51
|
Roviello G, Catalano M, Santi R, Santoni M, Galli IC, Amorosi A, Polom W, De Giorgi U, Nesi G. Neoadjuvant Treatment in Muscle-Invasive Bladder Cancer: From the Beginning to the Latest Developments. Front Oncol 2022; 12:912699. [PMID: 35936721 PMCID: PMC9353067 DOI: 10.3389/fonc.2022.912699] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Urothelial carcinoma of the bladder is one of the most prevalent cancers worldwide, diagnosed as muscle invasive in 25% of cases. Although several studies have demonstrated an overall 5% absolute survival benefit at 5 years with cisplatin-based combination neoadjuvant treatment, administration of chemotherapy prior to radical cystectomy (RC) in muscle-invasive bladder cancer (MIBC) patients is still a matter of debate. This may be due to the perceived modest survival benefit, cisplatin-based chemotherapy ineligibility, or fear of delaying potentially curative surgery in non-responders. However, immunotherapy and novel targeted therapies have shown to prolong survival in advanced disease and are under investigation in the neoadjuvant and adjuvant settings to reduce systemic relapse and improve cure rates. Genomic characterization of MIBC could help select the most effective chemotherapeutic regimen for the individual patient. Large cohort studies on neoadjuvant treatments with immune checkpoint inhibitors (ICIs) and molecular therapies, alone or combined with chemotherapy, are ongoing. In this review, we trace the development of neoadjuvant therapy in MIBC and explore recent advances that may soon change clinical practice.
Collapse
Affiliation(s)
| | - Martina Catalano
- School of Human Health Sciences, University of Florence, Florence, Italy
| | - Raffaella Santi
- Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Ilaria Camilla Galli
- Histopathology and Molecular Diagnostics, Careggi Teaching Hospital, Florence, Italy
| | - Andrea Amorosi
- Department of Health Sciences, University of Catanzaro, Catanzaro, Italy
| | - Wojciech Polom
- Department of Urology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Italy
| | - Gabriella Nesi
- Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
52
|
Li W, Wu F, Zhao S, Shi P, Wang S, Cui D. Correlation between PD-1/PD-L1 expression and polarization in tumor-associated macrophages: A key player in tumor immunotherapy. Cytokine Growth Factor Rev 2022; 67:49-57. [PMID: 35871139 DOI: 10.1016/j.cytogfr.2022.07.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/13/2022]
Abstract
Tumor immunotherapy, such as PD-1/PD-L1 blockade, has shown promising clinical efficacy in patients with various types of tumors. However, the response to PD-1/PD-L1 blockade in a majority of malignancies is limited, indicating an urgent need for a deeper understanding of the mechanisms of PD-1/PD-L1 axis-mediated tumor tolerance. As the most abundant immune cells in the tumor stroma, macrophages display multiple phenotypes and functions in response to the stimuli of the tumor microenvironment. PD-1/PD-L1 has been demonstrated to be highly expressed in tumor-associated macrophages (TAMs), and TAM polarization has been shown to be important during tumor progression. In this review, we outline the relationship between TAM PD-1/PD-L1 expression and polarizations, summarize the involvement of M2 TAMs in PD-1/PD-L1-mediated T-cell exhaustion, and discuss improved approaches for overcoming PD-1/PD-L1 blockade resistance by inducing M2/M1 switching of TAMs.
Collapse
Affiliation(s)
- Wei Li
- Center of Research Laboratory, Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, China.
| | - Fenglei Wu
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Shaolin Zhao
- Center of Research Laboratory, Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Peiqin Shi
- Center of Research Laboratory, Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
53
|
Wu Y, Wang Z, Bai H, Gao Y. Thyroid dysfunction during PD‑1 inhibitor treatment in patients with cancer: Incidence and association with progression‑free survival. Oncol Lett 2022; 24:309. [PMID: 35949599 PMCID: PMC9353241 DOI: 10.3892/ol.2022.13429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
The use of programmed cell death-1 (PD-1) inhibitors has recently been approved in China. As a consequence, the identification of relevant prognostic markers that can assess the efficacy of these compounds is required. Therefore, the present study aimed to explore the incidence of thyroid dysfunction and its ability to predict progression-free survival (PFS) in Chinese patients with cancer who received PD-1 inhibitor treatment. Data from 72 patients with cancer who received treatment with PD-1 inhibitors alone or in combination with chemotherapy or targeted drugs were analyzed. Moreover, the expression levels of free triiodothyronine, thyroxine, and thyrotropin during treatment were assessed to evaluate thyroid dysfunction. A total of 26 (36.1%) patients who had received PD-1 inhibitors developed thyroid dysfunction. Specifically, the incidence of thyroid dysfunction was 35.6% in patients with lung cancer, 25.0% in patients with malignant melanoma, and 46.7% in patients with other types of cancer. In addition, the median PFS was 7.0 (95% confidence interval, 4.9-9.1) months, whereas the 1- and 2-year PFS rates were 35.1 and 26.2%, respectively. Generally, patients with thyroid dysfunction exhibited longer PFS compared with those without thyroid dysfunction (P=0.001). Subgroup analyses were subsequently performed, which demonstrated that thyroid dysfunction was associated with longer PFS in patients with malignant melanoma (P=0.039) and other types of cancer (P=0.002), but not in those with lung cancer (P=0.083). These findings were noted in patients who received PD-1 inhibitor monotherapy (P=0.003), but not PD-1 inhibitor plus chemotherapy (P=0.172) or PD-1 inhibitor plus targeted therapy (P=0.582). Finally, thyroid dysfunction [P=0.001; hazard ratio (HR)=0.260] and PD-1 inhibitor monotherapy (P=0.015; HR=2.231) were identified as independent factors that could predict PFS. In conclusion, the present study demonstrated that thyroid dysfunction during PD-1 inhibitor treatment could be used as a potential marker for the prognosis of favorable PFS in patients with cancer.
Collapse
Affiliation(s)
- Yanfei Wu
- Department of Pathology, Navy Medical Center of People Liberation Army, Naval Medical University, Shanghai 200433, P.R. China
| | - Zhi Wang
- Department of Nuclear Radiation Injury Protection and Treatment, Navy Medical Center of People Liberation Army, Naval Medical University, Shanghai 200433, P.R. China
| | - Hongxia Bai
- Department of Pulmonary and Critical Care Medicine, Baotou Central Hospital, Baotou, Inner Mongolia Autonomous Region 014040, P.R. China
| | - Yan Gao
- Department of Nuclear Medicine, Baotou Tumor Hospital, Baotou, Inner Mongolia Autonomous Region 014030, P.R. China
| |
Collapse
|
54
|
Li X, Zhou X, Liu J, Zhang J, Feng Y, Wang F, He Y, Wan A, Filipczak N, Yalamarty SSK, Jin Y, Torchilin VP. Liposomal Co-delivery of PD-L1 siRNA/Anemoside B4 for Enhanced Combinational Immunotherapeutic Effect. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28439-28454. [PMID: 35726706 DOI: 10.1021/acsami.2c01123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Combination therapy has gained a lot of attention thanks to its superior activity against cancer. In the present study, we report a cRGD-targeted liposomal preparation for co-delivery of programmed cell death ligand 1 (PD-L1) small interfering RNA (siRNA) and anemoside B4 (AB4)─AB4/siP-c-L─and evaluate its anticancer efficiency in mouse models of LLC and 4T1 tumors. AB4/siP-c-L showed a particle size of (180.7 ± 7.3) nm and a ζ-potential of (32.8 ± 1.5) mV, with high drug encapsulation, pH-sensitive release properties, and good stability in serum. AB4/siP-c-L demonstrated prolonged blood circulation and increased tumor accumulation. Elevated cellular uptake was dependent on the targeting ligand cRGD. This combination induced significant tumor inhibition in LLC xenograft tumor-bearing mice by downregulating PD-L1 protein expression and modulating the immunosuppressive microenvironment. Liposomes favored the antitumor T-cell response with long-term memory, without obvious toxicity. A similar tumor growth inhibition was also demonstrated in the 4T1 tumor model. In summary, our results indicate that cRGD-modified and AB4- and PD-L1 siRNA-coloaded liposomes have potential as an antitumor preparation, and this approach may lay a foundation for the development of a new targeted drug delivery system.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiong Zhou
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jun Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yulin Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Fang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yao He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Anping Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
55
|
Comprehensive Analysis Identifies PI3K/Akt Pathway Alternations as an Immune-Related Prognostic Biomarker in Colon Adenocarcinoma Patients Receiving Immune Checkpoint Inhibitor Treatment. J Immunol Res 2022; 2022:8179799. [PMID: 35707003 PMCID: PMC9192307 DOI: 10.1155/2022/8179799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction In recent years, immune checkpoint inhibitors (ICIs) have attracted widespread attention and made breakthroughs in progress towards the treatment of various cancers. However, ICI therapy is selective, and its effects on many patients are not ideal. It is therefore critical to identify prognostic biomarkers of response to ICI therapy. The PI3K/Akt pathway plays important roles in tumor formation and metastasis. However, there are no published reports clarifying the relationship between PI3K/Akt pathway mutations and prognosis for colon adenocarcinoma (COAD) patients receiving immunotherapy. Methods We collected data from a COAD cohort from The Cancer Genome Atlas (TCGA) database, including whole-exome sequencing (WES) data, RNA-seq data, and clinical data. We also collected data, including clinical prognosis and targeted sequencing data, from a cohort of COAD patients receiving immunotherapy. We collected 50 COAD patients (Local-COAD) from the Zhujiang Hospital of Southern Medical University and performed targeted sequencing. We analyzed the effects of PI3K/Akt pathway mutations on the patients' clinical prognosis, immunogenicity, and immune microenvironments. Gene set enrichment analysis (GSEA) was used to analyze the significantly upregulated and downregulated signaling pathways. We used these results to hypothesize potential mechanisms by which PI3K/Akt mutations could affect the prognosis of COAD patients. Results Univariate and multivariate Cox analyses and Kaplan-Meier (KM) survival curves showed that patients with PI3K-Akt mutations had better overall survival (OS) than those without PI3K-Akt mutations. Genes with significant mutation rates in the two cohorts were screened by panoramic view. CIBERSORT was used to analyze changes in 22 types of immune cells to identify immune activated cells. Similarly, patients in the PI3K/Akt-mutated type (PI3K/Akt-MT) group had significantly increased immunogenicity, including increases in tumor mutation burden (TMB), neoantigen load (NAL), and MANTIS score. Using GSEA, we identified upregulated pathways related to immune response. Conclusion PI3K/Akt pathway mutation status can be used as an independent predictor of response to ICI treatment in COAD patients. PI3K/Akt mutations are correlated with improved OS, higher immunogenicity, greater immune response scores, and increases in activated immune cells.
Collapse
|
56
|
Murray C, Galvan E, Ontiveros C, Deng Y, Bai H, Padron AS, Hinchee-Rodriguez K, Garcia MG, Kornepati A, Conejo-Garcia J, Curiel TJ. Pharmacologic Tumor PDL1 Depletion with Cefepime or Ceftazidime Promotes DNA Damage and Sensitivity to DNA-Damaging Agents. Int J Mol Sci 2022; 23:5129. [PMID: 35563520 PMCID: PMC9099860 DOI: 10.3390/ijms23095129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
The interaction between tumor surface-expressed PDL1 and immune cell PD1 for the evasion of antitumor immunity is well established and is targeted by FDA-approved anti-PDL1 and anti-PD1 antibodies. Nonetheless, recent studies highlight the immunopathogenicity of tumor-intrinsic PDL1 signals that can contribute to the resistance to targeted small molecules, cytotoxic chemotherapy, and αPD1 immunotherapy. As genetic PDL1 depletion is not currently clinically tractable, we screened FDA-approved drugs to identify those that significantly deplete tumor PDL1. Among the candidates, we identified the β-lactam cephalosporin antibiotic cefepime as a tumor PDL1-depleting drug (PDD) that increases tumor DNA damage and sensitivity to DNA-damaging agents in vitro in distinct aggressive mouse and human cancer lines, including glioblastoma multiforme, ovarian cancer, bladder cancer, and melanoma. Cefepime reduced tumor PDL1 post-translationally through ubiquitination, improved DNA-damaging-agent treatment efficacy in vivo in immune-deficient and -proficient mice, activated immunogenic tumor STING signals, and phenocopied specific genetic PDL1 depletion effects. The β-lactam ring and its antibiotic properties did not appear contributory to PDL1 depletion or to these treatment effects, and the related cephalosporin ceftazidime produced similar effects. Our findings highlight the rapidly translated potential for PDDs to inhibit tumor-intrinsic PDL1 signals and improve DNA-damaging agents and immunotherapy efficacy.
