51
|
Baltazar M, Oppolzer D, Carvalho A, Gouvinhas I, Ferreira L, Barros A, Lima-Brito J. Hydropriming and Nutripriming of Bread Wheat Seeds Improved the Flour's Nutritional Value of the First Unprimed Offspring. PLANTS (BASEL, SWITZERLAND) 2023; 12:240. [PMID: 36678954 PMCID: PMC9862027 DOI: 10.3390/plants12020240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/18/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Seed hydropriming or nutripriming has been used for wheat biofortification. Previously, the untreated S1 offspring of bread wheat S0 seeds hydro- and nutriprimed with FeSO4.7H2O and/or ZnSO4.7H2O showed improved yield relative to the offspring of untreated S0 seeds. We hypothesize that such improvement would have its origin in the higher quality of S1 seeds resulting from plants whose seeds were primed. In this work, we characterised biochemically the whole-wheat flour of unprimed S1 offspring whose S0 seeds were hydro- and nutriprimed with Fe and/or Zn and compared it to the offspring of untreated S0 seeds (control). We identified and quantified 16 free amino acids and five soluble sugars per offspring using high-performance liquid chromatography and the Association of Official Analytical Chemists (AOAC) methods. The most abundant amino acids were glutamic acid and glutamine, proline, and glycine, presenting their highest contents in the offspring of seeds nutriprimed with 8 ppm Zn (0.351 mmol∙g-1), 8 ppm Fe + 8 ppm Zn (0.199 mmol∙g-1), and (0.135 mmol∙g-1), respectively. The highest contents of glucose (1.91 mg∙g-1 sample), ash (24.90 g∙kg-1 dry matter, DM), and crude protein (209.70 g∙kg-1 DM) were presented by the offspring resulting from 4 ppm Fe + 4 ppm Zn, 8 ppm Zn, and 8 ppm Fe + 8 ppm Zn, respectively. The highest total starch content (630.10 g∙kg-1 DM) was detected in the offspring of seeds soaked in 8 ppm Fe. The nutritional value of the flour of the S1 offspring resulting from nutripriming was significantly higher than the control. Overall, the novelty of our research is that seed priming can improve the quality of the wheat grain and flour, at least till the first offspring, without the need to repeat the presowing treatment. Beyond the study of subsequent generations, the unravelling of transgenerational mechanisms underlying the biochemical improvement of the offspring is approached.
Collapse
Affiliation(s)
- Miguel Baltazar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - David Oppolzer
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Carvalho
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- Plant Cytogenomics Laboratory, Department of Genetics and Biotechnology, Ed. Blocos Laboratoriais, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Irene Gouvinhas
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Luis Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Zootechnics, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Agronomy, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - José Lima-Brito
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- Plant Cytogenomics Laboratory, Department of Genetics and Biotechnology, Ed. Blocos Laboratoriais, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
52
|
Mikula K, Konieczka M, Taf R, Skrzypczak D, Izydorczyk G, Moustakas K, Kułażyński M, Chojnacka K, Witek-Krowiak A. Tannery waste as a renewable source of nitrogen for production of multicomponent fertilizers with biostimulating properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8759-8777. [PMID: 35589903 DOI: 10.1007/s11356-022-20621-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
The studies presented in this work show that solid tannery waste-like shavings can be used as high-protein materials for fertilizer production following the concept of the circular economy. To select appropriate process parameters (mass ratio of shavings meal to the hydrolyzing agent (S:L), hydrolysis medium concentration, temperature) and to ensure the highest possible hydrolysis efficiency, it is useful to apply the well-known response surface methodology (RSM). The analyses revealed that chromium shavings (SCr) were most preferably treated with 10% KOH in a ratio of S:L 1:1 with the process being carried out at 160 °C (6.59% N). The optimal hydrolysis conditions for non-chromium (S) shavings were: S:L ratio 1:2, 10% H2SO4, and temperature 160 °C (4.08% N). Chromium concentrations in hydrolysates from S and SCr shavings obtained under optimal conditions were 15.2 mg/kg and 9483 mg/kg, respectively. Hydrolysate samples were analyzed by reversed-phase high-pressure liquid chromatography (RP-HPLC) that revealed that the type of hydrolysis (acidic/alkaline) affects the amino acid profile. Approximately 4.5 times more amino acids were extracted in the KOH environment than during acidic treatment. The hydrolysates contained mainly glycine, alanine, and proline, which are primarily responsible for stimulating plant growth by supporting chlorophyll synthesis, chelating micronutrients, improving pollen fertility, or resistance to low temperatures. The conversion of tannery waste into fertilizer requires the control of contaminant levels, especially chromium, which can oxidize to the carcinogenic form Cr(VI) that is hazardous to humans and the environment.
Collapse
Affiliation(s)
- Katarzyna Mikula
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Lower Silesia, 50-370, Wroclaw, Poland.
| | - Maciej Konieczka
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Lower Silesia, 50-370, Wroclaw, Poland
| | - Rafał Taf
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Lower Silesia, 50-370, Wroclaw, Poland
| | - Dawid Skrzypczak
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Lower Silesia, 50-370, Wroclaw, Poland
| | - Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Lower Silesia, 50-370, Wroclaw, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 IroonPolytechniou StrZographou Campus, 15780, Athens, Greece
| | - Marek Kułażyński
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Lower Silesia, 50-370, Wroclaw, Poland
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Lower Silesia, 50-370, Wroclaw, Poland
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Lower Silesia, 50-370, Wroclaw, Poland
| |
Collapse
|
53
|
Li CZ, Feng YX, Yu XZ. Evaluating the significance of amino acids (AAs) in cyanide-treated rice plants under different nitrogen fertilization using the relative importance index of AA. CHEMOSPHERE 2023; 312:137213. [PMID: 36370756 DOI: 10.1016/j.chemosphere.2022.137213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The biosynthesis of amino acids (AAs) in plants is affected by different nitrogen (N) sources. The effects of exogenous cyanide (KCN) on the concentrations and profiles of AAs in rice seedlings were carried out in the presence of nitrate (+NO3-)/ammonium (+NH4+) or N deficiency (-N). Targeted metabolomics analysis indicated that the highest accumulation of AAs in CN--treated rice seedlings was detected in the "CN-+NH4+" treatments than in other treatments, wherein the doses of exogenous KCN did not significantly affect the total amount of AAs in rice seedlings at the same N fertilized condition. The total content of AAs in rice shoots under "CN-+NH4+" treatments was higher than other treatments, while the total content of AAs in rice roots under "CN-+NO3-" treatments was higher than other treatments. Also, the profiles of 21 AAs in CN--treated rice seedlings showed tissue-specific under different N fertilization. The relative importance index (RII) of AA was used to evaluate the importance of AAs in CN--treated rice seedlings under different N fertilization. The common AAs with higher RII values were compared between three different treatments of KCN (e.g., 0, 1, and 2 mg CN/L). Under "CN-+(-N)" treatments, Ala, Asp, Glu, Val, and Gly (Ala, Gly, Val, and Lys) were the common AAs in rice roots (shoots). Under "CN-+NO3-" treatments, Ala, Glu, Asp, Ser, and Thr (Asp, Ala, Thr, Ser, and Asn) were the common AAs with higher RII values in rice roots (shoots) between all CN- treatments. Under "CN-+NH4+" treatments, Asp, Gln, Asn, and Ala (Asp, Glu, and Thr) were the common AAs with higher RII values in rice roots (shoots) between all CN- treatments. These results suggested that using the RII to describe the change and fluctuation of AAs in rice plants may reflect the different N utilization strategies in response to exogenous CN- exposure.
Collapse
Affiliation(s)
- Cheng-Zhi Li
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yu-Xi Feng
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
54
|
Xie J, Deng B, Wang W, Zhang H. Changes in sugar, organic acid and free amino acid levels and the expression of genes involved in the primary metabolism of oleocellosis in citrus peels. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153877. [PMID: 36436240 DOI: 10.1016/j.jplph.2022.153877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Oleocellosis is a physiological disorder in citrus fruit and causes extensive economic damage due to the surface blemishes it creates. It was reported that oleocellosis always occurs during preharvest maturation and postharvest storage. In the present study, the oleocellosis incidence of Jincheng orange, Navel orange and Ponkan were found to be different during preharvest maturation, however, no differences were found during postharvest storage. Additionally, it was interesting that the outbreak period of oleocellosis incidence was 0-12 d during postharvest storage. Climate change has been reported as a factor promoting oleocellosis development. However, little information is available regarding how primary metabolites and the expression of genes involved in sugar, organic acid and free amino acid metabolism in citrus change to adjust to new environments. Metabolic profiling obtained by gas chromatography-mass spectrometry (GC‒MS) and amino acid analysis showed that the accumulations of fructose, glucose, sucrose, maltose, mannose, citric acid, α-ketoglutarate, 2-keto-d-gluconic acid, glutamate, valine, glycine and threonine might play major roles in adaptation to changes in oleocellosis peels for three types of citrus fruit. However, decreased contents of malic acid, gluconic acid and proline were observed, possibly due to consumption in energy metabolism or reflecting a unique characteristic in this disorder. Regarding gene expression in primary metabolism pathways obtained by high-throughput mRNA sequencing (RNA-Seq) technology, upregulated genes encoding alpha-glucosidase, beta-glucosidase, beta-fructofuranosidase, alpha-amylase, beta-amylase, malate dehydrogenase, CTP synthase (glutamine hydrolysing), serine-glyoxylate transaminase, serine/glycine hydroxymethyltransferase and proline dehydrogenase were the main changes in this disorder.
Collapse
Affiliation(s)
- Jiao Xie
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, PR China; College of Food Science, Food Storage and Logistics Research Center, Southwest University, Chongqing, 400715, PR China.
| | - Bing Deng
- College of Food Science, Food Storage and Logistics Research Center, Southwest University, Chongqing, 400715, PR China
| | - Wenjun Wang
- College of Food Science, Food Storage and Logistics Research Center, Southwest University, Chongqing, 400715, PR China.
| | - Hongyan Zhang
- College of Food Science, Food Storage and Logistics Research Center, Southwest University, Chongqing, 400715, PR China
| |
Collapse
|
55
|
Fusco GM, Burato A, Pentangelo A, Cardarelli M, Nicastro R, Carillo P, Parisi M. Can Microbial Consortium Applications Affect Yield and Quality of Conventionally Managed Processing Tomato? PLANTS (BASEL, SWITZERLAND) 2022; 12:14. [PMID: 36616143 PMCID: PMC9824734 DOI: 10.3390/plants12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Three commercial microbial-based biostimulants containing fungi (arbuscular mycorrhizae and Trichoderma spp.) and other microrganisms (plant growth-promoting bacteria and yeasts) were applied on a processing tomato crop in a two-year field experiment in southern Italy. The effects of the growing season and the microorganism-based treatments on the yield, technological traits and functional quality of the tomato fruits were assessed. The year of cultivation affected yield (with a lower fruit weight, higher marketable to total yield ratio and higher percentage of total defective fruits in 2020) and technological components (higher dry matter, titratable acidity, total soluble solids content in 2020). During the first year of the trial, the consortia-based treatments enhanced the soluble solids content (+10.02%) compared to the untreated tomato plants. The sucrose and lycopene content were affected both by the microbial treatments and the growing season (greater values found in 2021 with respect to 2020). The year factor also significantly affected the metabolite content, except for tyrosine, essential (EAA) and branched-chain amino acids (BCAAs). Over the two years of the field trial, FID-consortium enhanced the content of proteins (+53.71%), alanine (+16.55%), aspartic acid (+31.13%), γ-aminobutyric acid (GABA) (+76.51%), glutamine (+55.17%), glycine (+28.13%), monoethanolamine (MEA) (+19.57%), total amino acids (TAA) (+33.55), EAA (+32.56%) and BCAAs (+45.10%) compared to the control. Our findings highlighted the valuable effect of the FID microbial inoculant in boosting several primary metabolites (proteins and amino acids) in the fruits of the processing tomato crop grown under southern Italian environmental conditions, although no effect on the yield and its components was appreciated.
