids), 2924 cm- 1 and 2854 cm- 1 (membranous lipids), and 1543 cm- 1 (transmembrane proteins). The PCA-LDA discrimination model correctly classified the samples with a sensitivity of 100%, specificity of 89% and accuracy of 95%, and the SVM showed a training accuracy of 100% and a cross-validation accuracy of 89%. CONCLUSION We showed the specific IR spectral signature for OC salivary exosomes, which was accurately differentiated from HI exosomes based on detecting subtle changes in the conformations of proteins, lipids and nucleic acids using optimized artificial neural networks with small data sets. This non-invasive method should be further investigated for diagnosis of oral cancer at its very early stages or in oral lesions with potential for malignant transformation.
Collapse
Affiliation(s)
- Ayelet Zlotogorski-Hurvitz
- Department of Oral Pathology and Oral Medicine, School of Dentistry, Tel Aviv University, 69978, Tel Aviv, Israel
- Department of Oral and Maxillofacial Surgery, Rabin Medical Center, Petah Tikva, Israel
| | - Ben Zion Dekel
- Department of Electrical and Computer Engineering, Ruppin Academic Center, Emek Hefer, Israel
| | - Dov Malonek
- Department of Electrical and Computer Engineering, Ruppin Academic Center, Emek Hefer, Israel
| | - Ran Yahalom
- Department of Oral and Maxillofacial Surgery, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Marilena Vered
- Department of Oral Pathology and Oral Medicine, School of Dentistry, Tel Aviv University, 69978, Tel Aviv, Israel.
- Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Israel.
| |
Collapse
|
83
|
Shwetha HR, Smitha T. Dichotomy of exosomes in oral squamous cell carcinoma: Prey or play! J Oral Maxillofac Pathol 2019; 23:172-175. [PMID: 31516218 PMCID: PMC6714256 DOI: 10.4103/jomfp.jomfp_198_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exosomes are nano-sized particles which belong to the family of extracellular vesicles (EVs) that are produced in the endosomal compartment of those cells which mediate intercellular communication. These particles can be found abundantly in the biological body fluids such as urine, blood, saliva, cerebrospinal fluid and breast milk. These vesicles can transfer genetic materials such as the microRNAs, noncoding RNAs, DNA and lipids by means of direct or indirect cell-to-cell interaction. Consequently, there has been lot of growing interest related to cancer exosomes as biomarkers and as potential therapeutics. There are studies done which demonstrate the exosomes in relation to cancer, by targeting specific cells and also promote the tumor progression. The other part of the spectrum has stressed the importance of exosomes stability and its potential role in targeting cancer cells through drug delivery system of anticancer molecules. The dichotomy allied with exosomes and their role in oral squamous cell carcinoma biomarkers or as therapy enhancement will be highlighted.
Collapse
Affiliation(s)
- H R Shwetha
- Department of Oral Pathology, MMNGH Institute of Dental Science, Belgaum, Karnataka, India
| | - T Smitha
- Department of Oral Pathology, VSDC, Bengaluru, Karnataka, India
| |
Collapse
|
84
|
Mikkonen JJW, Singh SP, Akhi R, Salo T, Lappalainen R, González-Arriagada WA, Ajudarte Lopes M, Kullaa AM, Myllymaa S. Potential role of nuclear magnetic resonance spectroscopy to identify salivary metabolite alterations in patients with head and neck cancer. Oncol Lett 2018; 16:6795-6800. [PMID: 30344764 DOI: 10.3892/ol.2018.9419] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023] Open
Abstract
The analysis of the salivary metabolomic profile may offer an early phase approach to assess the changes associated with a wide range of diseases including head and neck cancer. The aim of the present study was to investigate the potential of nuclear magnetic resonance (NMR) spectroscopy for detecting the salivary metabolic changes associated with head and neck squamous cell carcinoma (HNSCC). Unstimulated whole-mouth saliva samples collected from HNSCC patients (primary tumour was located either in the larynx or in the oral cavity) and healthy controls were analysed by 1H-NMR spectroscopy. Reliably identified salivary metabolites were quantified and the determined concentration values were compared group-wise using a Mann-Whitney U-test. Multivariate discrimination function analysis (DFA) was conducted to identify such a combination of metabolites, when considered together, that gives maximum discrimination between the groups. HNSCC patients exhibited significantly increased concentrations of 1,2-propanediol (P=0.032) and fucose (P=0.003), while proline levels were significantly decreased (P=0.043). In the DFA model, the most powerful discrimination was achieved when fucose, glycine, methanol and proline were considered as combined biomarkers, resulting in a correct classification rate of 92.1%, sensitivity of 87.5% and specificity of 93.3%. To conclude, NMR spectrometric analysis was revealed to be a feasible approach to study the metabolome of saliva that is sensitive to metabolic changes in HNSCC and straightforward to collect in a non-invasive manner. Salivary fucose was of particular interest and therefore, controlled longitudinal studies are required to assess its clinical relevance as a diagnostic biomarker in HNSCC.
