51
|
Tutino V, De Nunzio V, Caruso MG, Veronese N, Lorusso D, Di Masi M, Benedetto ML, Notarnicola M. Elevated AA/EPA Ratio Represents an Inflammatory Biomarker in Tumor Tissue of Metastatic Colorectal Cancer Patients. Int J Mol Sci 2019; 20:ijms20082050. [PMID: 31027294 PMCID: PMC6515168 DOI: 10.3390/ijms20082050] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation increases the risk of developing certain types of cancer, such as colorectal cancer (CRC). The oxidative metabolism of polyunsaturated fatty acids (PUFAs) has a strong effect on colonic tumorigenesis and the levels of arachidonic acid (AA) and eicosapentaenoic acid (EPA) can contribute to the development of an inflammatory microenvironment. Aim of this study was to evaluate the possible differences in the AA/EPA ratio tissue levels between CRC patients with and without synchronous metastases. Moreover, the expression of the most important inflammatory enzymes and mediators, linked with the AA/EPA ratio, have been also assessed. Sixty-eight patients with CRC were enrolled in the study, of which 33 patients with synchronous metastasis. Fatty acid profile analysis in tissue samples was done to examine the levels of AA and EPA. High levels of the AA/EPA ratio were detected in tumor tissue of patients with metastatic CRC. Moreover, an increase of expression of the main enzymes and mediators involved in inflammation was also detected in the same samples. The lipidomic approach of inflammation allows to evaluate lipid homeostasis changes that occur in cancer and in its metastatic process, in order to identify new biomarkers to be introduced into clinical practice.
Collapse
Affiliation(s)
- Valeria Tutino
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Maria Gabriella Caruso
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Nicola Veronese
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Dionigi Lorusso
- Surgery Unit, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Marta Di Masi
- Scientific Direction, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Maria Lucrezia Benedetto
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| |
Collapse
|
52
|
Gholizadeh F, Ghahremani MH, Aliebrahimi S, Shadboorestan A, Ostad SN. Assessment of Cannabinoids Agonist and Antagonist in Invasion Potential of K562 Cancer Cells. IRANIAN BIOMEDICAL JOURNAL 2019; 23. [PMID: 29883990 PMCID: PMC6707105 DOI: 10.29252/.23.2.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The prominent hallmark of malignancies is the metastatic spread of cancer cells. Recent studies have reported that the nature of invasive cells could be changed after this phenomenon, causing chemotherapy resistance. It has been demonstrated that the up-regulated expression of matrix metalloproteinase (MMP) 2/MMP-9, as a metastasis biomarker, can fortify the metastatic potential of leukemia. Furthermore, investigations have confirmed the inhibitory effect of cannabinoid and endocannabinoid on the proliferation of cancer cells in vitro and in vivo. METHODS In the present study, the inhibitory effect of WIN 55212-2 (a CB1/CB2 receptor agonist) and AM251 (a selective CB1 receptor antagonist) on K562 cells, as a chronic myelogenous leukemia (CML) model, was evaluated using MTT and invasion assay. Expressions of MMP-2 and MMP-9 were then assessed by Western blot analysis. RESULTS The data obtained from MTT assay showed that WIN 55212-2 could attenuate cell proliferation; however, AM251 was less effective in this regard. Our results showed that WIN 55212-2 considerably reduced cancer cell invasiveness, while AM251 exhibited a converse effect. Moreover, CB1 activation resulted in decreased expression of MMP-2 and MMP-9. CONCLUSION Our findings clarifies that CB1 receptors are responsible for anti-invasive effects in the K562 cell line.
