51
|
Numerical investigations of temperature and hemodynamics in carotid arteries with and without atherosclerotic plaque during open surgery. J Therm Biol 2020; 91:102622. [PMID: 32716871 DOI: 10.1016/j.jtherbio.2020.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/02/2020] [Accepted: 05/11/2020] [Indexed: 11/23/2022]
Abstract
Intraoperative monitoring is essential for providing safe and effective care during open surgery. In this paper, numerical simulation is performed to track the flow and heat transfer of carotid arteries with and without atherosclerotic plaque in a real physiological system during surgery, in which the heat transport is first considered to couple to the blood flow due to the temperature dependence of the blood viscosity. The impacts of the operating room temperature and hematocrit (H) on the viscosity, velocity, temperature, wall shear stress (WSS), pressure drop and oscillation are investigated. The results demonstrate that the presence of plaque in the carotid artery induces a greater blood flow velocity, pressure drop, WSS, and oscillation, as well as a smaller viscosity and temperature variations. A decreasing ambient temperature leads to a decrease in the temperature and an increase in the low-WSS area, which implies a greater risk of hypothermia and atherosclerosis. As H increases, the high-WSS areas substantially expand; when H varies from 65% to 80%, WSSave increases by 70.02% and 68.57% for the arteries with and without plaque, respectively, which indicates a higher risk of vascular injury. The results obtained can serve as a guideline regarding the selection of an operating room temperature for carotid disease patients with distinct hematocrits.
Collapse
|
52
|
de Oliveira DMC, Abdullah N, Green NC, Espino DM. Biomechanical Assessment of Bicuspid Aortic Valve Phenotypes: A Fluid-Structure Interaction Modelling Approach. Cardiovasc Eng Technol 2020; 11:431-447. [PMID: 32519086 DOI: 10.1007/s13239-020-00469-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Bicuspid aortic valve (BAV) is a congenital heart malformation with phenotypic heterogeneity. There is no prior computational study that assesses the haemodynamic and valve mechanics associated with BAV type 2 against a healthy tricuspid aortic valve (TAV) and other BAV categories. METHODS A proof-of-concept study incorporating three-dimensional fluid-structure interaction (FSI) models with idealised geometries (one TAV and six BAVs, namely type 0 with lateral and anterior-posterior orientations, type 1 with R-L, N-R and N-L leaflet fusion and type 2) has been developed. Transient physiological boundary conditions have been applied and simulations were run using an Arbitrary Lagrangian-Eulerian formulation. RESULTS Our results showed the presence of abnormal haemodynamics in the aorta and abnormal valve mechanics: type 0 BAVs yielded the best haemodynamical and mechanical outcomes, but cusp stress distribution varied with valve orifice orientation, which can be linked to different cusp calcification location onset; type 1 BAVs gave rise to similar haemodynamics and valve mechanics, regardless of raphe position, but this position altered the location of abnormal haemodynamic features; finally, type 2 BAV constricted the majority of blood flow, exhibiting the most damaging haemodynamic and mechanical repercussions when compared to other BAV phenotypes. CONCLUSION The findings of this proof-of-concept work suggest that there are specific differences across haemodynamics and valve mechanics associated with BAV phenotypes, which may be critical to subsequent processes associated with their pathophysiology processes.
Collapse
Affiliation(s)
- Diana M C de Oliveira
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Nazirul Abdullah
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Naomi C Green
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Daniel M Espino
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
53
|
Rosato R, Comptdaer G, Mulligan R, Breton JM, Lesha E, Lauric A, Malek AM. Increased focal internal carotid artery angulation in patients with posterior communicating artery aneurysms. J Neurointerv Surg 2020; 12:1142-1147. [DOI: 10.1136/neurintsurg-2020-015883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 11/04/2022]
Abstract
BackgroundAneurysms at the posterior communicating artery (PCOM) origin represent the most common location on the internal carotid artery (ICA), and are associated with greater recurrence following endovascular treatment. We evaluate the association between ICA angulation in three-dimensional (3D) space and PCOM aneurysmal development, using high-resolution 3D rotational angiography (3DRA) studies.Methods3DRA datasets were evaluated in 70 patients with PCOM aneurysms, 31 non-aneurysmal contralateral, and 86 healthy controls (187 total). The local angle formed by upstream and downstream ICA segments at the PCOM origin, αICA@PCOM, was measured using 3DRA multiplanar reconstruction. Computational fluid dynamics (CFD) analysis was performed on parametric and patient-based models.ResultsαICA@PCOM was significantly larger in aneurysm-bearing ICA segments (68.14±11.91°) compared with non-aneurysmal contralateral (57.17±10.76°, p<0.001) and healthy controls (48.13±13.68°, p<0.001). A discriminant threshold αICA@PCOM value of 61° (87% specificity, 80% sensitivity) was established (area under the curve (AUC)=0.88). Ruptured PCOM aneurysms had a significantly larger αICA@PCOM compared to unruptured (72.65±15.16° vs 66.35±9.94°, p=0.04). In parametric and patient-based CFD analysis, a large αICA@PCOM induces high focal pressure at the PCOM origin, relatively low wall shear stress (WSS), and high proximal WSS spatial gradients (WSSG).ConclusionICA angulation at PCOM origin is significantly higher in vessels harboring PCOM aneurysms compared with contralateral and healthy ICAs. This sharper bend in the ICA leads to high focal pressure at the aneurysm neck, low focal WSS and high proximal WSSG. These findings underline the importance of morphological ICA variations and the likelihood of PCOM aneurysm, an association which can inform clinical decisions and may serve in predictive analytics.
Collapse
|
54
|
Saqr KM, Rashad S, Tupin S, Niizuma K, Hassan T, Tominaga T, Ohta M. What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review. J Cereb Blood Flow Metab 2020; 40:1021-1039. [PMID: 31213162 PMCID: PMC7181089 DOI: 10.1177/0271678x19854640] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the plethora of published studies on intracranial aneurysms (IAs) hemodynamic using computational fluid dynamics (CFD), limited progress has been made towards understanding the complex physics and biology underlying IA pathophysiology. Guided by 1733 published papers, we review and discuss the contemporary IA hemodynamics paradigm established through two decades of IA CFD simulations. We have traced the historical origins of simplified CFD models which impede the progress of comprehending IA pathology. We also delve into the debate concerning the Newtonian fluid assumption used to represent blood flow computationally. We evidently demonstrate that the Newtonian assumption, used in almost 90% of studies, might be insufficient to describe IA hemodynamics. In addition, some fundamental properties of the Navier-Stokes equation are revisited in supplementary material to highlight some widely spread misconceptions regarding wall shear stress (WSS) and its derivatives. Conclusively, our study draws a roadmap for next-generation IA CFD models to help researchers investigate the pathophysiology of IAs.
Collapse
Affiliation(s)
- Khalid M Saqr
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Miyagi, Japan.,Department of Mechanical Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Simon Tupin
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Tamer Hassan
- Department of Neurosurgery, Alexandria University School of Medicine, Azarita Medical Campus, Alexandria, Egypt
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Makoto Ohta
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
55
|
Rashad S, Han X, Saqr K, Tupin S, Ohta M, Niizuma K, Tominaga T. Epigenetic response of endothelial cells to different wall shear stress magnitudes: A report of new mechano-miRNAs. J Cell Physiol 2020; 235:7827-7839. [PMID: 31912899 DOI: 10.1002/jcp.29436] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
Endothelial cells (ECs) respond to flow stress via a variety of mechanisms, leading to various intracellular responses that can modulate the vessel wall and lead to diseases if the flow is disturbed. Mechano-microRNAs (miRNAs) are a subset of miRNAs in the ECs that are flow responsive. Mechano-miRNAs were shown to be related to atherosclerosis pathophysiology, and a number of them were identified as pathologic. Here, we exposed human carotid ECs to different wall shear stresses (WSS), high and low, and evaluated the response of miRNAs by microarray and quantitative polymerase chain reaction analysis. We discovered five new mechano-miRNAs that were not reported in that context previously to the best of our knowledge. Moreover, functional pathway analysis revealed that under low WSS conditions, several pathways regulating apoptosis are affected. In addition, KLF2 and KLF4, known atheroprotective genes, were downregulated under low WSS and upregulated under high WSS. KLF2 and VCAM1, both angiogenic, were upregulated under high WSS. NOS3, which is vascular protective, was also upregulated with higher WSS. On the contrary, ICAM-1 and E-selectin, both atherogenic and proinflammatory, were upregulated with high WSS. Collectively, the epigenetic landscape with the gene expression analysis reveals that low WSS is associated with a proapoptotic state, while high WSS is associated with a proliferative and proinflammatory state.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Xiaobo Han
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Khalid Saqr
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Japan
| | - Simon Tupin
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Japan
| | - Makoto Ohta
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
56
|
Cunnane CV, Cunnane EM, Moran DT, Walsh MT. The presence of helical flow can suppress areas of disturbed shear in parameterised models of an arteriovenous fistula. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3259. [PMID: 31483945 DOI: 10.1002/cnm.3259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 07/17/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Areas of disturbed shear that develop following arteriovenous fistula (AVF) creation are believed to trigger the onset of intimal hyperplasia (IH), leading to AVF dysfunction. The presence of helical flow can suppress the flow disturbances that lead to disturbed shear in other areas of the vasculature. However, the relationship between helical flow and disturbed shear remains unevaluated in AVF. In this study, computational fluid dynamics (CFD) is used to evaluate the relationship between geometry, helical flow, and disturbed shear in parameterised models of an AVF characterised by four different anastomosis angles. The AVF models with a small anastomosis angle demonstrate the lowest distribution of low/oscillating shear and are characterised by a high helical intensity coupled with a strong balance between helical structures. Contrastingly, the models with a large anastomosis angle experience the least amount of high shear, multidirectional shear, as well as spatial and temporal gradients of shear. Furthermore, the intensity of helical flow correlates strongly with curvature (r = 0.73, P < .001), whereas it is strongly and inversely associated with taper (r = -0.87, P < .001). In summary, a flow field dominated by a high helical intensity coupled with a strong balance between helical structures can suppress exposure to low/oscillating shear but is ineffective when it comes to other types of shear. This highlights the clinical potential of helical flow as a diagnostic marker of exposure to low/oscillating shear, as helical flow can be identified in vivo with the use of ultrasound imaging.
Collapse
Affiliation(s)
- Connor V Cunnane
- Bio Materials Research Centre, Bernal Institute, School of Engineering, Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | - Eoghan M Cunnane
- Bio Materials Research Centre, Bernal Institute, School of Engineering, Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | - Daniel T Moran
- Bio Materials Research Centre, Bernal Institute, School of Engineering, Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | - Michael T Walsh
- Bio Materials Research Centre, Bernal Institute, School of Engineering, Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| |
Collapse
|
57
|
Uchida W, Tokuda Y, Takehara Y, Usui A. Mechanical haemolytic anaemia assessed with four-dimensional flow cardiac magnetic resonance. Eur J Cardiothorac Surg 2019; 56:813-814. [PMID: 30770716 DOI: 10.1093/ejcts/ezz031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 11/13/2022] Open
Abstract
A 66-year-old woman developed marked haemolytic anaemia 2 years after total aortic arch replacement using a branched Dacron graft. Echocardiography confirmed bicuspid aortic valve stenosis. A four-dimensional flow magnetic resonance imaging revealed a jet flow arising from the aortic valve along with the vortex and turbulent flow inside the kinked prosthetic graft at the ascending aorta. She underwent a reoperation to replace the aortic valve and correct the kinking. The estimated energy loss after intervention was relieved to 2.9 mJ/cardiac cycle from 4.3 mJ/cardiac cycle before intervention. The patient's anaemia resolved immediately after the reoperation.