Collapse
Affiliation(s)
- Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Andrea Burato
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Alfonso Pentangelo
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Mariateresa Cardarelli
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Rosalinda Nicastro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Mario Parisi
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
56
|
Zhao DL, Sun RX, Han XB, Wang M, Zhang XF, Wang XB, Wan J, Liu J, Li YQ, Ma SQ, Zhang CS. Metabolomic and regular analysis reveal phytotoxic mechanisms of sterigmatocystin in Amaranthus retroflexus L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114273. [PMID: 36356529 DOI: 10.1016/j.ecoenv.2022.114273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Sterigmatocystin (STE) is a common hepatotoxic and nephrotoxic contaminant in cereals, however, its phytotoxicity and mechanisms are poorly understood. Here, the phytotoxic mechanisms of STE were investigated via the metabolomics of Amaranthus retroflexus L. A total of 140 and 113 differential metabolites were detected in the leaves and stems, respectively, among which amino acids, lipids, and phenolic compounds were significantly perturbed. Valine, leucine, isoleucine, and lysine biosynthesis were affected by STE. These metabolic responses revealed that STE might be toxic to plants by altering the plasma membrane and inducing oxidative damage, which was verified by measuring the relative electrical conductivity and quantification of reactive oxygen species. The elevated amino acids, as well as the decreased of D-sedoheptuiose-7-phosphate indicated increased proteolysis and carbohydrate metabolism restriction. Furthermore, the IAA level also decreased. This study provides a better understanding of the impacts of STE on the public health, environment and food security.
Collapse
Affiliation(s)
- Dong-Lin Zhao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Rui-Xue Sun
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiao-Bin Han
- Zunyi Branch, Guizhou Tobacco Company, Zunyi 563000, China
| | - Mei Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xi-Fen Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xian-Bo Wang
- Zunyi Branch, Guizhou Tobacco Company, Zunyi 563000, China
| | - Jun Wan
- Zunyi Branch, Guizhou Tobacco Company, Zunyi 563000, China
| | - Jing Liu
- Zunyi Branch, Guizhou Tobacco Company, Zunyi 563000, China
| | - Yi-Qiang Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Si-Qi Ma
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Cheng-Sheng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
57
|
Xu N, Wu Z, Li X, Yang M, Han J, Lu B, Lu B, Wang J. Effects of nicosulfuron on plant growth and sugar metabolism in sweet maize (Zea mays L.). PLoS One 2022; 17:e0276606. [PMID: 36269745 PMCID: PMC9586374 DOI: 10.1371/journal.pone.0276606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
The sulfonylurea herbicide nicosulfuron is efficient, harmless and selective at low doses and has been widely used in maize cultivation. In this study, a pair of corn sister lines, HK301 (nicosulfuron-tolerence, NT) and HK320 (nicosulfuron-sensitive, NS), was chosen to study the effect of nicosulfuron on plant growth and sugar metabolism in sweet maize (Zea mays L.) seedlings. All the experimental samples were subjected to treatment with water or 80 mg kg–1 of nicosulfuron when the sweet maize seedlings grew to the four-leaf stage. Nicosulfuron significantly inhibited the growth of NS line. The content of sucrose and the activities of sucrose phosphate synthase and sucrose synthase in the two inbred lines increased differentially under nicosulfuron stress compared with the respective control treatment. After nicosulfuron treatment, the activities of hexokinase and 6-phosphofructokinase and the contents of pyruvic acid and citric acid in NS line decreased significantly compared with those of NT line, while the content of sucrose and activities of sucrose phosphate synthase and sucrose synthase increased significantly. The disruption of sugar metabolism in NS line led to a lower supply of energy for growth. This study showed that the glycolysis pathway and the tricarboxylic acid cycle were enhanced in nicosulfuron-tolerant line under nicosulfuron stress in enhancing the adaptability of sweet maize.
Collapse
Affiliation(s)
- Ningwei Xu
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, China
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, China
| | - Zhenxing Wu
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, China
| | - Xiangling Li
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, China
| | - Min Yang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, China
| | - Jinling Han
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, China
| | - Bin Lu
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, China
| | - Bingshe Lu
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, China
- * E-mail: (BL); (JW)
| | - Jian Wang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, China
- * E-mail: (BL); (JW)
| |
Collapse
|
58
|
Jumpa T, Beckles DM, Songsri P, Pattanagul K, Pattanagul W. Physiological and Metabolic Responses of Gac Leaf ( Momordica cochinchinensis (Lour.) Spreng.) to Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:2447. [PMID: 36235312 PMCID: PMC9572180 DOI: 10.3390/plants11192447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Gac is a carotenoid-rich, healthful tropical fruit; however, its productivity is limited by soil salinity, a growing environmental stress. This study aimed to evaluate the effects of salinity stress on key physiological traits and metabolites in 30-day-old gac seedling leaves, treated with 0, 25-, 50-, 100-, and 150-mM sodium chloride (NaCl) for four weeks to identify potential alarm, acclimatory, and exhaustion responses. Electrolyte leakage increased with increasing NaCl concentrations (p < 0.05) indicating loss of membrane permeability and conditions that lead to reactive oxygen species production. At 25 and 50 mM NaCl, superoxide dismutase (SOD) activity, starch content, and total soluble sugar increased. Chlorophyll a, and total chlorophyll increased at 25 mM NaCl but decreased at higher NaCl concentrations indicating salinity-induced thylakoid membrane degradation and chlorophyllase activity. Catalase (CAT) activity decreased (p < 0.05) at all NaCl treatments, while ascorbate peroxidase (APX) and guaiacol peroxidase (GPX) activities were highest at 150 mM NaCl. GC-MS-metabolite profiling showed that 150 mM NaCl induced the largest changes in metabolites and was thus distinct. Thirteen pathways and 7.73% of metabolites differed between the control and all the salt-treated seedlings. Salinity decreased TCA cycle intermediates, and there were less sugars for growth but more for osmoprotection, with the latter augmented by increased amino acids. Although 150 mM NaCl level decreased SOD activity, the APX and GPX enzymes were still active, and some carbohydrates and metabolites also accumulated to promote salinity resistance via multiple mechanisms.
Collapse
Affiliation(s)
- Thitiwan Jumpa
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Diane M. Beckles
- Department of Plant Sciences, University of California, Davis, CA 95615, USA
| | - Patcharin Songsri
- Department of Plant Sciences and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kunlaya Pattanagul
- Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wattana Pattanagul
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
59
|
Huang W, Han S, Wang L, Li W. Carbon and nitrogen metabolic regulation in freshwater plant Ottelia alismoides in response to carbon limitation: A metabolite perspective. FRONTIERS IN PLANT SCIENCE 2022; 13:962622. [PMID: 36186073 PMCID: PMC9522611 DOI: 10.3389/fpls.2022.962622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Carbon and nitrogen metabolism are basic, but pivotal metabolic pathways in plants and are tightly coupled. Maintaining the balance of carbon and nitrogen metabolism is critical for plant survival. Comprehensively revealing the metabolic balance of carbon-nitrogen interactions is important and helpful for understanding the adaptation of freshwater plants to CO2 limited aqueous environment. A comprehensive metabolomics analysis combined with physiological measurement was performed in the freshwater plant Ottelia alismoides acclimated to high and low CO2, respectively, for a better understanding of how the carbon and nitrogen metabolic adjustment in freshwater plants respond to carbon limitation. The present results showed that low CO2 acclimated O. alismoides exhibited significant diurnal titratable acidity and malate fluctuations, as well as an opposite diel pattern of starch change and high enzymatic activities required for crassulacean acid metabolism (CAM) photosynthesis, which indicates that CAM was induced under low CO2. Moreover, the metabolomic analysis showed that most intermediates of glycolysis, pentose phosphate pathway (PPP) and tricarboxylic acid (TCA) cycle, were increased under low CO2, indicative of active respiration in low-CO2-treated O. alismoides. Meanwhile, the majority of amino acids involved in pathways of glutamate and arginine metabolism, aspartate metabolism, and the branched-chain amino acids (BCAAs) metabolism were significantly increased under low CO2. Notably, γ-aminobutyric acid (GABA) level was significantly higher in low CO2 conditions, indicating a typical response with GABA shunt compensated for energy deprivation at low CO2. Taken together, we conclude that in low-CO2-stressed O. alismoides, CAM photosynthesis was induced, leading to higher carbon and nitrogen as well as energy requirements. Correspondingly, the respiration was greatly fueled via numerous starch degradation to ensure CO2 fixation in dark, while accompanied by linked promoted N metabolism, presumably to produce energy and alternative carbon sources and nitrogenous substances for supporting the operation of CAM and enhancing tolerance for carbon limitation. This study not only helps to elucidate the regulating interaction between C and N metabolism to adapt to different CO2 but also provides novel insights into the effects of CO2 variation on the metabolic profiling of O. alismoides.
Collapse
Affiliation(s)
- Wenmin Huang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Shijuan Han
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Liyuan Wang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Research Center for Ecology, College of Science, Tibet University, Lhasa, Tibet, China
| |
Collapse
|
60
|
Nikitashina V, Stettin D, Pohnert G. Metabolic adaptation of diatoms to hypersalinity. PHYTOCHEMISTRY 2022; 201:113267. [PMID: 35671808 DOI: 10.1016/j.phytochem.2022.113267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Microalgae are important primary producers and form the basis for the marine food web. As global climate changes, so do salinity levels that algae are exposed to. A metabolic response of algal cells partly alleviates the resulting osmotic stress. Some metabolites involved in the response are well studied, but the full metabolic implications of adaptation remain unclear. Improved analytical methodology provides an opportunity for additional insight. We can now follow responses to stress in major parts of the metabolome and derive comprehensive charts of the resulting metabolic re-wiring. In this study, we subjected three species of diatoms to high salinity conditions and compared their metabolome to controls in an untargeted manner. The three well-investigated species with sequenced genomes Phaeodactylum tricornutum, Thalassiosira pseudonana, and Skeletonema marinoi were selected for our survey. The microalgae react to salinity stress with common adaptations in the metabolome by amino acid up-regulation, production of saccharides, and inositols. But also species-specific dysregulation of metabolites is common. Several metabolites previously not connected with osmotic stress reactions are identified, including 4-hydroxyproline, pipecolinic acid, myo-inositol, threonic acid, and acylcarnitines. This expands our knowledge about osmoadaptation and calls for further functional characterization of metabolites and pathways in algal stress physiology.
Collapse
Affiliation(s)
- Vera Nikitashina
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Daniel Stettin
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
61
|
Zhang G, Yan Y, Zeng X, Wang Y, Zhang Y. Quantitative Proteomics Analysis Reveals Proteins Associated with High Melatonin Content in Barley Seeds under NaCl-Induced Salt Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8492-8510. [PMID: 35759742 DOI: 10.1021/acs.jafc.2c00466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soil salinization limits hull-less barley cultivation in the Qinghai-Tibet Plateau of China. However, some wild hull-less barley seeds accumulate high melatonin (MEL) during germination with improved salt tolerance; but the mechanism of melatonin-mediated salt tolerance in hull-less barley is not well understood at the protein level. This study investigated proteome changes resulting in high melatonin content in germinating hull-less barley seeds under high saline conditions. The proteome profiles of seed treatment with 240 mM-NaCl (N), water (H), and control (C) taken 7 days after germination were compared using the TMT-based quantitative proteomics. Our results indicate that salt stress-induced global changes in the proteomes of germinating hull-less barley seeds, altering the expression and abundance of proteins related to cell cycle and control, carbohydrate and energy metabolism, and amino acid transport and metabolism including proteins related to melatonin production. Furthermore, proteins associated with cellular redox homeostasis, osmotic stress response, and secondary metabolites derived primarily from amino acid metabolism, purine degradation, and shikimate pathways increased significantly in abundance and may contribute to the high melatonin content in seeds under salt stress. Consequently, triggering the robust response to oxidative stress occasioned by the NaCl-induced salt stress, improved seed germination and strong adaptation to salt stress.
Collapse
Affiliation(s)
- Guoqiang Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yingying Yan
- Institute of Agricultural Products Processing & Food Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Xingquan Zeng
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yulin Wang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yuhong Zhang
- Institute of Agricultural Products Processing & Food Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| |
Collapse
|
62
|
Da Costa MVJ, Ramegowda V, Ramakrishnan P, Nataraja KN, Sheshshayee MS. Comparative metabolite profiling of rice contrasts reveal combined drought and heat stress signatures in flag leaf and spikelets. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111262. [PMID: 35643604 DOI: 10.1016/j.plantsci.2022.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/04/2022] [Accepted: 03/19/2022] [Indexed: 06/15/2023]
Abstract
Under semi-irrigated ecosystem, rice is often exposed to a combination of drought and heat stress, especially at the reproductive stage, leading to substantial yield loss. Combined stress studies are very limited in rice partly due to the difficulty in creating heat stress on a larger scale. Here, 24 cultivars with specific stress adaptive traits were phenotyped for spikelet sterility under combined stress using the natural summer temperatures and open drought phenotyping facility, simulating the field conditions. LC-MS/MS based metabolite profiling was performed in flag leaves and spikelets of three cultivars contrasting for spikelet sterility and source (leaf weight) treated to drought, heat and combined stress. Constitutively regulated metabolites, metabolic signatures common to all stresses, cultivars and tissues, metabolites common to both the tissues across the stresses and cultivars and metabolites common to each cultivar across the tissues and stresses were identified. Under combined stress, metabolites differentially accumulated between cultivars contrasting for spikelet sterility but similar for source and cultivars contrasting for both spikelet sterility and source have been identified. These metabolites would serve as markers towards improving combined stress tolerance of rice.