Collapse
Affiliation(s)
- Clare Murray
- Graduate School of Biomedical Science, University of Texas Health, San Antonio, TX 78229, USA; (C.M.); (C.O.); (M.G.G.); (A.K.)
| | - Eva Galvan
- UT Health Mays Cancer Center, University of Texas Health, San Antonio, TX 78229, USA;
- Department of Radiation Oncology, University of Texas Health, San Antonio, TX 78229, USA
| | - Carlos Ontiveros
- Graduate School of Biomedical Science, University of Texas Health, San Antonio, TX 78229, USA; (C.M.); (C.O.); (M.G.G.); (A.K.)
| | - Yilun Deng
- Department of Medicine, University of Texas Health, San Antonio, TX 78229, USA; (Y.D.); (H.B.); (A.S.P.); (K.H.-R.)
| | - Haiyan Bai
- Department of Medicine, University of Texas Health, San Antonio, TX 78229, USA; (Y.D.); (H.B.); (A.S.P.); (K.H.-R.)
| | - Alvaro Souto Padron
- Department of Medicine, University of Texas Health, San Antonio, TX 78229, USA; (Y.D.); (H.B.); (A.S.P.); (K.H.-R.)
| | - Kathryn Hinchee-Rodriguez
- Department of Medicine, University of Texas Health, San Antonio, TX 78229, USA; (Y.D.); (H.B.); (A.S.P.); (K.H.-R.)
| | - Myrna G. Garcia
- Graduate School of Biomedical Science, University of Texas Health, San Antonio, TX 78229, USA; (C.M.); (C.O.); (M.G.G.); (A.K.)
| | - Anand Kornepati
- Graduate School of Biomedical Science, University of Texas Health, San Antonio, TX 78229, USA; (C.M.); (C.O.); (M.G.G.); (A.K.)
| | - Jose Conejo-Garcia
- Department of Immunology, Moffitt Cancer Institute, Tampa, FL 33612, USA;
| | - Tyler J. Curiel
- Graduate School of Biomedical Science, University of Texas Health, San Antonio, TX 78229, USA; (C.M.); (C.O.); (M.G.G.); (A.K.)
- UT Health Mays Cancer Center, University of Texas Health, San Antonio, TX 78229, USA;
- Department of Medicine, University of Texas Health, San Antonio, TX 78229, USA; (Y.D.); (H.B.); (A.S.P.); (K.H.-R.)
| |
Collapse
|
57
|
Gerke C, Zabala Gutierrez I, Méndez-González D, Cruz MCIDL, Mulero F, Jaque D, Rubio-Retama J. Clickable Albumin Nanoparticles for Pretargeted Drug Delivery toward PD-L1 Overexpressing Tumors in Combination Immunotherapy. Bioconjug Chem 2022; 33:821-828. [PMID: 35482594 PMCID: PMC9121340 DOI: 10.1021/acs.bioconjchem.2c00087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present a simple methodology to design a pretargeted drug delivery system, based on clickable anti-programmed death ligand 1 (anti-PD-L1) antibodies (Abs) and clickable bovine serum albumin (BSA) nanoparticles (NPs). Pretargeted drug delivery is based on the decoupling of a targeting moiety and a drug-delivering vector which can then react in vivo after separate injections. This may be key to achieve active targeting of drug-delivering NPs toward cancerous tissue. In pretargeted approaches, drug-delivering NPs were observed to accumulate in a higher amount in the targeted tissue due to shielding-related enhanced blood circulation and size-related enhanced tissue penetration. In this work, BSA NPs were produced using the solvent precipitation methodology that renders colloidally stable NPs, which were subsequently functionalized with a clickable moiety based on chlorosydnone (Cl-Syd). Those reactive groups are able to specifically react with dibenzocyclooctyne (DBCO) groups in a click-type fashion, reaching second-order reaction rate constants as high as 1.9 M-1·s-1, which makes this reaction highly suitable for in vivo applications. The presence of reactive Cl-Syd was demonstrated by reacting the functionalized NPs with a DBCO-modified sulfo-cyanine-5 dye. With this reaction, it was possible to infer the number of reactive moieties per NPs. Finally, and with the aim of demonstrating the suitability of this system to be used in pretargeted strategies, functionalized fluorescent NPs were used to label H358 cells with a clickable anti-PD-L1 Ab, applying the reaction between Cl-Syd and DBCO as corresponding clickable groups. The results of these experiments demonstrate the bio-orthogonality of the system to perform the reaction in vitro, in a period as short as 15 min.
Collapse
Affiliation(s)
- Christoph Gerke
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain.,Ramón y Cajal Institute for Health Research (IRYCIS), Ctra. Colmenar Viejo, 28034 Madrid, Spain
| | - Irene Zabala Gutierrez
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Diego Méndez-González
- Ramón y Cajal Institute for Health Research (IRYCIS), Ctra. Colmenar Viejo, 28034 Madrid, Spain.,Nanomaterials for Bioimaging Group, Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Avda. Arzobispo Morcillo 2, 28029 Madrid, Spain
| | - M Carmen Iglesias-de la Cruz
- Ramón y Cajal Institute for Health Research (IRYCIS), Ctra. Colmenar Viejo, 28034 Madrid, Spain.,Nanomaterials for Bioimaging Group, Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Avda. Arzobispo Morcillo 2, 28029 Madrid, Spain
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), C. de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Daniel Jaque
- Ramón y Cajal Institute for Health Research (IRYCIS), Ctra. Colmenar Viejo, 28034 Madrid, Spain.,Nanomaterials for Bioimaging Group, Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Avda. Arzobispo Morcillo 2, 28029 Madrid, Spain.,Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jorge Rubio-Retama
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain.,Ramón y Cajal Institute for Health Research (IRYCIS), Ctra. Colmenar Viejo, 28034 Madrid, Spain
| |
Collapse
|
58
|
Efficacy and Safety of Nivolumab for Advanced Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. JOURNAL OF ONCOLOGY 2022; 2022:5430525. [PMID: 35368898 PMCID: PMC8975659 DOI: 10.1155/2022/5430525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022]
Abstract
Objective To assess the efficacy and safety of nivolumab for advanced renal cell carcinoma (RCC) via meta-analysis. Methods In this systematic review and meta-analysis, we searched PubMed, Embase, Science Citation Index Expanded, The Cochrane Library, and Web of Science for randomized controlled trials (RCTs) using nivolumab for patients with advanced RCC published before 30 December 2021. Quality assessments and meta-analyses were performed on all the literature assessed for eligibility. Results Of 203 studies identified as potentially eligible from 3214 studies in a preliminary search, three RCTs including 2550 RCC cases met the inclusion criteria and were of high quality. Meta-analysis showed benefits of nivolumab in the progression-free survival (PFS) (HR = 0.73, 95% CI: 0.54 to 0.99, P=0.04) and overall survival (OS) (HR = 0.70, 95% CI: 0.63 to 0.78, P < 0.001) of patients with advanced RCC, and no increase in documented adverse events was recorded. Conclusion Nivolumab plus ipilimumab has significant benefits versus sunitinib in the treatment of advanced RCC in terms of tumor progression control and prolongation of OS and PFS, with a manageable safety profile.
Collapse
|
59
|
Xu C, Zeng H, Fan J, Huang W, Yu X, Li S, Wang F, Long X. A novel nine-microRNA-based model to improve prognosis prediction of renal cell carcinoma. BMC Cancer 2022; 22:264. [PMID: 35279104 PMCID: PMC8918330 DOI: 10.1186/s12885-022-09322-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
Background With the improved knowledge of disease biology and the introduction of immune checkpoints, there has been significant progress in treating renal cell carcinoma (RCC) patients. Individual treatment will differ according to risk stratification. As the clinical course varies in RCC, it has developed different predictive models for assessing patient’s individual risk. However, among other prognostic scores, no transparent preference model was given. MicroRNA as a putative marker shown to have prognostic relevance in RCC, molecular analysis may provide an innovative benefit in the prophetic prediction and individual risk assessment. Therefore, this study aimed to establish a prognostic-related microRNA risk score model of RCC and further explore the relationship between the model and the immune microenvironment, immune infiltration, and immune checkpoints. This practical model has the potential to guide individualized surveillance protocols, patient counseling, and individualized treatment decision for RCC patients and facilitate to find more immunotherapy targets. Methods Downloaded data of RCC from the TCGA database for difference analysis and divided it into a training set and validation set. Then the prognostic genes were screened out by Cox and Lasso regression analysis. Multivariate Cox regression analysis was used to establish a predictive model that divided patients into high-risk and low-risk groups. The ENCORI online website and the results of the RCC difference analysis were used to search for hub genes of miRNA. Estimate package and TIMER database were used to evaluate the relationship between risk score and tumor immune microenvironment (TME) and immune infiltration. Based on Kaplan-Meier survival analysis, search for immune checkpoints related to the prognosis of RCC. Results There were nine miRNAs in the established model, with a concordance index of 0.702 and an area under the ROC curve of 0.701. Nine miRNAs were strongly correlated with the prognosis (P < 0.01), and those with high expression levels had a poor prognosis. We found a common target gene PDGFRA of hsa-miR-6718, hsa-miR-1269b and hsa-miR-374c, and five genes related to ICGs (KIR2DL3, TNFRSF4, LAG3, CD70 and TNFRSF9). The immune/stromal score, immune infiltration, and immune checkpoint genes of RCC were closely related to its prognosis and were positively associated with a risk score. Conclusions The established nine-miRNAs prognostic model has the potential to facilitate prognostic prediction. Moreover, this model was closely related to the immune microenvironment, immune infiltration, and immune checkpoint genes of RCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09322-9.
Collapse
|
60
|
Gao J, Yang D, Xu H, Yang K, Ma J, Xia J, Pan X. ADAM metallopeptidase domain 12 overexpression correlates with prognosis and immune cell infiltration in clear cell renal cell carcinoma. Bioengineered 2022; 13:2412-2429. [PMID: 35094638 PMCID: PMC8973862 DOI: 10.1080/21655979.2021.2010313] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Junjie Gao
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Anhui, Bengbu, China
| | - Dandan Yang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Anhui, Bengbu, China
| | - Haonan Xu
- Department of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Kunpeng Yang
- Department of Clinical Medicine, Bengbu Medical College, Anhui, China
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, Bengbu, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, Bengbu, China
| | - Xueshan Pan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, Bengbu, China
| |
Collapse
|
61
|
Chen X, Zhang W, Yang W, Zhou M, Liu F. Acquired resistance for immune checkpoint inhibitors in cancer immunotherapy: challenges and prospects. Aging (Albany NY) 2022; 14:1048-1064. [PMID: 35037899 PMCID: PMC8833108 DOI: 10.18632/aging.203833] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/29/2021] [Indexed: 04/21/2023]
Abstract
Drug resistance has become an obstacle to the further development of immunotherapy in clinical applications and experimental studies. In the current review, the acquired resistance to immunotherapy was examined. The mechanisms of acquired resistance were based on three aspects as follows: The change of the tumor functions, the upregulated expression of inhibitory immune checkpoint proteins, and the effects of the tumor microenvironment. The combined use of immunotherapy and other therapies is performed to delay acquired resistance. A comprehensive understanding of acquired drug resistance may provide ideas for solving this dilemma.