Collapse
Affiliation(s)
- Wataru Uchida
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshiyuki Tokuda
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yasuo Takehara
- Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Akihiko Usui
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
58
|
Hemodynamic effects of enhanced external counterpulsation on cerebral arteries: a multiscale study. Biomed Eng Online 2019; 18:91. [PMID: 31462269 PMCID: PMC6714389 DOI: 10.1186/s12938-019-0710-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/16/2019] [Indexed: 12/01/2022] Open
Abstract
Background Enhanced external counterpulsation (EECP) is an effective method for treating patients with cerebral ischemic stroke, while hemodynamics is the major contributing factor in the treatment of EECP. Different counterpulsation modes have the potential to lead to different acute and long-term hemodynamic changes, resulting in different treatment effects. However, various questions about appropriate counterpulsation modes for optimizing hemodynamic effects remain unanswered in clinical treatment. Methods A zero-dimensional/three-dimensional (0D/3D) geometric multiscale model of the cerebral artery was established to obtain acute hemodynamic indicators, including mean arterial pressure (MAP) and cerebral blood flow (CBF), as well as localized hemodynamic details for the cerebral artery, which includes wall shear stress (WSS) and oscillatory shear index (OSI). Counterpulsation was achieved by applying pressure on calf, thigh and buttock modules in the 0D model. Different counterpulsation modes including various pressure amplitudes and pressurization durations were applied to investigate hemodynamic responses, which impact acute and long-term treatment effects. Both vascular collapse and cerebral autoregulation were considered during counterpulsation. Results Variations of pressure amplitude and pressurization duration have different impacts on hemodynamic effects during EECP treatment. There were small differences in the hemodynamics when similar or different pressure amplitudes were applied to calves, thighs and buttocks. When increasing pressure amplitude was applied to the three body parts, MAP and CBF improved slightly. When pressure amplitude exceeded 200 mmHg, hemodynamic indicators almost never changed, demonstrating consistency with clinical data. However, hemodynamic indicators improved significantly with increasing pressurization duration. For pressurization durations of 0.5, 0.6 and 0.7 s, percentage increases for MAP during counterpulsation were 1.5%, 23.5% and 39.0%, for CBF were 1.2%, 23.4% and 41.6% and for time-averaged WSS were 0.2%, 43.5% and 85.0%, respectively. Conclusions When EECP was applied to patients with cerebral ischemic stroke, pressure amplitude applied to the three parts may remain the same. Patients may not gain much more benefit from EECP treatment by excessively increasing pressure amplitude above 200 mmHg. However, during clinical procedures, pressurization duration could be increased to 0.7 s during the cardiac circle to optimize the hemodynamics for possible superior treatment outcomes.
Collapse
|
59
|
Lauric A, Hippelheuser JE, Malek AM. Induction of aneurysmogenic high positive wall shear stress gradient by wide angle at cerebral bifurcations, independent of flow rate. J Neurosurg 2019; 131:442-452. [PMID: 30095336 DOI: 10.3171/2018.3.jns173128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/01/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Endothelium adapts to wall shear stress (WSS) and is functionally sensitive to positive (aneurysmogenic) and negative (protective) spatial WSS gradients (WSSG) in regions of accelerating and decelerating flow, respectively. Positive WSSG causes endothelial migration, apoptosis, and aneurysmal extracellular remodeling. Given the association of wide branching angles with aneurysm presence, the authors evaluated the effect of bifurcation geometry on local apical hemodynamics. METHODS Computational fluid dynamics simulations were performed on parametric bifurcation models with increasing angles having: 1) symmetrical geometry (bifurcation angle 60°-180°), 2) asymmetrical geometry (daughter angles 30°/60° and 30°/90°), and 3) curved parent vessel (bifurcation angles 60°-120°), all at baseline and double flow rate. Time-dependent and time-averaged apical WSS and WSSG were analyzed. Results were validated on patient-derived models. RESULTS Narrow symmetrical bifurcations are characterized by protective negative apical WSSG, with a switch to aneurysmogenic WSSG occurring at angles ≥ 85°. Asymmetrical bifurcations develop positive WSSG on the more obtuse daughter branch. A curved parent vessel leads to positive apical WSSG on the side corresponding to the outer curve. All simulations revealed wider apical area coverage by higher WSS and positive WSSG magnitudes, with increased bifurcation angle and higher flow rate. Flow rate did not affect the angle threshold of 85°, past which positive WSSG occurs. In curved models, high flow displaced the impingement area away from the apex, in a dynamic fashion and in an angle-dependent manner. CONCLUSIONS Apical shear forces and spatial gradients are highly dependent on bifurcation and inflow vessel geometry. The development of aneurysmogenic positive WSSG as a function of angular geometry provides a mechanotransductive link for the association of wide bifurcations and aneurysm development. These results suggest therapeutic strategies aimed at altering underlying unfavorable geometry and deciphering the molecular endothelial response to shear gradients in a bid to disrupt the associated aneurysmal degeneration.
Collapse
Affiliation(s)
- Alexandra Lauric
- 1Cerebrovascular and Endovascular Division, Department of Neurosurgery, Tufts Medical Center; and
- 2Tufts University School of Medicine, Boston, Massachusetts
| | - James E Hippelheuser
- 1Cerebrovascular and Endovascular Division, Department of Neurosurgery, Tufts Medical Center; and
| | - Adel M Malek
- 1Cerebrovascular and Endovascular Division, Department of Neurosurgery, Tufts Medical Center; and
- 2Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
60
|
Balasso A, Fritzsche M, Liepsch D, Prothmann S, Kirschke JS, Sindeev S, Frolov S, Friedrich B. High-frequency wall vibrations in a cerebral patient-specific aneurysm model. BIOMED ENG-BIOMED TE 2019; 64:275-284. [PMID: 29935108 DOI: 10.1515/bmt-2017-0142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 05/18/2018] [Indexed: 11/15/2022]
Abstract
The presence of high-frequency velocity fluctuations in aneurysms have been confirmed by in-vivo measurements and by several numerical simulation studies. Only a few studies have located and recorded wall vibrations in in-vitro experiments using physiological patient models. In this study, we investigated the wall fluctuations produced by a flowing perfusion fluid in a true-to-scale elastic model of a cerebral fusiform aneurysm using a laser Doppler vibrometer (LDV). The model was obtained from patient data. The experimental setup reproduced physiologically relevant conditions using a compliant perfusion system, physiological flow parameters, unsteady flow and a non-Newtonian fluid. Three geometrically identical models with different wall elasticities were used for measurements. The influence of five different flow rates was considered. Wall vibrations were predominantly found at frequencies in the range 40-60 Hz and 255-265 Hz. Their amplitude increased with increasing elasticity of the model, but the spectral peaks remained at about the same frequency. Varying the flow rate produced almost no changes in the frequency domain of the models. The frequency of the spectral peaks varied slightly between points at the lateral wall and at the bottom of the aneurysm. Indeed, embedding the model in a fluid during measurements produced higher and smoother amplitude fluctuations.
Collapse
Affiliation(s)
- Andrea Balasso
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Theresienstr. 41, 80333 Munich, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | | | - Sascha Prothmann
- Institute of Diagnostic and Interventional Neuroradiology, Helios Klinikum München West, Munich, Germany
| | - Jan Stefan Kirschke
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sergey Sindeev
- Biomedical Engineering Department, Tambov State Technical University, Tambov, Russia
| | - Sergey Frolov
- Biomedical Engineering Department, Tambov State Technical University, Tambov, Russia
| | - Benjamin Friedrich
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
61
|
Annamalai RT, Matthew HWT. Transport Analysis of Engineered Liver Tissue Fabricated Using a Capsule-Based, Modular Approach. Ann Biomed Eng 2019; 47:1223-1236. [PMID: 30796550 PMCID: PMC10766109 DOI: 10.1007/s10439-018-02192-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022]
Abstract
The bioinspired, microscale tissue engineering approach has emerged in recent years as a promising alternative to preformed scaffolds. Using this approach, complex tissues and organs can be efficiently engineered from microscale modules to replicate the intricate architecture and physiology of vascularized organs and tissues. Previously, we demonstrated assembly of a prototype, engineered liver tissue, formed by the fusion of hepatocyte-containing capsules. Here, we analyzed the effects of various controllable system parameters with the aim of predicting the operating limits of our modular tissue in high cell density, perfused cultures. Both the capsule diameter and construct height were limited by mass transfer requirements, while the shear stress on the capsule wall and the pressure drop across the packed capsule bed were dictated by the capsule diameter and permissible flow rates of the system. Our analysis predicts that capsules with a 200 µm radius can efficiently maintain hepatocytes at cell densities comparable to liver tissue. Some model predictions were validated by packed bed perfusion cultures. Flow-induced bed compaction hysteresis was tested experimentally and found to have minimal effect on flow characteristics. The effectiveness factor (η) for the overall oxygen transfer within packed beds of capsule modules was estimated to be 0.72 for all conditions. Primary hepatocytes encapsulated in the capsules exhibited normal metabolism and formed spheroids during a 7-day culture. The model predictions can be useful to study mass transfer and shear stress in high-density perfusion cultures. Overall, analysis of a perfused, capsule-based, modular tissue demonstrated the feasibility of the technology as a platform for fabrication of highly metabolic solid organs.
Collapse
Affiliation(s)
- Ramkumar T Annamalai
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, 48202, USA
| | - Howard W T Matthew
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, 48202, USA.
- Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA.
| |
Collapse
|
62
|
Chen X, Li J, Li Q, Zhang W, Lei Z, Qin D, Pan Z, Li J, Li X. Spatial-Temporal Changes of Mechanical Microenvironment in Skin Wounds During Negative Pressure Wound Therapy. ACS Biomater Sci Eng 2019; 5:1762-1770. [PMID: 33405552 DOI: 10.1021/acsbiomaterials.8b01554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cell migration, proliferation, and differentiation are regulated by mechanical cues during skin wound healing. Negative pressure wound therapy (NPWT) reduces the healing period by optimizing the mechanical microenvironment of the wound bed. Under NPWT, it remains elusive how the mechanical microenvironment (e.g., stiffness, strain gradients) changes both in time and space during wound healing. To illustrate this, the healing time of full-thickness skin wounds under NPWT, with pressure settings ranging from -50 to -150 mm Hg, were evaluated and compared with gauze dressing treatments (control group), and three-dimensional finite element models of full-thickness skin wounds on days 1 and 5 after treatment were developed on the basis of MR 3D imaging data. Shear wave elastography (SWE) was applied to detect the stiffness of wound soft tissue on days 1 and 5, and nonlinear finite element analysis (FEA) was used to represent the spatial-temporal environment of the 3D strain field of the wound under NPWT vs the control group. Compared with the control group, NPWT with -50, -80, and -125 mm Hg promoted wound healing. SWE showed that the elastic modulus of wounded skin increased during healing. Meanwhile, the elastic modulus in wounded skin under NPWT was significantly smaller than in the control group. Strain and its gradient decreased under NPWT during wound healing, while no significant change was observed in the control group. This study, which is based on MR 3D imaging, shear wave elastography, and nonlinear FEA, provides an in-depth understanding of changes of the skin mechanical microenvironment under NPWT in the time-space dimension and the associated wound healing.