Collapse
Affiliation(s)
- Fatemeh Gholizadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Aliebrahimi
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran; ,Corresponding Author: Seyed Nasser Ostad , Department of Toxicology and Pharmacology, Faculty of Pharmacy and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran; Tel.: (+98-21) 66959105; E-mail:
| |
Collapse
|
53
|
Sharafi G, He H, Nikfarjam M. Potential Use of Cannabinoids for the Treatment of Pancreatic Cancer. J Pancreat Cancer 2019; 5:1-7. [PMID: 30706048 PMCID: PMC6352507 DOI: 10.1089/pancan.2018.0019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Cannabinoid extracts may have anticancer properties, which can improve cancer treatment outcomes. The aim of this review is to determine the potentially utility of cannabinoids in the treatment of pancreatic cancer. Methods: A literature review focused on the biological effects of cannabinoids in cancer treatment, with a focus on pancreatic cancer, was conducted. In vitro and in vivo studies that investigated the effects of cannabinoids in pancreatic cancer were identified and potential mechanisms of action were assessed. Results: Cannabinol receptors have been identified in pancreatic cancer with several studies showing in vitro antiproliferative and proapoptotic effects. The main active substances found in cannabis plants are cannabidiol (CBD) and tetrahydrocannabinol (THC). There effects are predominately mediated through, but not limited to cannabinoid receptor-1, cannabinoid receptor-2, and G-protein-coupled receptor 55 pathways. In vitro studies consistently demonstrated tumor growth-inhibiting effects with CBD, THC, and synthetic derivatives. Synergistic treatment effects have been shown in two studies with the combination of CBD/synthetic cannabinoid receptor ligands and chemotherapy in xenograft and genetically modified spontaneous pancreatic cancer models. There are, however, no clinical studies to date showing treatment benefits in patients with pancreatic cancer. Conclusions: Cannabinoids may be an effective adjunct for the treatment of pancreatic cancer. Data on the anticancer effectiveness of various cannabinoid formulations, treatment dosing, precise mode of action, and clinical studies are lacking.
Collapse
Affiliation(s)
- Golnaz Sharafi
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Australia
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Australia
| |
Collapse
|
54
|
Chanda D, Neumann D, Glatz JFC. The endocannabinoid system: Overview of an emerging multi-faceted therapeutic target. Prostaglandins Leukot Essent Fatty Acids 2019; 140:51-56. [PMID: 30553404 DOI: 10.1016/j.plefa.2018.11.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023]
Abstract
The endocannabinoids anandamide (AEA) and 2-arachidonoylglyerol (2-AG) are endogenous lipid mediators that exert protective roles in pathophysiological conditions, including cardiovascular diseases. In this brief review, we provide a conceptual framework linking endocannabinoid signaling to the control of the cellular and molecular hallmarks, and categorize the key components of endocannabinoid signaling that may serve as targets for novel therapeutics. The emerging picture not only reinforces endocannabinoids as potent regulators of cellular metabolism but also reveals that endocannabinoid signaling is mechanistically more complex and diverse than originally thought.
Collapse
MESH Headings
- Amidohydrolases/antagonists & inhibitors
- Animals
- Arachidonic Acids/metabolism
- Autocrine Communication
- Cells/metabolism
- Dronabinol/pharmacology
- Endocannabinoids/metabolism
- Glycerides/metabolism
- Humans
- Mice
- Molecular Targeted Therapy
- Paracrine Communication
- Polyunsaturated Alkamides/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Swine
Collapse
Affiliation(s)
- Dipanjan Chanda
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands; Current affiliation: Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Daegu, Republic of Korea
| | - Dietbert Neumann
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands; Current affiliation: Department of Pathology, CARIM, Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| | - Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
55
|
Navarro-Imaz H, Chico Y, Rueda Y, Fresnedo O. Channeling of newly synthesized fatty acids to cholesterol esterification limits triglyceride synthesis in SND1-overexpressing hepatoma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:137-146. [PMID: 30448348 DOI: 10.1016/j.bbalip.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/11/2018] [Accepted: 11/11/2018] [Indexed: 12/15/2022]
Abstract
SND1 is a putative oncoprotein whose molecular function remains unclear. Its overexpression in hepatocellular carcinoma impairs cholesterol homeostasis due to the altered activation of the sterol regulatory element-binding protein (SREBP) 2, which results in the accumulation of cellular cholesteryl esters (CE). In this work, we explored whether high cholesterol synthesis and esterification originates changes in glycerolipid metabolism that might affect cell growth, given that acetyl-coenzyme A is required for cholesterogenesis and fatty acids (FA) are the substrates of acyl-coenzyme A:cholesterol acyltransferase (ACAT). SND1-overexpressing hepatoma cells show low triglyceride (TG) synthesis, but phospholipid biosynthesis or cell growth is not affected. Limited TG synthesis is not due to low acetyl-coenzyme A or NADPH availability. We demonstrate that the main factor limiting TG synthesis is the utilization of FAs for cholesterol esterification. These metabolic adaptations are linked to high Scd1 expression, needed for the de novo production of oleic acid, the main FA used by ACAT. We conclude that high cholesterogenesis due to SND1 overexpression might determine the channeling of FAs to CEs.