Collapse
Affiliation(s)
- Xunrui Chen
- Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Wenhui Zhang
- Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Wenyan Yang
- Medical Center, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Min Zhou
- Department of Respirtory Medicine, Jinshan Branch of the Sixth People’s Hospital of Shanghai, Shanghai 201599, P.R. China
| | - Feng Liu
- Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| |
Collapse
|
62
|
Optimal first-line treatment for platinum-eligible metastatic urothelial carcinoma: Comparison of chemo-immunotherapy, immunotherapy, and chemotherapy- A systematic review and meta-analysis. Clin Immunol 2022; 236:108927. [PMID: 35031491 DOI: 10.1016/j.clim.2022.108927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/09/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND The role of first-line of immunotherapy in metastatic urothelial carcinoma (mUC) remains unclear. This meta-analysis aimed to explore an optimal first-line treatment strategy for mUC patients. METHODS We carried out a meta-analysis between chemo-immunotherapy, immunotherapy, and chemotherapy in mUC based on randomized trials. The outcomes included overall survival (OS), progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR), and treatment-related adverse events (AEs). A fixed-effect or random-effects model was adopted depending on between-study heterogeneity. RESULTS Three trials involving 3238 patients were included. PD-1/PD-L1 inhibitor plus platinum-based chemotherapy was associated with the improvements of OS (HR, 0.85; 95% CI 0.75-0.99), PFS (HR, 0.80; 95% CI 0.71-0.90) and ORR (OR, 1.32; 95% CI 1.07-1.63) when compared with platinum-based chemotherapy, but not with better DCR (OR, 1.07; 95% CI 0.78-1.46). PD-1/PD-L1 inhibitor alone was associated with worse ORR (OR, 0.38; 95% CI 0.17-0.87) and DCR (OR, 0.20; 95% CI 0.16-0.25) when compared with platinum-based chemotherapy while it did not statistically reduce the risk of mortality (HR 0.97 for entire cohort; 0.90 for PD-L1 high cohort). In safety analyses, the incidence of adverse events (AEs) between regimens showed no difference, but the frequency of AEs of grade 3 or severity was higher in chemo-immunotherapy compared to chemotherapy. CONCLUSIONS Compared with platinum-based chemotherapy, chemo-immunotherapy is associated with significantly improved PFS, OS, and ORR in the first-line therapy for mUC at the expanse of increased toxicity.
Collapse
|
63
|
Lu J, Ding J, Liu Z, Chen T. Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review). Int J Oncol 2022; 60:12. [PMID: 34981814 PMCID: PMC8759346 DOI: 10.3892/ijo.2022.5302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Monoclonal antibody technology plays a vital role in biomedical and immunotherapy, which greatly promotes the study of the structure and function of genes and proteins. To date, monoclonal antibodies have gone through four stages: murine monoclonal antibody, chimeric monoclonal antibody, humanised monoclonal antibody and fully human monoclonal antibody; thousands of monoclonal antibodies have been used in the fields of biology and medicine, playing a special role in the pathogenesis, diagnosis and treatment of disease. In this review, we compare the advantages and disadvantages of hybridoma technology, phage display technology, ribosome display technology, transgenic mouse technology, single B cell monoclonal antibody generation technologies, and forecast the promising applications of these technologies in clinical medicine, disease diagnosis and tumour treatment.
Collapse
Affiliation(s)
- Jiachen Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianing Ding
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
64
|
Tang L, Wang J, Lin N, Zhou Y, He W, Liu J, Ma X. Immune Checkpoint Inhibitor-Associated Colitis: From Mechanism to Management. Front Immunol 2021; 12:800879. [PMID: 34992611 PMCID: PMC8724248 DOI: 10.3389/fimmu.2021.800879] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs), as one of the innovative types of immunotherapies, including programmed cell death-1 (PD-1), programmed cell death-ligand 1 (PD-L1), and cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors, have obtained unprecedented benefit in multiple malignancies. However, the immune response activation in the body organs could arise immune-related adverse events (irAEs). Checkpoint inhibitor colitis (CIC) is the most widely reported irAEs. However, some obscure problems, such as the mechanism concerning gut microbiota, the confusing differential diagnosis with inflammatory bowel disease (IBD), the optimal steroid schedule, the reintroduction of ICIs, and the controversial prognosis features, influence the deep understanding and precise diagnosis and management of CIC. Herein, we based on these problems and comprehensively summarized the relevant studies of CIC in patients with NSCLC, further discussing the future research direction of this specific pattern of irAEs.
Collapse
Affiliation(s)
- Liansha Tang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jialing Wang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Lin
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuwen Zhou
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenbo He
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jiyan Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
65
|
Pan J, Qiao Y, Chen C, Zang H, Zhang X, Qi F, Chang C, Yang F, Sun M, Lin S, Tang Q, Li L, Wang M, Wu M, Liu Y, Lai C, Chen J, Chen G. USP5 facilitates non-small cell lung cancer progression through stabilization of PD-L1. Cell Death Dis 2021; 12:1051. [PMID: 34741014 PMCID: PMC8571306 DOI: 10.1038/s41419-021-04356-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/15/2021] [Accepted: 10/05/2021] [Indexed: 02/05/2023]
Abstract
PD-L1(CD274) is a well-known immunosuppressive molecule, which confers immunoescape features to cancer cells and has become one of the major targets in cancer immunotherapies. Understanding the regulatory mechanisms that control PD-L1 protein expression is important for guiding immune checkpoint blockade therapy. Here, we showed that ubiquitin specific peptidase 5 (USP5) was a novel PD-L1 deubiquitinase in non-small cell lung cancer (NSCLC) cells. USP5 directly interacted with PD-L1 and deubiquitinated PD-L1, therefore enhances PD-L1 protein stability. Meanwhile, USP5 protein levels were highly elevated and positively correlated to PD-L1 levels in NSCLC tissues, and were closely correlated with poor prognosis of these patients. In addition, knockdown of USP5 retarded tumor growth in the Lewis lung carcinoma mouse model. Thus, we identified that USP5 was a new regulator of PD-L1 and targeting USP5 is a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Jinghua Pan
- Department of Gynecology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518, Guangdong, P.R. China
- Department of Medical Biochemistry, Urology and General Surgery, School of Medicine and The First Affiliated Hospital, Jinan University, 510632, Guangzhou, P. R. China
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, NHC Key Laboratory of Combined Multi-organ Transplantation, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, P. R. China
| | - Congcong Chen
- Department of Medical Biochemistry, Urology and General Surgery, School of Medicine and The First Affiliated Hospital, Jinan University, 510632, Guangzhou, P. R. China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, 410011, Changsha, P.R. China
| | - Xiaojing Zhang
- Department of Gynecology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518, Guangdong, P.R. China
| | - Feng Qi
- Department of Medical Biochemistry, Urology and General Surgery, School of Medicine and The First Affiliated Hospital, Jinan University, 510632, Guangzhou, P. R. China
| | - Cunjie Chang
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, P.R. China
| | - Fan Yang
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, P.R. China
| | - Mengqing Sun
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, P.R. China
| | - Shengbin Lin
- Department of Medical Biochemistry, Urology and General Surgery, School of Medicine and The First Affiliated Hospital, Jinan University, 510632, Guangzhou, P. R. China
| | - Quandong Tang
- Department of Pathophysiology, Shantou University Medical College, 515041, Shantou, Guangdong, P.R. China
| | - Lina Li
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, P.R. China
| | - Menglan Wang
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, P.R. China
| | - Minjie Wu
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, P.R. China
| | - Yongzhu Liu
- Department of Gynecology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518, Guangdong, P.R. China.
| | - Caiyong Lai
- Department of Medical Biochemistry, Urology and General Surgery, School of Medicine and The First Affiliated Hospital, Jinan University, 510632, Guangzhou, P. R. China.
| | - Jianxiang Chen
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, P.R. China.
| | - Guo Chen
- Department of Medical Biochemistry, Urology and General Surgery, School of Medicine and The First Affiliated Hospital, Jinan University, 510632, Guangzhou, P. R. China.
- School of Biopharmacy, China Pharmaceutical University, 211198, Nanjing, P.R. China.
| |
Collapse
|
66
|
Han B, Wang T, Xue Z, Wen T, Lu L, Meng J, Liu J, Wu S, Yu J, Xu H. Elemene Nanoemulsion Inhibits Metastasis of Breast Cancer by ROS Scavenging. Int J Nanomedicine 2021; 16:6035-6048. [PMID: 34511904 PMCID: PMC8418379 DOI: 10.2147/ijn.s327094] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction Elemene (C15H24) is a sesquiterpene compound extracted from the rhizome of Curcuma herbs. In the past decades, the anti-tumor activity of elemene has been observed in vitro and in some clinical practices. However, pharmacological mechanisms of elemene are not demonstrated adequately, which may lead to improper clinical applications. This study aimed to investigate the anti-tumor effect of elemene nanoemulsion in the mouse model of triple-negative breast cancer (TNBC) and reveal the underlying mechanisms. Methods The ESR measurement and quantum mechanics simulation were used to characterize the antioxidant ability of elemene nanoemulsion. The murine breast cancer cell line 4T1 cells were inoculated subcutaneously into the left fourth mammary fat pad of BalB/c mice to establish a TNBC mice model. The H&E staining, immunohistochemical staining, DHE staining and Western blot were employed to evaluate the therapeutic effects of the elemene nanoemulsion on the TNBC mice. Results It was shown that the elemene nanoemulsion prolonged the survival of the triple-negative breast cancer-bearing mice and inhibited the metastasis to lung and liver while did not induce significant cytotoxicity to the tumor cells. Mechanistic studies demonstrated that the elemene nanoemulsion effectively scavenged the reactive oxygen species (ROS) in vitro and in vivo, which decreased the stabilization of hypoxia-inducible factor-1α (HIF-1α) and consequently reduced angiogenesis in the tumor microenvironment as well as decreased the level of NLRP3 inflammasomes and IL-1β production. In addition, the elemene nanoemulsion downregulated the level of IL-1β in the RAW264.7 cells in exposure with LPS. Conclusion In conclusion, due to the ROS scavenging ability, elemene nanoemulsion effectively inhibited the metastasis of the breast cancer cells to lung and liver and consequently prolonged the survival of TNBC mice.
Collapse
Affiliation(s)
- Bo Han
- Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, People's Republic of China
| | - Tao Wang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, People's Republic of China
| | - Zhigang Xue
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Tao Wen
- Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, People's Republic of China
| | - Ling Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Jie Meng
- Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, People's Republic of China
| | - Jian Liu
- Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, People's Republic of China
| | - Sizhu Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Jianchun Yu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Haiyan Xu
- Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
67
|
Rüschoff J, Baretton G, Bläker H, Dietmaier W, Dietel M, Hartmann A, Horn LC, Jöhrens K, Kirchner T, Knüchel R, Mayr D, Merkelbach-Bruse S, Schildhaus HU, Schirmacher P, Tiemann M, Tiemann K, Weichert W, Büttner R. MSI testing : What's new? What should be considered? DER PATHOLOGE 2021; 42:110-118. [PMID: 34477921 DOI: 10.1007/s00292-021-00948-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Based on new trial data regarding immune checkpoint inhibitors (ICIs), the detection of high-grade microsatellite instability (MSI-H) or underlying deficient mismatch repair protein (dMMR) is now becoming increasingly important for predicting treatment response. For the first time, a PD‑1 ICI (pembrolizumab) has been approved by the European Medicines Agency (EMA) for first-line treatment of advanced (stage IV) dMMR/MSI‑H colorectal cancer (CRC). Further indications, such as dMMR/MSI‑H endometrial carcinoma (EC), have already succeeded (Dostarlimab, 2nd line treatment) and others are expected to follow before the end of 2021. The question of optimal testing in routine diagnostics should therefore be re-evaluated. Based on a consideration of the strengths and weaknesses of the widely available methods (immunohistochemistry and PCR), a test algorithm is proposed that allows quality assured, reliable, and cost-effective dMMR/MSI‑H testing. For CRC and EC, testing is therefore already possible at the primary diagnosis stage, in line with international recommendations (NICE, NCCN). The clinician is therefore enabled from the outset to consider not only the predictive but also the prognostic and predispositional implications of such a test when counseling patients and formulating treatment recommendations. As a basis for quality assurance, participation in interlaboratory comparisons and continuous documentation of results (e.g., QuIP Monitor) are strongly recommended.