Collapse
Affiliation(s)
| | - Venkategowda Ramegowda
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560065 India.
| | - Padma Ramakrishnan
- Metabolomics Facility, Centre for Cellular and Molecular Platforms, GKVK, Bangalore 560065 India
| | - Karaba N Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560065 India
| | - M Sreeman Sheshshayee
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560065 India
| |
Collapse
|
63
|
Hejri S, Salimi A, Ali Malboobi M, Fatehi F, Yousefiara M. Investigation of Possible Changes Induced by RNA Silencing in Some Leaf Metabolites of Transgenic Sugar Beet Events. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 4:100073. [PMID: 35415694 PMCID: PMC8991520 DOI: 10.1016/j.fochms.2022.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/13/2021] [Accepted: 01/07/2022] [Indexed: 11/27/2022]
Abstract
Metabolite contents of transgenic sugar beets, S3 and S6, resistant to rhizomania through RNA silencing mechanism, were compared to wild type plant as a part of a risk assessment study. The alteration of S6 transgenic sugar beet metabolites was low and probably due to micro-environmental or natural individual differences. The alteration of S3 transgenic sugar beet metabolites were significant but still within the natural range and, also, beneficial because of high contents of some amino acids, especially essential ones.
Sugar beet is vulnerable to rhizomania as the most destructive viral disease. Two selected events of transgenic sugar beet carrying cassettes inducing RNA silencing mechanism, 219-T3:S3-13.2 (S3) and 6018-T3:S6-44 (S6), were shown to inhibit propagation of Beet Necrotic Yellow Vein Virus, the causative agent. As a method for signifying the substantial equivalence, we analyzed the levels of some metabolites through LC-MS in order to demonstrate possible unintended changes in the leaves of the transgenic events. There was no significant difference in the concentrations of examined key metabolites but cis-aconitate and fructose-1,6-bisphosphatase which were decreased in S3. Also, ATP was reduced in both genetically modified sugar beets. Among free amino acids, only glycine level in S6 was increased compared to the wild plant, while the production levels of 5 and 12 ones were increased in S3 compared to S6 event and the wild type plants, respectively.
Collapse
|
64
|
Xu Y, Fu X. Reprogramming of Plant Central Metabolism in Response to Abiotic Stresses: A Metabolomics View. Int J Mol Sci 2022; 23:5716. [PMID: 35628526 PMCID: PMC9143615 DOI: 10.3390/ijms23105716] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Abiotic stresses rewire plant central metabolism to maintain metabolic and energy homeostasis. Metabolites involved in the plant central metabolic network serve as a hub for regulating carbon and energy metabolism under various stress conditions. In this review, we introduce recent metabolomics techniques used to investigate the dynamics of metabolic responses to abiotic stresses and analyze the trend of publications in this field. We provide an updated overview of the changing patterns in central metabolic pathways related to the metabolic responses to common stresses, including flooding, drought, cold, heat, and salinity. We extensively review the common and unique metabolic changes in central metabolism in response to major abiotic stresses. Finally, we discuss the challenges and some emerging insights in the future application of metabolomics to study plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xinyu Fu
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
65
|
Li Q, Liu C, Huang C, Wang M, Long T, Liu J, Shi J, Shi J, Li L, He Y, Xu DL. Transcriptome and Metabonomics Analysis Revealed the Molecular Mechanism of Differential Metabolite Production of Dendrobium nobile Under Different Epiphytic Patterns. FRONTIERS IN PLANT SCIENCE 2022; 13:868472. [PMID: 35656012 PMCID: PMC9152433 DOI: 10.3389/fpls.2022.868472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
The cultivation medium of Dendrobium nobile has an effect on the contents of its main medicinal components, but the specific mechanism is still unclear. In this study, the callus, seedlings, rhizomes, and leaves of D. nobile were sequenced for the PacBio SMRT. The 2-year-old stems were selected for the Illumina sequencing and metabolome sequencing to analyze the genetic mechanism of metabolic differences under different epiphytic patterns. As a result, a total of 387 differential genes were obtained, corresponding to 66 differential metabolites. Different epiphytic patterns can induce a series of metabolic changes at the metabolome and transcriptome levels of D. nobile, including flavonoid metabolism, purine metabolism, terpenoid backbone biosynthesis, amino acid metabolism, and alpha-linolenic acid metabolic, and related regulatory genes include ALDH2B7, ADC, EPSPS-1, SHKA, DHAPS-1, GES, ACS1, SAHH, ACS2, CHLP, LOX2, LOX2.3, and CYP74B2. The results showed that the genetic mechanism of D. nobile under various epiphytic patterns was different. In theory, the content of metabolites under the epiphytic patterns of Danxia stone is higher, which is more suitable for field cultivation.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Chaobo Liu
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Ceyin Huang
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Mufei Wang
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Teng Long
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Jingyi Liu
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Junhua Shi
- Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junli Shi
- Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lin Li
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- School of Medicine, Zunyi Medical University, Zunyi, China
| | - De-Lin Xu
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
66
|
Ghasemzadeh N, Iranbakhsh A, Oraghi-Ardebili Z, Saadatmand S, Jahanbakhsh-Godehkahriz S. Cold plasma can alleviate cadmium stress by optimizing growth and yield of wheat (Triticum aestivum L.) through changes in physio-biochemical properties and fatty acid profile. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35897-35907. [PMID: 35064506 DOI: 10.1007/s11356-022-18630-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Cold plasma (CP) application has increasing interest due to its environmental-friendly, high efficient, and low cost aspects to mitigate deletion effects of heavy metals on plants. A pot experiment was carried out to evaluate the CP application on yield, physiological, and fatty acid profile of wheat (Triticum aestivum L.) in a completely randomized design (CRD) with five replicates. Cadmium (Cd) was applied at four levels (0, 50, 100, and 150 μM), and CP were used on germinated seeds at three levels (0, 60, and 120 s) in a hydroponic system. The results showed CP alleviated the Cd accumulation in roots, shoots, and grains. The significant reduction of grain yield (GY) and thousand grain yield (TGY) was observed in plants exposed to 100 and 150 μM compared with the control plants; however, CP improved GY and TGY particularly at severe Cd stress. The minimum chlorophyll (Chl) and relative water content (RWC) were observed in plants exposed in 100 μM Cd and non-CP treatments. Proline increased by Cd stress but decreased with CP in most treatments. Unlike proline, methionine showed significant reduction under Cd stress. The fatty acid profile of wheat represented that severe Cd stress decreased monounsaturated fatty acid (MUFA) but increased polyunsaturated fatty acid (PUFA). Heat map (HM) showed that GY and methionine were the most sensitive traits under treatments of Cd and CP. Totally, we suggest the use of 120 s of CP to mitigate Cd stress on wheat plants.
Collapse
Affiliation(s)
- Nasim Ghasemzadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Sara Saadatmand
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
67
|
Fernández de Simón B, Cadahía E, Aranda I. Aerial and underground organs display specific metabolic strategies to cope with water stress under rising atmospheric CO 2 in Fagus sylvatica L. PHYSIOLOGIA PLANTARUM 2022; 174:e13711. [PMID: 35570621 PMCID: PMC9321914 DOI: 10.1111/ppl.13711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Beech is known to be a moderately drought-sensitive tree species, and future increases in atmospheric concentrations of CO2 ([CO2 ]) could influence its ecological interactions, also with changes at the metabolic level. The metabolome of leaves and roots of drought-stressed beech seedlings grown under two different [CO2 ] (400 (aCO2 ) and 800 (eCO2 ) ppm) was analyzed together with gas exchange parameters and water status. Water stress estimated from predawn leaf water potential (Ψpd ) was similar under both [CO2 ], although eCO2 had a positive impact on net photosynthesis and intrinsic water use efficiency. The aerial and underground organs showed different metabolomes. Leaves mainly stored C metabolites, while those of N and P accumulated differentially in roots. Drought triggered the proline and N-rich amino acids biosynthesis in roots through the activation of arginine and proline pathways. Besides the TCA cycle, polyols and soluble sugar biosynthesis were activated in roots, with no clear pattern seen in the leaves, prioritizing the root functioning as metabolites sink. eCO2 slightly altered this metabolic acclimation to drought, reflecting mitigation of its effect. The leaves showed only minor changes, investing C surplus in secondary metabolites and malic acid. The TCA cycle metabolites and osmotically active substances increased in roots, but many other metabolites decreased as if the water stress was dampened. Above- and belowground plant metabolomes were differentially affected by two drivers of climate change, water scarcity and high [CO2 ], showing different chemical responsiveness that could modulate the tree adaptation to future climatic scenarios.
Collapse
Affiliation(s)
- Brígida Fernández de Simón
- Grupo de Ecología Funcional de Especies ForestalesCentro de Investigacion Forestal (CIFOR‐INIA) CSICMadridSpain
| | - Estrella Cadahía
- Grupo de Ecología Funcional de Especies ForestalesCentro de Investigacion Forestal (CIFOR‐INIA) CSICMadridSpain
| | - Ismael Aranda
- Grupo de Ecología Funcional de Especies ForestalesCentro de Investigacion Forestal (CIFOR‐INIA) CSICMadridSpain
| |
Collapse
|
68
|
Li Z, Cheng B, Liu W, Feng G, Zhao J, Zhang L, Peng Y. Global Metabolites Reprogramming Induced by Spermine Contributing to Salt Tolerance in Creeping Bentgrass. Int J Mol Sci 2022; 23:4472. [PMID: 35562863 PMCID: PMC9104555 DOI: 10.3390/ijms23094472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
Soil salinization has become a serious challenge to modern agriculture worldwide. The purpose of the study was to reveal salt tolerance induced by spermine (Spm) associated with alterations in water and redox homeostasis, photosynthetic performance, and global metabolites reprogramming based on analyses of physiological responses and metabolomics in creeping bentgrass (Agrostis stolonifera). Plants pretreated with or without 0.5 mM Spm were subjected to salt stress induced by NaCl for 25 days in controlled growth chambers. Results showed that a prolonged period of salt stress caused a great deal of sodium (Na) accumulation, water loss, photoinhibition, and oxidative damage to plants. However, exogenous application of Spm significantly improved endogenous spermidine (Spd) and Spm contents, followed by significant enhancement of osmotic adjustment (OA), photosynthesis, and antioxidant capacity in leaves under salt stress. The Spm inhibited salt-induced Na accumulation but did not affect potassium (K) content. The analysis of metabolomics demonstrated that the Spm increased intermediate metabolites of γ-aminobutyric acid (GABA) shunt (GABA, glutamic acid, and alanine) and tricarboxylic acid (TCA) cycle (aconitic acid) under salt stress. In addition, the Spm also up-regulated the accumulation of multiple amino acids (glutamine, valine, isoleucine, methionine, serine, lysine, tyrosine, phenylalanine, and tryptophan), sugars (mannose, fructose, sucrose-6-phosphate, tagatose, and cellobiose), organic acid (gallic acid), and other metabolites (glycerol) in response to salt stress. These metabolites played important roles in OA, energy metabolism, signal transduction, and antioxidant defense under salt stress. More importantly, the Spm enhanced GABA shunt and the TCA cycle for energy supply in leaves. Current findings provide new evidence about the regulatory roles of the Spm in alleviating salt damage to plants associated with global metabolites reprogramming and metabolic homeostasis.
Collapse
Affiliation(s)
- Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (B.C.); (W.L.); (G.F.); (J.Z.)
| | - Bizhen Cheng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (B.C.); (W.L.); (G.F.); (J.Z.)
| | - Wei Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (B.C.); (W.L.); (G.F.); (J.Z.)
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (B.C.); (W.L.); (G.F.); (J.Z.)