Collapse
Affiliation(s)
- Hiart Navarro-Imaz
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, B° Sarriena s/n, 48940 Leioa, Spain.
| | - Yolanda Chico
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, B° Sarriena s/n, 48940 Leioa, Spain.
| | - Yuri Rueda
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, B° Sarriena s/n, 48940 Leioa, Spain.
| | - Olatz Fresnedo
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, B° Sarriena s/n, 48940 Leioa, Spain.
| |
Collapse
|
56
|
Cheeta S, Halil A, Kenny M, Sheehan E, Zamyadi R, Williams AL, Webb L. Does perception of drug-related harm change with age? A cross-sectional online survey of young and older people. BMJ Open 2018; 8:e021109. [PMID: 30401725 PMCID: PMC6231571 DOI: 10.1136/bmjopen-2017-021109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES To investigate how young and older people perceive the harms associated with legal and illegal drugs. DESIGN Cross-sectional study: adults aged 18-24 years versus 45+ completed an online survey ranking the perceived harms associated with 11 drugs on 16 drug-related harm criteria. SETTING Online survey. PARTICIPANTS 184 participants aged 18-24 years (113 female: mean age 21: SD 1.3) and 91 participants aged 45+ (51 female: mean age 60: SD 8.5). MAIN OUTCOME MEASURES 'Perception of drug-related harms': This was measured using a rating scale ranging from 1 (no risk of harm) to 4 (high risk of harm). Participants were also asked about sources which informed their perception on drug-related harms as well as their own personal self-reported drug experiences. RESULTS Of the illegal drugs, heroin, methamphetamine and cocaine were rated as the most harmful and cannabis was rated as the least harmful. Alcohol and tobacco were also rated as less harmful. The results showed that perceptions of drug-related harms were inconsistent with current knowledge from research on drugs. Furthermore, perceptions on drug harms were more conservative in the 45+ group for a number of illegal drugs and tobacco. However, the 45+ age group did not perceive alcohol as any more harmful than the younger group. CONCLUSIONS This survey demonstrates that the greatest misperception was in relation to alcohol-related harms which did not change with age. In order to minimise harms, this misperception needs to be addressed through education and policies that legislate drug use.
Collapse
Affiliation(s)
- Survjit Cheeta
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Adem Halil
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Matthew Kenny
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Erin Sheehan
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Roxanne Zamyadi
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Adrian Lloyd Williams
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Lucy Webb
- Substance Use and Addictive Behaviour (SUAB) Research Group, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
57
|
Erices JI, Torres Á, Niechi I, Bernales I, Quezada C. Current natural therapies in the treatment against glioblastoma. Phytother Res 2018; 32:2191-2201. [PMID: 30109743 DOI: 10.1002/ptr.6170] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/08/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive brain tumor, which causes the highest number of deaths worldwide. It is a highly vascularized tumor, infiltrative, and its tumorigenic capacity is exacerbated. All these hallmarks are therapeutic targets in GBM treatment, including surgical removal followed by radiotherapy and chemotherapy. Current therapies have not been sufficient for the effective patient's management, so the classic therapies have had to expand and incorporate new alternative treatments, including natural compounds. This review summarizes natural products and their physiological effects in in vitro and in vivo models of GBM, specifically by modulating signaling pathways involved in angiogenesis, cell migration/invasion, cell viability, apoptosis, and chemoresistance. The most important aspects of natural products and their derivatives were described in relation to its antitumoral effects. As a final result, it can be obtained that within the compounds with more evidence that supports or suggests its clinical use are the cannabinoids, terpenes, and curcumin, because many have been shown to have a significant effect in decreasing the progress of GBM through known mechanisms, such as chemo-sensitization or decrease migration and cell invasion. Natural compounds emerge as promising therapies to attack the progress of GBM.