Collapse
Affiliation(s)
- Jopi J W Mikkonen
- SIB Labs, University of Eastern Finland, FI-70211 Kuopio, Finland.,Institute of Dentistry, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Surya P Singh
- Institute of Dentistry, University of Eastern Finland, FI-70211 Kuopio, Finland.,Laser Biomedical Research Centre, Massachusetts Institute of Technology, Boston, MA 02139, USA
| | - Ramin Akhi
- Research Unit of Oral Health Sciences, University of Oulu, FI-90014 Oulu, Finland
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, University of Oulu, FI-90014 Oulu, Finland.,Medical Research Center, Oulu University Hospital, FI-90014 Oulu, Finland.,Department of Oral and Maxillofacial Diseases, University of Helsinki, FI-00014 Helsinki, Finland.,HUSLAB, Helsinki University Hospital, FI-00014 Helsinki, Finland
| | - Reijo Lappalainen
- SIB Labs, University of Eastern Finland, FI-70211 Kuopio, Finland.,Department of Applied Physics, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Wilfredo A González-Arriagada
- Oral Pathology and Diagnosis, School of Dentistry, Universidad de Valparaiso, Valparaiso, Región de Valparaíso 2360004, Chile
| | - Márcio Ajudarte Lopes
- Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Sao Paulo CEP 13414-018, Brazil
| | - Arja M Kullaa
- Institute of Dentistry, University of Eastern Finland, FI-70211 Kuopio, Finland.,Research Unit of Oral Health Sciences, University of Oulu, FI-90014 Oulu, Finland.,Educational Dental Clinic, Kuopio University Hospital, FI-70029 Kuopio, Finland
| | - Sami Myllymaa
- SIB Labs, University of Eastern Finland, FI-70211 Kuopio, Finland.,Department of Applied Physics, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
85
|
Qadir F, Aziz MA, Sari CP, Ma H, Dai H, Wang X, Raithatha D, Da Silva LGL, Hussain M, Poorkasreiy SP, Hutchison IL, Waseem A, Teh MT. Transcriptome reprogramming by cancer exosomes: identification of novel molecular targets in matrix and immune modulation. Mol Cancer 2018; 17:97. [PMID: 30008265 PMCID: PMC6047127 DOI: 10.1186/s12943-018-0846-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Exosomes are extracellular vesicles released by almost all cell types, including cancer cells, into bodily fluids such as saliva, plasma, breast milk, semen, urine, cerebrospinal fluid, amniotic fluid, synovial fluid and sputum. Their key function being intercellular communication with both neighbouring as well as distant cells. Cancer exosomes have been shown to regulate organ-specific metastasis. However, little is known about the functional differences and molecular consequences of normal cells responding to exosomes derived from normal cells compared to those derived from cancer cells. METHODS Here, we characterised and compared the transcriptome profiles of primary human normal oral keratinocytes (HNOK) in response to exosomes isolated from either primary HNOK or head and neck squamous cell carcinoma (HNSCC) cell lines. RESULTS In recipient HNOK cells, we found that regardless of normal or cancer derived, exosomes altered molecular programmes involved in matrix modulation (MMP9), cytoskeletal remodelling (TUBB6, FEZ1, CCT6A), viral/dsRNA-induced interferon (OAS1, IFI6), anti-inflammatory (TSC22D3), deubiquitin (OTUD1), lipid metabolism and membrane trafficking (BBOX1, LRP11, RAB6A). Interestingly, cancer exosomes, but not normal exosomes, modulated expression of matrix remodelling (EFEMP1, DDK3, SPARC), cell cycle (EEF2K), membrane remodelling (LAMP2, SRPX), differentiation (SPRR2E), apoptosis (CTSC), transcription/translation (KLF6, PUS7). We have also identified CEP55 as a potential cancer exosomal marker. CONCLUSIONS In conclusion, both normal and cancer exosomes modulated unique gene expression pathways in normal recipient cells. Cancer cells may exploit exosomes to confer transcriptome reprogramming that leads to cancer-associated pathologies such as angiogenesis, immune evasion/modulation, cell fate alteration and metastasis. Molecular pathways and biomarkers identified in this study may be clinically exploitable for developing novel liquid-biopsy based diagnostics and immunotherapies.