Collapse
|
63
|
Intimal Hyperplasia After Aneurysm Treatment by Flow Diversion. World Neurosurg 2019; 122:e577-e583. [DOI: 10.1016/j.wneu.2018.10.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 11/21/2022]
|
64
|
Hong H, Song JM, Yeom E. Variations in pulsatile flow around stenosed microchannel depending on viscosity. PLoS One 2019; 14:e0210993. [PMID: 30677055 PMCID: PMC6345426 DOI: 10.1371/journal.pone.0210993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022] Open
Abstract
In studying blood flow in the vessels, the characteristics of non-Newtonian fluid are important, considering the role of viscosity in rheology. Stenosis, which is an abnormal narrowing of the vessel, has an influence on flow behavior. Therefore, analysis of blood flow in stenosed vessels is essential. However, most of them exist as simulation outcomes. In this study, non-Newtonian fluid was observed in stenosed microchannels under the pulsatile flow condition. A polydimethylsiloxane channel with 60% stenosis was fabricated by combining an optic fiber and a petri dish, resembling a mold. Three types of samples were prepared by changing the concentrations of xanthan gum, which induces a shear thinning effect (phosphate buffered saline (PBS) solution as the Newtonian fluid and two non-Newtonian fluids mimicking normal blood and highly viscous blood analog). The viscosity of the samples was measured using a Y-shaped microfluidic viscometer. Thereafter, velocity profiles were analyzed under the pulsatile flow condition using the micro-particle image velocimetry (PIV) method. For the Newtonian fluid, the streamline was skewed more to the wall of the channel. The velocity profile of the non-Newtonian fluid was generally blunter than that of the Newtonian fluid. A highly oscillating wall shear stress (WSS) during the pulsatile phase may be attributed to such a bluntness of flow under the same wall shear rate condition with the Newtonian fluid. In addition, a highly viscous flow contributes to the variation in the WSS after passing through the stenosed structures. A similar tendency was observed in simulation results. Such a variation in the WSS was associated with plaque instability or rupture and damage of the tissue layer. These results, related to the influence on the damage to the endothelium or stenotic lesion, may help clinicians understand relevant mechanisms.
Collapse
Affiliation(s)
- Hyeonji Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Jae Min Song
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Busan, South Korea
| | - Eunseop Yeom
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
- * E-mail:
| |
Collapse
|
65
|
Abstract
PURPOSE OF REVIEW Mutations in the Endoglin (Eng) gene, an auxiliary receptor in the transforming growth factor beta (TGFβ)-superfamily signaling pathway, are responsible for the human vascular disorder hereditary hemorrhagic telangiectasia (HHT) type 1, characterized in part by blood vessel enlargement. A growing body of work has uncovered an autonomous role for Eng in endothelial cells. We will highlight the influence of Eng on distinct cellular behaviors, such as migration and shape control, which are ultimately important for the assignment of proper blood vessel diameters. RECENT FINDINGS How endothelial cells establish hierarchically ordered blood vessel trees is one of the outstanding questions in vascular biology. Mutations in components of the TGFβ-superfamily of signaling molecules disrupt this patterning and cause arteriovenous malformations (AVMs). Eng is a TGFβ coreceptor enhancing signaling through the type I receptor Alk1. Recent studies identified bone morphogenetic proteins (BMPs) 9 and 10 as the primary ligands for Alk1/Eng. Importantly, Eng potentiated Alk1 pathway activation downstream of hemodynamic forces. New results furthermore revealed how Eng affects endothelial cell migration and cell shape control in response to these forces, thereby providing new avenues for our understanding of AVM cause. SUMMARY We will discuss the interplay of Eng and hemodynamic forces, such as shear stress, in relation to Alk1 receptor activation. We will furthermore detail how this signaling pathway influences endothelial cell behaviors important for the establishment of hierarchically ordered blood vessel trees. Finally, we will provide an outlook how these insights might help in developing new therapies for the treatment of HHT.
Collapse
|
66
|
Saqr KM, Mansour O, Tupin S, Hassan T, Ohta M. Evidence for non-Newtonian behavior of intracranial blood flow from Doppler ultrasonography measurements. Med Biol Eng Comput 2018; 57:1029-1036. [PMID: 30523533 DOI: 10.1007/s11517-018-1926-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/30/2018] [Indexed: 11/30/2022]
Abstract
Computational fluid dynamics (CFD) studies of intracranial hemodynamics often use Newtonian viscosity model to close the shear rate term in the Navier-Stokes equation. This is based on a commonly accepted hypothesis which state that non-Newtonian effects can be neglected in intracranial blood flow. This study aims to examine the validity of such hypothesis to guide future CFD studies of intracranial hemodynamics. Doppler ultrasonography (DUS) measurements of systolic and diastolic vessel diameter and blood velocity were conducted on 16 subjects (mean age 50.6). The measurements were conducted on the internal carotid (ICA), middle cerebral (MCA), and anterior communicating (AComA) arteries. Systolic and diastolic wall shear stress (WSS) values were calculated via the Hagen-Poiseuille exact solution using Newtonian and three different non-Newtonian models: namely Carreau, power-law and Herschel-Bulkley models. The Weissenberg-Rabinowitsch correction for blood shear-thinning viscosity was applied to the non-Newtonian models. The error percentage between the two sets of models was calculated and discussed. The Newtonian hypothesis was tested statistically and discussed using paired t tests. Significant differences (P < 0.0001) were found between the Newtonian and non-Newtonian WSS in ICA. In MCA and AComA, similar differences were found except in the systole and diastole for the Herschel-Bulkley and power-law models (P = 0.0669, P = 0.7298), respectively. The error between the Newtonian and non-Newtonian models ranged from - 27 to 30% (0.2 to 2.2 Pa). These values could affect the physical interpretation of IA CFD studies. Evidence suggests that the Newtonian assumption may be inappropriate to investigate intracranial hemodynamics. Graphical abstract The WSS estimation error resulting from using the Newtonian assumption compared to three non-Newtonian models for ICA, MCA, and AComA in systole and diastole conditions, based on TCCD measurements of 16 subjects. The error due to the Newtonian assumption ranged from 0.2 to 2.2 Pa (- 27 to 30%). These values could affect the physical interpretation of IA CFD studies.
Collapse
Affiliation(s)
- Khalid M Saqr
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Miyagi, 980-8577, Japan. .,College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Abu Kir, Alexandria, 1029, Egypt. .,Research Center for Computational Neurovascular Biomechanics (RCCNB), Smouha University Hospital, Alexandria University, Alexandria, 21648, Egypt.
| | - Ossama Mansour
- Research Center for Computational Neurovascular Biomechanics (RCCNB), Smouha University Hospital, Alexandria University, Alexandria, 21648, Egypt.,Department of Neurology, Stroke Unit, Alexandria University School of Medicine, Azarita Medical Campus, Alexandria, 21514, Egypt
| | - Simon Tupin
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Tamer Hassan
- Research Center for Computational Neurovascular Biomechanics (RCCNB), Smouha University Hospital, Alexandria University, Alexandria, 21648, Egypt.,Department of Neurosurgery, Alexandria University School of Medicine, Azarita Medical Campus, Alexandria, 21514, Egypt
| | - Makoto Ohta
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
67
|
The Roles of Primary Cilia in Cardiovascular Diseases. Cells 2018; 7:cells7120233. [PMID: 30486394 PMCID: PMC6315816 DOI: 10.3390/cells7120233] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Primary cilia are microtubule-based organelles found in most mammalian cell types. Cilia act as sensory organelles that transmit extracellular clues into intracellular signals for molecular and cellular responses. Biochemical and molecular defects in primary cilia are associated with a wide range of diseases, termed ciliopathies, with phenotypes ranging from polycystic kidney disease, liver disorders, mental retardation, and obesity to cardiovascular diseases. Primary cilia in vascular endothelia protrude into the lumen of blood vessels and function as molecular switches for calcium (Ca2+) and nitric oxide (NO) signaling. As mechanosensory organelles, endothelial cilia are involved in blood flow sensing. Dysfunction in endothelial cilia contributes to aberrant fluid-sensing and thus results in vascular disorders, including hypertension, aneurysm, and atherosclerosis. This review focuses on the most recent findings on the roles of endothelial primary cilia within vascular biology and alludes to the possibility of primary cilium as a therapeutic target for cardiovascular disorders.
Collapse
|
68
|
Diagbouga MR, Morel S, Bijlenga P, Kwak BR. Role of hemodynamics in initiation/growth of intracranial aneurysms. Eur J Clin Invest 2018; 48:e12992. [PMID: 29962043 DOI: 10.1111/eci.12992] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Intracranial aneurysm (IA) is a disease of the vascular wall resulting in abnormal enlargement of the vessel lumen. It is a common pathology with a prevalence of 2%-3% in the adult population. IAs are mostly small, quiescent and asymptomatic; yet, upon rupture, severe brain damage or even death is frequently encountered. In addition to clinical factors, hemodynamic forces, mainly wall shear stress (WSS), have been associated with the initiation of IAs and possibly with their risk of rupture. However, the mechanism by which WSS contributes to aneurysm growth and rupture is not completely understood. DESIGN PubMed and Ovid MEDLINE databases were searched. In addition, key review articles were screened for relevant original publications. RESULTS Current knowledge about the relation between WSS and IA has been obtained from both computational fluid dynamic studies in patients and experimental models of IA formation and growth. It is increasingly recognized that a high wall shear stress (gradient) participates to IA formation and that both low and high WSS can drive IA growth. Primary cilia (PC) play an important role as mechanosensors as patients with polycystic kidney disease, which is characterized by the absence or dysfunction of PC, have increased risk to develop IAs as well as increased risk of rupture. CONCLUSION Wall shear stress is a key player in IA initiation and progression. It is involved in vascular wall remodelling and inflammation, processes underlying aneurysm pathophysiology.
Collapse
Affiliation(s)
- Mannekomba R Diagbouga
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandrine Morel
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Philippe Bijlenga
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
69
|
Endothelial Shear Stress and Plaque Erosion: A Computational Fluid Dynamics and Optical Coherence Tomography Study. JACC Cardiovasc Imaging 2018; 12:374-375. [PMID: 30343069 DOI: 10.1016/j.jcmg.2018.07.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 11/22/2022]
|
70
|
Luu VZ, Chowdhury B, Al-Omran M, Hess DA, Verma S. Role of endothelial primary cilia as fluid mechanosensors on vascular health. Atherosclerosis 2018; 275:196-204. [PMID: 29945035 DOI: 10.1016/j.atherosclerosis.2018.06.818] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/07/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
Primary cilia are microtubule-based organelles that protrude from the cell surface of many mammalian cell types, including endothelial and epithelial cells, osteoblasts, and neurons. These antennal-like projections enable cells to detect extracellular stimuli and elicit responses via intracellular signaling mechanisms. Primary cilia on endothelial cells lining blood vessels function as calcium-dependent mechanosensors that sense blood flow. In doing so, they facilitate the regulation of hemodynamic parameters within the vascular system. Defects in endothelial primary cilia result in inappropriate blood flow-induced responses and contribute to the development of vascular dysfunctions, including atherosclerosis, hypertension, and aneurysms. This review examines the current understanding of vascular endothelial cilia structure and function and their role in the vascular system. Future directions for primary cilia research and treatments for ciliary-based pathologies are discussed.