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (B.C.); (W.L.); (G.F.); (J.Z.)
| | - Liquan Zhang
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, 49 Xilinguole Road, Hohhot 010020, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (B.C.); (W.L.); (G.F.); (J.Z.)
| |
Collapse
|
69
|
Zeng M, He S, Hao J, Zhao Y, Zheng C. iTRAQ-based proteomic analysis of heteromorphic leaves reveals eco-adaptability of Populus euphratica Oliv. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153644. [PMID: 35219031 DOI: 10.1016/j.jplph.2022.153644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Heterophylly is regard as adaptation to different environments in plant, and Populus euphratica is an important heterophyllous woody plant. However, information on its molecular mechanism in eco-adaptability remains obscure. RESULTS In this research, proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ) technology in lanceolate, ovate, and dentate broad-ovate leaves from adult P. euphratica trees, respectively. Besides, chlorophyll content, net photosynthetic rate, stomatal conductance, transpiration rate and peroxidase activity in these heteromorphic leaves were investigated. A total number of 2,689 proteins were detected in the heteromorphic leaves, of which 56, 73, and 222 differential abundance proteins (DAPs) were determined in ovate/lanceolate, dentate broad-ovate/lanceolate, and dentate broad-ovate/ovate comparison groups. Bioinformatics analysis suggested these altered proteins related to photosynthesis, stress tolerance, respiration and primary metabolism accumulated in dentate broad-ovate and ovate leaves, which were consistent with the results of physiological parameters and Real-time Quantitative PCR experiments. CONCLUSION This research demonstrated the mechanism of the differential abundance proteins in providing an optimal strategy of resource utilization and survival for P. euphratica, that could offer clues for further investigations into eco-adaptability of heterophyllous woody plants.
Collapse
Affiliation(s)
- Ming Zeng
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China; Guangdong Academy of Forestry, Guangzhou, 510520, China.
| | - Shuhang He
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China.
| | - Jianqing Hao
- School of Basic Medical Sciences, Shanxi Medical University, No. 56 Xinjian Nan Lu, Taiyuan, 030001, China.
| | - Yuanyuan Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China.
| | - Caixia Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China.
| |
Collapse
|
70
|
Singh PK, Chakrabarty D, Dwivedi S, Kumar A, Singh SP, Sinam G, Niranjan A, Singh PC, Chatterjee S, Majumdar D, Tiwari M, Tripathi RD. Nitric oxide-mediated alleviation of arsenic stress involving metalloid detoxification and physiological responses in rice (Oryza sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118694. [PMID: 34952182 DOI: 10.1016/j.envpol.2021.118694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 10/29/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Rice is a staple crop, and food chain contamination of arsenic in rice grain possesses a serious health risk to billions of population. Arsenic stress negatively affects the rice growth, yield and quality of the grains. Nitric oxide (NO) is a major signaling molecule that may trigger various cellular responses in plants. The protective role of NO during arsenite (AsIII) stress and its relationship with plant physiological and metabolic responses is not explored in detail. Exogenous NO, supplemented through the roots in the form of sodium nitroprusside, has been shown to provide protection vis-à-vis AsIII toxicity. The NO-mediated variation in physiological traits such as stomatal density, size, chlorophyll content and photosynthetic rate maintained the growth of the rice plant during AsIII stress. Besides, NO exposure also enhanced the lignin content in the root, decreased total arsenic content and maintained the activities of antioxidant isoenzymes to reduce the ROS level essential for protecting from AsIII mediated oxidative damage in rice plants. Further, NO supplementation enhanced the GSH/GSSG ratio and PC/As molar ratio by modulating PC content to reduce arsenic toxicity. Further, NO-mediated modulation of the level of GA, IAA, SA, JA, amino acids and phenolic metabolites during AsIII stress appears to play a central role to cope up with AsIII toxicity. The study highlighted the role of NO in AsIII stress tolerance involving modulation of metalloid detoxification and physiological pathways in rice plants.
Collapse
Affiliation(s)
- Pradyumna Kumar Singh
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debasis Chakrabarty
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjay Dwivedi
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Amit Kumar
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Department of Botany, University of Lucknow, Lucknow, India
| | - Surendra Pratap Singh
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208001, India
| | - Geetgovind Sinam
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Abhishek Niranjan
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Poonam C Singh
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Sandipan Chatterjee
- CSIR-Central Leather Research Institute, RCED-Kolkata, Kolkata, 700046, India
| | - Dipanjali Majumdar
- CSIR-National Environmental Engineering Research Institute, Kolkata Zonal Centre, i-8 Sector C, EKDP, E. M. Bypass, Kolkata, 700108, India
| | - Manish Tiwari
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Rudra Deo Tripathi
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
71
|
Metabolomics Mechanism and Lignin Response to Laxogenin C, a Natural Regulator of Plants Growth. Int J Mol Sci 2022; 23:ijms23062990. [PMID: 35328410 PMCID: PMC8951225 DOI: 10.3390/ijms23062990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Laxogenin C (LGC) is a natural spirostanol deriving from plant hormone which has shown growing regulation similar to those of brassinosteroids. In the present study, LGC showed a promoting effect on tomato seed germination and seedling growth in a dose-dependent manner. We applied LC-MS/MS to investigate metabolome variations in the tomato treated with LGC, which revealed 10 differential metabolites (DMs) related to KEGG metabolites, associated with low and high doses of LGC. Enrichment and pathway mapping based on the KEGG database indicated that LGC regulated expressions of 2-hydroxycinnamic acid and l-phenylalanine to interfere with phenylalanine metabolism and phenylpropanoids biosynthesis. The two pathways are closely related to plant growth and lignin formation. In our further phenotypic verification, LGC was confirmed to affect seedling lignification and related phenylpropanoids, trans-ferulic acid and l-phenylalanine levels. These findings provided a metabolomic aspect on the plant hormone derivates and revealed the affected metabolites. Elucidating their regulation mechanisms can contribute to the development of sustainable agriculture. Further studies on agrichemical development would provide eco-friendly and efficient regulators for plant growth control and quality improvement.
Collapse
|
72
|
Differential response of physiology and metabolic response to drought stress in different sweetpotato cultivars. PLoS One 2022; 17:e0264847. [PMID: 35271628 PMCID: PMC8912141 DOI: 10.1371/journal.pone.0264847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022] Open
Abstract
Sweetpotato (Ipomoea batatas [L.] Lam) is a widely cultivated food crop with generally good adaptability. However, drought stress can cause a significant decline in yield. To reveal the response mechanism of sweetpotato to drought stress, an integrated physiological, proteomic and metabolomic investigation was conducted in leaves of two sweetpotato varieties with differing responses to drought stress, drought-resistant Wanzishu56 (WZ56) and a more sensitive variety, Ningzishu2(NZ2). Physiological analysis showed that the variety with better drought tolerance had superior performance in water retention capacity and photosynthetic efficiency under drought stress. A total of 1140 proteins were identified within the two varieties. Among them, 192 differentially expressed proteins were detected under drought conditions, including 97 that were up-regulated. Functional analysis showed that these up-regulated proteins were primarily involved in photosynthesis, reactive oxygen species metabolism, organonitrogen compound metabolism, and precursor metabolite catabolism and energy generation. All differentially expressed proteins in WZ56 that were involved in photosynthetic and glutathione metabolic processes were up-regulated. Enzyme activity assays were carried out to validate the proteomics data. Moreover, 75 metabolites were found to have a higher expression level in WZ56 than NZ2 under drought stress. The higher concentration of carbohydrates, amino acids, flavonoids and organic acids found in drought-stressed leaves of WZ56 suggested that these metabolites may improve the drought resistance of sweetpotato. This study uncovered specific-proteins and metabolites associated with drought resistance, providing new insights into the molecular mechanisms of drought tolerance in sweetpotato.
Collapse
|
73
|
Decouard B, Bailly M, Rigault M, Marmagne A, Arkoun M, Soulay F, Caïus J, Paysant-Le Roux C, Louahlia S, Jacquard C, Esmaeel Q, Chardon F, Masclaux-Daubresse C, Dellagi A. Genotypic Variation of Nitrogen Use Efficiency and Amino Acid Metabolism in Barley. FRONTIERS IN PLANT SCIENCE 2022; 12:807798. [PMID: 35185958 PMCID: PMC8854266 DOI: 10.3389/fpls.2021.807798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/02/2021] [Indexed: 06/01/2023]
Abstract
Owing to the large genetic diversity of barley and its resilience under harsh environments, this crop is of great value for agroecological transition and the need for reduction of nitrogen (N) fertilizers inputs. In the present work, we investigated the diversity of a North African barley genotype collection in terms of growth under limiting N (LN) or ample N (HN) supply and in terms of physiological traits including amino acid content in young seedlings. We identified a Moroccan variety, Laanaceur, accumulating five times more lysine in its leaves than the others under both N nutritional regimes. Physiological characterization of the barley collection showed the genetic diversity of barley adaptation strategies to LN and highlighted a genotype x environment interaction. In all genotypes, N limitation resulted in global biomass reduction, an increase in C concentration, and a higher resource allocation to the roots, indicating that this organ undergoes important adaptive metabolic activity. The most important diversity concerned leaf nitrogen use efficiency (LNUE), root nitrogen use efficiency (RNUE), root nitrogen uptake efficiency (RNUpE), and leaf nitrogen uptake efficiency (LNUpE). Using LNUE as a target trait reflecting barley capacity to deal with N limitation, this trait was positively correlated with plant nitrogen uptake efficiency (PNUpE) and RNUpE. Based on the LNUE trait, we determined three classes showing high, moderate, or low tolerance to N limitation. The transcriptomic approach showed that signaling, ionic transport, immunity, and stress response were the major functions affected by N supply. A candidate gene encoding the HvNRT2.10 transporter was commonly up-regulated under LN in the three barley genotypes investigated. Genes encoding key enzymes required for lysine biosynthesis in plants, dihydrodipicolinate synthase (DHPS) and the catabolic enzyme, the bifunctional Lys-ketoglutarate reductase/saccharopine dehydrogenase are up-regulated in Laanaceur and likely account for a hyperaccumulation of lysine in this genotype. Our work provides key physiological markers of North African barley response to low N availability in the early developmental stages.
Collapse
Affiliation(s)
- Bérengère Decouard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Marlène Bailly
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Martine Rigault
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Mustapha Arkoun
- Agro Innovation International - Laboratoire Nutrition Végétale, TIMAC AGRO International SAS, Saint Malo, France
| | - Fabienne Soulay
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - José Caïus
- Université Paris-Saclay, CNRS, INRAE, University of Évry Val d′Essonne, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, University of Évry Val d′Essonne, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Said Louahlia
- Natural Resources and Environment Lab, Faculté Polydiscipliniare de Taza, Université Sidi Mohamed Ben Abdellah, Taza, Morocco
| | - Cédric Jacquard
- Université de Reims Champagne Ardenne, RIBP EA 4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, RIBP EA 4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Alia Dellagi
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
74
|
Mishra M, Rathore RS, Singla‐Pareek SL, Pareek A. High lysine and high protein‐containing salinity‐tolerant rice grains (
Oryza sativa cv
IR64). Food Energy Secur 2022. [DOI: 10.1002/fes3.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Manjari Mishra
- Stress Physiology and Molecular Biology Laboratory School of Life Sciences Jawaharlal Nehru University New Delhi India
| | - Ray Singh Rathore
- Plant Stress Biology Laboratory International Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Sneh L Singla‐Pareek
- Plant Stress Biology Laboratory International Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory School of Life Sciences Jawaharlal Nehru University New Delhi India
- National Agri‐Food Biotechnology Institute Punjab India
| |
Collapse
|
75
|
Xu L, Li Z, Zhuang B, Zhou F, Li Z, Pan X, Xi H, Zhao W, Liu H. Enrofloxacin perturbs nitrogen transformation and assimilation in rice seedlings (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149900. [PMID: 34525725 DOI: 10.1016/j.scitotenv.2021.149900] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
The extensive use of antibiotics worldwide has led to phytotoxicity and high risks to humans. Although research on the physiological toxicity of antibiotics is extensive, its influence on plant nitrogen uptake and assimilation remains unclear. The effect of enrofloxacin on nitrogen transformation and assimilation in rice (Oryza sativa L.) seedlings was investigated in this study. Enrofloxacin had no significant effect on rice growth, nitrogen assimilation and metabolism at low concentration, while significant changes were observed in high concentration. The growth of rice seedlings was inhibited, nitrate uptake was enhanced and nitrogen content increased significantly in both shoots and roots in enrofloxacin (800 μg L-1) treatment. Furthermore, enrofloxacin promoted the activity of enzymes related to nitrogen assimilation, including nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase. High enzyme activity resulted in an increase in intermediate products and protein content, suggesting that rice seedlings may detoxify enrofloxacin stress through amino acid binding and nitro-oxidative stress might be one of the reasons of phenotype change. Gas chromatography-mass spectrometry results revealed that different types of metabolites in both shoots and roots increased with enrofloxacin stress. Specifically, glycine, serine, and threonine metabolism; aminoacyl-tRNA biosynthesis; alanine, aspartate, and glutamate metabolism; butanoate metabolism; glyoxylate and dicarboxylate metabolism in shoot; and tyrosine metabolism and citrate cycle in root were affected. Moreover, a significant correlation between nitrogen content, nitrogen assimilation enzyme activity, and metabolite content was observed. Collectively, these findings reveal the potential risks of using reclaimed wastewater irrigation and/or antibiotic-containing animal fertilizers on crops.