Collapse
Affiliation(s)
- Fatima Qadir
- Centre for Oral Immunobiology & Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, E1 2AT, London, England, UK
| | - Mohammad Arshad Aziz
- Centre for Oral Immunobiology & Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, E1 2AT, London, England, UK
| | - Chrisdina Puspita Sari
- Centre for Oral Immunobiology & Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, E1 2AT, London, England, UK
| | - Hong Ma
- Department of Oral & Maxillofacial Surgery, China-British Joint Molecular Head and Neck Cancer Research Laboratory, Affiliated Hospital & School of Stomatology, Guizhou Medical University, Guizhou, China
| | - Haiyan Dai
- Department of Oral & Maxillofacial Surgery, China-British Joint Molecular Head and Neck Cancer Research Laboratory, Affiliated Hospital & School of Stomatology, Guizhou Medical University, Guizhou, China
| | - Xun Wang
- Department of Oral & Maxillofacial Surgery, China-British Joint Molecular Head and Neck Cancer Research Laboratory, Affiliated Hospital & School of Stomatology, Guizhou Medical University, Guizhou, China
| | - Dhiresh Raithatha
- Centre for Oral Immunobiology & Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, E1 2AT, London, England, UK
| | - Lucas Girotto Lagreca Da Silva
- Centre for Oral Immunobiology & Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, E1 2AT, London, England, UK
| | - Muhammad Hussain
- Centre for Oral Immunobiology & Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, E1 2AT, London, England, UK
| | - Seyedeh P Poorkasreiy
- Centre for Oral Immunobiology & Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, E1 2AT, London, England, UK
| | - Iain L Hutchison
- Department of Oral & Maxillofacial Surgery, Barts & The London NHS Trust, London, England, UK
| | - Ahmad Waseem
- Centre for Oral Immunobiology & Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, E1 2AT, London, England, UK
| | - Muy-Teck Teh
- Centre for Oral Immunobiology & Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, E1 2AT, London, England, UK. .,Department of Oral & Maxillofacial Surgery, China-British Joint Molecular Head and Neck Cancer Research Laboratory, Affiliated Hospital & School of Stomatology, Guizhou Medical University, Guizhou, China. .,Cancer Research Institute, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
86
|
Nair S, Tang KD, Kenny L, Punyadeera C. Salivary exosomes as potential biomarkers in cancer. Oral Oncol 2018; 84:31-40. [PMID: 30115473 DOI: 10.1016/j.oraloncology.2018.07.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/21/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Over the past decade, there has been emerging research in the field of extracellular vesicles, especially those originating from endosomes, referred to as 'exosomes. Exosomes are membrane-bound nanovesicles secreted by most cell types upon fusion of multivesicular bodies (MVBs) to the cell plasma membrane. These vesicles are present in almost all body fluids such as blood, urine, saliva, breast milk, cerebrospinal and peritoneal fluids. Exosomes participate in intercellular communication by transferring the biologically active molecules like proteins, nucleic acids, and lipids to neighboring cells. Exosomes are enriched in the tumour microenvironment and growing evidence demonstrates that exosomes mediate cancer progression and metastasis. Given the important biological role played by these nanovesicles in cancer pathogenesis, these can be used as ideal non-invasive biomarkers in detecting and monitoring tumours as well as therapeutic targets. The scope of the current review is to provide an overview of exosomes with a special focus on salivary exosomes as potential biomarkers in head and neck cancers.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Brisbane, Australia
| | - Kai Dun Tang
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Brisbane, Australia; The Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Liz Kenny
- School of Medicine, University of Queensland, Queensland, Australia; Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Central Integrated Regional Cancer Service, Queensland Health, Queensland, Australia
| | - Chamindie Punyadeera
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Brisbane, Australia; The Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia.