Collapse
Affiliation(s)
- Josef Rüschoff
- Institute of Pathology, Nordhessen und Targos Molecular Pathology GmbH, Germaniastr. 7, 34119, Kassel, Germany.
| | - Gustavo Baretton
- Institute of Pathology, University Hospital Carl Gustav Carus, Fetscherstr. 74, 01307, Dresden, Germany
| | - Hendrik Bläker
- Institute of Pathology, University Hospital Leipzig, Liebigstr. 26, Gebäude G, 04103, Leipzig, Germany
| | - Wolfgang Dietmaier
- Institute of Pathology, Center of Molecular Pathological Diagnostics, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Manfred Dietel
- Institute of Pathology, University Hospital Charité, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Arndt Hartmann
- Pathological Institute, University Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Lars-Christian Horn
- Institute of Pathology, University Hospital Leipzig, Liebigstr. 26, Gebäude G, 04103, Leipzig, Germany
| | - Korinna Jöhrens
- Institute of Pathology, University Hospital Carl Gustav Carus, Fetscherstr. 74, 01307, Dresden, Germany
| | - Thomas Kirchner
- Pathological Institute, Ludwig-Maximilians-University Munich, Thalkirchner Str. 36, 80337, München, Germany
| | - Ruth Knüchel
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Doris Mayr
- Pathological Institute, Ludwig-Maximilians-University Munich, Thalkirchner Str. 36, 80337, München, Germany
| | | | - Hans-Ulrich Schildhaus
- Institute of Pathology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Peter Schirmacher
- Pathological Institute, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Markus Tiemann
- Fangdieckstr. 75a, Institute of Hematopathology Hamburg, 22547, Hamburg, Germany
| | - Katharina Tiemann
- Fangdieckstr. 75a, Institute of Hematopathology Hamburg, 22547, Hamburg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich, Trogerstr. 18, 81675, München, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50937, Köln, Germany
| |
Collapse
|
68
|
Lisini D, Lettieri S, Nava S, Accordino G, Frigerio S, Bortolotto C, Lancia A, Filippi AR, Agustoni F, Pandolfi L, Piloni D, Comoli P, Corsico AG, Stella GM. Local Therapies and Modulation of Tumor Surrounding Stroma in Malignant Pleural Mesothelioma: A Translational Approach. Int J Mol Sci 2021; 22:9014. [PMID: 34445720 PMCID: PMC8396500 DOI: 10.3390/ijms22169014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Malignant Pleural Mesothelioma (MPM) is a rare and aggressive neoplasm of the pleural mesothelium, mainly associated with asbestos exposure and still lacking effective therapies. Modern targeted biological strategies that have revolutionized the therapy of other solid tumors have not had success so far in the MPM. Combination immunotherapy might achieve better results over chemotherapy alone, but there is still a need for more effective therapeutic approaches. Based on the peculiar disease features of MPM, several strategies for local therapeutic delivery have been developed over the past years. The common rationale of these approaches is: (i) to reduce the risk of drug inactivation before reaching the target tumor cells; (ii) to increase the concentration of active drugs in the tumor micro-environment and their bioavailability; (iii) to reduce toxic effects on normal, non-transformed cells, because of much lower drug doses than those used for systemic chemotherapy. The complex interactions between drugs and the local immune-inflammatory micro-environment modulate the subsequent clinical response. In this perspective, the main interest is currently addressed to the development of local drug delivery platforms, both cell therapy and engineered nanotools. We here propose a review aimed at deep investigation of the biologic effects of the current local therapies for MPM, including cell therapies, and the mechanisms of interaction with the tumor micro-environment.
Collapse
Affiliation(s)
- Daniela Lisini
- Cell Therapy Production Unit-UPTC and Cerebrovascular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (D.L.); (S.N.); (S.F.)
| | - Sara Lettieri
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Sara Nava
- Cell Therapy Production Unit-UPTC and Cerebrovascular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (D.L.); (S.N.); (S.F.)
| | - Giulia Accordino
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Simona Frigerio
- Cell Therapy Production Unit-UPTC and Cerebrovascular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (D.L.); (S.N.); (S.F.)
| | - Chandra Bortolotto
- Unit of Radiology, Department of Intensive Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
| | - Andrea Lancia
- Unit of Radiation Therapy, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (A.L.); (A.R.F.)
| | - Andrea Riccardo Filippi
- Unit of Radiation Therapy, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (A.L.); (A.R.F.)
| | - Francesco Agustoni
- Unit of Oncology, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
| | - Laura Pandolfi
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Davide Piloni
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Patrizia Comoli
- Cell Factory and Pediatric Hematology-Oncology Unit, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy;
| | - Angelo Guido Corsico
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Giulia Maria Stella
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| |
Collapse
|
69
|
Zafari J, Javani Jouni F, Jamali S, Marzoghi S, Zadehmodarres S, Razzaghi M. The effect of cisplatin-low-level laser therapy on cell viability and death of LNCaP prostate cancer cell line. Lasers Med Sci 2021; 37:1283-1288. [PMID: 34374882 DOI: 10.1007/s10103-021-03386-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Prostate cancer, as a common male cancer, is a serious threat to men's health. In spite of extreme developments for increasing survival rate, there are still limitations about common treatment options such as surgical procedures, radiotherapy, and chemotherapy. We hypothesized that combination of two treatments would bring better clinical outcomes. Therefore, the aim of this study was to determine the effect of conjugated cisplatin and low-level laser treatment (LLLT) on the viability of LNCaP prostate cancer cell line. LNCaP cells were harvested in DMEM containing 10% FBS and 1% antibiotic. Confluent cells were treated with different concentrations of cisplatin and different wavelengths of low-level laser (LLL) alone and in combination. The relative IC50 and cell viability was evaluated using MTT assay. Analysis of lipid peroxidation rate was performed using lipid peroxidation assay kit. LDH activity was also carried out on the treated and control cells using LDH cytotoxicity assay kit. Our results showed that combination of cisplatin and LLLT could effectively decrease cisplatin-induced cytotoxicity as well as LNCaP cell viability. Cisplatin-LLLT combination led to a significant increase in the MDA content as the product of membrane lipid peroxidation. Analyzing the LDH activity under the effect of cisplatin-LLL combined treatment showed a remarkable increase in the enzyme activity. We conclude that applying the cisplatin-LLL combination therapy is promising as an effective anti-cancer treatment. This novel combination has a potential to attenuate adverse side effects of earlier monotherapy strategies.
Collapse
Affiliation(s)
- Jaber Zafari
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Javani Jouni
- Department of Biomedical Engineering, Faculty of Health, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeed Jamali
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Marzoghi
- Basic Medical Science Research Center, Zist Pajooh Afra Company, Tehran, Iran
| | - Shahrzad Zadehmodarres
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
70
|
Wu C, Duan Y, Gong S, Kallendrusch S, Schopow N, Osterhoff G. Integrative and Comprehensive Pancancer Analysis of Regulator of Chromatin Condensation 1 (RCC1). Int J Mol Sci 2021; 22:ijms22147374. [PMID: 34298996 PMCID: PMC8305170 DOI: 10.3390/ijms22147374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Regulator of Chromatin Condensation 1 (RCC1) is the only known guanine nucleotide exchange factor that acts on the Ras-like G protein Ran and plays a key role in cell cycle regulation. Although there is growing evidence to support the relationship between RCC1 and cancer, detailed pancancer analyses have not yet been performed. In this genome database study, based on The Cancer Genome Atlas, Genotype-Tissue Expression and Gene Expression Omnibus databases, the potential role of RCC1 in 33 tumors' entities was explored. The results show that RCC1 is highly expressed in most human malignant neoplasms in contrast to healthy tissues. RCC1 expression is closely related to the prognosis of a broad variety of tumor patients. Enrichment analysis showed that some tumor-related pathways such as "cell cycle" and "RNA transport" were involved in the functional mechanism of RCC1. In particular, the conducted analysis reveals the relation of RCC1 to multiple immune checkpoint genes and suggests that the regulation of RCC1 is closely related to tumor infiltration of cancer-associated fibroblasts and CD8+ T cells. Coherent data demonstrate the association of RCC1 with the tumor mutation burden and microsatellite instability in various tumors. These findings provide new insights into the role of RCC1 in oncogenesis and tumor immunology in various tumors and indicate its potential as marker for therapy prognosis and targeted treatment strategies.
Collapse
Affiliation(s)
- Changwu Wu
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (C.W.); (S.K.); (N.S.)
| | - Yingjuan Duan
- Faculty of Chemistry and Mineralogy, University of Leipzig, 04103 Leipzig, Germany;
| | - Siming Gong
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (C.W.); (S.K.); (N.S.)
- Correspondence:
| | - Sonja Kallendrusch
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (C.W.); (S.K.); (N.S.)
| | - Nikolas Schopow
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (C.W.); (S.K.); (N.S.)
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Georg Osterhoff
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
71
|
Kim IH, Lee HJ. Perioperative Systemic Treatment for Muscle-Invasive Bladder Cancer: Current Evidence and Future Perspectives. Int J Mol Sci 2021; 22:7201. [PMID: 34281253 PMCID: PMC8268978 DOI: 10.3390/ijms22137201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Radical cystectomy is the primary treatment for muscle-invasive bladder cancer; however, approximately 50% of patients develop metastatic disease within 2 years of diagnosis, which results in dismal prognosis. Therefore, systemic treatment is important to improve the prognosis of muscle-invasive bladder cancer. Currently, several guidelines recommend cisplatin-based neoadjuvant chemotherapy before radical cystectomy, and adjuvant chemotherapy is recommended in patients who have not received neoadjuvant chemotherapy. Immune checkpoint inhibitors have recently become the standard treatment option for metastatic urothelial carcinoma. Owing to their clinical benefits, several immune checkpoint inhibitors, with or without other agents (including other immunotherapy, cytotoxic chemotherapy, and emerging agents such as antibody drug conjugates), are being extensively investigated in perioperative settings. Several studies for perioperative immunotherapy have shown that immune checkpoint inhibitors have promising efficacy with relatively low toxicity, and have explored the predictive molecular biomarkers. Herein, we review the current evidence and discuss the future perspectives of perioperative systemic treatment for muscle-invasive bladder cancer.
Collapse
Affiliation(s)
- In-Ho Kim
- Department of Internal Medicine, Division of Medical Oncology, Seoul St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Seoul 06591, Korea;
| | - Hyo-Jin Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Korea
| |
Collapse
|
72
|
Systematic Analysis of the Oncogenic Role of WDR62 in Human Tumors. DISEASE MARKERS 2021; 2021:9940274. [PMID: 34306258 PMCID: PMC8272457 DOI: 10.1155/2021/9940274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 01/11/2023]
Abstract
Background Emerging studies support the oncogenic role of WD repeat domain 62 (WDR62) in few tumors, while no pan-cancer analysis is available. In this study, we analyzed systematically the oncogenic role of WDR62 across a series of human tumors based on bioinformatic data mining. Methods The expression level of WDR62 was analyzed via GEPIA2, TIMER, UALCAN, and StarBase databases. The prognostic role was analyzed via GEPIA2, TIMER, UALCAN, StarBase, TISIDB, TCGA portal, Kaplan-Meier Plotter, and PrognoScan databases. Then, we explored the causes for WDR62 abnormal expression via TCGA portal and UALCAN databases. Subsequently, the STRING and GeneMANIA databases were used to find the interactive networks for WDR62. Furthermore, we analyzed the correlation between WDR62 expression and immune features via TIMER and TISIDB databases. Results We found that WDR62 was significantly upregulated in most of the tumors and correlated with poor prognosis mainly in 6 candidate tumors—BLCA, BRCA, KIRC, KIRP, LIHC, and LUAD. Abnormal WDR62 expression may be probably attributed to TP53 mutation and promoter DNA methylation. Relative network analysis demonstrated that WDR62 was mainly involved in MAPK and toll-like receptor signaling pathway. WDR62 expression was associated with various immune cell infiltrations, especially cancer-associated fibroblasts (CAF) and T cell regulatory (Treg) cells, and was markedly correlated with poor prognosis. Moreover, WDR62 expression was closely associated with the expression of some immunomodulators such as PD-L1 and has a significant prognostic value. Conclusions Our study revealed that WDR62 could serve as a diagnostic and prognostic biomarker for several cancers. Importantly, WDR62 was closely associated with various immune cell infiltration, and to a certain extent, it can predict the effect of immunotherapy in particular PD1/PD-L1 inhibitors. Our pan-cancer study provided useful information on the oncogenic role of WDR62, contributing to further exploring the underlying mechanisms.