Collapse
Affiliation(s)
- Linglin Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Biyan Zhuang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Fumin Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zejun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Xiaoru Pan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Hao Xi
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
76
|
Lo E, Arora N, Philippidis GP. Deciphering metabolic alterations in algae cultivated in spent media as means for enhancing algal biorefinery sustainability. BIORESOURCE TECHNOLOGY 2021; 342:125890. [PMID: 34543816 DOI: 10.1016/j.biortech.2021.125890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The recycling of unfiltered spent media during cultivation of Chlorella vulgaris was studied using metabolomics in an effort to enhance water and nutrient sustainability and reduce operating costs in algal biorefineries. Cultivation in spent media resulted in reduced biomass and lipid productivity by 14% and 19%, respectively, compared to fresh media. The decrease was related to a detected lower nutrient uptake. Nevertheless, carbohydrate content (28% of dry cell weight) and α-linolenic acid content (27 % of fatty acids) were higher in spent media cultures than in fresh media. Metabolomics analysis of intracellular metabolites revealed downregulation of nitrogen assimilation, tricarboxylic acid cycle, structural lipids, and energy metabolism, but upregulation of stress mitigation and carbohydrate synthesis. No growth was supported by spent media during a second cultivation cycle and was likely due to the identified extracellular accumulation of humic acid and free fatty acids that acted as growth auto-inhibitors.
Collapse
Affiliation(s)
- Enlin Lo
- Department of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL, USA; Patel College of Global Sustainability, University of South Florida, Tampa, FL, USA
| | - Neha Arora
- Patel College of Global Sustainability, University of South Florida, Tampa, FL, USA
| | - George P Philippidis
- Patel College of Global Sustainability, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
77
|
Defective cytokinin signaling reprograms lipid and flavonoid gene-to-metabolite networks to mitigate high salinity in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2105021118. [PMID: 34815339 PMCID: PMC8640937 DOI: 10.1073/pnas.2105021118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
Cytokinin (CK) in plants regulates both developmental processes and adaptation to environmental stresses. Arabidopsis histidine phosphotransfer ahp2,3,5 and type-B Arabidopsis response regulator arr1,10,12 triple mutants are almost completely defective in CK signaling, and the ahp2,3,5 mutant was reported to be salt tolerant. Here, we demonstrate that the arr1,10,12 mutant is also more tolerant to salt stress than wild-type (WT) plants. A comprehensive metabolite profiling coupled with transcriptome analysis of the ahp2,3,5 and arr1,10,12 mutants was conducted to elucidate the salt tolerance mechanisms mediated by CK signaling. Numerous primary (e.g., sugars, amino acids, and lipids) and secondary (e.g., flavonoids and sterols) metabolites accumulated in these mutants under nonsaline and saline conditions, suggesting that both prestress and poststress accumulations of stress-related metabolites contribute to improved salt tolerance in CK-signaling mutants. Specifically, the levels of sugars (e.g., trehalose and galactinol), amino acids (e.g., branched-chain amino acids and γ-aminobutyric acid), anthocyanins, sterols, and unsaturated triacylglycerols were higher in the mutant plants than in WT plants. Notably, the reprograming of flavonoid and lipid pools was highly coordinated and concomitant with the changes in transcriptional levels, indicating that these metabolic pathways are transcriptionally regulated by CK signaling. The discovery of the regulatory role of CK signaling on membrane lipid reprogramming provides a greater understanding of CK-mediated salt tolerance in plants. This knowledge will contribute to the development of salt-tolerant crops with the ability to withstand salinity as a key driver to ensure global food security in the era of climate crisis.
Collapse
|
78
|
Zhou J, Tian L, Wang S, Li H, Zhao Y, Zhang M, Wang X, An P, Li C. Ovary Abortion Induced by Combined Waterlogging and Shading Stress at the Flowering Stage Involves Amino Acids and Flavonoid Metabolism in Maize. FRONTIERS IN PLANT SCIENCE 2021; 12:778717. [PMID: 34887895 PMCID: PMC8649655 DOI: 10.3389/fpls.2021.778717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 05/26/2023]
Abstract
Maize (Zea mays L.) crops on the North China Plain are often subject to continuous overcast rain at the flowering stage. This causes waterlogging and shading stresses simultaneously and leads to huge yield losses, but the causes of these yield losses remain largely unknown. To explore the factors contributing to yield loss caused by combined waterlogging and shading stress at the flowering stage, we performed phenotypic, physiological, and quasi-targeted metabolomics analyses of maize plants subjected to waterlogging, shading, and combined waterlogging and shading (WS) treatments. Analyses of phenotypic and physiological indexes showed that, compared with waterlogging or shading alone, WS resulted in lower source strength, more severe inhibition of ovary and silk growth at the ear tip, a reduced number of emerged silks, and a higher rate of ovary abortion. Changes in carbon content and enzyme activity could not explain the ovary abortion in our study. Metabolomic analyses showed that the events occurred in ovaries and silks were closely related to abortion, WS forced the ovary to allocate more resources to the synthesis of amino acids involved in the stress response, inhibited the energy metabolism, glutathione metabolism and methionine salvage pathway, and overaccumulation of H2O2. In silks, WS led to lower accumulation levels of specific flavonoid metabolites with antioxidant capacity, and to over accumulation of H2O2. Thus, compared with each single stress, WS more seriously disrupted the normal metabolic process, and resulted more serious oxidative stress in ovaries and silks. Amino acids involved in the stress response in ovaries and specific flavonoid metabolites with antioxidant capacity in silks play important roles during ovary abortion. These results identify novel traits for selection in breeding programs and targets for genome editing to increase maize yield under WS stress.
Collapse
|
79
|
Aboobucker SI, Showman LJ, Lübberstedt T, Suza WP. Maize Zmcyp710a8 Mutant as a Tool to Decipher the Function of Stigmasterol in Plant Metabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:732216. [PMID: 34804084 PMCID: PMC8597121 DOI: 10.3389/fpls.2021.732216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Sterols are integral components of membrane lipid bilayers in eukaryotic organisms and serve as precursors to steroid hormones in vertebrates and brassinosteroids (BR) in plants. In vertebrates, cholesterol is the terminal sterol serving both indirect and direct roles in cell signaling. Plants synthesize a mixture of sterols including cholesterol, sitosterol, campesterol, and stigmasterol but the signaling role for the free forms of individual plant sterols is unclear. Since stigmasterol is the terminal sterol in the sitosterol branch and produced from a single enzymatic step, modifying stigmasterol concentration may shed light on its role in plant metabolism. Although Arabidopsis has been the model of choice to study sterol function, the functional redundancy of AtCYP710A genes and the presence of brassicasterol may hinder our ability to test the biological function of stigmasterol. We report here the identification and characterization of ZmCYP710A8, the sole maize C-22 sterol desaturase involved in stigmasterol biosynthesis and the identification of a stigmasterol-free Zmcyp710a8 mutant. ZmCYP710A8 mRNA expression pattern correlated with transcripts for several sterol biosynthesis genes and loss of stigmasterol impacted sterol composition. Exogenous stigmasterol also had a stimulatory effect on mRNA for ZmHMGR and ZmSMT2. This demonstrates the potential of Zmcyp710a8 in understanding the role of stigmasterol in modulating sterol biosynthesis and global cellular metabolism. Several amino acids accumulate in the Zmcyp710a8 mutant, offering opportunity for genetic enhancement of nutritional quality of maize. Other cellular metabolites in roots and shoots of maize and Arabidopsis were also impacted by genetic modification of stigmasterol content. Yet lack of obvious developmental defects in Zmcyp710a8 suggest that stigmasterol might not be essential for plant growth under normal conditions. Nonetheless, the Zmcyp710a8 mutant reported here is of great utility to advance our understanding of the additional roles of stigmasterol in plant metabolism. A number of biological and agronomic questions can be interrogated using this tool such as gene expression studies, spatio-temporal localization of sterols, cellular metabolism, pathway regulation, physiological studies, and crop improvement.
Collapse
Affiliation(s)
| | - Lucas J. Showman
- W. M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, IA, United States
| | | | - Walter P. Suza
- Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
80
|
Hamany Djande CY, Piater LA, Steenkamp PA, Tugizimana F, Dubery IA. A Metabolomics Approach and Chemometric Tools for Differentiation of Barley Cultivars and Biomarker Discovery. Metabolites 2021; 11:metabo11090578. [PMID: 34564394 PMCID: PMC8466441 DOI: 10.3390/metabo11090578] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/04/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
One of the ultimate goals of plant breeding is the development of new crop cultivars capable of withstanding increasing environmental stresses, to sustain the constantly growing population and economic demands. Investigating the chemical composition of the above and underground tissues of cultivars is crucial for the understanding of common and specific traits thereof. Using an untargeted metabolomics approach together with appropriate chemometrics tools, the differential metabolite profiles of leaf and root extracts from five cultivars of barley (‘Erica’, ‘Elim’, ‘Hessekwa’, ‘S16’ and ‘Agulhas’) were explored and potential signatory biomarkers were revealed. The study was conducted on seedlings grown for 21 days under identical controlled conditions. An ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) was employed to analyse hydromethanolic leaf and root extracts of barley cultivars. Furthermore, unsupervised and supervised learning algorithms were applied to mine the generated data and to pinpoint cultivar-specific metabolites. Among all the classes of metabolites annotated, phenolic acids and derivatives formed the largest group and also represented the most discriminatory metabolites. In roots, saponarin, an important allelochemical differentially distributed across cultivars, was the only flavonoid annotated. The application of an untargeted metabolomics approach in phenotyping grain crops such as barley was demonstrated, and the metabolites responsible for differentiating between the selected cultivars were revealed. The study provides insights into the chemical architecture of barley, an agro-economically relevant cereal crop; and reiterates the importance of metabolomics tools in plant breeding practices for crop improvement.
Collapse
|
81
|
Ackah M, Shi Y, Wu M, Wang L, Guo P, Guo L, Jin X, Li S, Zhang Q, Qiu C, Lin Q, Zhao W. Metabolomics Response to Drought Stress in Morus alba L. Variety Yu-711. PLANTS (BASEL, SWITZERLAND) 2021; 10:1636. [PMID: 34451681 PMCID: PMC8400578 DOI: 10.3390/plants10081636] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Mulberry is an economically significant crop for the sericulture industry worldwide. Stresses such as drought exposure have a significant influence on plant survival. Because metabolome directly reflects plant physiological condition, performing a global metabolomic analysis is one technique to examine this influence. Using a liquid chromatography-mass spectrometry (LC-MS) technique based on an untargeted metabolomic approach, the effect of drought stress on mulberry Yu-711 metabolic balance was examined. For this objective, Yu-711 leaves were subjected to two weeks of drought stress treatment and control without drought stress. Numerous differentially accumulated metabolic components in response to drought stress treatment were revealed by multivariate and univariate statistical analysis. Drought stress treatment (EG) revealed a more differentiated metabolite response than the control (CK). We found that the levels of total lipids, galactolipids, and phospholipids (PC, PA, PE) were significantly altered, producing 48% of the total differentially expressed metabolites. Fatty acyls components were the most abundant lipids expressed and decreased considerably by 73.6%. On the other hand, the prenol lipids class of lipids increased in drought leaves. Other classes of metabolites, including polyphenols (flavonoids and cinnamic acid), organic acid (amino acids), carbohydrates, benzenoids, and organoheterocyclic, had a dynamic trend in response to the drought stress. However, their levels under drought stress decreased significantly compared to the control. These findings give an overview for the understanding of global plant metabolic changes in defense mechanisms by revealing the mulberry plant metabolic profile through differentially accumulated compounds.