Collapse
Affiliation(s)
- José Ignacio Erices
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Ángelo Torres
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Ignacio Niechi
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Isabel Bernales
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia Quezada
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia, Chile
| |
Collapse
|
58
|
Mugnaini C, Rabbito A, Brizzi A, Palombi N, Petrosino S, Verde R, Di Marzo V, Ligresti A, Corelli F. Synthesis of novel 2-(1-adamantanylcarboxamido)thiophene derivatives. Selective cannabinoid type 2 (CB2) receptor agonists as potential agents for the treatment of skin inflammatory disease. Eur J Med Chem 2018; 161:239-251. [PMID: 30359820 DOI: 10.1016/j.ejmech.2018.09.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 01/13/2023]
Abstract
A set of CB2R ligands, based on the thiophene scaffold, was synthesized and evaluated in in vitro assays. Compounds 8c-i, k, l, bearing the 3-carboxylate and 2-(adamantan-1-yl)carboxamido groups together with apolar alkyl/aryl substituents at 5-position or at 4- and 5-positions of the thiophene ring possess high CB2R affinity at low nanomolar concentration, good receptor selectivity, and agonistic functional activity. The full agonist 8g, showing the best balance between receptor affinity and selectivity, was tested in vitro in an experimental model of allergic contact dermatitis and proved to be able to block the release of MCP-2 in HaCaT cells at 10 μM concentration.
Collapse
Affiliation(s)
- Claudia Mugnaini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Alessandro Rabbito
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Antonella Brizzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Nastasja Palombi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Petrosino
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Alessia Ligresti
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via dei Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy.
| | - Federico Corelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
59
|
Gallelli CA, Calcagnini S, Romano A, Koczwara JB, de Ceglia M, Dante D, Villani R, Giudetti AM, Cassano T, Gaetani S. Modulation of the Oxidative Stress and Lipid Peroxidation by Endocannabinoids and Their Lipid Analogues. Antioxidants (Basel) 2018; 7:E93. [PMID: 30021985 PMCID: PMC6070960 DOI: 10.3390/antiox7070093] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Growing evidence supports the pivotal role played by oxidative stress in tissue injury development, thus resulting in several pathologies including cardiovascular, renal, neuropsychiatric, and neurodegenerative disorders, all characterized by an altered oxidative status. Reactive oxygen and nitrogen species and lipid peroxidation-derived reactive aldehydes including acrolein, malondialdehyde, and 4-hydroxy-2-nonenal, among others, are the main responsible for cellular and tissue damages occurring in redox-dependent processes. In this scenario, a link between the endocannabinoid system (ECS) and redox homeostasis impairment appears to be crucial. Anandamide and 2-arachidonoylglycerol, the best characterized endocannabinoids, are able to modulate the activity of several antioxidant enzymes through targeting the cannabinoid receptors type 1 and 2 as well as additional receptors such as the transient receptor potential vanilloid 1, the peroxisome proliferator-activated receptor alpha, and the orphan G protein-coupled receptors 18 and 55. Moreover, the endocannabinoids lipid analogues N-acylethanolamines showed to protect cell damage and death from reactive aldehydes-induced oxidative stress by restoring the intracellular oxidants-antioxidants balance. In this review, we will provide a better understanding of the main mechanisms triggered by the cross-talk between the oxidative stress and the ECS, focusing also on the enzymatic and non-enzymatic antioxidants as scavengers of reactive aldehydes and their toxic bioactive adducts.
Collapse
Affiliation(s)
- Cristina Anna Gallelli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Justyna Barbara Koczwara
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Marialuisa de Ceglia
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Donatella Dante
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Rosanna Villani
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Department of Medical and Surgical Sciences, Institute of Internal Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy.