Collapse
|
73
|
Hwang J, Zhang W, Dhananjay Y, An EK, Kwak M, You S, Lee PCW, Jin JO. Astragalus membranaceus polysaccharides potentiate the growth-inhibitory activity of immune checkpoint inhibitors against pulmonary metastatic melanoma in mice. Int J Biol Macromol 2021; 182:1292-1300. [PMID: 34000307 DOI: 10.1016/j.ijbiomac.2021.05.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Astragalus membranaceus (A. membranaceus) is commonly used in various herbal formulations to treat several human and animal diseases. Polysaccharides, which are the major bioactive components in the A. membranaceus, exhibit various bioactive properties. However, the ability of A. membranaceus polysaccharides (APS) to activate the mucosal immune response has not been examined. We examined the effect of intranasal administration of APS on mucosal immune cell activation and the growth-inhibitory activity against pulmonary metastatic melanoma in mice by combination treatment with immune checkpoint blockade. The intranasal treatment of APS increased the number of lineage-CD11c+ dendritic cell (DCs) in the mesenteric lymph nodes (mLN) through the upregulation of CC-chemokine receptor 7 expression. Moreover, intranasal treatment of APS activated DCs, which further stimulated natural killer (NK) and T cells in the mLN. The APS/anti-PD-L1 antibody combination inhibited the pulmonary infiltration of B16 melanoma cells. The depletion of NK cells and CD8 T cells in mice mitigated the anti-cancer effect of this combination, thereby highlighting the critical role of NK cells and CD8 T cells in mediating anti-cancer immunity. These findings demonstrated that APS could be used as a topical mucosal adjuvant to enhance the immune check point inhibitor anti-cancer effect.
Collapse
Affiliation(s)
- Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Yadav Dhananjay
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eun-Koung An
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung Daehangno, Gangneung, Gangwon 210-702, South Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
74
|
MicroRNA-326 attenuates immune escape and prevents metastasis in lung adenocarcinoma by targeting PD-L1 and B7-H3. Cell Death Discov 2021; 7:145. [PMID: 34131111 PMCID: PMC8206349 DOI: 10.1038/s41420-021-00527-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/23/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor-infiltrating T cells are highly expressive of inhibitory receptor/immune checkpoint molecules that bind to ligand expressed by tumor cells and antigen-presenting cells, and eventually lead to T cell dysfunction. It is a hot topic to restore T cell function by targeting immune checkpoint. In recent years, immunotherapy of blocking immune checkpoint and its receptor, such as PD-L1/PD-1 targeted therapy, has made effective progress, which brings hope for patients with advanced malignant tumor. However, only a few patients benefit from directly targeting these checkpoints or their receptors by small compounds or antibodies. Since the complexity of the regulation of immune checkpoints in tumor cells, further research is needed to identify the novel endogenous regulators of immune checkpoints which can help for developing effective drug target to improve the effect of immunotherapy. Here, we verified that microRNA-326 (miR-326) repressed the gene expression of immune checkpoint molecules PD-L1 and B7-H3 in lung adenocarcinoma (LUAD). We detected that the expression of miR-326 in LUAD tissue was negatively correlated with PD-L1/B7-H3. The repression of PD-L1 and B7-H3 expression through miR-326 overexpression leads to the modification the cytokine profile of CD8+ T cells and decreased migration capability of tumor cells. Meanwhile, the downregulation of miR-326 promoted tumor cell migration. Moreover, blocking PD-L1 and B7-H3 attenuated the tumor-promoting effect induced by miR-326 inhibitor. In tumor-bearing mice, the infiltration of CD8+ T cells was significantly increased and the expression of TNF-α, and IFN-γ was significantly enhanced which contributed to tumor progression after miR-326 overexpression. Collectively, miR-326 restrained tumor progression by downregulating PD-L1 and B7-H3 expression and increasing T cell cytotoxic function in LUAD. Our findings revealed a novel perspective on the complex regulation of immune checkpoint molecules. A new strategy of using miR-326 in tumor immunotherapy is proposed.
Collapse
|
75
|
Two Complementarity Immunotherapeutics in Non-Small-Cell Lung Cancer Patients-Mechanism of Action and Future Concepts. Cancers (Basel) 2021; 13:cancers13112836. [PMID: 34200219 PMCID: PMC8201041 DOI: 10.3390/cancers13112836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Here, we focused on the most important mechanisms of action of combined immunotherapy with modern anticancer approaches in patients with non-small-cell lung cancer. This knowledge is extremely important for lung cancer clinicians. First, it facilitates proper involvement of the patient in the treatment and monitoring its effectiveness. More importantly, the knowledge of the immunotherapy mechanisms will certainly allow quick recognition of the side effects of such a therapy, which are totally different of those observed after chemotherapy. Side effects of combination therapies can occur at any stage of treatment, and even after completion thereof. This review article could particularly explain the mechanism of action of combined immunotherapy, which have different targets in patients. Abstract Due to the limited effectiveness of immunotherapy used as first-line monotherapy in patients with non-small-cell lung cancer (NSCLC), the concepts of combining classical immunotherapy based on immune checkpoint antibodies with other treatment methods have been developed. Pembrolizumab and atezolizumab were registered in combination with chemotherapy for the treatment of metastatic NSCLC, while durvalumab found its application in consolidation therapy after successful chemoradiotherapy in patients with locally advanced NSCLC. Exceptionally attractive, due to their relatively low toxicity and high effectiveness, are treatment approaches in which a combination of two different immunotherapy methods is applied. This method is based on observations from clinical trials in which nivolumab and ipilimumab were used as first-line therapy for advanced NSCLC. It turned out that the dual blockade of immune checkpoints activated T lymphocytes in different compartments of the immune response, at the same time affecting the downregulation of immune suppressor cells (regulatory T cells). These experiments not only resulted in the registration of combination therapy with nivolumab and ipilimumab, but also initiated other clinical trials using immune checkpoint inhibitors (ICIs) in combination with other ICIs or activators of costimulatory molecules found on immune cells. There are also studies in which ICIs are associated with molecules that modify the tumour environment. This paper describes the mechanism of the synergistic effect of a combination of different immunotherapy methods in NSCLC patients.
Collapse
|
76
|
Zhang Q, Tang L, Zhou Y, He W, Li W. Immune Checkpoint Inhibitor-Associated Pneumonitis in Non-Small Cell Lung Cancer: Current Understanding in Characteristics, Diagnosis, and Management. Front Immunol 2021; 12:663986. [PMID: 34122422 PMCID: PMC8195248 DOI: 10.3389/fimmu.2021.663986] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy that includes programmed cell death-1 (PD-1), programmed cell death- ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors has revolutionized the therapeutic strategy in multiple malignancies. Although it has achieved significant breakthrough in advanced non-small cell lung cancer patients, immune-related adverse events (irAEs) including checkpoint inhibitor pneumonitis (CIP), are widely reported. As the particularly worrisome and potentially lethal form of irAEs, CIP should be attached more importance. Especially in non-small cell lung cancer (NSCLC) patients, the features of CIP may be more complicated on account of the overlapping respiratory signs compromised by primary tumor following immunotherapy. Herein, we included the previous relevant reports and comprehensively summarized the characteristics, diagnosis, and management of CIP. We also discussed the future direction of optimal steroid therapeutic schedule for patients with CIP in NSCLC based on the current evidence.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Postgraduate Student, West China Hospital, Sichuan University, Chengdu, China
| | - Liansha Tang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuwen Zhou
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenbo He
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
77
|
Rüschoff J, Baretton G, Bläker H, Dietmaier W, Dietel M, Hartmann A, Horn LC, Jöhrens K, Kirchner T, Knüchel R, Mayr D, Merkelbach-Bruse S, Schildhaus HU, Schirmacher P, Tiemann M, Tiemann K, Weichert W, Büttner R. [MSI testing : What is new? What should be considered? German version]. DER PATHOLOGE 2021; 42:414-423. [PMID: 34043067 DOI: 10.1007/s00292-021-00944-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 12/21/2022]
Abstract
Based on new trial data regarding immune checkpoint inhibitors (ICIs), the detection of high-grade microsatellite instability (MSI-H) or underlying deficient mismatch repair protein (dMMR) is now becoming increasingly important for predicting treatment response. For the first time, a PD‑1 ICI (pembrolizumab) has been approved by the European Medicines Agency (EMA) for first-line treatment of advanced (stage IV) dMMR/MSI‑H colorectal cancer (CRC). Further indications, such as dMMR/MSI‑H endometrial carcinoma (EC), have already succeeded (Dostarlimab, 2nd line treatment) and others are expected to follow before the end of 2021. The question of optimal testing in routine diagnostics should therefore be re-evaluated. Based on a consideration of the strengths and weaknesses of the widely available methods (immunohistochemistry and PCR), a test algorithm is proposed that allows quality assured, reliable, and cost-effective dMMR/MSI‑H testing. For CRC and EC, testing is therefore already possible at the primary diagnosis stage, in line with international recommendations (NICE, NCCN). The clinician is therefore enabled from the outset to consider not only the predictive but also the prognostic and predispositional implications of such a test when counseling patients and formulating treatment recommendations. As a basis for quality assurance, participation in interlaboratory comparisons and continuous documentation of results (e.g., QuIP Monitor) are strongly recommended.
Collapse
Affiliation(s)
- Josef Rüschoff
- Institut für Pathologie Nordhessen, TARGOS Molecular Pathology GmbH, Germaniastr. 7, 34119, Kassel, Deutschland.
| | - Gustavo Baretton
- Institut für Pathologie, Universitätsklinikum Carl Gustav Carus, Fetscherstr. 74, 01307, Dresden, Deutschland
| | - Hendrik Bläker
- Institut für Pathologie, Universitätsklinikum Leipzig, Liebigstr. 26, Gebäude G, 04103, Leipzig, Deutschland
| | - Wolfgang Dietmaier
- Institut für Pathologie/Zentrum für molekularpathologische Diagnostik, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Deutschland
| | - Manfred Dietel
- Institut für Pathologie, Campus Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Arndt Hartmann
- Pathologisches Institut, Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054, Erlangen, Deutschland
| | - Lars-Christian Horn
- Institut für Pathologie, Universitätsklinikum Leipzig, Liebigstr. 26, Gebäude G, 04103, Leipzig, Deutschland
| | - Korinna Jöhrens
- Institut für Pathologie, Universitätsklinikum Carl Gustav Carus, Fetscherstr. 74, 01307, Dresden, Deutschland
| | - Thomas Kirchner
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland
| | - Ruth Knüchel
- Institut für Pathologie, Universitätsklinikum RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Doris Mayr
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland
| | - Sabine Merkelbach-Bruse
- Institut für Pathologie, Universitätsklinikum Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - Hans-Ulrich Schildhaus
- Institut für Pathologie, Universitätsklinikum Essen, Hufelandstraße 55, 45147, Essen, Deutschland
| | - Peter Schirmacher
- Pathologisches Institut, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Deutschland
| | - Markus Tiemann
- Institut für Hämatopathologie Hamburg, Fangdieckstr. 75a, 22547, Hamburg, Deutschland
| | - Katharina Tiemann
- Institut für Hämatopathologie Hamburg, Fangdieckstr. 75a, 22547, Hamburg, Deutschland
| | - Wilko Weichert
- Institut für Pathologie, Technische Universität München, Trogerstr. 18, 81675, München, Deutschland
| | - Reinhard Büttner
- Institut für Pathologie, Universitätsklinikum Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| |
Collapse
|
78
|
Meireson A, Tavernier SJ, Van Gassen S, Sundahl N, Demeyer A, Spaas M, Kruse V, Ferdinande L, Van Dorpe J, Hennart B, Allorge D, Haerynck F, Decaestecker K, Rottey S, Saeys Y, Ost P, Brochez L. Immune Monitoring in Melanoma and Urothelial Cancer Patients Treated with Anti-PD-1 Immunotherapy and SBRT Discloses Tumor Specific Immune Signatures. Cancers (Basel) 2021; 13:cancers13112630. [PMID: 34071888 PMCID: PMC8198315 DOI: 10.3390/cancers13112630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Currently available biomarkers for response to checkpoint inhibitors are incomplete and predominantly focus on tumor tissue analysis e.g., tumor mutational burden, programmed cell death-ligand 1 (PD-L1) expression. Biomarkers in peripheral blood would allow a more dynamic monitoring and could offer a way for sequential adaptation of treatment strategy. We conducted an in-depth analysis of baseline and on-treatment systemic immune features in a cohort of stage III/IV melanoma and stage IV urothelial cancer (UC) patients treated with anti-programmed cell death-1 (anti-PD-1) therapy combined with stereotactic body radiotherapy (SBRT) in a similar regimen/schedule. Baseline immunity was clearly different between these two cohorts, indicating a less active immune landscape in UC patients. This study also detected signatures of proliferation in the CD8+ T-cell compartment pre-treatment and early after anti-PD-1 initiation that were positively correlated with clinical outcome in both tumor types. In addition our data support the biological relevance of PD-1/PD-L1 expression on circulating immune cell subsets, especially in melanoma. Abstract (1) Background: Blockade of the PD-1/PD-L1 pathway has revolutionized the oncology field in the last decade. However, the proportion of patients experiencing a durable response is still limited. In the current study, we performed an extensive immune monitoring in patients with stage III/IV melanoma and stage IV UC who received anti-PD-1 immunotherapy with SBRT. (2) Methods: In total 145 blood samples from 38 patients, collected at fixed time points before and during treatment, were phenotyped via high-parameter flow cytometry, luminex assay and UPLC-MS/MS. (3) Results: Baseline systemic immunity in melanoma and UC patients was different with a more prominent myeloid compartment and a higher neutrophil to lymphocyte ratio in UC. Proliferation (Ki67+) of CD8+ T-cells and of the PD-1+/PD-L1+ CD8+ subset at baseline correlated with progression free survival in melanoma. In contrast a higher frequency of PD-1/PD-L1 expressing non-proliferating (Ki67−) CD8+ and CD4+ T-cells before treatment was associated with worse outcome in melanoma. In UC, the expansion of Ki67+ CD8+ T-cells and of the PD-L1+ subset relative to tumor burden correlated with clinical outcome. (4) Conclusion: This study reveals a clearly different immune landscape in melanoma and UC at baseline, which may impact immunotherapy response. Signatures of proliferation in the CD8+ T-cell compartment prior to and early after anti-PD-1 initiation were positively correlated with clinical outcome in both cohorts. PD-1/PD-L1 expression on circulating immune cell subsets seems of clinical relevance in the melanoma cohort.