Collapse
Affiliation(s)
- Michael Ackah
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| | - Yisu Shi
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| | - Mengmeng Wu
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| | - Lei Wang
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| | - Peng Guo
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| | - Liangliang Guo
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| | - Xin Jin
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| | - Shaocong Li
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| | - Qiaonan Zhang
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| | - Changyu Qiu
- Sericulture Research Institute, Guangxi Zhuang Autonomous Region, Nanning 530007, China; (C.Q.); (Q.L.)
| | - Qiang Lin
- Sericulture Research Institute, Guangxi Zhuang Autonomous Region, Nanning 530007, China; (C.Q.); (Q.L.)
| | - Weiguo Zhao
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| |
Collapse
|
82
|
A metabolomic study of Gomphrena agrestis in Brazilian Cerrado suggests drought-adaptive strategies on metabolism. Sci Rep 2021; 11:12933. [PMID: 34155311 PMCID: PMC8217525 DOI: 10.1038/s41598-021-92449-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/03/2021] [Indexed: 11/23/2022] Open
Abstract
Drought is the main factor that limits the distribution and productivity of plant species. In the Brazilian Cerrado, the vegetation is adapted to a seasonal climate with long- and short-term periods of drought. To analyze the metabolic strategies under such conditions, a metabolomic approach was used to characterize Gomphrena agrestis Mart. (Amaranthaceae) a native species that grows under natural conditions, in a rock-field area. Roots and leaves material from native specimens were sampled along different seasons of the year and LC–MS and GC–MS analyzed for multiple chemical constituents. The datasets derived from the different measurements were combined and evaluated using multivariate analysis. Principal component analysis was used to obtain an overview of the samples and identify outliers. Later, the data was analyzed with orthogonal projection to latent structures discriminant analysis to obtain valid models that could explain the metabolite variations in the different seasons. Two hundred and eighty metabolites were annotated, generating a unique database to characterize metabolic strategies used to cope with the effects of drought. The accumulation of fructans in the thickened roots is consistent with the storage of carbons during the rainy season to support the energy demand during a long period of drought. The accumulation of Abscisic acid, sugars and sugar alcohols, phenolics, and pigment in the leaves suggests physiological adaptations. To cope with long-term drought, the data suggests that tissue water status and storage of reserves are important to support plant survival and regrowth. However, during short-term drought, osmoregulation and oxidative protection seems to be essential, probably to support the maintenance of active photosynthesis.
Collapse
|
83
|
Granado-Rodríguez S, Aparicio N, Matías J, Pérez-Romero LF, Maestro I, Gracés I, Pedroche JJ, Haros CM, Fernandez-Garcia N, Navarro del Hierro J, Martin D, Bolaños L, Reguera M. Studying the Impact of Different Field Environmental Conditions on Seed Quality of Quinoa: The Case of Three Different Years Changing Seed Nutritional Traits in Southern Europe. FRONTIERS IN PLANT SCIENCE 2021; 12:649132. [PMID: 34054895 PMCID: PMC8149766 DOI: 10.3389/fpls.2021.649132] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/16/2021] [Indexed: 05/27/2023]
Abstract
Chenopodium quinoa Willd (quinoa) has acquired an increased agronomical and nutritional relevance due to the capacity of adaptation to different environments and the exceptional nutritional properties of their seeds. These include high mineral and protein contents, a balanced amino acid composition, an elevated antioxidant capacity related to the high phenol content, and the absence of gluten. Although it is known that these properties can be determined by the environment, limited efforts have been made to determine the exact changes occurring at a nutritional level under changing environmental conditions in this crop. To shed light on this, this study aimed at characterizing variations in nutritional-related parameters associated with the year of cultivation and different genotypes. Various nutritional and physiological traits were analyzed in seeds of different quinoa cultivars grown in the field during three consecutive years. We found differences among cultivars for most of the nutritional parameters analyzed. It was observed that the year of cultivation was a determinant factor in every parameter studied, being 2018 the year with lower yields, germination rates, and antioxidant capacity, but higher seed weights and seed protein contents. Overall, this work will greatly contribute to increase our knowledge of the impact of the environment and genotype on the nutritional properties of quinoa seeds, especially in areas that share climatic conditions to Southern Europe.
Collapse
Affiliation(s)
| | - Nieves Aparicio
- Castile-Leon Agriculture Technology Institute (ITACyL), Valladolid, Spain
| | - Javier Matías
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), Badajoz, Spain
| | | | - Isaac Maestro
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Irene Gracés
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Claudia Monika Haros
- Cereal Group, Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain
| | - Nieves Fernandez-Garcia
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CSIC), Murcia, Spain
| | - Joaquín Navarro del Hierro
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación enCiencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Diana Martin
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación enCiencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Bolaños
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Reguera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
84
|
Liu J, Wu P, Guo Q, Lai X, Ruan B, Wang H, Rehman S, Chen M. Kaolinite weakens the co-stress of ampicillin and tetracycline on Escherichia coli through multiple pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25228-25240. [PMID: 33453031 DOI: 10.1007/s11356-021-12356-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Ampicillin and tetracycline are common antibiotics and can threaten humans by inducing antibiotic resistance in bacteria. Microorganisms are usually exposed to a mixed antibiotic system in the environment. However, there are few researches on the specific regulatory mechanisms of clay on microorganisms under the stress of complex antibiotics. In this study, tandem mass tag-based coupled with two-dimensional liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) was employed to recognize and quantify changes in protein expression of Escherichia coli (E. coli) after culture for 15 days, with or without kaolinite in the co-stress of ampicillin and tetracycline. The results indicated that kaolinite could activate metabolic pathways of E. coli such as the energy metabolism, the biosynthesis of other secondary metabolites, and the metabolism of cofactors and vitamins. Particularly, the fatty acid degradation pathway has also been promoted, indicating that in the same unfavorable environment, kaolinite might influence the composition of E. coli cell membranes. This might be due to the change in membrane composition that was a kind of adaptive strategy of bacterial evolution. Moreover, kaolinite could promote multidrug efflux system to export the bacterial intracellular toxic substances, making E. coli survive better in an adverse environment. Consequently, this study not only disclosed the regulation of kaolinite on E. coli in a complex antibiotic environment but also provided new insights into the environmental process of antibiotic resistance.
Collapse
Affiliation(s)
- Juan Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou, 510006, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China.
| | - Qing Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xiaolin Lai
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Bo Ruan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Huimin Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Saeed Rehman
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
85
|
Chicken Feather Waste Hydrolysate as a Superior Biofertilizer in Agroindustry. Curr Microbiol 2021; 78:2212-2230. [PMID: 33903939 DOI: 10.1007/s00284-021-02491-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/13/2021] [Indexed: 10/24/2022]
Abstract
Billions of tons of keratinous waste in the form of feathers, antlers, bristles, claws, hair, hoofs, horns, and wool are generated by different industries and their demolition causes environmental deterioration. Chicken feathers have 92% keratin that can be a good source of peptides, amino acids, and minerals. Traditional methods of feather hydrolysis require large energy inputs, and also reduce the content of amino acids and net protein utilization values. Biological treatment of feathers with keratinolytic microbes is a feasible and environmental favorable preference for the formulation of hydrolysate that can be used as bioactive peptides, protein supplement, livestock feed, biofertilizer, etc. The presence of amino acids, soluble proteins, and peptides in hydrolysate facilitates the growth of microbes in rhizosphere that promotes the uptake and utilization of nutrients from soil. Application of hydrolysate enhances water holding capacity, C/N ratio, and mineral content of soil. The plant growth promoting activities of hydrolysate potentiates its possible use in organic farming, and improves soil ecosystem and microbiota. This paper reviews the current scenario on the methods available for management of keratinous waste, nutritional quality of hydrolysate generated using keratinolytic microbes, and its possible application as plant growth promoter in agroindustry.
Collapse
|
86
|
Liu K, Li C, Dai C, Qin R, Liang X, Li Y, Yu F. A novel role of sulfate in promoting Mn phytoextraction efficiency and alleviating Mn stress in Polygonum lapathifolium Linn. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112036. [PMID: 33588187 DOI: 10.1016/j.ecoenv.2021.112036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
A hydroponic method was performed to explore the effects of sulfate supply on the growth, manganese (Mn) accumulation efficiency and Mn stress alleviation mechanisms of Polygonum lapathifolium Linn. Three Mn concentrations (1, 8 and 16 mmol L-1, representing low (Mn1), medium (Mn8) and high (Mn16) concentrations, respectively) were used. Three sulfate (S) levels (0, 200, and 400 μmol L-1, abbreviated as S0, S200 and S400, respectively) were applied for each Mn concentration. (1) The average biomass (g plant-1) of P. lapathifolium was ordered as Mn8 (6.36) > Mn1 (5.25) > Mn16 (4.16). Under Mn16 treatment, S addition increased (P < 0.05) biomass by 29.96% (S200) and 53.07% (S400) compared to that S0. The changes in the net photosynthetic rate and mean daily increase in biomass were generally consistent with the changes in biomass. (2) Mn accumulation efficiency (g plant-1) was ordered as Mn8 (99.66) > Mn16 (58.33) > Mn1 (27.38); and S addition increased (p < 0.05) plant Mn accumulation and Mn transport, especially under Mn16 treatment. (3) In general, antioxidant enzyme activities (AEAs) and malondialdehyde (MDA) in plant leaves were ordered in Mn16 > Mn8 > Mn1. Sulfate addition decreased (P < 0.05) AEAs and MDA under Mn16 treatment, while the changes were minor under Mn1 and Mn8 treatments. (4) Amino acid concentrations generally increased with increasing Mn concentration and S level. In summary, the medium Mn treatment promoted plant growth and Mn bioaccumulation; sulfate, especially at 400 µmol L-1 S, can effectively promote plant growth and Mn accumulation efficiency. The most suitable bioremediation strategy was Mn16 with 400 µmol L-1 S.
Collapse
Affiliation(s)
- Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), the Ministry of Education, 541004 Guilin, China; College of Life Science, Guangxi Normal University, 541004 Guilin, China
| | - Chunming Li
- College of Life Science, Guangxi Normal University, 541004 Guilin, China; School of Life Sciences, Fudan University, 200438 Shanghai, China
| | - Chenglong Dai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), the Ministry of Education, 541004 Guilin, China; College of Life Science, Guangxi Normal University, 541004 Guilin, China
| | - Rilan Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), the Ministry of Education, 541004 Guilin, China; College of Life Science, Guangxi Normal University, 541004 Guilin, China
| | - Xiaolu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), the Ministry of Education, 541004 Guilin, China; College of Life Science, Guangxi Normal University, 541004 Guilin, China
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), the Ministry of Education, 541004 Guilin, China; College of Environment and Resource, Guangxi Normal University, 541004 Guilin, China.
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), the Ministry of Education, 541004 Guilin, China; College of Environment and Resource, Guangxi Normal University, 541004 Guilin, China.
| |
Collapse
|
87
|
Callwood J, Melmaiee K, Kulkarni KP, Vennapusa AR, Aicha D, Moore M, Vorsa N, Natarajan P, Reddy UK, Elavarthi S. Differential Morpho-Physiological and Transcriptomic Responses to Heat Stress in Two Blueberry Species. Int J Mol Sci 2021; 22:ijms22052481. [PMID: 33804571 PMCID: PMC7957502 DOI: 10.3390/ijms22052481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/07/2023] Open
Abstract
Blueberries (Vaccinium spp.) are highly vulnerable to changing climatic conditions, especially increasing temperatures. To gain insight into mechanisms underpinning the response to heat stress, two blueberry species were subjected to heat stress for 6 and 9 h at 45 °C, and leaf samples were used to study the morpho-physiological and transcriptomic changes. As compared with Vaccinium corymbosum, Vaccinium darrowii exhibited thermal stress adaptation features such as small leaf size, parallel leaf orientation, waxy leaf coating, increased stomatal surface area, and stomatal closure. RNAseq analysis yielded ~135 million reads and identified 8305 differentially expressed genes (DEGs) during heat stress against the control samples. In V. corymbosum, 2861 and 4565 genes were differentially expressed at 6 and 9 h of heat stress, whereas in V. darrowii, 2516 and 3072 DEGs were differentially expressed at 6 and 9 h, respectively. Among the pathways, the protein processing in the endoplasmic reticulum (ER) was the highly enriched pathway in both the species: however, certain metabolic, fatty acid, photosynthesis-related, peroxisomal, and circadian rhythm pathways were enriched differently among the species. KEGG enrichment analysis of the DEGs revealed important biosynthesis and metabolic pathways crucial in response to heat stress. The GO terms enriched in both the species under heat stress were similar, but more DEGs were enriched for GO terms in V. darrowii than the V. corymbosum. Together, these results elucidate the differential response of morpho-physiological and molecular mechanisms used by both the blueberry species under heat stress, and help in understanding the complex mechanisms involved in heat stress tolerance.