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
60
|
Okubo Y, Kasamatsu A, Yamatoji M, Fushimi K, Ishigami T, Shimizu T, Kasama H, Shiiba M, Tanzawa H, Uzawa K. Diacylglycerol lipase alpha promotes tumorigenesis in oral cancer by cell-cycle progression. Exp Cell Res 2018; 367:112-118. [PMID: 29614312 DOI: 10.1016/j.yexcr.2018.03.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 11/24/2022]
Abstract
Diacylglycerol lipase alpha (DAGLA), which catalyzes the hydrolysis of diacylglycerol to 2-arachidonoylglycerol and free fatty acid, is required for axonal growth during the brain development and for retrograde synaptic signaling at mature synapses. So far, no information was found regarding the possible role of DAGLA in human tumorigenesis. Thus, the current study sought to clarify the contribution of DAGLA in oral squamous cell carcinomas (OSCCs) and assess the clinical possibilities for OSCC treatment. Using real-time quantitative reverse transcription-polymerase chain reaction, immunoblotting, and immunohistochemistry, we found a significant up-regulation of DAGLA in OSCCs compared with normal cells and tissues both at mRNA and protein expression levels. Knockdown models in OSCC-derived cell lines for DAGLA (siDAGLA) and treatment with a lipase inhibitor (orlistat) showed several depressed cellular functions, including cellular proliferation and migratory activities through cell-cycle arrest at G1 phase. Furthermore, we found that DAGLA-positive OSCC samples were correlated highly with the primary tumoral size. We concluded that DAGLA may be a key determinant in tumoral progression and might be a therapeutic target for OSCCs.
Collapse
Affiliation(s)
- Yasuhiko Okubo
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan.
| | - Masanobu Yamatoji
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Kazuaki Fushimi
- Division of Oral Surgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Takashi Ishigami
- Department of Dentistry and Oral Surgery, Asahi General Hospital, Asahi, Chiba, Japan
| | | | - Hiroki Kasama
- Division of Oral Surgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan.
| |
Collapse
|
61
|
Martínez-Martínez E, Martín-Ruiz A, Martín P, Calvo V, Provencio M, García JM. CB2 cannabinoid receptor activation promotes colon cancer progression via AKT/GSK3β signaling pathway. Oncotarget 2018; 7:68781-68791. [PMID: 27634891 PMCID: PMC5356589 DOI: 10.18632/oncotarget.11968] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/02/2016] [Indexed: 01/19/2023] Open
Abstract
The pharmacological activation of the cannabinoid receptor type 2, CB2, has been shown to elicit anti-tumoral mechanisms in different cancer types. However, little is known about its endogenous role in tumor pathophysiology, and different studies have attributed pro-tumorigenic properties to this receptor. In a previous work, we showed that CB2 expression is a poor prognostic factor in colon cancer patients. Here we report that activation of CB2 with low doses of specific agonists induce cell proliferation and favor the acquisition of aggressive molecular features in colon cancer cells. We show that sub-micromolar concentrations of CB2-specific agonists, JWH-133 and HU-308, promote an increase in cell proliferation rate through the activation of AKT/PKB pathway in colon cancer in vitro and in vivo. AKT activation promotes GSK3β inhibition and thus, a more aggressive cell phenotype with the subsequent elevation of SNAIL levels, E-cadherin degradation and β-catenin delocalization from cell membrane. Taken together, our data show that CB2 activation with sub-micromolar doses of agonists, which could be more similar to endogenous levels of cannabinoids, promote colon cancer progression, implicating that CB2 could have a pro-tumorigenic endogenous role in colon cancer.
Collapse
Affiliation(s)
- Esther Martínez-Martínez
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, E-28222 Madrid, Spain
| | - Asunción Martín-Ruiz
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, E-28222 Madrid, Spain
| | - Paloma Martín
- Department of Pathology, Hospital Universitario Puerta de Hierro-Majadahonda, E-28222 Madrid, Spain
| | - Virginia Calvo
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, E-28222 Madrid, Spain
| | - Mariano Provencio
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, E-28222 Madrid, Spain
| | - José M García
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, E-28222 Madrid, Spain
| |
Collapse
|
62
|
Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem 2018; 144:582-594. [DOI: 10.1016/j.ejmech.2017.12.039] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022]
|
63
|
Vaseghi G, Taki MJ, Javanmard SH. Standardized Cannabis sativa extract attenuates tau and stathmin gene expression in the melanoma cell line. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:1178-1181. [PMID: 29147495 PMCID: PMC5673704 DOI: 10.22038/ijbms.2017.9398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Objective(s): Metastasis is the main cause of death in patients with melanoma. Cannabis-based medicines are effective adjunctive drugs in cancer patients. Tau and Stathmin proteins are the key proteins in cancer metastasis. Here we have investigated the effect of a standardized Cannabis sativa extract on cell migration and Tau and Stathmin gene expression in the melanoma cell line. Materials and Methods: In the treatment group, melanoma (B1617) was treated 48 hr with various concentrations of standardized C. sativa extract. Cells with no treatment were considered as the control group, then study was followed by Quantitative RT-Real Time PCR assay. Relative gene expression was calculated by the ΔΔct method. Migration assay was used to evaluate cancer metastasis. Results: Tau and stathmin gene expression was significantly decreased compared to the control group. Cell migration was also significantly reduced compared to controls. Conclusion: C. sativa decreased tau and stathmin gene expression and cancer metastasis. The results may have some clinical relevance for the use of cannabis-based medicines in patients with metastatic melanoma.