Collapse
Affiliation(s)
- Annabel Meireson
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; (A.M.); (N.S.); (A.D.); (M.S.); (V.K.); (J.V.D.); (K.D.); (S.R.); (Y.S.); (P.O.)
- Dermatology Research Unit, Ghent University Hospital, 9000 Ghent, Belgium
| | - Simon J. Tavernier
- Centre for Primary Immunodeficiency Ghent, Primary Immune Deficiency Research Lab, Department of Internal Medicine and Pediatrics, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, 9000 Ghent, Belgium; (S.J.T.); (F.H.)
- VIB Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, 9000 Ghent, Belgium
| | - Sofie Van Gassen
- VIB Center for Inflammation Research, Unit of Data Mining and Modeling for Biomedicine, 9000 Ghent, Belgium;
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium
| | - Nora Sundahl
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; (A.M.); (N.S.); (A.D.); (M.S.); (V.K.); (J.V.D.); (K.D.); (S.R.); (Y.S.); (P.O.)
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, 9000 Ghent, Belgium
| | - Annelies Demeyer
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; (A.M.); (N.S.); (A.D.); (M.S.); (V.K.); (J.V.D.); (K.D.); (S.R.); (Y.S.); (P.O.)
- Dermatology Research Unit, Ghent University Hospital, 9000 Ghent, Belgium
| | - Mathieu Spaas
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; (A.M.); (N.S.); (A.D.); (M.S.); (V.K.); (J.V.D.); (K.D.); (S.R.); (Y.S.); (P.O.)
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, 9000 Ghent, Belgium
| | - Vibeke Kruse
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; (A.M.); (N.S.); (A.D.); (M.S.); (V.K.); (J.V.D.); (K.D.); (S.R.); (Y.S.); (P.O.)
- Department of Medical Oncology, Ghent University Hospital, 9000 Ghent, Belgium
| | | | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; (A.M.); (N.S.); (A.D.); (M.S.); (V.K.); (J.V.D.); (K.D.); (S.R.); (Y.S.); (P.O.)
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Benjamin Hennart
- Unité Fonctionnelle de Toxicologie, CHU Lille, F-59000 Lille, France; (B.H.); (D.A.)
- ULR 4483-IMPact de l’Environnement Chimique sur la Santé Humaine (IMPECS), Université de Lille, F-59000 Lille, France
| | - Delphine Allorge
- Unité Fonctionnelle de Toxicologie, CHU Lille, F-59000 Lille, France; (B.H.); (D.A.)
- ULR 4483-IMPact de l’Environnement Chimique sur la Santé Humaine (IMPECS), Université de Lille, F-59000 Lille, France
| | - Filomeen Haerynck
- Centre for Primary Immunodeficiency Ghent, Primary Immune Deficiency Research Lab, Department of Internal Medicine and Pediatrics, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, 9000 Ghent, Belgium; (S.J.T.); (F.H.)
| | - Karel Decaestecker
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; (A.M.); (N.S.); (A.D.); (M.S.); (V.K.); (J.V.D.); (K.D.); (S.R.); (Y.S.); (P.O.)
- Department of Urology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sylvie Rottey
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; (A.M.); (N.S.); (A.D.); (M.S.); (V.K.); (J.V.D.); (K.D.); (S.R.); (Y.S.); (P.O.)
- Department of Medical Oncology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Yvan Saeys
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; (A.M.); (N.S.); (A.D.); (M.S.); (V.K.); (J.V.D.); (K.D.); (S.R.); (Y.S.); (P.O.)
- VIB Center for Inflammation Research, Unit of Data Mining and Modeling for Biomedicine, 9000 Ghent, Belgium;
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium
| | - Piet Ost
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; (A.M.); (N.S.); (A.D.); (M.S.); (V.K.); (J.V.D.); (K.D.); (S.R.); (Y.S.); (P.O.)
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, 9000 Ghent, Belgium
| | - Lieve Brochez
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; (A.M.); (N.S.); (A.D.); (M.S.); (V.K.); (J.V.D.); (K.D.); (S.R.); (Y.S.); (P.O.)
- Dermatology Research Unit, Ghent University Hospital, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
79
|
Mehdizadeh S, Bayatipoor H, Pashangzadeh S, Jafarpour R, Shojaei Z, Motallebnezhad M. Immune checkpoints and cancer development: Therapeutic implications and future directions. Pathol Res Pract 2021; 223:153485. [PMID: 34022684 DOI: 10.1016/j.prp.2021.153485] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Over the past few decades, different inhibitory receptors have been identified, which have played prominent roles in reducing anti-tumor immune responses. The role of immune checkpoint inhibitors in cancer was revealed by critical blockade of the cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death protein-1 (PD-1) checkpoints. Immune checkpoint inhibitors, including anti-PD-1 (nivolumab and pembrolizumab), anti-PD-L1 (Atezolizumab, avelumab, and duravulumab), and anti-CTLA-4 (ipilimumab, tremelimumab), are currently FDA-approved treatment options for a broad range of cancer types. However, regarding immunotherapy advances in recent years, most studies have been focused on finding the antibodies against other inhibitory immune checkpoints in the tumor microenvironment such as lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin, and mucin domain 3 (TIM-3), B7-homolog 3 (B7-H3), V-domain immunoglobulin-containing suppressor of T-cell activation (VISTA), diacylglycerol kinase-α (DGK-α), T cell immunoglobulin and ITIM domain (TIGIT), and B and T lymphocyte attenuator (BTLA). This immune checkpoint exerts differential inhibitory impacts on various types of lymphocytes. The suppression of immune responses demonstrates a surprising synergy with PD-1. Therefore, most antibodies against these immune checkpoints are undertaking clinical trials for cancer immunotherapy of advanced solid tumors and hematologic malignancies. In this review, we will summarize recent findings of immune checkpoint and the role of monoclonal antibodies in cancer immunotherapy targeting these receptors.
Collapse
Affiliation(s)
- Saber Mehdizadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hashem Bayatipoor
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Jafarpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Shojaei
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
80
|
Su Z, Huang D. Alternative Splicing of Pre-mRNA in the Control of Immune Activity. Genes (Basel) 2021; 12:genes12040574. [PMID: 33921058 PMCID: PMC8071365 DOI: 10.3390/genes12040574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
The human immune response is a complex process that responds to numerous exogenous antigens in preventing infection by microorganisms, as well as to endogenous components in the surveillance of tumors and autoimmune diseases, and a great number of molecules are necessary to carry the functional complexity of immune activity. Alternative splicing of pre-mRNA plays an important role in immune cell development and regulation of immune activity through yielding diverse transcriptional isoforms to supplement the function of limited genes associated with the immune reaction. In addition, multiple factors have been identified as being involved in the control of alternative splicing at the cis, trans, or co-transcriptional level, and the aberrant splicing of RNA leads to the abnormal modulation of immune activity in infections, immune diseases, and tumors. In this review, we summarize the recent discoveries on the generation of immune-associated alternative splice variants, clinical disorders, and possible regulatory mechanisms. We also discuss the immune responses to the neoantigens produced by alternative splicing, and finally, we issue some alternative splicing and immunity correlated questions based on our knowledge.
Collapse
Affiliation(s)
- Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, No. 22, Xinling Road, Shantou 515041, China
- Correspondence: (Z.S.); (D.H.)
| | - Dongyang Huang
- Department of Cell Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou 515041, China
- Correspondence: (Z.S.); (D.H.)
| |
Collapse
|
81
|
Lin B, Dong X, Wang Q, Li W, Zhu M, Li M. AFP-Inhibiting Fragments for Drug Delivery: The Promise and Challenges of Targeting Therapeutics to Cancers. Front Cell Dev Biol 2021; 9:635476. [PMID: 33898423 PMCID: PMC8061420 DOI: 10.3389/fcell.2021.635476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/12/2021] [Indexed: 01/08/2023] Open
Abstract
Alpha fetoprotein (AFP) plays a key role in stimulating the growth, metastasis and drug resistance of hepatocellular carcinoma (HCC). AFP is an important target molecule in the treatment of HCC. The application of AFP-derived peptides, AFP fragments and recombinant AFP (AFP-inhibiting fragments, AIFs) to inhibit the binding of AFP to intracellular proteins or its receptors is the basis of a new strategy for the treatment of HCC and other cancers. In addition, AIFs can be combined with drugs and delivery agents to target treatments to cancer. AIFs conjugated to anticancer drugs not only destroy cancer cells with these drugs but also activate immune cells to kill cancer cells. Furthermore, AIF delivery of drugs relieves immunosuppression and enhances chemotherapy effects. The synergism of immunotherapy and targeted chemotherapy is expected to play an important role in enhancing the treatment effect of patients with cancer. AIF delivery of drugs will be an available strategy for the targeted treatment of cancer in the future.
Collapse
Affiliation(s)
- Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Qiujiao Wang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
- Institution of Tumor, Hainan Medical College, Haikou, China
| |
Collapse
|
82
|
Lee YS, Heo W, Choi HJ, Cho HR, Nam JH, Ki YG, Lee HR, Son WC, Park YS, Kang CD, Bae J. An inhibitor of programmed death ligand 1 enhances natural killer cell-mediated immunity against malignant melanoma cells. PLoS One 2021; 16:e0248870. [PMID: 33793576 PMCID: PMC8016313 DOI: 10.1371/journal.pone.0248870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/05/2021] [Indexed: 12/29/2022] Open
Abstract
Since ionizing radiation has showed the dramatic effect to kill the cancer cells through direct DNA damage as well as triggering anti-cancer immune responses including induction of NKG2D ligands, it has used for long time to treat many cancer patients. However, it has been known that radiotherapy might promote the remnant cancer cells to escape immune system and metastasis. One of the suggested ways of immune evasion is induction of a ligand for programmed death-1 (PD-L1) in head and neck cancer, bladder cancer and lung cancer cells which engages the receptor, programmed death-1 (PD-1) in immune cells. PD-1/PD-L1 axis transduces the inhibitory signal and suppresses the adaptive immunity. However, their role in innate immunity remains poorly understood. Therefore, we investigated whether ionizing radiation could change the expression of PD-L1 in malignant melanoma cells and the receptor, programmed death-1 (PD-1), in NK-92 cells. Surface PD-L1 levels on melanoma cells were increased by ionizing radiation in a dose-independent manner but the level of PD-L1 was not changed significantly in NK-92 cells. Radiation-induced PD-L1 suppressed the activity of the NK-92 cells against melanoma cells despite of upregulation of NKG2D ligands. Furthermore, activated NK cells had high level of PD-1 and could not kill PD-L1+ melanoma cells effectively. When we used PD-L1 inhibitor or silenced PD-L1 gene, inhibited PD-1/PD-L1 axis reversed the activity of the suppressed NK cells. Through these results, we supposed that PD-1/PD-L1 blockade could enhance the immune responses of NK cells against melanoma cells after radiotherapy and might overcome the PD-L1 mediated radioresistance of cancer cells.