| |
Collapse
|
87
|
Mrowczynski OD, Zacharia BE, Connor JR. Exosomes and their implications in central nervous system tumor biology. Prog Neurobiol 2018; 172:71-83. [PMID: 30003942 DOI: 10.1016/j.pneurobio.2018.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 05/04/2018] [Accepted: 06/30/2018] [Indexed: 01/08/2023]
Abstract
Exosomes are 20-100 nm cellular derived vesicles that upon discovery, were thought to be a form of cellular recycling of intracellular contents. More recently, these vesicles are under investigation for their purported significant roles in intercellular communication in both healthy and diseased states. Herein, we focus on the secretion of exosomes associated with glioblastoma, as most exosome studies on brain tumors have been performed in this tumor type. However, we included exosomes secreted from other forms of brain tumors for comparison as available. Exosomes contain intracellular content that can be transferred to other cells in the tumor or to cells of the immune system and endothelial cells. These recipient cells may subsequently take on oncogenic properties, including therapeutic resistance, cancer progression, and angiogenesis. Genetic components (DNA, RNA and miRNA) of the cell of origin may be included in the secreted exosomes. The presence of genetic material in the exosomes could serve as a biomarker for mutations in tumors, potentially leading to novel treatment strategies. In the last decade, exosomes have been identified as having a major impact on multiple aspects of medicine and tumor biology, and appear to be primed for a critical position in cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Oliver D Mrowczynski
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Brad E Zacharia
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - James R Connor
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
88
|
Lousada-Fernandez F, Rapado-Gonzalez O, Lopez-Cedrun JL, Lopez-Lopez R, Muinelo-Romay L, Suarez-Cunqueiro MM. Liquid Biopsy in Oral Cancer. Int J Mol Sci 2018; 19:ijms19061704. [PMID: 29890622 PMCID: PMC6032225 DOI: 10.3390/ijms19061704] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/17/2022] Open
Abstract
Oral cancer is one of the most prevalent forms of cancer worldwide. Carcinogenesis is a complex process, in which heterogeneity plays an important role in the development and progression of the disease. This review provides an overview of the current biological and clinical significance of circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), and exosomes for diagnosis and prognosis of oral cancer. We highlight the importance of liquid biopsy—using blood and saliva—which represents a potential alternative to solid biopsy for diagnosis and prognosis. Moreover, liquid biomarkers allow for the real-time monitoring of tumour evolution and therapeutic responses, initiating the era of personalized medicine. However, in oral cancer, the impact of liquid biopsies in clinical settings is still limited, requiring further studies to discover the best scenario for its clinical use.
Collapse
Affiliation(s)
- Fatima Lousada-Fernandez
- Department of Surgery and Medical Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela, 15782 Spain.
| | - Oscar Rapado-Gonzalez
- Department of Surgery and Medical Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela, 15782 Spain.
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), CIBERONC, 15706 Santiago de Compostela, Spain.
| | - Jose-Luis Lopez-Cedrun
- Department of Oral and Maxillofacial Surgery, Complexo Hospitalario Universitario de A Coruña (SERGAS), 15006 La Coruña, Spain.
| | - Rafael Lopez-Lopez
- Translational Medical Oncology, Health Research Institute of Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), ONCOMET, 15706 Santiago de Compostela, Spain.
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), CIBERONC, 15706 Santiago de Compostela, Spain.
| | - Maria Mercedes Suarez-Cunqueiro
- Department of Surgery and Medical Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela, 15782 Spain.
- Oral Sciences, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
89
|
Ito K, Ogawa Y, Yokota K, Matsumura S, Minamisawa T, Suga K, Shiba K, Kimura Y, Hirano-Iwata A, Takamura Y, Ogino T. Host Cell Prediction of Exosomes Using Morphological Features on Solid Surfaces Analyzed by Machine Learning. J Phys Chem B 2018; 122:6224-6235. [PMID: 29771528 DOI: 10.1021/acs.jpcb.8b01646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Exosomes are extracellular nanovesicles released from any cells and found in any body fluid. Because exosomes exhibit information of their host cells (secreting cells), their analysis is expected to be a powerful tool for early diagnosis of cancers. To predict the host cells, we extracted multidimensional feature data about size, shape, and deformation of exosomes immobilized on solid surfaces by atomic force microscopy (AFM). The key idea is combination of support vector machine (SVM) learning for individual exosome particles and their interpretation by principal component analysis (PCA). We observed exosomes derived from three different cancer cells on SiO2/Si, 3-aminopropyltriethoxysilane-modified-SiO2/Si, and TiO2 substrates by AFM. Then, 14-dimensional feature vectors were extracted from AFM particle data, and classifiers were trained in 14-dimensional space. The prediction accuracy for host cells of test AFM particles was examined by the cross-validation test. As a result, we obtained prediction of exosome host cells with the best accuracy of 85.2% for two-class SVM learning and 82.6% for three-class one. By PCA of the particle classifiers, we concluded that the main factors for prediction accuracy and its strong dependence on substrates are incremental decrease in the PCA-defined aspect ratio of the particles with their volume.