Collapse
Affiliation(s)
- Jodi Callwood
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| | - Kalpalatha Melmaiee
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
- Correspondence:
| | - Krishnanand P. Kulkarni
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| | - Amaranatha R. Vennapusa
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| | - Diarra Aicha
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| | - Michael Moore
- Optical Science Center for Applied Research (OSCAR), Delaware State University, Dover, DE 19901, USA;
| | - Nicholi Vorsa
- Philip E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, Chatsworth, NJ 08019, USA;
| | - Purushothaman Natarajan
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (P.N.); (U.K.R.)
| | - Umesh K. Reddy
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (P.N.); (U.K.R.)
| | - Sathya Elavarthi
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| |
Collapse
|
88
|
Yoshida T, Yamaguchi-Shinozaki K. Metabolic engineering: Towards water deficiency adapted crop plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153375. [PMID: 33609854 DOI: 10.1016/j.jplph.2021.153375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Water deficiency caused by drought is one of the severe environmental conditions limiting plant growth, development, and yield. In this review article, we will summarize the changes in transcription, metabolism, and phytohormones under drought stress conditions and show the key transcription factors in these processes. We will also highlight the recent attempts to enhance stress tolerance without growth retardation and discuss the perspective on the development of stress adapted crops by engineering transcription factors.
Collapse
Affiliation(s)
- Takuya Yoshida
- Max-Planck-Institut Für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany; Centre of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657, Tokyo, Japan; Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, 156-8502, Tokyo, Japan
| |
Collapse
|
89
|
Wang X, Bai J, Wang W, Zhang G, Yin S, Wang D. A comparative metabolomics analysis of the halophyte Suaeda salsa and Salicornia europaea. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1109-1122. [PMID: 32323170 DOI: 10.1007/s10653-020-00569-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/10/2020] [Indexed: 05/09/2023]
Abstract
Suaeda salsa and Salicornia europaea are both annual herbaceous species belonging to the Chenopodiaceae family, and often grow together through our observations in the Yellow River Delta Nature Reserve, and could be used as raw material to produce food and beverages in food industry due to its high nutritional value. In this study, we adopted widely targeted metabolomics to identify 822 and 694 metabolites in the leaves of S. salsa and S. europaea, respectively, to provide a basic data for the future development and utilization of these two species. We found that these two plants were rich in metabolic components with high medical value, such as flavonoids, alkaloids and coumarins. The high contents of branched chain amino acid in these two species may be an important factor for their adaptation to saline-alkali environments. In addition, the contents of glucosamine (FC = 7.70), maltose (FC = 9.34) and D-(+)-sucrose (FC = 7.19) increased significantly, and the contents of D-(+)-glucose, 2-propenyl (sinigrin) and fructose 1-phosphate were significantly increased in the leaves of S. salsa compared to S. europaea, indicating that some certain compounds in different plants have different sensitivity to salt stress. Our work provides new perspectives about important second metabolism pathways in salt tolerance between these two plants, which could be helpful for studying the tolerance mechanisms of wetland plants.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Wei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Guangliang Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Shuo Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Dawei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
90
|
Zhong Y, Yan Z, Song B, Zheng C, Duan Y, Kong X, Deng J, Li F. Dietary supplementation with betaine or glycine improves the carcass trait, meat quality and lipid metabolism of finishing mini-pigs. ACTA ACUST UNITED AC 2021; 7:376-383. [PMID: 34258425 PMCID: PMC8245815 DOI: 10.1016/j.aninu.2020.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/19/2020] [Accepted: 08/14/2020] [Indexed: 10/25/2022]
Abstract
The objective of the study is to evaluate and compare the effects of betaine or glycine on carcass trait, meat quality and lipid metabolism of finishing Huan Jiang mini-pigs. Betaine called trimethylglycine is a methyl derivative of glycine, but few researches were conducted to compare the impact of dietary betaine and glycine on pigs. One hundred and forty-four Huan Jiang mini-pigs (body weight = 10.55 ± 0.15 kg; 70 d) were randomly divided to 3 treatment groups (basal diet, glycine or betaine). Results indicated that dietary betaine increased the average daily gain (ADG) and final weight (P < 0.05). Dietary glycine or betaine markedly reduced average backfat thickness (P < 0.05) and heightened lean percentage (P < 0.01) compared to the control group. Moreover, in comparison with the control group, betaine significantly improved the redness (a∗) and tenderness (shear force) of the longissimus dorsi (LD) muscle (P < 0.05), whereas glycine only raised the value of a∗ of the LD muscle (P < 0.05). These results showed that diet supplemented with 0.25% betaine and equimolar amounts of glycine could regulate cascass trait and meat quality of finishing Huan Jiang mini-pigs, and the effect of betaine was superior to that of glycine.
Collapse
Affiliation(s)
- Yinzhao Zhong
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou 510642, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhaoming Yan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bo Song
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou 510642, China
| | - Changbing Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou 510642, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - JinPing Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou 510642, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| |
Collapse
|
91
|
Castander-Olarieta A, Pereira C, Montalbán IA, Mendes VM, Correia S, Suárez-Álvarez S, Manadas B, Canhoto J, Moncaleán P. Proteome-Wide Analysis of Heat-Stress in Pinus radiata Somatic Embryos Reveals a Combined Response of Sugar Metabolism and Translational Regulation Mechanisms. FRONTIERS IN PLANT SCIENCE 2021; 12:631239. [PMID: 33912202 PMCID: PMC8072280 DOI: 10.3389/fpls.2021.631239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/22/2021] [Indexed: 05/06/2023]
Abstract
Somatic embryogenesis is the process by which bipolar structures with no vascular connection with the surrounding tissue are formed from a single or a group of vegetative cells, and in conifers it can be divided into five different steps: initiation, proliferation, maturation, germination and acclimatization. Somatic embryogenesis has long been used as a model to study the mechanisms regulating stress response in plants, and recent research carried out in our laboratory has demonstrated that high temperatures during initial stages of conifer somatic embryogenesis modify subsequent phases of the process, as well as the behavior of the resulting plants ex vitro. The development of high-throughput techniques has facilitated the study of the molecular response of plants to numerous stress factors. Proteomics offers a reliable image of the cell status and is known to be extremely susceptible to environmental changes. In this study, the proteome of radiata pine somatic embryos was analyzed by LC-MS after the application of high temperatures during initiation of embryonal masses [(23°C, control; 40°C (4 h); 60°C (5 min)]. At the same time, the content of specific soluble sugars and sugar alcohols was analyzed by HPLC. Results confirmed a significant decrease in the initiation rate of embryonal masses under 40°C treatments (from 44 to 30.5%) and an increasing tendency in the production of somatic embryos (from 121.87 to 170.83 somatic embryos per gram of embryogenic tissue). Besides, heat provoked a long-term readjustment of the protein synthesis machinery: a great number of structural constituents of ribosomes were increased under high temperatures, together with the down-regulation of the enzyme methionine-tRNA ligase. Heat led to higher contents of heat shock proteins and chaperones, transmembrane transport proteins, proteins related with post-transcriptional regulation (ARGONAUTE 1D) and enzymes involved in the synthesis of fatty acids, specific compatible sugars (myo-inositol) and cell-wall carbohydrates. On the other hand, the protein adenosylhomocysteinase and enzymes linked with the glycolytic pathway, nitrogen assimilation and oxidative stress response were found at lower levels.
Collapse
Affiliation(s)
| | - Cátia Pereira
- Department of Forestry Science, NEIKER, Arkaute, Spain
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Vera M. Mendes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sandra Correia
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jorge Canhoto
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Paloma Moncaleán
- Department of Forestry Science, NEIKER, Arkaute, Spain
- *Correspondence: Paloma Moncaleán,
| |
Collapse
|
92
|
Piriformospora indica: Biodiversity, Ecological Significances, and Biotechnological Applications for Agriculture and Allied Sectors. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
93
|
Samarina L, Matskiv A, Simonyan T, Koninskaya N, Malyarovskaya V, Gvasaliya M, Malyukova L, Tsaturyan G, Mytdyeva A, Martinez-Montero ME, Choudhary R, Ryndin A. Biochemical and Genetic Responses of Tea ( Camellia sinensis (L.) Kuntze) Microplants under Mannitol-Induced Osmotic Stress In Vitro. PLANTS 2020; 9:plants9121795. [PMID: 33348920 PMCID: PMC7766420 DOI: 10.3390/plants9121795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Osmotic stress is a major factor reducing the growth and yield of many horticultural crops worldwide. To reveal reliable markers of tolerant genotypes, we need a comprehensive understanding of the responsive mechanisms in crops. In vitro stress induction can be an efficient tool to study the mechanisms of responses in plants to help gain a better understanding of the physiological and genetic responses of plant tissues against each stress factor. In the present study, the osmotic stress was induced by addition of mannitol into the culture media to reveal biochemical and genetic responses of tea microplants. The contents of proline, threonine, epigallocatechin, and epigallocatechin gallate were increased in leaves during mannitol treatment. The expression level of several genes, namely DHN2, LOX1, LOX6, BAM, SUS1, TPS11, RS1, RS2, and SnRK1.3, was elevated by 2–10 times under mannitol-induced osmotic stress, while the expression of many other stress-related genes was not changed significantly. Surprisingly, down-regulation of the following genes, viz. bHLH12, bHLH7, bHLH21, bHLH43, CBF1, WRKY2, SWEET1, SWEET2, SWEET3, INV5, and LOX7, was observed. During this study, two major groups of highly correlated genes were observed. The first group included seven genes, namely CBF1, DHN3, HXK2,SnRK1.1, SPS, SWEET3, and SWEET1. The second group comprised eight genes, viz. DHN2, SnRK1.3, HXK3, RS1, RS2,LOX6, SUS4, and BAM5. A high level of correlation indicates the high strength connection of the genes which can be co-expressed or can be linked to the joint regulons. The present study demonstrates that tea plants develop several adaptations to cope under osmotic stress in vitro; however, some important stress-related genes were silent or downregulated in microplants.
Collapse
Affiliation(s)
- Lidiia Samarina
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
- Correspondence: ; Tel.: +79-66-7709038
| | - Alexandra Matskiv
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Taisiya Simonyan
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Natalia Koninskaya
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Valentina Malyarovskaya
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Maya Gvasaliya
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Lyudmila Malyukova
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Gregory Tsaturyan
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Alfiya Mytdyeva
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Marcos Edel Martinez-Montero
- Department of Plant Breeding and Plant Conservation, Bioplantas Center, University of Ciego de Avila, Ciego de Avila 65200, Cuba;
| | - Ravish Choudhary
- Division of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Alexey Ryndin
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| |
Collapse
|
94
|
Sun L, Cao X, Tan C, Deng Y, Cai R, Peng X, Bai J. Analysis of the effect of cadmium stress on root exudates of Sedum plumbizincicola based on metabolomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111152. [PMID: 32846297 DOI: 10.1016/j.ecoenv.2020.111152] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Root exudates are the most direct manifestation of the response of plants changes in the external environment. Therefore, based on non-targeted gas chromatography-time-of-flight mass spectrometry and metabolomics, the response of Sedum plumbizincicola root exudates to Cd stress was used to reveal the possible mechanism of resistance to or accumulation of Cd. The results showed that Cd significantly changed the composition and contents of S. plumbizincicola root exudates. A total of 155 metabolites were identified in S. plumbizincicola root exudates, among which 33 showed significant differences under Cd stress, including organic acids, amino acids, lipids, and polyols. Cd stress suppressed organic acid metabolism and lipid metabolism in S. plumbizincicola and significantly affected amino acid metabolism. There were 16 metabolic pathways related to Cd stress, among which arginine and proline metabolism, valine, leucine, and isoleucine biosynthesis, glycine, serine, and threonine metabolism, glutathione metabolism, and purine metabolism were the key pathways with the highest correlation, and were closely related to the stress resistance of S. plumbizincicola.