Collapse
Affiliation(s)
- Vincent Z Luu
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Biswajit Chowdhury
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mohammed Al-Omran
- Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, King Saud University, Riyadh, Saudi Arabia
| | - David A Hess
- Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
71
|
Shojaei S, Tafazzoli-Shadpour M, Shokrgozar MA, Haghighipour N, Jahromi FH. Stress phase angle regulates differentiation of human adipose-derived stem cells toward endothelial phenotype. Prog Biomater 2018; 7:121-131. [PMID: 29785538 PMCID: PMC6068070 DOI: 10.1007/s40204-018-0090-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/06/2018] [Indexed: 12/13/2022] Open
Abstract
Endothelial cells are subjected to cyclic shear by pulsatile blood flow and pressures due to circumferential stresses. Although most of the researches on this topic have considered the effects of these two biomechanical forces separately or concurrently, few studies have noticed the interaction of these cyclic loadings on endothelial behavior. Negative temporal stress phase angle, defined by the phase lag between cyclic shear and tensile stresses, is an established parameter which is known to have substantial effects on blood vessel remodeling and progression of some serious cardiovascular diseases. In this research, intermittent shear and tensile stresses with different stress phase angle values were applied on human adipose stem cells (ASC). The expression level of three major endothelial-specific genes, elastic modulus of cells and cytoskeleton actin structure of cells were studied and compared among control and three test groups subjected to stress phase angle values at 0°, - 45°, and - 90°. Mechanical properties of ASCs were determined by atomic force microscopy and actin fiber structure was visualized by confocal imaging through Phalloidin staining. Results described a decrease in expression of FLK-1 and VE-cadherin and rise of vWF marker expression in case of higher negative stress phase angles. The Young's moduli of cells were significantly higher and cytoskeletal actin structure was more organized with higher thickness for all test samples subjected to combined stresses; however, these features were less magnificent for applied stress phase angles with higher negative values. The results confirmed significant effects of SPA on endothelial differentiation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Shahrokh Shojaei
- Faculty of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, 13185/768, Tehran, Iran.
| | - Mohammad Tafazzoli-Shadpour
- Cardiovascular Engineering Lab., Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, 158754413, Iran.
| | | | | | - Fatemeh Hejazi Jahromi
- Hard Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, 13185/768, Tehran, Iran
| |
Collapse
|
72
|
Yoshino D, Sakamoto N, Sato M. Fluid shear stress combined with shear stress spatial gradients regulates vascular endothelial morphology. Integr Biol (Camb) 2018; 9:584-594. [PMID: 28548171 DOI: 10.1039/c7ib00065k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
High shear stress (SS) causes local changes around arterial bifurcations, which are common sites for cerebral aneurysms. High SS and SS spatial gradient (SSG) are thought to play important roles in the pathology of cerebral aneurysms. However, whether SS and SSG independently affect the function and morphology of vascular endothelial cells (ECs) exposed to fluid flow remains unclear. This study evaluated the morphology of ECs exposed to various SS and SSG combinations. Confluent ECs were exposed to a SS of 2-60 Pa and a uniform SSG of 0, 5, 10, or 15 Pa mm-1 for 24 h. Although ECs exposed to lower levels of SS/SSG were not oriented or elongated in the direction of flow, they began to exhibit orientation, elongation, and development of actin stress fibers under the conditions of SS with a SSG when the SS exceeded a threshold value depending on the magnitude of SSG. Using a simplified computational model, we found that the presence of a SSG affects the strain field in ECs, resulting in a morphological response. SS combined with a SSG can alter the localization of SS mechano-sensing proteins along the strain field as a result of shear flow. Our results suggest that the magnitude of the relationship between SS and SSG plays an important role in regulating morphological changes in ECs in response to fluid flow by regulating EC polarity.
Collapse
Affiliation(s)
- Daisuke Yoshino
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, 6-3 Aramaki-Aoba, Aoba, Sendai 980-8577, Japan.
| | | | | |
Collapse
|
73
|
Sood T, Roy S, Pathak M. Effect of pulse rate variation on blood flow through axisymmetric and asymmetric stenotic artery models. Math Biosci 2018; 298:1-18. [DOI: 10.1016/j.mbs.2018.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 11/28/2022]
|
74
|
Lee JY, Chung J, Kim KH, An SH, Kim M, Park J, Kwon K. Fluid shear stress regulates the expression of Lectin-like oxidized low density lipoprotein receptor-1 via KLF2-AP-1 pathway depending on its intensity and pattern in endothelial cells. Atherosclerosis 2018; 270:76-88. [PMID: 29407891 DOI: 10.1016/j.atherosclerosis.2018.01.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Vascular endothelial cells (ECs) are exposed to fluid shear stress (FSS), which modulates vascular pathophysiology. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is crucial in endothelial dysfunction and atherosclerosis. We elucidated the mechanism regulating LOX-1 expression in ECs by FSS. METHODS Human umbilical vein endothelial cells were exposed to laminar shear stress (LSS) of indicated intensities using a unidirectional steady flow, or to oscillatory shear stress (OSS) using a bidirectional disturbed flow. In vivo studies were performed in a mouse model of partial carotid ligation and human pulmonary artery sections. RESULTS Within ECs, OSS upregulated LOX-1 expression, while LSS (20 dyne/cm2) downregulated it. We confirmed that OSS-induced LOX-1 expression was suppressed when the mechanotransduction was inhibited by knockdown of the mechanosensory complex. In addition, we demonstrated that Kruppel-like factor 2 (KLF2) has an inhibitory role on OSS-induced LOX-1 expression. Next, we determined that activator protein-1 (AP-1) was the key transcription factor inducing LOX-1 expression by OSS, which was inhibited by KLF2 overexpression. To explore whether the intensity of LSS affects LOX-1 expression, we tested three different intensities (20, 60, and 120 dyne/cm2) of LSS. We observed higher LOX-1 expression with high shear stresses of 120 dyne/cm2 compared to 20 and 60 dyne/cm2, with OSS-like KLF2-AP-1 signaling patterns. Furthermore, ECs within disturbed flow regions showed upregulated LOX-1 expression in vivo. CONCLUSIONS We concluded that LOX-1 expression on ECs is regulated via FSS depending on its intensity as well as pattern. Furthermore, this is mediated through the KLF2-AP1 pathway of mechanotransduction.
Collapse
Affiliation(s)
- Ji Yoon Lee
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Republic of Korea
| | - Jihwa Chung
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Republic of Korea
| | - Kyoung Hwa Kim
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Republic of Korea
| | - Shung Hyun An
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Republic of Korea
| | - Minsuk Kim
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul, 158-710, Republic of Korea
| | - Junbeom Park
- Department of Internal Medicine, Cardiology Division, School of Medicine, Ewha Womans University, Seoul, 158-710, Republic of Korea
| | - Kihwan Kwon
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Republic of Korea; Department of Internal Medicine, Cardiology Division, School of Medicine, Ewha Womans University, Seoul, 158-710, Republic of Korea.
| |
Collapse
|
75
|
Aliseda A, Chivukula VK, McGah P, Prisco AR, Beckman JA, Garcia GJ, Mokadam NA, Mahr C. LVAD Outflow Graft Angle and Thrombosis Risk. ASAIO J 2017; 63:14-23. [PMID: 28033200 PMCID: PMC5201113 DOI: 10.1097/mat.0000000000000443] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study quantifies thrombogenic potential (TP) of a wide range of left ventricular assist device (LVAD) outflow graft anastomosis angles through state-of-the-art techniques: 3D imaged-based patient-specific models created via virtual surgery and unsteady computational fluid dynamics with Lagrangian particle tracking. This study aims at clarifying the influence of a single parameter (outflow graft angle) on the thrombogenesis associated with flow patterns in the aortic root after LVAD implantation. This is an important and poorly-understood aspect of LVAD therapy, because several studies have shown strong inter and intrapatient thrombogenic variability and current LVAD implantation strategies do not incorporate outflow graft angle optimization. Accurate platelet-level investigation, enabled by statistical treatment of outliers in Lagrangian particle tracking, demonstrates a strong influence of outflow graft anastomoses angle on thrombogenicity (platelet residence times and activation state characterized by shear stress accumulation) with significantly reduced TP for acutely-angled anastomosed outflow grafts. The methodology presented in this study provides a device-neutral platform for conducting comprehensive thrombogenicity evaluation of LVAD surgical configurations, empowering optimal patient-focused surgical strategies for long-term treatment and care for advanced heart failure patients.
Collapse
Affiliation(s)
- Alberto Aliseda
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | | | - Patrick McGah
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Anthony R. Prisco
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Guilherme J.M. Garcia
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nahush A Mokadam
- Division of Cardiothoracic Surgery, University of Washington, Seattle, WA, USA
| | - Claudius Mahr
- Division of Cardiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
76
|
Makwana O, Flockton H, Watters GP, Nisar R, Smith GA, Fields W, Bombick B. Human aortic endothelial cells respond to shear flow in well-plate microfluidic devices. Altern Lab Anim 2017; 45:177-190. [PMID: 28994298 DOI: 10.1177/026119291704500407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although chronic progressive cardiovascular diseases such as atherosclerosis are often challenging to fully model in vitro, it has been shown that certain in vitro methods can effectively evaluate some aspects of disease progression. This has been demonstrated in in vitro and in vivo studies of endothelial cells that have illustrated the effects of nitric oxide (NO) production, filamentous actin (F-actin) formation, and cell and actin angle alignment on vascular function and homeostasis. Systems utilising shear flow have been established, in order to create a physiologically relevant environment for cells that require shear flow for homeostasis. Here, we investigated the use of a well-plate microfluidic system and associated devices (0-20dyn/cm²) to demonstrate applied shear effects on primary Human Aortic Endothelial Cells (HAECs). Changes in cell and actin alignment in the direction of flow, real-time production of NO and gross cell membrane shape changes in response to physiological shear flow were observed. These commercial systems have a range of potential applications, including within the consumer and pharmaceutical industries, thereby reducing the dependency on animal testing for regulatory safety assessments.
Collapse
Affiliation(s)
- Om Makwana
- RAI Services Company Winston-Salem, NC, USA
| | - Hannah Flockton
- Covance Laboratories Ltd, Genetic and Molecular Toxicology, Harrogate, UK
| | - Gary P Watters
- Covance Laboratories Ltd, Genetic and Molecular Toxicology, Harrogate, UK
| | - Rizwan Nisar
- Covance Laboratories Ltd, Genetic and Molecular Toxicology, Harrogate, UK
| | - Gina A Smith
- Covance Laboratories Ltd, Genetic and Molecular Toxicology, Harrogate, UK
| | | | | |
Collapse
|
77
|
Bianchi D, Monaldo E, Gizzi A, Marino M, Filippi S, Vairo G. A FSI computational framework for vascular physiopathology: A novel flow-tissue multiscale strategy. Med Eng Phys 2017; 47:25-37. [PMID: 28690045 DOI: 10.1016/j.medengphy.2017.06.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/05/2017] [Accepted: 06/01/2017] [Indexed: 11/27/2022]
Abstract
A novel fluid-structure computational framework for vascular applications is herein presented. It is developed by combining the double multi-scale nature of vascular physiopathology in terms of both tissue properties and blood flow. Addressing arterial tissues, they are modelled via a nonlinear multiscale constitutive rationale, based only on parameters having a clear histological and biochemical meaning. Moreover, blood flow is described by coupling a three-dimensional fluid domain (undergoing physiological inflow conditions) with a zero-dimensional model, which allows to reproduce the influence of the downstream vasculature, furnishing a realistic description of the outflow proximal pressure. The fluid-structure interaction is managed through an explicit time-marching approach, able to accurately describe tissue nonlinearities within each computational step for the fluid problem. A case study associated to a patient-specific aortic abdominal aneurysmatic geometry is numerically investigated, highlighting advantages gained from the proposed multiscale strategy, as well as showing soundness and effectiveness of the established framework for assessing useful clinical quantities and risk indexes.