Collapse
Affiliation(s)
- Kazuki Ito
- Yokohama National University , 79-5, Tokiwadai , Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Yuta Ogawa
- Yokohama National University , 79-5, Tokiwadai , Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Keiji Yokota
- Yokohama National University , 79-5, Tokiwadai , Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Sachiko Matsumura
- Japanese Foundation for Cancer Research , 3-8-31 Ariake , Koto-ku, Tokyo 135-8550 , Japan
| | - Tamiko Minamisawa
- Japanese Foundation for Cancer Research , 3-8-31 Ariake , Koto-ku, Tokyo 135-8550 , Japan
| | - Kanako Suga
- Japanese Foundation for Cancer Research , 3-8-31 Ariake , Koto-ku, Tokyo 135-8550 , Japan
| | - Kiyotaka Shiba
- Japanese Foundation for Cancer Research , 3-8-31 Ariake , Koto-ku, Tokyo 135-8550 , Japan
| | - Yasuo Kimura
- Tokyo University of Technology , 1404-1, Katakura-Cho , Hachioji 192-0914 , Japan
| | - Ayumi Hirano-Iwata
- Tohoku University , 2-1-1, Katahira , Aoba-ku, Sendai , Miyagi 980-8577 , Japan
| | - Yuzuru Takamura
- Japan Advanced Institute of Science and Technology , 1-1, Asahi-Dai , Nomi , Ishikawa 923-1292 , Japan
| | - Toshio Ogino
- Yokohama National University , 79-5, Tokiwadai , Hodogaya-ku, Yokohama 240-8501 , Japan.,Japan Advanced Institute of Science and Technology , 1-1, Asahi-Dai , Nomi , Ishikawa 923-1292 , Japan
| |
Collapse
|
90
|
Yang H, Fu H, Wang B, Zhang X, Mao J, Li X, Wang M, Sun Z, Qian H, Xu W. Exosomal miR-423-5p targets SUFU to promote cancer growth and metastasis and serves as a novel marker for gastric cancer. Mol Carcinog 2018; 57:1223-1236. [PMID: 29749061 DOI: 10.1002/mc.22838] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/28/2018] [Accepted: 05/04/2018] [Indexed: 12/11/2022]
Abstract
Exosomes are critically involved in tumor growth, metastasis, and therapy resistance. Exosomes have the potential to be utilized as cancer biomarkers. In this study, we aimed to explore the roles and clinical values of exosomal miRNAs in gastric cancer. We found that the concentration of exosomes was significantly higher in the serum of gastric cancer patients and the culture supernatants of gastric cancer cells than that in healthy volunteers and gastric mucosa epithelial cells. In particular, miR-423-5p was elevated in the serum exosomes of gastric cancer patients, and the level of exosomal miR-423-5p was remarkably correlated with lymph node metastasis. High level of exosomal miR-423-5p was associated with poor outcome in gastric cancer patients. MiR-423-5p enriched exosomes could be internalized into gastric cancer cells, which enhanced cell proliferation and migration both in vitro and in vivo. Mechanistically, miR-423-5p inhibited the expression of suppressor of fused protein (SUFU) to enhance the proliferation and migration of gastric cancer cells. The expression levels of SUFU were significantly decreased in gastric cancer cells and the tumor tissues of gastric cancer patients. Taken together, our findings indicate that exosomes could deliver miR-423-5p to promote cancer growth and metastasis and serum exosomal miR-423-5p may serve as a potential marker for gastric cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Huan Yang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hailong Fu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsum, China
| | - Bo Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiahui Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zixuan Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
91
|
Han Y, Jia L, Zheng Y, Li W. Salivary Exosomes: Emerging Roles in Systemic Disease. Int J Biol Sci 2018; 14:633-643. [PMID: 29904278 PMCID: PMC6001649 DOI: 10.7150/ijbs.25018] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/09/2018] [Indexed: 12/12/2022] Open
Abstract
Saliva, which contains biological information, is considered a valuable diagnostic tool for local and systemic diseases and conditions because, similar to blood, it contains important molecules like DNA, RNA, and proteins. Exosomes are cell-derived vesicles 30-100 nm in diameter with substantial biological functions, including intracellular communication and signalling. These vesicles, which are present in bodily fluids, including saliva, are released upon fusion of multivesicular bodies (MVBs) with the cellular plasma membrane. Salivary diagnosis has notable advantages, which include noninvasiveness, ease of collection, absence of coagulation, and a similar content as plasma, as well as increased patient compliance compared to other diagnostic approaches. However, investigation of the roles of salivary exosomes is still in its early years. In this review, we first describe the characteristics of endocytosis and secretion of salivary exosomes, as well as database and bioinformatics analysis of exosomes. Then, we describe strategies for the isolation of exosomes from human saliva and the emerging role of salivary exosomes as potential biomarkers of oral and other systemic diseases. Given the ever-growing role of salivary exosomes, defining their functions and understanding their specific mechanisms will provide novel insights into possible applications of salivary exosomes in the diagnosis and treatment of systemic diseases.