Collapse
Affiliation(s)
- Young Shin Lee
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Department of Molecular Cell Biology and Genetics, Plus Biomedical Science Education Center, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Woong Heo
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Department of Molecular Cell Biology and Genetics, Plus Biomedical Science Education Center, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Ho-Jung Choi
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Department of Molecular Cell Biology and Genetics, Plus Biomedical Science Education Center, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hae-Ryung Cho
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Department of Molecular Cell Biology and Genetics, Plus Biomedical Science Education Center, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Ji Ho Nam
- Department of Radiation Oncology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Yong Gan Ki
- Department of Radiation Oncology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hong-Rae Lee
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, Republic of Korea
| | - Woo-Chang Son
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, Republic of Korea
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, Republic of Korea
| | - Chi-Dug Kang
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Department of Molecular Cell Biology and Genetics, Plus Biomedical Science Education Center, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jaeho Bae
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Department of Molecular Cell Biology and Genetics, Plus Biomedical Science Education Center, Pusan National University School of Medicine, Yangsan, Republic of Korea
- * E-mail:
| |
Collapse
|
83
|
Maghrouni A, Givari M, Jalili-Nik M, Mollazadeh H, Bibak B, Sadeghi MM, Afshari AR, Johnston TP, Sahebkar A. Targeting the PD-1/PD-L1 pathway in glioblastoma multiforme: Preclinical evidence and clinical interventions. Int Immunopharmacol 2021; 93:107403. [PMID: 33581502 DOI: 10.1016/j.intimp.2021.107403] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM), as one of the immunosuppressive and common intrinsic brain tumors in adults, remains an intractable malignancy to manage. Since the standard of care for treatment, which includes surgery and chemoradiation, has not provided a sustainable and durable response in affected patients, seeking novel therapeutic approaches to treat GBM seems imperative. Immunotherapy, a breakthrough for cancer treatment, has become an attractive tool for combating cancer with the potential to access the blood-brain-barrier (BBB). In this regard, programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1), as major immunological checkpoints, have drawn considerable interest due to their effectiveness in a spectrum of highly-aggressive neoplasms through negative regulation of the T-cell-mediated immune response. Nevertheless, due to the immunosuppressive microenvironment of GBM, the efficacy of these immune checkpoint inhibitors (ICIs), when used as monotherapy, has been unfavorable and lacks sufficient beneficial outcomes for GBM patients. A variety of clinical studies are attempting to evaluate the combination of ICIs (neoadjuvant/adjuvant) and existing treatment guidelines to strengthen their effectiveness; however, the exact mechanism of this signaling axis affects the consequences of immune therapy remains elusive. This review provides an overview of the PD-1/PD-L1 pathway, currently approved ICIs for clinical use, preclinical and clinical trials of PD-1/PD-L1 as monotherapy, and when used concomitantly with other GBM treatments.
Collapse
Affiliation(s)
- Abolfazl Maghrouni
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Givari
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Montazami Sadeghi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
84
|
Yang X, Cheng B, Xiao Y, Xue M, Liu T, Cao H, Chen J. Discovery of novel CA-4 analogs as dual inhibitors of tubulin polymerization and PD-1/PD-L1 interaction for cancer treatment. Eur J Med Chem 2021; 213:113058. [PMID: 33280898 DOI: 10.1016/j.ejmech.2020.113058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
A series of novel CA-4 analogs as dual inhibitors of tubulin polymerization and PD-1/PD-L1 were designed, synthesized and bio-evaluated. Among them, compound TP5 exhibited strongest inhibitory effects against five cancer cell lines with an IC50 value of 800 nM in HepG2 cells. In addition, mechanism studies revealed that TP5 could effectively inhibit tubulin polymerization, suppress HepG2 cells migration and colony formation, and cause cell arrest at G2/M phase and induce apoptosis. Furthermore, TP5 exhibited moderate anti-PD-1/PD-L1 activity with IC50 values of 48.76 μM in a homogenous time-resolved fluorescence (HTRF) assay. In vivo efficacy studies indicated that TP5 could significantly suppress tumor growth in an immune checkpoint humanized mouse model with a Tumor Growth Suppression (TGI) of 57.9% at 100 mg/kg without causing significant toxicity. Moreover, TP5 did not cause in vivo cardiotoxicity in BALB/c mice. These results suggest that the novel CA-4 analogs may serve as a starting point for developing more potent dual inhibitors of tubulin polymerization and PD-1/PD-L1.
Collapse
Affiliation(s)
- Xuchao Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Binbin Cheng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Yao Xiao
- Wuhan Wuchang Hospital, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, 430063, China
| | - Mingming Xue
- Tianjin Tiancheng Chemical Co., Ltd., Chemical Street, Binhai New District, Tianjin, 300480, China
| | - Ting Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Hao Cao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
85
|
Larrinaga G, Solano-Iturri JD, Errarte P, Unda M, Loizaga-Iriarte A, Pérez-Fernández A, Echevarría E, Asumendi A, Manini C, Angulo JC, López JI. Soluble PD-L1 Is an Independent Prognostic Factor in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13040667. [PMID: 33562338 PMCID: PMC7915750 DOI: 10.3390/cancers13040667] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Renal cell carcinoma (RCC) is a heterogeneous and complex disease with almost no response to chemotherapy. Immune checkpoint inhibitors have achieved great clinical success but no interesting circulating markers of clinical use have developed so far in clear cell renal cell carcinoma (CCRCC). We investigate the diagnostic and prognostic role of plasma PD-1 (sPD-1) and PD-L1 (sPD-L1) proteins for the first time together with the immunohistochemical expression counterpart of these proteins within the tumor front and tumor center in the same sample of patients with renal cancer undergoing surgery. We also investigate these plasma and tissue markers in the population of metastatic patients according to International mRCC Database Consortium (IMDC) prognostic groups and the response to systemic therapy. The independent role of sPD-L1 as a predictor of prognosis and treatment response is demonstrated. Abstract (1). Background: Immunohistochemical (IHC) evaluation of programmed death-1 (PD-1) and its ligand (PD-L1) is being used to evaluate advanced malignancies with potential response to immune checkpoint inhibitors. We evaluated both plasma and tissue expression of PD-1 and PD-L1 in the same cohort of patients, including non-metastatic and metastatic clear cell renal cell carcinoma (CCRCC). Concomitant plasma and tissue expression of PD-1 and PD-L1 was evaluated with emphasis on diagnostic and prognostic implications. (2) Methods: we analyzed PD-1 and PD-L1 IHC expression in tumor tissues and soluble forms (sPD-1 and sPD-L1) in plasma from 89 patients with CCRCC, of which 23 were metastatic and 16 received systemic therapy. The primary endpoint was evaluation of overall survival using Kaplan-Meier analysis and the Cox regression model. Plasma samples from healthy volunteers were also evaluated. (3) Results: Interestingly, sPD-1 and sPD-L1 levels were lower in cancer patients than in controls. sPD-1 and sPD-L1 levels and their counterpart tissue expression both at the tumor center and infiltrating front were not associated. Higher expression of both PD-1 and PD-L1 were associated with tumor grade, necrosis and tumor size. PD-1 was associated to tumor stage (pT) and PD-L1 to metastases. sPD-1 and sPD-L1 were not associated with clinico-pathological parameters, although both were higher in patients with synchronous metastases compared to metachronous ones and sPD-L1 was also higher for metastatic patients compared to non-metastatic patients. sPD-1 was also associated with the International Metastatic Renal Cell Cancer Database Consortium (IMDC) prognostic groups in metastatic CCRCC and also to the Morphology, Attenuation, Size and Structure (MASS) response criteria in metastatic patients treated with systemic therapy, mainly tyrosine-kinase inhibitors. Regarding prognosis, PD-L1 immunostaining at the tumor center with and without the tumor front was associated with worse survival, and so was sPD-L1 at a cut-off >793 ng/mL. Combination of positivity at both the tissue and plasma level increased the level of significance to predict prognosis. (4) Conclusions: Our findings corroborate the role of PD-L1 IHC to evaluate prognosis in CCRCC and present novel data on the usefulness of plasma sPD-L1 as a promising biomarker of survival in this neoplasia.
Collapse
Affiliation(s)
- Gorka Larrinaga
- Department of Nursing, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (P.E.); (E.E.)
- BioCruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (J.I.L.)
- Correspondence:
| | - Jon Danel Solano-Iturri
- BioCruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (J.I.L.)
- Department of Pathology, Donostia University Hospital, 20014 San Sebastian-Donostia, Spain
- Department of Medical-Surgical Specialities, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Peio Errarte
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (P.E.); (E.E.)
- BioCruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (J.I.L.)
| | - Miguel Unda
- Department of Urology, Basurto University Hospital, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain; (M.U.); (A.L.-I.); (A.P.-F.)
| | - Ana Loizaga-Iriarte
- Department of Urology, Basurto University Hospital, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain; (M.U.); (A.L.-I.); (A.P.-F.)
| | - Amparo Pérez-Fernández
- Department of Urology, Basurto University Hospital, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain; (M.U.); (A.L.-I.); (A.P.-F.)
| | - Enrique Echevarría
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (P.E.); (E.E.)
| | - Aintzane Asumendi
- Department of Cellular Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Claudia Manini
- Department of Pathology, San Giovanni Bosco Hospital, 10154 Turin, Italy;
| | - Javier C. Angulo
- Clinical Department, Faculty of Medical Sciences, European University of Madrid, 28670 Villaviciosa de Odón, Spain;
- Department of Urology, University Hospital of Getafe, 28907 Getafe, Spain
| | - José I. López
- BioCruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (J.I.L.)
- Department of Pathology, Cruces University Hospital, 48903 Barakaldo, Spain
| |
Collapse
|
86
|
Recent advance of peptide-based molecules and nonpeptidic small-molecules modulating PD-1/PD-L1 protein-protein interaction or targeting PD-L1 protein degradation. Eur J Med Chem 2021; 213:113170. [PMID: 33454550 DOI: 10.1016/j.ejmech.2021.113170] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
Tumor immunotherapy has made great progress in recent years. In the tumor microenvironment, the binding of PD-1 and its ligand PD-L1 can promote tumor immune escape and tumor survival. Clinical studies have indicated that antibodies blocking PD-1 and PD-L1 have reliable effects on many advanced malignant tumors. However, no small-molecule inhibitors have been approved so far, indicating that the development of marketable small-molecules PD-1/PD-L1 targeted therapy drugs is a challenging process. Small-molecule inhibitors can overcome the limitations of monoclonal antibodies, including poor oral bioavailability, high cost, poor tissue and tumor penetration and long half-life, which prompt researchers to turn their attention to the development of peptide molecules and small-molecule inhibitors modulating PD-1/PD-L1 to overcome some disadvantages of monoclonal antibodies or targeting PD-L1 protein degradation as potential alternatives or supplements. In this review, we will focus on the peptide-based and nonpeptidic molecules against PD-1/PD-L1 base on the structural classification. More importantly, we also focus on the latest research progress of small-molecules mediated PD-L1 degradation mechanism.