Collapse
Affiliation(s)
- Daniele Bianchi
- Department of Civil Engineering and Computer Science (DICII), Universitá degli Studi di Roma "Tor Vergata", Via del Politecnico 1, Rome 00133, Italy.
| | - Elisabetta Monaldo
- Department of Engineering, Universitá degli Studi "Niccoló Cusano" - Telematica, Roma, Via Don C. Gnocchi 3, Rome 00166, Italy
| | - Alessio Gizzi
- Department of Engineering, Unit of Nonlinear Physics and Mathematical Modeling, University Campus Bio-Medico of Rome, Via A. del Portillo 21, Rome 00128, Italy
| | - Michele Marino
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Appelstr. 11, Hannover 30167, Germany
| | - Simonetta Filippi
- Department of Engineering, Unit of Nonlinear Physics and Mathematical Modeling, University Campus Bio-Medico of Rome, Via A. del Portillo 21, Rome 00128, Italy
| | - Giuseppe Vairo
- Department of Civil Engineering and Computer Science (DICII), Universitá degli Studi di Roma "Tor Vergata", Via del Politecnico 1, Rome 00133, Italy
| |
Collapse
|
78
|
Chang AH, Raftrey BC, D'Amato G, Surya VN, Poduri A, Chen HI, Goldstone AB, Woo J, Fuller GG, Dunn AR, Red-Horse K. DACH1 stimulates shear stress-guided endothelial cell migration and coronary artery growth through the CXCL12-CXCR4 signaling axis. Genes Dev 2017; 31:1308-1324. [PMID: 28779009 PMCID: PMC5580653 DOI: 10.1101/gad.301549.117] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/30/2017] [Indexed: 01/03/2023]
Abstract
Sufficient blood flow to tissues relies on arterial blood vessels, but the mechanisms regulating their development are poorly understood. Many arteries, including coronary arteries of the heart, form through remodeling of an immature vascular plexus in a process triggered and shaped by blood flow. However, little is known about how cues from fluid shear stress are translated into responses that pattern artery development. Here, we show that mice lacking endothelial Dach1 had small coronary arteries, decreased endothelial cell polarization, and reduced expression of the chemokine Cxcl12 Under shear stress in culture, Dach1 overexpression stimulated endothelial cell polarization and migration against flow, which was reversed upon CXCL12/CXCR4 inhibition. In vivo, DACH1 was expressed during early arteriogenesis but was down in mature arteries. Mature artery-type shear stress (high, uniform laminar) specifically down-regulated DACH1, while the remodeling artery-type flow (low, variable) maintained DACH1 expression. Together, our data support a model in which DACH1 stimulates coronary artery growth by activating Cxcl12 expression and endothelial cell migration against blood flow into developing arteries. This activity is suppressed once arteries reach a mature morphology and acquire high, laminar flow that down-regulates DACH1. Thus, we identified a mechanism by which blood flow quality balances artery growth and maturation.
Collapse
Affiliation(s)
- Andrew H Chang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Brian C Raftrey
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Gaetano D'Amato
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Vinay N Surya
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Aruna Poduri
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Heidi I Chen
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Andrew B Goldstone
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Health Research and Policy-Epidemiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
79
|
Bolar N, Verstraeten A, Van Laer L, Loeys B. Molecular Insights into Bicuspid Aortic Valve Development and the associated aortopathy. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.4.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
80
|
Bachmann BJ, Bernardi L, Loosli C, Marschewski J, Perrini M, Ehrbar M, Ermanni P, Poulikakos D, Ferrari A, Mazza E. A Novel Bioreactor System for the Assessment of Endothelialization on Deformable Surfaces. Sci Rep 2016; 6:38861. [PMID: 27941901 PMCID: PMC5150819 DOI: 10.1038/srep38861] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/15/2016] [Indexed: 12/28/2022] Open
Abstract
The generation of a living protective layer at the luminal surface of cardiovascular devices, composed of an autologous functional endothelium, represents the ideal solution to life-threatening, implant-related complications in cardiovascular patients. The initial evaluation of engineering strategies fostering endothelial cell adhesion and proliferation as well as the long-term tissue homeostasis requires in vitro testing in environmental model systems able to recapitulate the hemodynamic conditions experienced at the blood-to-device interface of implants as well as the substrate deformation. Here, we introduce the design and validation of a novel bioreactor system which enables the long-term conditioning of human endothelial cells interacting with artificial materials under dynamic combinations of flow-generated wall shear stress and wall deformation. The wall shear stress and wall deformation values obtained encompass both the physiological and supraphysiological range. They are determined through separate actuation systems which are controlled based on validated computational models. In addition, we demonstrate the good optical conductivity of the system permitting online monitoring of cell activities through live-cell imaging as well as standard biochemical post-processing. Altogether, the bioreactor system defines an unprecedented testing hub for potential strategies toward the endothelialization or re-endothelialization of target substrates.
Collapse
Affiliation(s)
- Björn J. Bachmann
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Laura Bernardi
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Christian Loosli
- ETH Zurich, Laboratory of Composite Materials and Adaptive Structures, Department of Mechanical and Process Engineering, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Julian Marschewski
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Michela Perrini
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092 Zurich, Switzerland
- University Hospital Zurich, Department of Obstetrics, Zurich, Switzerland
| | - Martin Ehrbar
- University Hospital Zurich, Department of Obstetrics, Zurich, Switzerland
| | - Paolo Ermanni
- ETH Zurich, Laboratory of Composite Materials and Adaptive Structures, Department of Mechanical and Process Engineering, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Dimos Poulikakos
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Aldo Ferrari
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Edoardo Mazza
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092 Zurich, Switzerland
- Empa, Swiss Federal Laboratories for Materials Science & Technology, Überlandstr. 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
81
|
REN XILI, FU YULIN, QIAO AIKE. INFLUENCE OF BIFURCATION DIAMETER ON THE VERTEBRAL ARTERY ORIGIN STENOSIS: A SIMULATION STUDY OF HEMODYNAMICS. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519416500792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The stenosis at the beginning segment of the vertebral artery accounts for the first risk of stroke in the posterior circulation. The extracranial vertebral arteries, especially the proximal ends, have been considered to be the predilection sites of stenosis or occlusion. From the perspective of hemodynamics, the mechanics of vertebral arteries stenosis is still unclear. In this paper, the formation of atherosclerosis in proximal end was concerned from the aspects of the effect of bifurcation diameter. Different models represent different bifurcation diameter. In order to find correlation between bifurcation diameter and WSS we build different models. Three idealized models with the vertebral artery diameter of [Formula: see text][Formula: see text]m (Model A1), [Formula: see text][Formula: see text]m (Model A2) and [Formula: see text][Formula: see text]m (Model A3) respectively and seven realistic models were analyzed by using computational fluid dynamics tools. The area of low wall shear stress (WSS, [Formula: see text] 1.5[Formula: see text]Pa) in the proximal end of vertebral artery extracted at the peak systole in the idealized models were 2.25[Formula: see text]e-7, 8.55[Formula: see text]e-7 and 1.61[Formula: see text]e-6[Formula: see text]m2, respectively. The area of low WSS on the vertebral artery origin of realistic models extracted at the peak systole were 0, 1.18[Formula: see text]e-09, 3.91[Formula: see text]e-07, 1.68[Formula: see text]e-07, 5.46[Formula: see text]e-06, 1.16[Formula: see text]e-06 and 2.25[Formula: see text]e-06[Formula: see text]m2, respectively. Moreover, the time-averaged WSSs of the three idealized models were 3.95, 3.56 and 3.19, respectively. The time-averaged WSSs of the realistic models were 6.28, 6.36, 4.48, 4.71, 3.59, 3.59 and 3.31[Formula: see text]Pa, respectively. With the increase of bifurcation diameter, the risk of endothelial dysfunction increases, and the same is to intimal hyperplasia.
Collapse
Affiliation(s)
- XILI REN
- College of Life Science and Bioengineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - YULIN FU
- College of Life Science and Bioengineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - AIKE QIAO
- College of Life Science and Bioengineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| |
Collapse
|
82
|
Arzani A, Shadden SC. Characterizations and Correlations of Wall Shear Stress in Aneurysmal Flow. J Biomech Eng 2016; 138:2473566. [PMID: 26592536 DOI: 10.1115/1.4032056] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 11/08/2022]
Abstract
Wall shear stress (WSS) is one of the most studied hemodynamic parameters, used in correlating blood flow to various diseases. The pulsatile nature of blood flow, along with the complex geometries of diseased arteries, produces complicated temporal and spatial WSS patterns. Moreover, WSS is a vector, which further complicates its quantification and interpretation. The goal of this study is to investigate WSS magnitude, angle, and vector changes in space and time in complex blood flow. Abdominal aortic aneurysm (AAA) was chosen as a setting to explore WSS quantification. Patient-specific computational fluid dynamics (CFD) simulations were performed in six AAAs. New WSS parameters are introduced, and the pointwise correlation among these, and more traditional WSS parameters, was explored. WSS magnitude had positive correlation with spatial/temporal gradients of WSS magnitude. This motivated the definition of relative WSS gradients. WSS vectorial gradients were highly correlated with magnitude gradients. A mix WSS spatial gradient and a mix WSS temporal gradient are proposed to equally account for variations in the WSS angle and magnitude in single measures. The important role that WSS plays in regulating near wall transport, and the high correlation among some of the WSS parameters motivates further attention in revisiting the traditional approaches used in WSS characterizations.
Collapse
|
83
|
Ben-Shoshan J, Steinvil A, Arbel Y, Topilsky Y, Barak L, Entin-Meer M, Levy R, Schwartz AL, Keren G, Finkelstein A, Banai S. Sustained Elevation of Vascular Endothelial Growth Factor and Angiopoietin-2 Levels After Transcatheter Aortic Valve Replacement. Can J Cardiol 2016; 32:1454-1461. [PMID: 27720271 DOI: 10.1016/j.cjca.2016.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Transcatheter aortic valve replacement (TAVR) exposes the systemic vasculature to increased mechanical forces. Endothelial adaptation to mechanical stimuli is associated with angiogenic activation through various growth factors. We studied the potential angiogenic shift evoked by TAVR. METHODS From a cohort of 69 consecutive patients undergoing TAVR, we excluded patients with conditions known to affect angiogenic factors, and serum vascular endothelial growth factor (VEGF) and angiopoietin (Ang)-1 and Ang-2 were assessed by ELISA. We assessed in vitro the properties of endothelial cells after exposure to serum collected from patients undergoing TAVR using adhesion, migration, and Matrigel angiogenesis assays. The correlation between changes in angiogenic factors and cardiac functions was evaluated on 30- day echocardiograms. RESULTS The study population consisted of 46 patients (82 ± 5 years). Two days after TAVR the post/pre TAVR ratio of VEGF, Ang-1, and Ang-2 was 5.38 ± 4 (P < 0.001), 1.05 ± 0.49 (P = 0.27), and 4.65 ± 2.01 (P < 0.001), respectively. The increase in VEGF and Ang-2 showed a significant correlation (r = 0.609; P < 0.001), but no correlation was found with hemolysis or tissue injury markers. Patients with relatively low levels of VEGF or an Ang-2 rise had more severe aortic stenosis and coronary disease at baseline. Exposure of endothelial cells to post-TAVR serum induced adhesion, migration, and tube formation compared with pre-TAVR serum. An increase in VEGF levels correlated with improvement in pulmonary systolic pressure and a right ventricular fractional area change at 30 days, (r = 0.54 and r = 0.48, respectively; P < 0.01). CONCLUSIONS Sustained elevation of VEGF and Ang-2 levels occur after TAVR, reflecting a systemic angiogenic shift. A rise in VEGF levels is associated with a decrease in pulmonary blood pressure in patients undergoing TAVR.