Collapse
Affiliation(s)
- Yineng Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing,100081, China
| | - Lingfei Jia
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing,100081, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing,100081, China
| |
Collapse
|
92
|
de Andrade A, de Oliveira CE, Dourado MR, Macedo C, Winck FV, Paes Leme AF, Salo T, Coletta RD, de Almeida Freitas R, Galvão HC. Extracellular vesicles from oral squamous carcinoma cells display pro- and anti-angiogenic properties. Oral Dis 2018; 24:725-731. [PMID: 28887832 DOI: 10.1111/odi.12765] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/21/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND A new intercellular communication mode established by neoplastic cells and tumor microenvironment components is based on extracellular vesicles (EVs). However, the biological effects of the EVs released by tumor cells on angiogenesis are not completely understood. Here, we aimed to understand the biological effects of EVs isolated from two cell lines of oral squamous cell carcinoma (OSCC) (SCC15 and HSC3) on endothelial cell tubulogenesis. METHODS OSCC-derived EVs were isolated with a polymer-based precipitation method, quantified using nanoparticle tracking analysis and verified for EV markers by dot blot. Functional assays were performed to assess the angiogenic potential of the OSCC-derived EVs. RESULTS The results showed that EVs derived from both cell lines displayed typical spherical-shaped morphology and expressed the EV markers CD63 and Annexin II. Although the average particle concentration and size were quite similar, SCC15-derived EVs promoted a pronounced tubular formation associated with significant migration and apoptosis rates of the endothelial cells, whereas EVs derived from HSC3 cells inhibited significantly endothelial cell tubulogenesis and proliferation. CONCLUSION The findings of this study reveal that EVs derived from different OSCC cell lines by a polymer-based precipitation method promote pro- or anti-angiogenic effects.
Collapse
Affiliation(s)
- Aldl de Andrade
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - C E de Oliveira
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - M R Dourado
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - Ccs Macedo
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - F V Winck
- Mass Spectrometry Laboratory, Biosciences National Laboratory, LNBio, CNPEM, Campinas, Brazil
| | - A F Paes Leme
- Mass Spectrometry Laboratory, Biosciences National Laboratory, LNBio, CNPEM, Campinas, Brazil
| | - T Salo
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, Brazil.,Unit of Cancer Research and Translational Medicine, Faculty of Medicine, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Department of Pathology, Institute of Oral and Maxillofacial Disease, HUSLAB, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - R D Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - R de Almeida Freitas
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - H C Galvão
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
93
|
Malla RR, Pandrangi S, Kumari S, Gavara MM, Badana AK. Exosomal tetraspanins as regulators of cancer progression and metastasis and novel diagnostic markers. Asia Pac J Clin Oncol 2018; 14:383-391. [PMID: 29575602 DOI: 10.1111/ajco.12869] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/12/2018] [Indexed: 12/19/2022]
Abstract
Exosomes are cell-cell communicators emerging as a new paradigm for noninvasive diagnosis and prognosis of treatment response. Exosomal tetraspanin proteins like CD63, CD9 and CD81 play a critical role in sorting, selective recruitment of biomolecules, target selection, cell-specific entry, capturing, angiogenesis and vasculogenesis. These tetraspanins are being used as markers for oral, colorectal and colon cancers and glioblastoma. However, exosomal markers with robust specificity for early detection of carcinomas are the furthest along. EXO CARTA database shows the presence of CD151 in exosomes of colorectal, melanoma, ovarian and prostate cancers. CD151 preferentially targets exosomes to lung, lymph node and stroma cells. The present review discussed the possible role of tetraspanins in the formation, cargo selection, target selection and uptake of exosomes and suggests exciting new directions for future research.