Collapse
|
87
|
Kurosaki T, Mitani S, Tanaka K, Suzuki S, Kanemura H, Haratani K, Fumita S, Iwasa T, Hayashi H, Yoshida T, Ishikawa K, Kitano M, Otsuki N, Nishimura Y, Doi K, Nakagawa K. Safety and efficacy of cetuximab-containing chemotherapy after immune checkpoint inhibitors for patients with squamous cell carcinoma of the head and neck: a single-center retrospective study. Anticancer Drugs 2021; 32:95-101. [PMID: 32976215 PMCID: PMC7748051 DOI: 10.1097/cad.0000000000001006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022]
Abstract
Immunotherapy has been shown to prolong survival in recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN) in front-line use; however, subsequent systemic therapy has not been optimized. This study aimed to evaluate the safety and efficacy of cetuximab-containing chemotherapy after immunotherapy. We retrospectively analyzed patients with recurrent or metastatic SCCHN who underwent cetuximab-containing regimens after progression on immunotherapy. Of the 22 patients who met the inclusion criteria, 21 received paclitaxel and cetuximab, and 1 carboplatin and fluorouracil and cetuximab after immunotherapy. Nine patients achieved a partial response, 10 patients had stable disease as their best response on cetuximab-containing chemotherapy, yielding an overall response rate and disease control rate of 40.9 and 86.4%, respectively. The median progression-free survival was 5.2 months, and the median overall survival was 14.5 months. Ten patients developed grade 3-4 adverse events, including neutropenia (31.8%), acneiform rash (9.1%), anemia (4.5%), hypertransaminasemia (4.5%) and stomatitis (4.5%). The most frequent cetuximab-related toxicities across all grades were skin reactions (77.3%), hypomagnesemia (40.9%), stomatitis (27.3%), paronychia (13.6%) and keratitis (4.5%). There was no treatment-related death. Taken together, cetuximab-containing chemotherapy was effective and feasible even after immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Mutsukazu Kitano
- Department of Otolaryngology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Naoki Otsuki
- Department of Otolaryngology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | | | - Katsumi Doi
- Department of Otolaryngology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | | |
Collapse
|
88
|
Yang L, Dong XZ, Xing XX, Cui XH, Li L, Zhang L. Efficacy and safety of anti-PD-1/anti-PD-L1 antibody therapy in treatment of advanced gastric cancer or gastroesophageal junction cancer: A meta-analysis. World J Gastrointest Oncol 2020; 12:1346-1363. [PMID: 33250966 PMCID: PMC7667450 DOI: 10.4251/wjgo.v12.i11.1346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/15/2020] [Accepted: 09/18/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Faced with limited and inadequate treatment options for patients with advanced gastric cancer or gastroesophageal junction cancer (GC/GEJC), researchers have turned toward, with the support of promising clinical trials, anti-PD-1/anti-PD-L1 antibody therapy. But there are also different clinical trial results. To better assess its efficacy and safety, we integrated data from 13 eligible studies for a systematic review and meta-analysis.
AIM To comprehensively evaluate the efficacy and safety of anti-PD-1/anti-PD-L1 antibody therapy in the treatment of advanced GC/GEJC patients.
METHODS PubMed, Web of Science, Cochrane Library ,and EMBASE databases were searched to identify eligible articles with outcomes including objective response rate (ORR), disease control rate (DCR), overall survival (OS), progression-free survival (PFS), and adverse events (AEs) of anti-PD-1/anti-PD-L1 antibody therapy.
RESULTS Our study encompassed a total of 13 trials totaling 1618 patients. The outcomes showed a pooled ORR and DCR of 15% (95% confidence interval [CI]: 14%-18%) and 40% (95%CI: 33%-46%), respectively. The pooled 6-mo OS and PFS were 54% (95%CI: 45%-64%) and 26% (95%CI: 20%-32%), respectively, and the 12-mo OS and PFS were 42% (95%CI: 21%-62%) and 11% (95%CI: 8%-13%), respectively. In addition, the incidence of any-grade AEs and grade ≥ 3 AEs was 64% (95%CI: 54%-73%) and 18% (95%CI: 16%-20%), respectively. Most importantly, PD-L1 positive patients exhibited a higher ORR rate than PD-L1 negative patients (odds ratio = 2.54, 95%CI: 1.56-4.15).
CONCLUSION Anti-PD-1/anti-PD-L1 antibody therapy has shown promising anti-tumor efficacy with manageable AEs in advanced GC/GEJC patients, with PD-L1 overexpressing patients exhibiting a higher ORR. What is more, the clinical efficacy of anti-PD-1/PD-L1 combined with traditional chemotherapy drugs is even better, although the occurrence of AEs still causes considerate concerns.
Collapse
Affiliation(s)
- Li Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xian-Zhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Xiao-Xuan Xing
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Xiao-Hui Cui
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| |
Collapse
|
89
|
Li Y, Zhang H, Li Q, Zou P, Huang X, Wu C, Tan L. CDK12/13 inhibition induces immunogenic cell death and enhances anti-PD-1 anticancer activity in breast cancer. Cancer Lett 2020; 495:12-21. [PMID: 32941949 DOI: 10.1016/j.canlet.2020.09.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 01/12/2023]
Abstract
Immunogenic cell death (ICD) improves the T cell response against different tumors, indicating that ICD can enhance the antitumor immunity elicited by the anti-checkpoint antibody anti-programmed death 1 (anti-PD-1). In the present study, we reported a synergistic and durable immune-mediated antitumor response elicited by the combined treatment of SR-4835, a CDK12/13 specific inhibitor, with PD-1 blockade in a syngeneic mouse model. The developed combination therapy elicited antitumor activity in immunocompetent mouse tumor models. Furthermore, the SR-4835-treated tumor cells exhibited characteristics of ICD, including the release of high mobility group box 1 (HMGB1) and ATP and calreticulin (CRT) translocation. This activity led to a significant T-cell-dependent tumor suppression. The enhanced dendritic cell (DC) and infiltration of T cells activation in the tumors treated with both SR-4835 and anti-PD-1 indicate that this combination treatment promotes an improved immune response. Therefore, the results of the present study demonstrate the potential of CDK12/13 inhibition combined with checkpoint inhibition in breast cancer treatment.
Collapse
Affiliation(s)
- Yi Li
- Department of Breast Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Hui Zhang
- Department of Ultrasound, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qin Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Pingjin Zou
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xingxiang Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chihua Wu
- Department of Breast Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Li Tan
- Department of Ultrasound, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
90
|
Chen J, Li S, Yao Q, Du N, Fu X, Lou Y, Wang M, Mao F, Mao D, Khadaroo PA, Tang Y. The efficacy and safety of combined immune checkpoint inhibitors (nivolumab plus ipilimumab): a systematic review and meta-analysis. World J Surg Oncol 2020; 18:150. [PMID: 32620130 PMCID: PMC7334852 DOI: 10.1186/s12957-020-01933-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Currently, nivolumab and ipilimumab are the most widely used immune checkpoint inhibitors. We performed a meta-analysis to evaluate the efficacy and treatment-related adverse events (TRAEs) of nivolumab plus ipilimumab therapy in cancer treatment. METHODS We examined data from PubMed, Web of Science, EBSCO, and Cochrane Library. Eleven articles fulfilled our criteria, which we divided into 3 groups: nivolumab plus ipilimumab versus nivolumab (the dose used for monotherapy is 3 mg/kg), nivolumab plus ipilimumab versus ipilimumab (the dose used for monotherapy is 3 mg/kg), and nivolumab 1 mg/kg plus ipilimumab 3 mg/kg (N1I3) versus nivolumab 3 mg/kg plus ipilimumab 1 mg/kg (N3I1). We measured the complete response (CR), partial response (PR), objective response rate (ORR), and TRAEs in any grade and grade 3 or higher. RESULTS The overall effect estimate favored the combined immunotherapy group in terms of the ORR (RR: 1.40, p < 0.001) and PR (RR: 1.50, p < 0.001) than nivolumab alone. Compared with ipilimumab alone, the combined immunotherapy group had better CR (RR: 4.89, p < 0.001), PR (RR: 2.75, p < 0.001), and ORR (RR: 3.31, p < 0.001). Finally, N1I3 showed better PR (RR: 1.35, p = 0.006) and ORR (RR: 1.21, p = 0.03) than N3I1. The incidence of any TRAEs was similar between both groups (RR: 1.05, p = 0.06). However, the incidence of serious adverse events (grade 3 or higher) was lower in group N3I1 than group N1I3 (RR: 1.51, p < 0.001). CONCLUSION This meta-analysis showed that the curative effect of nivolumab plus ipilimumab was better than that of nivolumab or ipilimumab monotherapy. In the combined immunotherapy group, N1I3 was more effective than N3I1. Although the side effects were slightly increased in N1I3 group, overall safety was acceptable.
Collapse
Affiliation(s)
- Jingjie Chen
- Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Shengnan Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qigu Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Rd, Hangzhou City, 310003, China
| | - Nannan Du
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaojun Fu
- Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Yuanmei Lou
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mengru Wang
- Medical College of Kaifeng University, Kaifeng, Henan, China
| | - Feiyan Mao
- Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Danyi Mao
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | | | - Yingying Tang
- Department of Radiotherapy and Chemotherapy, HwaMei Hospital, University of Chinese Academy of Sciences, Northwest Street 41, Haishu District, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
91
|
Bouzid R, Peppelenbosch M, Buschow SI. Opportunities for Conventional and in Situ Cancer Vaccine Strategies and Combination with Immunotherapy for Gastrointestinal Cancers, A Review. Cancers (Basel) 2020; 12:cancers12051121. [PMID: 32365838 PMCID: PMC7281593 DOI: 10.3390/cancers12051121] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Survival of gastrointestinal cancer remains dismal, especially for metastasized disease. For various cancers, especially melanoma and lung cancer, immunotherapy has been proven to confer survival benefits, but results for gastrointestinal cancer have been disappointing. Hence, there is substantial interest in exploring the usefulness of adaptive immune system education with respect to anti-cancer responses though vaccination. Encouragingly, even fairly non-specific approaches to vaccination and immune system stimulation, involving for instance influenza vaccines, have shown promising results, eliciting hopes that selection of specific antigens for vaccination may prove useful for at least a subset of gastrointestinal cancers. It is widely recognized that immune recognition and initiation of responses are hampered by a lack of T cell help, or by suppressive cancer-associated factors. In this review we will discuss the hurdles that limit efficacy of conventional cancer therapeutic vaccination methods (e.g., peptide vaccines, dendritic cell vaccination). In addition, we will outline other forms of treatment (e.g., radiotherapy, chemotherapy, oncolytic viruses) that also cause the release of antigens through immunogenic tumor cell death and can thus be considered unconventional vaccination methods (i.e., in situ vaccination). Finally, we focus on the potential additive value that vaccination strategies may have for improving the effect immunotherapy. Overall, a picture will emerge that although the field has made substantial progress, successful immunotherapy through the combination with cancer antigen vaccination, including that for gastrointestinal cancers, is still in its infancy, prompting further intensification of the research effort in this respect.
Collapse
|
92
|
Bailly C. Regulation of PD-L1 expression on cancer cells with ROS-modulating drugs. Life Sci 2020; 246:117403. [DOI: 10.1016/j.lfs.2020.117403] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
|
93
|
Sun Z, Hu S, Ge Y, Wang J, Duan S, Song J, Hu C, Li Y. Radiomics study for predicting the expression of PD-L1 in non-small cell lung cancer based on CT images and clinicopathologic features. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2020; 28:449-459. [PMID: 32176676 DOI: 10.3233/xst-200642] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE To predict programmed death-ligand 1 (PD-L1) expression of tumor cells in non-small cell lung cancer (NSCLC) patients by using a radiomics study based on CT images and clinicopathologic features. MATERIALS AND METHODS A total of 390 confirmed NSCLC patients who performed chest CT scan and immunohistochemistry (IHC) examination of PD-L1 of lung tumors with clinic data were collected in this retrospective study, which were divided into two cohorts namely, training (n = 260) and validation (n = 130) cohort. Clinicopathologic features were compared between two cohorts. Lung tumors were segmented by using ITK-snap kit on CT images. Total 200 radiomic features in the segmented images were calculated using in-house texture analysis software, then filtered and minimized by least absolute shrinkage and selection operator (LASSO) regression to select optimal radiomic features based on its relevance of PD-L1 expression status in IHC results and develop radiomics signature. Radiomics signature and clinicopathologic risk factors were incorporated to develop prediction model by using multivariable logistic regression analysis. The receiver operating characteristic (ROC) curves were generated and the areas under the curves (AUC) were reckoned to predict PD-L1 expression in both training and validation cohorts. RESULTS In 200 extracted radiomic features, 9 were selected to develop radiomics signature. In univariate analysis, PD-L1 expression of lung tumors was significantly correlated with radiomics signature, histologic type, and histologic grade (p < 0.05, respectively). However, PD-L1 expression was not correlated with gender, age, tumor location, CEA level, TNM stage, and smoking (p > 0.05). For prediction of PD-L1 expression, the prediction model that combines radiomics signature and clinicopathologic features resulted in AUCs of 0.829 and 0.848 in the training and validation cohort, respectively. CONCLUSION The prediction model that incorporates the radiomics signature and clinical risk factors has potential to facilitate the individualized prediction of PD-L1 expression in NSCLC patients and identify patients who can benefit from anti-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Zongqiong Sun
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu Province, China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu Province, China
| | - Yuxi Ge
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu Province, China
| | - Jun Wang
- Shanghai Institute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Shaofeng Duan
- General Electric (GE) Healthcare China, Shanghai, China
| | - Jiayang Song
- General Electric (GE) Healthcare China, Shanghai, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| |
Collapse
|