Collapse
Affiliation(s)
- Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohamad Javad Taki
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
64
|
Fasinu PS, Phillips S, ElSohly MA, Walker LA. Current Status and Prospects for Cannabidiol Preparations as New Therapeutic Agents. Pharmacotherapy 2017; 36:781-96. [PMID: 27285147 DOI: 10.1002/phar.1780] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
States and the federal government are under growing pressure to legalize the use of cannabis products for medical purposes in the United States. Sixteen states have legalized (or decriminalized possession of) products high in cannabidiol (CBD) and with restricted ∆(9) -tetrahydrocannabinol (∆(9) -THC) content. In most of these states, the intent is for use in refractory epileptic seizures in children, but in a few states, the indications are broader. This review provides an overview of the pharmacology and toxicology of CBD; summarizes some of the regulatory, safety, and cultural issues relevant to the further exploitation of its antiepileptic or other pharmacologic activities; and assesses the current status and prospects for clinical development of CBD and CBD-rich preparations for medical use in the United States. Unlike Δ(9) -THC, CBD elicits its pharmacologic effects without exerting any significant intrinsic activity on the cannabinoid receptors, whose activation results in the psychotropic effects characteristic of Δ(9) -THC, and CBD possesses several pharmacologic activities that give it a high potential for therapeutic use. CBD exhibits neuroprotective, antiepileptic, anxiolytic, antipsychotic, and antiinflammatory properties. In combination with Δ(9) -THC, CBD has received regulatory approvals in several European countries and is currently under study in trials registered by the U.S. Food and Drug Administration in the United States. A number of states have passed legislation to allow for the use of CBD-rich, limited Δ(9) -THC-content preparations of cannabis for certain pathologic conditions. CBD is currently being studied in several clinical trials and is at different stages of clinical development for various medical indications. Judging from clinical findings reported so far, CBD and CBD-enriched preparations have great potential utility, but uncertainties regarding sourcing, long-term safety, abuse potential, and regulatory dilemmas remain.
Collapse
Affiliation(s)
- Pius S Fasinu
- The National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS
| | - Sarah Phillips
- The National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS
| | - Mahmoud A ElSohly
- The National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS.,Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS
| | - Larry A Walker
- The National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS.,Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS
| |
Collapse
|
65
|
|
66
|
Gioacchini G, Rossi G, Carnevali O. Host-probiotic interaction: new insight into the role of the endocannabinoid system by in vivo and ex vivo approaches. Sci Rep 2017; 7:1261. [PMID: 28455493 PMCID: PMC5430882 DOI: 10.1038/s41598-017-01322-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid system plays an important role in regulating inflammation in several chronic or anomalous gut inflammatory diseases. In vivo and ex vivo studies showed that 30 days treatment with a probiotic mix activated the endocannabinoid system in zebrafish. These results highlight the potential of this probiotic mixture to regulate immune cell function, by inducing gene expression of toll-like receptors and other immune related molecules. Furthermore, TUNEL assay showed a decrease in the number of apoptotic cells, and this finding was supported by a reduction in pro-apoptotic factors and an increase in anti-apoptotic molecules. The results presented here strengthen the molecular mechanisms activated by probiotic mix controlling immune response and inflammation.