Collapse
Affiliation(s)
- Rama Rao Malla
- Department of Biochemistry, Cancer Biology Lab, Institute of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be university), Visakhapatnam, India
| | - Santhi Pandrangi
- Department of Biochemistry, Cancer Biology Lab, Institute of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be university), Visakhapatnam, India
| | - Seema Kumari
- Department of Biochemistry, Cancer Biology Lab, Institute of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be university), Visakhapatnam, India
| | - Murali Mohan Gavara
- Department of Biochemistry, Cancer Biology Lab, Institute of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be university), Visakhapatnam, India
| | - Anil Kumar Badana
- Department of Biochemistry, Cancer Biology Lab, Institute of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be university), Visakhapatnam, India
| |
Collapse
|
94
|
Peng Y, Baulier E, Ke Y, Young A, Ahmedli NB, Schwartz SD, Farber DB. Human embryonic stem cells extracellular vesicles and their effects on immortalized human retinal Müller cells. PLoS One 2018; 13:e0194004. [PMID: 29538408 PMCID: PMC5851617 DOI: 10.1371/journal.pone.0194004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/22/2018] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) released by virtually every cell of all organisms are involved in processes of intercellular communication through the delivery of their functional mRNAs, proteins and bioactive lipids. We previously demonstrated that mouse embryonic stem cell-released EVs (mESEVs) are able to transfer their content to different target retinal cells, inducing morphological and biochemical changes in them. The main objective of this paper is to characterize EVs derived from human embryonic stem cells (hESEVs) and investigate the effects that they have on cultured retinal glial, progenitor Müller cells, which are known to give rise to retinal neurons under specific conditions. This would allow us to establish if hESEVs have a pro-regenerative potential not yet described that could be used in the future for treatment of human retinal degenerative diseases. Initially, we showed that hESEVs are heterogeneous in size, contain mRNAs and proteins involved in the induction and maintenance of stem cell pluripotency and can be internalized by cultured Müller cells. After a single exposure to hESEVs these cells display changes in their gene expression profile, and with multiple exposures they de-differentiate and trans-differentiate into retinal neuronal precursors. hESEVs were then fractionated into microvesicles (MVs) and exosomes (EXOs), which were characterized by size, specific surface proteins and biochemical/molecular components. We demonstrate that despite the similar internalization of non-fractionated hESEVs, MVs and EXOs by Müller progenitor cells, in vitro, only the release of MVs' cargo into the cells' cytoplasm induces specific changes in their levels of pluripotency mRNAs and early retinal proteins. EXOs do not produce any detectable effect. Thus, we conclude that MVs and MVs-containing hESEVs are promising agents that possibly could promote the regeneration of diseased or damaged retinas in vivo through inducing glial Müller cells to become replacement neurons.
Collapse
Affiliation(s)
- Yingqian Peng
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Edouard Baulier
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Yifeng Ke
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Alejandra Young
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Novruz B. Ahmedli
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Steven D. Schwartz
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Debora B. Farber
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
- Molecular Biology Institute, UCLA, Los Angeles, CA, United States of America
- Brain Research Institute, UCLA, Los Angeles, CA, United States of America
| |
Collapse
|
95
|
Wu P, Zhang B, Shi H, Qian H, Xu W. MSC-exosome: A novel cell-free therapy for cutaneous regeneration. Cytotherapy 2018; 20:291-301. [DOI: 10.1016/j.jcyt.2017.11.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/22/2017] [Accepted: 11/01/2017] [Indexed: 02/08/2023]
|
96
|
Shao Y, Shen Y, Chen T, Xu F, Chen X, Zheng S. The functions and clinical applications of tumor-derived exosomes. Oncotarget 2018; 7:60736-60751. [PMID: 27517627 PMCID: PMC5312416 DOI: 10.18632/oncotarget.11177] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
Exosomes are extracellular vesicles with diameters ranging from 30 to 150 nm. They can be secreted by all cell types and transfer information in the form of their contents, which include proteins, lipids and nucleic acids, to other cells throughout the body. They have roles in normal physiological processes as well as in disease development. Here, we review recent findings regarding tumor-derived exosomes, including methods for their extraction and preservation. We also describe the actions of exosomes in tumorigenesis. The exosomal antigen-presenting effect during antitumor immune responses and its suppressive function in immune tolerance are discussed. Finally, we describe the potential application of exosomes to cancer therapy and liquid biopsy.