Collapse
Affiliation(s)
- Jeremy Ben-Shoshan
- Department of Cardiology, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Arie Steinvil
- Department of Cardiology, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yaron Arbel
- Department of Cardiology, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yan Topilsky
- Department of Cardiology, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Leehee Barak
- Department of Cardiology, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Entin-Meer
- Department of Cardiology, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ran Levy
- Department of Cardiology, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Arie Lorin Schwartz
- Department of Cardiology, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gad Keren
- Department of Cardiology, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ariel Finkelstein
- Department of Cardiology, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shmuel Banai
- Department of Cardiology, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
84
|
Evaluation of the impact of carotid artery bifurcation angle on hemodynamics by use of computational fluid dynamics: a simulation and volunteer study. Radiol Phys Technol 2016; 9:277-85. [PMID: 27255300 DOI: 10.1007/s12194-016-0360-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
Abstract
In this study, we evaluated the hemodynamics of carotid artery bifurcation with various geometries using simulated and volunteer models based on magnetic resonance imaging (MRI). Computational fluid dynamics (CFD) was analyzed by use of OpenFOAM. The velocity distribution, streamline, and wall shear stress (WSS) were evaluated in a simulated model with known bifurcation angles (30°, 40°, 50°, 60°, derived from patients' data) and in three-dimensional (3D) healthy volunteer models. Separated flow was observed at the outer side of the bifurcation, and large bifurcation models represented upstream transfer of the point. Local WSS values at the outer bifurcation [both simulated (<30 Pa) and volunteer (<50 Pa) models] were lower than those in the inner region (>100 Pa). The bifurcation angle had a significant negative correlation with the WSS value (p<0.05). The results of this study show that the carotid artery bifurcation angle is related to the WSS value. This suggests that hemodynamic stress can be estimated based on the carotid artery geometry. The construction of a clinical database for estimation of developing atherosclerosis is warranted.
Collapse
|
85
|
Atkins SK, Moore AN, Sucosky P. Bicuspid aortic valve hemodynamics does not promote remodeling in porcine aortic wall concavity. World J Cardiol 2016; 8:89-97. [PMID: 26839660 PMCID: PMC4728110 DOI: 10.4330/wjc.v8.i1.89] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/30/2015] [Accepted: 12/04/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of type-I left-right bicuspid aortic valve (LR-BAV) hemodynamic stresses in the remodeling of the thoracic ascending aorta (AA) concavity, in the absence of underlying genetic or structural defects.
METHODS: Transient wall shear stress (WSS) profiles in the concavity of tricuspid aortic valve (TAV) and LR-BAV AAs were obtained computationally. Tissue specimens excised from the concavity of normal (non-dilated) porcine AAs were subjected for 48 h to those stress environments using a shear stress bioreactor. Tissue remodeling was characterized in terms of matrix metalloproteinase (MMP) expression and activity via immunostaining and gelatin zymography.
RESULTS: Immunostaining semi-quantification results indicated no significant difference in MMP-2 and MMP-9 expression between the tissue groups exposed to TAV and LR-BAV AA WSS (P = 0.80 and P = 0.19, respectively). Zymography densitometry revealed no difference in MMP-2 activity (total activity, active form and latent form) between the groups subjected to TAV AA and LR-BAV AA WSS (P = 0.08, P = 0.15 and P = 0.59, respectively).
CONCLUSION: The hemodynamic stress environment present in the concavity of type-I LR-BAV AA does not cause any significant change in proteolytic enzyme expression and activity as compared to that present in the TAV AA.
Collapse
|
86
|
Nakayama KH, Surya VN, Gole M, Walker T, Yang W, Lai ES, Ostrowski M, Fuller GG, Dunn AR, Huang NF. Nanoscale Patterning of Extracellular Matrix Alters Endothelial Function under Shear Stress. NANO LETTERS 2016; 16:410-419. [PMID: 26670737 PMCID: PMC4758680 DOI: 10.1021/acs.nanolett.5b04028] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The role of nanotopographical extracellular matrix (ECM) cues in vascular endothelial cell (EC) organization and function is not well-understood, despite the composition of nano- to microscale fibrillar ECMs within blood vessels. Instead, the predominant modulator of EC organization and function is traditionally thought to be hemodynamic shear stress, in which uniform shear stress induces parallel-alignment of ECs with anti-inflammatory function, whereas disturbed flow induces a disorganized configuration with pro-inflammatory function. Since shear stress acts on ECs by applying a mechanical force concomitant with inducing spatial patterning of the cells, we sought to decouple the effects of shear stress using parallel-aligned nanofibrillar collagen films that induce parallel EC alignment prior to stimulation with disturbed flow resulting from spatial wall shear stress gradients. Using real time live-cell imaging, we tracked the alignment, migration trajectories, proliferation, and anti-inflammatory behavior of ECs when they were cultured on parallel-aligned or randomly oriented nanofibrillar films. Intriguingly, ECs cultured on aligned nanofibrillar films remained well-aligned and migrated predominantly along the direction of aligned nanofibrils, despite exposure to shear stress orthogonal to the direction of the aligned nanofibrils. Furthermore, in stark contrast to ECs cultured on randomly oriented films, ECs on aligned nanofibrillar films exposed to disturbed flow had significantly reduced inflammation and proliferation, while maintaining intact intercellular junctions. This work reveals fundamental insights into the importance of nanoscale ECM interactions in the maintenance of endothelial function. Importantly, it provides new insight into how ECs respond to opposing cues derived from nanotopography and mechanical shear force and has strong implications in the design of polymeric conduits and bioengineered tissues.
Collapse
Affiliation(s)
- Karina H. Nakayama
- Stanford Cardiovascular Institute, Stanford, CA
- Department of Cardiothoracic Surgery, Stanford School of Medicine, Stanford, CA
- Veterans Affairs Palo Alto Health Care System, Palo Alto
| | - Vinay N. Surya
- Stanford Cardiovascular Institute, Stanford, CA
- Department of Chemical Engineering, Stanford University School of Engineering, Stanford, CA
| | - Monica Gole
- Veterans Affairs Palo Alto Health Care System, Palo Alto
| | - Travis Walker
- Department of Chemical Engineering, Oregon State University, Corvallis, OR
| | - Weiguang Yang
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA
| | - Edwina S. Lai
- Department of Chemical Engineering, Stanford University School of Engineering, Stanford, CA
| | - Maggie Ostrowski
- Department of Chemical Engineering, Stanford University School of Engineering, Stanford, CA
| | - Gerald G. Fuller
- Department of Chemical Engineering, Stanford University School of Engineering, Stanford, CA
| | - Alexander R. Dunn
- Stanford Cardiovascular Institute, Stanford, CA
- Department of Chemical Engineering, Stanford University School of Engineering, Stanford, CA
| | - Ngan F. Huang
- Stanford Cardiovascular Institute, Stanford, CA
- Department of Cardiothoracic Surgery, Stanford School of Medicine, Stanford, CA
- Veterans Affairs Palo Alto Health Care System, Palo Alto
| |
Collapse
|
87
|
Multiplexed Fluid Flow Device to Study Cellular Response to Tunable Shear Stress Gradients. Ann Biomed Eng 2015; 44:2261-72. [PMID: 26589597 DOI: 10.1007/s10439-015-1500-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/31/2015] [Indexed: 02/03/2023]
Abstract
Endothelial cells (ECs) line the interior of blood and lymphatic vessels and experience spatially varying wall shear stress (WSS) as an intrinsic part of their physiological function. How ECs, and mammalian cells generally, sense spatially varying WSS remains poorly understood, due in part to a lack of convenient tools for exposing cells to spatially varying flow patterns. We built a multiplexed device, termed a 6-well impinging flow chamber, that imparts controlled WSS gradients to a six-well tissue culture plate. Using this device, we investigated the migratory response of lymphatic microvascular ECs, umbilical vein ECs, primary fibroblasts, and epithelial cells to WSS gradients on hours to days timescales. We observed that lymphatic microvascular ECs migrate upstream, against the direction of flow, a response that was unique among all the cells types investigated here. Time-lapse, live cell imaging revealed that the microtubule organizing center relocated to the upstream side of the nucleus in response to the applied WSS gradient. To further demonstrate the utility of our device, we screened for the involvement of canonical signaling pathways in mediating this upstream migratory response. These data highlight the importance of WSS magnitude and WSS spatial gradients in dictating the cellular response to fluid flow.
Collapse
|
88
|
Andreou I, Antoniadis AP, Shishido K, Papafaklis MI, Koskinas KC, Chatzizisis YS, Coskun AU, Edelman ER, Feldman CL, Stone PH. How do we prevent the vulnerable atherosclerotic plaque from rupturing? Insights from in vivo assessments of plaque, vascular remodeling, and local endothelial shear stress. J Cardiovasc Pharmacol Ther 2015; 20:261-275. [PMID: 25336461 DOI: 10.1177/1074248414555005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/14/2014] [Indexed: 01/13/2023]
Abstract
Coronary atherosclerosis progresses both as slow, gradual enlargement of focal plaque and also as a more dynamic process with periodic abrupt changes in plaque geometry, size, and morphology. Systemic vasculoprotective therapies such as statins, angiotensin-converting enzyme inhibitors, and antiplatelet agents are the cornerstone of prevention of plaque rupture and new adverse clinical outcomes, but such systemic therapies are insufficient to prevent the majority of new cardiac events. Invasive imaging methods have been able to identify both the anatomic features of high-risk plaque and the ongoing pathobiological stimuli responsible for progressive plaque inflammation and instability and may provide sufficient information to formulate preventive local mechanical strategies (eg, preemptive percutaneous coronary interventions) to avert cardiac events. Local endothelial shear stress (ESS) triggers vascular phenomena that synergistically exacerbate atherosclerosis toward an unstable phenotype. Specifically, low ESS augments lipid uptake and catabolism, induces plaque inflammation and oxidation, downregulates the production, upregulates the degradation of extracellular matrix, and increases cellular apoptosis ultimately leading to thin-cap fibroatheromas and/or endothelial erosions. Increases in blood thrombogenicity that result from either high or low ESS also contribute to plaque destabilization. An understanding of the actively evolving vascular phenomena, as well as the development of in vivo imaging methodologies to identify the presence and severity of the different processes, may enable early identification of a coronary plaque destined to acquire a high-risk state and allow for highly selective, focal preventive interventions to avert the adverse natural history of that particular plaque. In this review, we focus on the role of ESS in the pathobiologic processes responsible for plaque destabilization, leading either to accelerated plaque growth or to acute coronary events, and emphasize the potential to utilize in vivo risk stratification of individual coronary plaques to optimize prevention strategies to preclude new cardiac events.
Collapse
Affiliation(s)
- Ioannis Andreou
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Antonios P Antoniadis
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Koki Shishido
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Michail I Papafaklis
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Konstantinos C Koskinas
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Yiannis S Chatzizisis
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ahmet U Coskun
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Elazer R Edelman
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Charles L Feldman
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Peter H Stone
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
89
|
Oulaid O, Zhang J. Temporal and spatial variations of wall shear stress in the entrance region of microvessels. J Biomech Eng 2015; 137:061008. [PMID: 25781004 DOI: 10.1115/1.4030055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Indexed: 11/08/2022]
Abstract
Using a simplified two-dimensional divider-channel setup, we simulate the development process of red blood cell (RBC) flows in the entrance region of microvessels to study the wall shear stress (WSS) behaviors. Significant temporal and spatial variation in WSS is noticed. The maximum WSS magnitude and the strongest variation are observed at the channel inlet due to the close cell-wall contact. From the channel inlet, both the mean WSS and variation magnitude decrease, with a abrupt drop in the close vicinity near the inlet and then a slow relaxation over a relatively long distance; and a relative stable state with approximately constant mean and variation is established when the flow is well developed. The correlations between the WSS variation features and the cell free layer (CFL) structure are explored, and the effects of several hemodynamic parameters on the WSS variation are examined. In spite of the model limitations, the qualitative information revealed in this study could be useful for better understanding relevant processes and phenomena in the microcirculation.