Collapse
Affiliation(s)
- Lijuan Sun
- College of Resources and Environmental Science, Hunan Normal University, Changsha, 410081, PR China
| | - Xueying Cao
- Rural Vitalization Research Institute, Changsha University, Changsha, 410022, PR China
| | - Changyin Tan
- College of Resources and Environmental Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Yueqiang Deng
- College of Resources and Environmental Science, Hunan Normal University, Changsha, 410081, PR China
| | - Runzhong Cai
- College of Resources and Environmental Science, Hunan Normal University, Changsha, 410081, PR China
| | - Xi Peng
- College of Resources and Environmental Science, Hunan Normal University, Changsha, 410081, PR China
| | - Jia Bai
- College of Resources and Environmental Science, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
95
|
Sun Y, Shi Y, Liu G, Yao F, Zhang Y, Yang C, Guo H, Liu X, Jin C, Luo J. Natural variation in the OsbZIP18 promoter contributes to branched-chain amino acid levels in rice. THE NEW PHYTOLOGIST 2020; 228:1548-1558. [PMID: 32654152 DOI: 10.1111/nph.16800] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/29/2020] [Indexed: 05/21/2023]
Abstract
Branched-chain amino acids (BCAAs) are essential amino acids that must be obtained from the diet for humans and animals, and they play important roles in various aspects of plant growth and development. Although BCAA biosynthetic pathways in higher plants have been uncovered, knowledge of their genetic control is still limited, and no positive regulators have been identified to date. Here, we showed that variation in BCAA levels in rice is attributable to differential transcription of OsbZIP18, a basic leucine zipper (bZIP) transcription factor, due to polymorphisms in its promoter. Functional analysis revealed that OsbZIP18 positively regulates BCAA synthesis by binding directly to the ACE and C-box cis-elements in the promoters of the biosynthetic genes branched-chain aminotransferase1 (OsBCAT1) and OsBCAT2. We further demonstrated that OsbZIP18 is strongly induced by nitrogen (N) deficiency and that N starvation results in enhanced BCAA levels in an OsbZIP18-dependent manner. Overall, we identified OsbZIP18, a positive regulator of BCAA biosynthesis, which contributed to natural variation in BCAA levels and mediated BCAA accumulation through de novo synthesis by directly modulating the key biosynthetic genes OsBCAT1 and OsBCAT2.
Collapse
Affiliation(s)
- Yangyang Sun
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuheng Shi
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Guige Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Fang Yao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanyuan Zhang
- College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Guo
- College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China
| | - Xianqing Liu
- College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China
| | - Cheng Jin
- College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China
| |
Collapse
|
96
|
Li D, Li CY, Hu CJ, Yang YS, Lin C, Zhao D, Li QS, Ye JH, Zheng XQ, Liang YR, Lu JL. Study on the Accumulation Mechanism of Amino Acids during Bruising and Withering Treatment of Oolong Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14071-14080. [PMID: 33196171 DOI: 10.1021/acs.jafc.0c05344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amino acids are very important for oolong tea brisk-smooth mouthfeel which is mainly associated with bruising and withering treatment (BWT). In this study, metabolome and transcriptome analyses were performed to comprehensively investigate the changes in abundance of amino acids and the expression pattern of relevant genes during BWT of oolong tea manufacturing. Levels of most amino acids increased during BWT in the leaves harvested from 4 cultivars, while expression of the relevant function genes responsible for synthesis and transformation of amino acids up-regulated accordingly. Upstream hub genes including receptor-like protein kinase IKU2, serine/threonine-protein kinase PBL11, MYB transcription factor MYB2, ethylene-responsive transcription factor ERF114, WRKY transcription factor WRKY71, aspartate aminotransferase AATC, UDP-glycosyltransferase U91D1, and 4-hydroxy-4-methyl-2-oxoglutarate aldolase 2 RRAA2, were predicted to be involved in regulation of the function genes expression and the amino acids metabolism through weighted gene coexpression network analysis. A modulation mechanism for accumulation of amino acids during BWT was also proposed. These findings give a deep insight into the metabolic reprogramming mechanism of amino acids during BWT of oolong tea.
Collapse
Affiliation(s)
- Da Li
- Zhejiang University Tea Research Institute, Hangzhou 310058, P.R. China
| | - Cun-Yu Li
- Zhejiang University Tea Research Institute, Hangzhou 310058, P.R. China
| | - Ci-Jie Hu
- Zhejiang University Tea Research Institute, Hangzhou 310058, P.R. China
- Nanyang Township Government, Zhangping County, Longyan 364413, Fujian Province P.R. China
| | - Yu-Si Yang
- Zhejiang University Tea Research Institute, Hangzhou 310058, P.R. China
| | - Chen Lin
- Hangzhou Westlake Subdistrict Office, Hangzhou 310007, P.R. China
| | - Dong Zhao
- Zhejiang University Tea Research Institute, Hangzhou 310058, P.R. China
| | - Qing-Sheng Li
- Zhejiang University Tea Research Institute, Hangzhou 310058, P.R. China
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou 310058, P.R. China
| | - Xin-Qiang Zheng
- Zhejiang University Tea Research Institute, Hangzhou 310058, P.R. China
| | - Yue-Rong Liang
- Zhejiang University Tea Research Institute, Hangzhou 310058, P.R. China
| | - Jian-Liang Lu
- Zhejiang University Tea Research Institute, Hangzhou 310058, P.R. China
| |
Collapse
|
97
|
Lee JG, Yi G, Seo J, Kang BC, Choi JH, Lee EJ. Jasmonic acid and ERF family genes are involved in chilling sensitivity and seed browning of pepper fruit after harvest. Sci Rep 2020; 10:17949. [PMID: 33087820 PMCID: PMC7577993 DOI: 10.1038/s41598-020-75055-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/09/2020] [Indexed: 11/09/2022] Open
Abstract
Pepper (Capsicum annuum L.) fruit is sensitive to temperatures below 10 °C, which severely diminish fruit quality during cold chain distribution. Seed browning was a major chilling symptom in 36 genotypes of C. annuum fruit screened after storage at 2 °C for 3 weeks. Among them, pepper fruits of chilling-insensitive 'UZB-GJG-1999-51' and -sensitive 'C00562' were treated at 2 °C for 0 or 24 h, respectively. Analyses of integrated transcriptome-metabolome and relative gene expression in seeds obtained from the two genotypes were conducted to identify key factors involved in the seed browning induced by chilling. The relative contents of branched-chain amino acids such as leucine, isoleucine, and valine were significantly increased after chilling. Transcriptome identification showed 3,140 differentially expressed genes (log twofold change > 1.0 and FDR-corrected p value < 0.05) affected by chilling between the two genotypes. Particularly, genes related to jasmonic acid synthesis and signaling were differentially expressed. A regulatory network of jasmonic acid synthesis and signaling, and regulation of ERF family genes might contribute to chilling response in pepper fruit. The results of this study may help facilitate further studies to develop chilling-insensitive peppers and could be a basis for improving postharvest fruit quality.
Collapse
Affiliation(s)
- Jeong Gu Lee
- Depatment of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gibum Yi
- Depatment of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jieun Seo
- Depatment of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byoung-Cheorl Kang
- Depatment of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Hee Choi
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Eun Jin Lee
- Depatment of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. .,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
98
|
Tran TLN, Miranda AF, Abeynayake SW, Mouradov A. Differential Production of Phenolics, Lipids, Carbohydrates and Proteins in Stressed and Unstressed Aquatic Plants, Azolla filiculoides and Azolla pinnata. BIOLOGY 2020; 9:biology9100342. [PMID: 33086671 PMCID: PMC7603371 DOI: 10.3390/biology9100342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022]
Abstract
The metabolic plasticity of shikimate and phenylpropanoid pathways redirects carbon flow to different sink products in order to protect sessile plants from environmental stresses. This study assessed the biochemical responses of two Azolla species, A. filiculoides and A. pinnata, to the combined effects of environmental and nutritional stresses experienced while growing outdoors under Australian summer conditions. These stresses triggered a more than 2-fold increase in the production of total phenols and their representatives, anthocyanins (up to 18-fold), flavonoids (up to 4.7-fold), and condensed tannins (up to 2.7-fold), which led to intense red coloration of the leaves. These changes were also associated with an increase in the concentration of carbohydrates and a decrease in concentrations of lipids and total proteins. Changes in lipid biosynthesis did not cause significant changes in concentrations of palmitoleic acid (C16:0), linolenic acid (C18:3), and linoleic acid (C18:2), the fatty acid signatures of Azolla species. However, a reduction in protein production triggered changes in biosynthesis of alanine, arginine, leucine, tyrosine, threonine, valine, and methionine amino acids. Stress-triggered changes in key nutritional components, phenolics, lipids, proteins, and carbohydrates could have a significant impact on the nutritional value of both Azolla species, which are widely used as a sustainable food supplement for livestock, poultry, and fish industries.
Collapse
Affiliation(s)
- Thi Linh Nham Tran
- School of Sciences, RMIT University, Bundoora, VIC 3083, Australia; (T.L.N.T.); (A.F.M.); (S.W.A.)
- Faculty of Agriculture, Bac Lieu University, 8 wards, Bac Lieu 960000, Vietnam
| | - Ana F. Miranda
- School of Sciences, RMIT University, Bundoora, VIC 3083, Australia; (T.L.N.T.); (A.F.M.); (S.W.A.)
| | - Shamila Weerakoon Abeynayake
- School of Sciences, RMIT University, Bundoora, VIC 3083, Australia; (T.L.N.T.); (A.F.M.); (S.W.A.)
- Department of Animal, Plant and Soil Sciences, Centre for AgriBiosciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Aidyn Mouradov
- School of Sciences, RMIT University, Bundoora, VIC 3083, Australia; (T.L.N.T.); (A.F.M.); (S.W.A.)
- Correspondence: ; Tel.: +61-3-99257144
| |
Collapse
|
99
|
Almeida T, Pinto G, Correia B, Gonçalves S, Meijón M, Escandón M. In-depth analysis of the Quercus suber metabolome under drought stress and recovery reveals potential key metabolic players. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110606. [PMID: 32900444 DOI: 10.1016/j.plantsci.2020.110606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/12/2020] [Accepted: 07/16/2020] [Indexed: 05/08/2023]
Abstract
Cork oak (Quercus suber L.) is a species of ecological, social and economic importance in the Mediterranean region. Given its xerophytic adaptability, the study of cork oak's response to drought stress conditions may provide important data in the global scenario of climate change. The mechanisms behind cork oak's adaptation to drought conditions can inform the design and development of tools to better manage this species under the changing climate patterns. Metabolomics is one of the most promising omics layers to capture a snapshot of a particular physiological state and to identify putative biomarkers of stress tolerance. Drastic changes were observed in the leaf metabolome of Q. suber between the different experimental conditions, namely at the beginning of the drought stress treatment, after one month under drought and post rehydration. All experimental treatments were analyzed through sPLS to inspect for global changes and stress and rehydration responses were analyzed independently for specific alterations. This allowed a more in-depth study and a search for biomarkers specific to a given hydric treatment. The metabolome analyses showed changes in both primary and secondary metabolism, but highlighted the role of secondary metabolism. In addition, a compound-specific response was observed in stress and rehydration. Key compounds such as L-phenylalanine and epigallocatechin 3-gallate were identified in relation to early drought response, terpenoid leonuridine and the flavonoid glycoside (-)-epicatechin-3'-O-glucuronide in long-term drought response, and flavone isoscoparine was identified in relation to the recovery process. The results here obtained provide novel insights into the biology of cork oak, highlighting pathways and metabolites potentially involved in the response of this species during drought and recovery that may be essential for its adaptation to long periods of drought. It is expected that this knowledge can encourage further functional studies in order to validate potential biomarkers of drought and recovery that maybe used to support decision-making in cork oak breeding programs.
Collapse
Affiliation(s)
- Tânia Almeida
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, Beja, Portugal; Centre for Research in Ceramics & Composite Materials (CICECO), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Gloria Pinto
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal..
| | - Barbara Correia
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sónia Gonçalves
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, Beja, Portugal
| | - Mónica Meijón
- Plant Physiology, Department B.O.S., Faculty of Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Mónica Escandón
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal..
| |
Collapse
|
100
|
Rering CC, Franco JG, Yeater KM, Mallinger RE. Drought stress alters floral volatiles and reduces floral rewards, pollinator activity, and seed set in a global plant. Ecosphere 2020. [DOI: 10.1002/ecs2.3254] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Caitlin C. Rering
- Center for Medical, Agricultural and Veterinary Entomology USDA‐Agricultural Research Service 1700 SW 23rd Drive Gainesville Florida32608USA
| | - Jose G. Franco
- Northern Great Plains Research Laboratory USDA‐Agricultural Research Service 1701 10th Avenue SW Mandan North Dakota58554USA
- Dale Bumpers Small Farms Research Center USDA‐Agricultural Research Service 6883 South State Highway 23 Booneville Arkansas72927USA
| | - Kathleen M. Yeater
- Plains Area, Office of the Director USDA‐Agricultural Research Service 2150 Centre Avenue, Building D, Suite 300 Fort Collins Colorado80526USA
| | - Rachel E. Mallinger
- Department of Entomology and Nematology University of Florida 1881 Natural Areas Drive Gainesville Florida32611USA
| |
Collapse
|