Collapse
Affiliation(s)
- Yingkuan Shao
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanwei Shen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Xu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuewen Chen
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
97
|
Chiodi I, Scovassi AI, Mondello C. Circulating Molecular and Cellular Biomarkers in Cancer. TRANSLATIONAL TOXICOLOGY AND THERAPEUTICS: WINDOWS OF DEVELOPMENTAL SUSCEPTIBILITY IN REPRODUCTION AND CANCER 2017:607-656. [DOI: 10.1002/9781119023647.ch16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
98
|
Size-dependent cellular uptake of exosomes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1011-1020. [DOI: 10.1016/j.nano.2016.12.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/15/2016] [Accepted: 12/06/2016] [Indexed: 12/24/2022]
|
99
|
Iwai K, Minamisawa T, Suga K, Yajima Y, Shiba K. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. J Extracell Vesicles 2016; 5:30829. [PMID: 27193612 PMCID: PMC4871899 DOI: 10.3402/jev.v5.30829] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/18/2016] [Accepted: 03/31/2016] [Indexed: 02/06/2023] Open
Abstract
Diagnostic methods that focus on the extracellular vesicles (EVs) present in saliva have been attracting great attention because of their non-invasiveness. EVs contain biomolecules such as proteins, messenger RNA (mRNA) and microRNA (miRNA), which originate from cells that release EVs, making them an ideal source for liquid biopsy. Although there have been many reports on density-based fractionation of EVs from blood and urine, the number of reports on EVs from saliva has been limited, most probably because of the difficulties in separating EVs from viscous saliva using density gradient centrifugation. This article establishes a protocol for the isolation of EVs from human saliva using density gradient centrifugation. The fractionated salivary EVs were characterized by atomic force microscopy, western blot and reverse transcription polymerase chain reaction. The results indicate that salivary EVs have a smaller diameter (47.8±12.3 nm) and higher density (1.11 g/ml) than EVs isolated from conditioned cell media (74.0±23.5 nm and 1.06 g/ml, respectively). Additionally, to improve the throughput of density-based fractionation of EVs, the original protocol was further modified by using a fixed angle rotor instead of a swinging rotor. It was also confirmed that several miRNAs were expressed strongly in the EV-marker-expressing fractions.
Collapse
Affiliation(s)
- Kazuya Iwai
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Oral and Maxillofacial Implantology, Tokyo Dental College, Tokyo, Japan
| | - Tamiko Minamisawa
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kanako Suga
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yasutomo Yajima
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, Tokyo, Japan
| | - Kiyotaka Shiba
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan;
| |
Collapse
|
100
|
Yang H, Fu H, Xu W, Zhang X. Exosomal non-coding RNAs: a promising cancer biomarker. ACTA ACUST UNITED AC 2016; 54:1871-1879. [DOI: 10.1515/cclm-2016-0029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/18/2016] [Indexed: 12/13/2022]
Abstract
AbstractNovel and non-invasive biomarkers are urgently needed for early detection of cancer. Exosomes are nano-sized particles released by cells and contain various bioactive molecules including proteins, DNA, mRNAs, and non-coding RNAs. Increasing evidence suggests that exosomes play critical roles in tumorigenesis, tumor growth, metastasis, and therapy resistance. Exosomes could be readily accessible in nearly all the body fluids. The altered production of exosomes and aberrant expression of exosomal contents could reflect the pathological state of the body, indicating that exosomes and exosomal contents can be utilized as novel cancer biomarkers. Herein, we review the basic properties of exosomes, the functional roles of exosomes in cancer, and the methods of detecting exosomes and exosomal contents. In particular, we highlight the clinical values of exosomal non-coding RNAs in cancer diagnosis and prognosis.
Collapse
|