Collapse
|
90
|
Baeyens N, Nicoli S, Coon BG, Ross TD, Van den Dries K, Han J, Lauridsen HM, Mejean CO, Eichmann A, Thomas JL, Humphrey JD, Schwartz MA. Vascular remodeling is governed by a VEGFR3-dependent fluid shear stress set point. eLife 2015; 4. [PMID: 25643397 PMCID: PMC4337723 DOI: 10.7554/elife.04645] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 02/01/2015] [Indexed: 12/23/2022] Open
Abstract
Vascular remodeling under conditions of growth or exercise, or during recovery from arterial restriction or blockage is essential for health, but mechanisms are poorly understood. It has been proposed that endothelial cells have a preferred level of fluid shear stress, or ‘set point’, that determines remodeling. We show that human umbilical vein endothelial cells respond optimally within a range of fluid shear stress that approximate physiological shear. Lymphatic endothelial cells, which experience much lower flow in vivo, show similar effects but at lower value of shear stress. VEGFR3 levels, a component of a junctional mechanosensory complex, mediate these differences. Experiments in mice and zebrafish demonstrate that changing levels of VEGFR3/Flt4 modulates aortic lumen diameter consistent with flow-dependent remodeling. These data provide direct evidence for a fluid shear stress set point, identify a mechanism for varying the set point, and demonstrate its relevance to vessel remodeling in vivo. DOI:http://dx.doi.org/10.7554/eLife.04645.001 Blood and lymphatic vessels remodel their shape, diameter and connections during development, and throughout life in response to growth, exercise and disease. This process is called vascular remodeling. The endothelial cells that line the inside of blood and lymphatic vessels are constantly exposed to the frictional force from flowing blood, termed fluid shear stress. Changes in shear stress are sensed by the endothelial cells, which trigger vascular remodeling to return the stress to the original level. It has been proposed that remodeling is governed by a preferred level of fluid shear stress, or set point, against which deviations in the shear stress are compared. Thus, changing the fluid flow through a blood vessel increases or decreases shear stress, which results in the vessel remodeling to restore the original level of shear stress. Like all remodeling, this process involves inflammation to recruit white blood cells, which assist with the process. Baeyens et al. investigated whether such a shear stress set point exists and what its biological basis might be using cultured endothelial cells from human umbilical veins. These cells remained stable and in a resting state when a particular level of shear stress was applied to them; above or below this shear stress level, the cells produced an inflammatory response like that seen during vascular remodeling. This suggests that these cells do indeed have a set point for shear stress. The same response occurred in human lymphatic endothelial cells, although in these cells the shear stress set point was much lower, correlating with the low flow in lymphatic vessels. Baeyens et al. then discovered that the shear stress set point is related to the level of a protein called VEGFR3 in the cells, which was recently found to participate in shear stress sensing. Endothelial cells from lymphatic vessels normally produce much greater quantities of VEGFR3 than those from blood vessels. Reducing the amount of VEGFR3 in lymphatic endothelial cells increased the set point shear stress, while increasing the levels in blood vessel cells decreased the set point. This suggests that the levels of this protein account for the difference in the response of these two cell types. Baeyens et al. then tested this pathway by reducing the levels of VEGFR3 in zebrafish embryos and in adult mice. In both animals, this caused arteries to narrow, showing that VEGFR3 levels also control sensitivity to shear stress—and hence vascular remodeling—inside living creatures. Understanding in detail how vascular remodeling is regulated could help improve treatments for a wide range of cardiovascular conditions. To do so, further work will be needed to develop methods to control the sensitivity of endothelial cells to shear stress and to identify other proteins that might specifically control the narrowing or the expansion of vessels in human patients. DOI:http://dx.doi.org/10.7554/eLife.04645.002
Collapse
Affiliation(s)
- Nicolas Baeyens
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Stefania Nicoli
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Brian G Coon
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Tyler D Ross
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Koen Van den Dries
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Jinah Han
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Holly M Lauridsen
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, United States
| | - Cecile O Mejean
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Anne Eichmann
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, United States
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, United States
| | - Martin A Schwartz
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
91
|
Wang L, Li Y, Huang G, Zhang X, Pingguan-Murphy B, Gao B, Lu TJ, Xu F. Hydrogel-based methods for engineering cellular microenvironment with spatiotemporal gradients. Crit Rev Biotechnol 2015; 36:553-65. [PMID: 25641330 DOI: 10.3109/07388551.2014.993588] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Natural cellular microenvironment consists of spatiotemporal gradients of multiple physical (e.g. extracellular matrix stiffness, porosity and stress/strain) and chemical cues (e.g. morphogens), which play important roles in regulating cell behaviors including spreading, proliferation, migration, differentiation and apoptosis, especially for pathological processes such as tumor formation and progression. Therefore, it is essential to engineer cellular gradient microenvironment incorporating various gradients for the fabrication of normal and pathological tissue models in vitro. In this article, we firstly review the development of engineering cellular physical and chemical gradients with cytocompatible hydrogels in both two-dimension and three-dimension formats. We then present current advances in the application of engineered gradient microenvironments for the fabrication of disease models in vitro. Finally, concluding remarks and future perspectives for engineering cellular gradients are given.
Collapse
Affiliation(s)
- Lin Wang
- a MOE Key Laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| | - Yuhui Li
- a MOE Key Laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| | - Guoyou Huang
- a MOE Key Laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| | - Xiaohui Zhang
- a MOE Key Laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| | - Belinda Pingguan-Murphy
- c Department of Biomedical Engineering , Faculty of Engineering, University of Malaya , Kuala Lumpur , Malaysia , and
| | - Bin Gao
- a MOE Key Laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China .,d Department of Endocrinology and Metabolism , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Tian Jian Lu
- b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| | - Feng Xu
- a MOE Key Laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
92
|
FU YULIN, QIAO AIKE, JIN LONG. THE INFLUENCE OF HEMODYNAMICS ON THE ULCERATION PLAQUES OF CAROTID ARTERY STENOSIS. J MECH MED BIOL 2015. [DOI: 10.1142/s0219519415500086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The further rupture of atherosclerotic ulceration plaque is one of the main triggers of the carotid ischemic stroke. However, the abnormal hemodynamics is not well addressed yet. A lesion-based computational fluid dynamic (CFD) analysis is proposed to investigate the complex hemodynamic change of the ulceration plaque that prevails in patients. The 3D models including eight groups of ulcerations (six groups with single ulceration and two groups with two consecutive ulcerations), were reconstructed based on the computer tomography (CT) images, and the tetrahedral grid was taken to mesh the models with the appropriate numbers. After setting the boundary conditions, numerical simulation was carried out to analyze the pulsatile blood flow in the models. The complex flow in the vicinity of the ulcerations directly leads to a significant effect on the distribution of the wall shear stress (WSS). WSS is respectively from 3.29 to 35.41 Pa at the upstream, from 11.90 to 41.85 Pa at the downstream ulceration, and 18.60 and 30.60 Pa in the area between the two consecutive ulcerations. The rupture from these regions could cause the further rupture of ulceration plaques, particularly at the downstream ulceration and the area between the two consecutive ulcerations. The twisting and the curling of the flow at the ulcerations can lead to thrombosis which may break free later and go through the downstream stenosis by the effect of the flow. The different degrees of WSS in downstream and upstream ulcerations will damage the ulceration on the plaque because of pulling and stretching forces at the ulcerations. Furthermore, high wall shear stress gradient (WSSG) also increases the risk of the further rupture. Our study gives a better understanding in the further rupture mechanism of ulceration plaques and provides the information of the location of thrombosis after aggravated rupturing, which can be referred by surgeons to improve the surgical planning.
Collapse
Affiliation(s)
- YULIN FU
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - AIKE QIAO
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - LONG JIN
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| |
Collapse
|
93
|
Allen BD, van Ooij P, Barker AJ, Carr M, Gabbour M, Schnell S, Jarvis KB, Carr JC, Markl M, Rigsby C, Robinson JD. Thoracic aorta 3D hemodynamics in pediatric and young adult patients with bicuspid aortic valve. J Magn Reson Imaging 2015; 42:954-63. [PMID: 25644073 DOI: 10.1002/jmri.24847] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND To evaluate the 3D hemodynamics in the thoracic aorta of pediatric and young adult bicuspid aortic valve (BAV) patients. METHODS 4D flow MRI was performed in 30 pediatric and young adult BAV patients (age: 13.9 ± 4.4 (range: [3.4, 20.7]) years old, M:F = 17:13) as part of this Institutional Review Board-approved study. Nomogram-based aortic root Z-scores were calculated to assess aortic dilatation and degree of aortic stenosis (AS) severity was assessed on MRI. Data analysis included calculation of time-averaged systolic 3D wall shear stress (WSSsys ) along the entire aorta wall, and regional quantification of maximum and mean WSSsys and peak systolic velocity (velsys ) in the ascending aorta (AAo), arch, and descending aorta (DAo). The 4D flow MRI AAo velsys was also compared with echocardiography peak velocity measurements. RESULTS There was a positive correlation with both mean and max AAo WSSsys and peak AAo velsys (mean: r = 0.84, P < 0.001, max: r = 0.94, P < 0.001) and AS (mean: rS = 0.43, P = 0.02, max: rS = 0.70, P < 0.001). AAo peak velocity was significantly higher when measured with echo compared with 4D flow MRI (2.1 ± 0.98 m/s versus 1.27 ± 0.49 m/s, P < 0.001). CONCLUSION In pediatric and young adult patients with BAV, AS and peak ascending aorta velocity are associated with increased AAo WSS, while aortic dilation, age, and body surface area do not significantly impact AAo hemodynamics. Prospective studies are required to establish the role of WSS as a risk-stratification tool in these patients.
Collapse
Affiliation(s)
- Bradley D Allen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Pim van Ooij
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alex J Barker
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Maria Carr
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Maya Gabbour
- Department of Medical Imaging, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Susanne Schnell
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kelly B Jarvis
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - James C Carr
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Illinois, USA
| | - Cynthia Rigsby
- Department of Medical Imaging, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Joshua D Robinson
- Division of Pediatric Cardiology, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
94
|
Ghaffari S, Leask RL, Jones EA. Flow dynamics control the location of sprouting and direct elongation during developmental angiogenesis. Development 2015; 142:4151-7. [DOI: 10.1242/dev.128058] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/29/2015] [Indexed: 12/14/2022]
Abstract
Angiogenesis is tightly controlled by a number of signalling pathways. Though our understanding of the molecular mechanisms involved in angiogenesis has rapidly increased, the role that biomechanical signals play in this process is understudied. We recently developed a technique to simultaneously analyse flow dynamics and vascular remodelling by time-lapse microscopy in the capillary plexus of avian embryos and used this to study the hemodynamic environment present during angiogenic sprouting. We found that sprouts always form from a vessel at lower pressure towards a vessel at higher pressure. We found that sprouts form at the location of a shear stress minimum, but avoid locations where two blood streams merge even if this point is at a lower level of shear stress than the sprouting location. Using these parameters, we were able to successfully predict sprout location in embryos. We also find that the pressure difference between two vessels is permissive to elongation, and that sprouts will either change direction or regress if the pressure difference becomes negative. Furthermore, the sprout elongation rate is proportional to the pressure difference between the two vessels. Our results show that flow dynamics are predictive of the location of sprout formation in perfused vascular networks and that pressure differences across the interstitium can guide sprout elongation.