Collapse
Affiliation(s)
- Giorgia Gioacchini
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Giacomo Rossi
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Via Fidanza 15, 62024, Matelica, MC, Italy
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy. .,INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136, Roma, Italy.
| |
Collapse
|
67
|
Bladder cancer cell growth and motility implicate cannabinoid 2 receptor-mediated modifications of sphingolipids metabolism. Sci Rep 2017; 7:42157. [PMID: 28191815 PMCID: PMC5304189 DOI: 10.1038/srep42157] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/09/2017] [Indexed: 12/18/2022] Open
Abstract
The inhibitory effects demonstrated by activation of cannabinoid receptors (CB) on cancer proliferation and migration may also play critical roles in controlling bladder cancer (BC). CB expression on human normal and BC specimens was tested by immunohistochemistry. Human BC cells RT4 and RT112 were challenged with CB agonists and assessed for proliferation, apoptosis, and motility. Cellular sphingolipids (SL) constitution and metabolism were evaluated after metabolic labelling. CB1-2 were detected in BC specimens, but only CB2 was more expressed in the tumour. Both cell lines expressed similar CB2. Exposure to CB2 agonists inhibited BC growth, down-modulated Akt, induced caspase 3-activation and modified SL metabolism. Baseline SL analysis in cell lines showed differences linked to unique migratory behaviours and cytoskeletal re-arrangements. CB2 activation changed the SL composition of more aggressive RT112 cells by reducing (p < 0.01) Gb3 ganglioside (−50 ± 3%) and sphingosine 1-phosphate (S1P, −40 ± 4%), which ended up to reduction in cell motility (−46 ± 5%) with inhibition of p-SRC. CB2-selective antagonists, gene silencing and an inhibitor of SL biosynthesis partially prevented CB2 agonist-induced effects on cell viability and motility. CB2 activation led to ceramide-mediated BC cell apoptosis independently of SL constitutive composition, which instead was modulated by CB2 agonists to reduce cell motility.
Collapse
|
68
|
Vago R, Bettiga A, Salonia A, Ciuffreda P, Ottria R. Development of new inhibitors for N-acylethanolamine-hydrolyzing acid amidase as promising tool against bladder cancer. Bioorg Med Chem 2016; 25:1242-1249. [PMID: 28062195 DOI: 10.1016/j.bmc.2016.12.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/14/2016] [Accepted: 12/23/2016] [Indexed: 01/01/2023]
Abstract
The endocannabinoid system is a signaling system involved in a wide range of biological effects. Literature strongly suggests the endocannabinoid system role in the pathogenesis of cancer and that its pharmacological activation produces therapeutic benefits. Last research promotes the endocannabinoid system modulation by inhibition of endocannabinoids hydrolytic enzymes instead of direct activation of endocannabinoid receptors to avoid detrimental effects on cognition and motor control. Here we report the identification of N-acylethanolamine-hydrolyzing acid amidase (NAAA) inhibitors able to reduce cell proliferation and migration and cause cell death on different bladder cancer cell lines. These molecules were designed, synthesized and characterized and active compounds were selected by a fluorescence high-throughput screening method set-up on human recombinant NAAA that also allows to characterize the mechanism of inhibition. Together our results suggest an important role for NAAA in cell migration and in inducing tumor cell death promoting this enzyme as pharmacological target against bladder cancer.
Collapse
Affiliation(s)
- Riccardo Vago
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Via Olgettina 60, Milan, Italy; Università Vita-Salute San Raffaele, Via Olgettina 60, Milano, Italy.
| | - Arianna Bettiga
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Via Olgettina 60, Milan, Italy.
| | - Andrea Salonia
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Via Olgettina 60, Milan, Italy; Università Vita-Salute San Raffaele, Via Olgettina 60, Milano, Italy.
| | - Pierangela Ciuffreda
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Via G.B. Grassi 74, Università degli Studi di Milano, Italy.
| | - Roberta Ottria
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Via G.B. Grassi 74, Università degli Studi di Milano, Italy.