Collapse
Affiliation(s)
- Siavash Ghaffari
- Lady Davis Institute for Medical Research, McGill University, 3755 Ch. Côte-Ste-Catherine, Montréal, QC, H3T 1E2, Canada
- Department of Chemical Engineering, McGill University, 3610 University St., Montréal, QC, H3A 0C5, Canada
| | - Richard L. Leask
- Department of Chemical Engineering, McGill University, 3610 University St., Montréal, QC, H3A 0C5, Canada
| | - Elizabeth A.V. Jones
- Lady Davis Institute for Medical Research, McGill University, 3755 Ch. Côte-Ste-Catherine, Montréal, QC, H3T 1E2, Canada
- Department of Chemical Engineering, McGill University, 3610 University St., Montréal, QC, H3A 0C5, Canada
- Department of Cardiovascular Science, KU Leuven, UZ Herestraat 49 - box 911, 3000 Leuven, Belgium
| |
Collapse
|
95
|
Tanweer O, Wilson TA, Metaxa E, Riina HA, Meng H. A comparative review of the hemodynamics and pathogenesis of cerebral and abdominal aortic aneurysms: lessons to learn from each other. J Cerebrovasc Endovasc Neurosurg 2014; 16:335-49. [PMID: 25599042 PMCID: PMC4296046 DOI: 10.7461/jcen.2014.16.4.335] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/13/2014] [Accepted: 10/29/2014] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Cerebral aneurysms (CAs) and abdominal aortic aneurysms (AAAs) are degenerative vascular pathologies that manifest as abnormal dilations of the arterial wall. They arise with different morphologies in different types of blood vessels under different hemodynamic conditions. Although treated as different pathologies, we examine common pathways in their hemodynamic pathogenesis in order to elucidate mechanisms of formation. MATERIALS AND METHODS A systematic review of the literature was performed. Current concepts on pathogenesis and hemodynamics were collected and compared. RESULTS CAs arise as saccular dilations on the cerebral arteries of the circle of Willis under high blood flow, high wall shear stress (WSS), and high wall shear stress gradient (WSSG) conditions. AAAs arise as fusiform dilations on the infrarenal aorta under low blood flow, low, oscillating WSS, and high WSSG conditions. While at opposite ends of the WSS spectrum, they share high WSSG, a critical factor in arterial remodeling. This alone may not be enough to initiate aneurysm formation, but may ignite a cascade of downstream events that leads to aneurysm development. Despite differences in morphology and the structure, CAs and AAAs share many histopathological and biomechanical characteristics. Endothelial cell damage, loss of elastin, and smooth muscle cell loss are universal findings in CAs and AAAs. Increased matrix metalloproteinases and other proteinases, reactive oxygen species, and inflammation also contribute to the pathogenesis of both aneurysms. CONCLUSION Our review revealed similar pathways in seemingly different pathologies. We also highlight the need for cross-disciplinary studies to aid in finding similarities between pathologies.
Collapse
Affiliation(s)
- Omar Tanweer
- Department of Neurosurgery, New York University School of Medicine, NY, United States
| | - Taylor A Wilson
- Department of Neurosurgery, New York University School of Medicine, NY, United States
| | - Eleni Metaxa
- Foundation for Research and Technology - Hellas Institute of Applied and Computational Mathematics, Crete, Greece
| | - Howard A Riina
- Department of Neurosurgery, New York University School of Medicine, NY, United States
| | - Hui Meng
- Toshiba Stroke Research Center, University at Buffalo, NY, United States. ; Department of Mechanical and Aerospace Engineering, University at Buffalo, NY, United States. ; Department of Neurosurgery, University at Buffalo, NY, United States
| |
Collapse
|
96
|
Ostrowski MA, Huang NF, Walker TW, Verwijlen T, Poplawski C, Khoo AS, Cooke JP, Fuller GG, Dunn AR. Microvascular endothelial cells migrate upstream and align against the shear stress field created by impinging flow. Biophys J 2014; 106:366-74. [PMID: 24461011 DOI: 10.1016/j.bpj.2013.11.4502] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/27/2013] [Accepted: 11/26/2013] [Indexed: 11/30/2022] Open
Abstract
At present, little is known about how endothelial cells respond to spatial variations in fluid shear stress such as those that occur locally during embryonic development, at heart valve leaflets, and at sites of aneurysm formation. We built an impinging flow device that exposes endothelial cells to gradients of shear stress. Using this device, we investigated the response of microvascular endothelial cells to shear-stress gradients that ranged from 0 to a peak shear stress of 9-210 dyn/cm(2). We observe that at high confluency, these cells migrate against the direction of fluid flow and concentrate in the region of maximum wall shear stress, whereas low-density microvascular endothelial cells that lack cell-cell contacts migrate in the flow direction. In addition, the cells align parallel to the flow at low wall shear stresses but orient perpendicularly to the flow direction above a critical threshold in local wall shear stress. Our observations suggest that endothelial cells are exquisitely sensitive to both magnitude and spatial gradients in wall shear stress. The impinging flow device provides a, to our knowledge, novel means to study endothelial cell migration and polarization in response to gradients in physical forces such as wall shear stress.
Collapse
Affiliation(s)
| | - Ngan F Huang
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California; Stanford Cardiovascular Institute, Stanford University, Stanford, Califiornia; Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Travis W Walker
- Chemical Engineering, Stanford University, Stanford, California
| | - Tom Verwijlen
- Department of Chemical Engineering, KU Leuven, Belgium
| | | | - Amanda S Khoo
- Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - John P Cooke
- Stanford Cardiovascular Institute, Stanford University, Stanford, Califiornia; Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Gerald G Fuller
- Chemical Engineering, Stanford University, Stanford, California.
| | - Alexander R Dunn
- Chemical Engineering, Stanford University, Stanford, California; Stanford Cardiovascular Institute, Stanford University, Stanford, Califiornia.
| |
Collapse
|
97
|
Baratchi S, Tovar-Lopez FJ, Khoshmanesh K, Grace MS, Darby W, Almazi J, Mitchell A, McIntyre P. Examination of the role of transient receptor potential vanilloid type 4 in endothelial responses to shear forces. BIOMICROFLUIDICS 2014; 8:044117. [PMID: 25379102 PMCID: PMC4189315 DOI: 10.1063/1.4893272] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/05/2014] [Indexed: 05/02/2023]
Abstract
Shear stress is the major mechanical force applied on vascular endothelial cells by blood flow, and is a crucial factor in normal vascular physiology and in the development of some vascular pathologies. The exact mechanisms of cellular mechano-transduction in mammalian cells and tissues have not yet been elucidated, but it is known that mechanically sensitive receptors and ion channels play a crucial role. This paper describes the use of a novel and efficient microfluidic device to study mechanically-sensitive receptors and ion channels in vitro, which has three independent channels from which recordings can be made and has a small surface area such that fewer cells are required than for conventional flow chambers. The contoured channels of the device enabled examination of a range of shear stresses in one field of view, which is not possible with parallel plate flow chambers and other previously used devices, where one level of flow-induced shear stress is produced per fixed flow-rate. We exposed bovine aortic endothelial cells to different levels of shear stress, and measured the resulting change in intracellular calcium levels ([Ca(2+)]i) using the fluorescent calcium sensitive dye Fluo-4AM. Shear stress caused an elevation of [Ca(2+)]i that was proportional to the level of shear experienced. The response was temperature dependant such that at lower temperatures more shear stress was required to elicit a given level of calcium signal and the magnitude of influx was reduced. We demonstrated that shear stress-induced elevations in [Ca(2+)]i are largely due to calcium influx through the transient receptor potential vanilloid type 4 ion channel.
Collapse
Affiliation(s)
| | - Francisco J Tovar-Lopez
- Microplatforms Research Group, School of Electrical and Computer Engineering, RMIT University , Victoria 3001, Australia
| | - Khashayar Khoshmanesh
- Microplatforms Research Group, School of Electrical and Computer Engineering, RMIT University , Victoria 3001, Australia
| | - Megan S Grace
- Health Innovations Research Institute, RMIT University , Victoria 3083, Australia
| | - William Darby
- Health Innovations Research Institute, RMIT University , Victoria 3083, Australia
| | - Juhura Almazi
- Health Innovations Research Institute, RMIT University , Victoria 3083, Australia
| | - Arnan Mitchell
- Microplatforms Research Group, School of Electrical and Computer Engineering, RMIT University , Victoria 3001, Australia
| | - Peter McIntyre
- Health Innovations Research Institute, RMIT University , Victoria 3083, Australia
| |
Collapse
|
98
|
Rinaudo A, Pasta S. Regional variation of wall shear stress in ascending thoracic aortic aneurysms. Proc Inst Mech Eng H 2014; 228:627-638. [DOI: 10.1177/0954411914540877] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of an ascending thoracic aortic aneurysm is likely caused by excessive hemodynamic loads exerted on the aneurysmal wall. Computational fluid-dynamic analyses were performed on patient-specific ascending thoracic aortic aneurysms obtained from patients with either bicuspid aortic valve or tricuspid aortic valve to evaluate hemodynamic and wall shear parameters, imparting aneurysm enlargement. Results showed an accelerated flow along the outer aortic wall with helical flow in the aneurysm center for bicuspid aortic valve ascending thoracic aortic aneurysms. In a different way, tricuspid aortic valve ascending thoracic aortic aneurysms exhibited normal systolic flow without substantial secondary pattern. Analysis of wall shear parameters evinced a high and locally varying wall shear stress on the outer aortic wall and high temporal oscillations in wall shear stress (oscillatory shear index) on either left or right side of aneurysmal aorta. These findings may explain the asymmetric dilatation typically observed in ascending thoracic aortic aneurysms. Simulations of a hypertensive scenario revealed an increase in wall shear stress upon 44% compared to normal systemic pressure models. Computational fluid-dynamics–based analysis may allow identification of wall shear parameters portending aneurysm dilatation and hence guide preventative intervention.
Collapse
Affiliation(s)
- Antonino Rinaudo
- Dipartimento di Ingegneria Chimica, Gestionale, Informatica e Meccanica (DICGIM), Universita’ di Palermo, Palermo, Italy
| | | |
Collapse
|
99
|
Abstract
PURPOSE OF REVIEW Functional and molecular aortic imaging has shown great promise for evaluation of aortic disease, and may soon augment conventional assessment of aortic dimensions for the clinical management of patients. RECENT FINDINGS A range of imaging techniques is available for evaluation of patients with aortic disease. Magnetic resonance blood flow imaging can identify atherosclerosis prone aortic regions and may be useful for predicting aneurysm growth. Computational modeling can demonstrate significant differences in wall stress between abdominal aortic aneurysms of similar size and may better predict rupture than diameter alone. Metabolic imaging with fluorodeoxyglucose-PET [(FDG)-PET] can identify focal aortic wall inflammation that may portend rapid progression of disease. Molecular imaging with probes that target collagen and elastin can directly exhibit changes in the vessel wall associated with disease. SUMMARY The complexity of aortic disease is more fully revealed with new functional imaging techniques than with conventional anatomic analysis alone. This may better inform surveillance imaging regimens, medical management and decisions regarding early intervention for aortic disease.
Collapse
|
100
|
Li Y, Huang G, Zhang X, Wang L, Du Y, Lu TJ, Xu F. Engineering cell alignment in vitro. Biotechnol Adv 2014; 32:347-65. [DOI: 10.1016/j.biotechadv.2013.11.007] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 11/16/2013] [Accepted: 11/17/2013] [Indexed: 01/03/2023]
|