| |
Collapse
|
69
|
Khan MI, Sobocińska AA, Czarnecka AM, Król M, Botta B, Szczylik C. The Therapeutic Aspects of the Endocannabinoid System (ECS) for Cancer and their Development: From Nature to Laboratory. Curr Pharm Des 2016; 22:1756-66. [PMID: 26654588 PMCID: PMC5412000 DOI: 10.2174/1381612822666151211094901] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
Abstract
The endocannabinoid system (ECS) is a group of neuromodulatory lipids and their receptors, which are widely distributed in mammalian tissues. ECS regulates various cardiovascular, nervous, and immune system functions inside cells. In recent years, there has been a growing body of evidence for the use of synthetic and natural cannabinoids as potential anticancer agents. For instance, the CB1 and CB2 receptors are assumed to play an important role inside the endocannabinoid system. These receptors are abundantly expressed in the brain and fatty tissue of the human body. Despite recent developments in molecular biology, there is still a lack of knowledge about the distribution of CB1 and CB2 receptors in the human kidney and their role in kidney cancer. To address this gap, we explore and demonstrate the role of the endocannabinoid system in renal cell carcinoma (RCC). In this brief overview, we elucidate the therapeutic aspects of the endocannabinoid system for various cancers and explain how this system can be used for treating kidney cancer. Overall, this review provides new insights into cannabinoids' mechanisms of action in both in vivo and in vitro models, and focuses on recent discoveries in the field.
Collapse
Affiliation(s)
- Mohammed I Khan
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, ul. Szaserów 128, 04-141 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
70
|
Śledziński P, Nowak A, Zeyland J, Słomski R. Endocannabinoid system and anticancer properties of cannabinoids. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/fobio-2016-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cannabinoids impact human body by binding to cannabinoids receptors (CB1 and CB2). The two main phytocannabinoids are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC interacts with CB1 receptors occurring in central nervous system and is responsible for psychoactive properties of marijuana. CBD has low affinity to CB1 receptor, has no psychoactive characteristics and its medical applications can be wider. CB receptors are part of a complex machinery involved in regulation of many physiological processes – endocannabinoid system. Cannabinoids have found some applications in palliative medicine, but there are many reports concerning their anticancer affects. Agonists of CB1 receptors stimulate accumulation of ceramides in cancer cells, stress of endoplasmic reticulum (ER stress) and, in turn, apoptosis. Effects of cannabinoids showing low affinity to CB receptors is mediated probably by induction of reactive oxygen species production. Knowledge of antitumor activity of cannabinoids is still based only on preclinical studies and there is a necessity to conduct more experiments to assess the real potential of these compounds.
Collapse
|
71
|
A quantitative study on splice variants of N-acylethanolamine acid amidase in human prostate cancer cells and other cells. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1951-1958. [DOI: 10.1016/j.bbalip.2016.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/08/2016] [Accepted: 09/23/2016] [Indexed: 11/16/2022]
|
72
|
Imam A, Ajao MS, Amin A, Abdulmajeed WI, Ibrahim A, Olajide OJ, Ajibola MI, Alli-Oluwafuyi A, Balogun WG. Cannabis-induced Moto-Cognitive Dysfunction in Wistar Rats: Ameliorative Efficacy of Nigella Sativa. Malays J Med Sci 2016; 23:17-28. [PMID: 27904421 DOI: 10.21315/mjms2016.23.5.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/14/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cannabis is a widely used illicit drug with various threats of personality syndrome, and Nigella sativa has been widely implicated as having therapeutic efficacy in many neurological diseases. The present study investigates the ameliorative efficacy of Nigella sativa oil (NSO) on cannabis-induced moto-cognitive defects. METHODS Scopolamine (1 mg/kg i.p.) was given to induce dementia as a standard base line for cannabis (20 mg/kg)-induced cognitive impairment, followed by an oral administration of NSO (1 ml/kg) for 14 consecutive days. The Morris water maze (MWM) paradigm was used to assess the memory index, the elevated plus maze was used for anxiety-like behaviour, and the open field test was used for locomotor activities; thereafter, the rats were sacrificed and their brains were removed for histopathologic studies. RESULTS Cannabis-like Scopolamine caused memory impairment, delayed latency in the MWM, and anxiety-like behaviour, coupled with alterations in the cerebello-hippocampal neurons. The post-treatment of rats with NSO mitigated cannabis-induced cognitive dysfunction as with scopolamine and impaired anxiety-like behaviour by increasing open arm entry, line crossing, and histological changes. CONCLUSIONS The observed ameliorative effects of NSO make it a promising agent against moto-cognitive dysfunction and cerebelo-hippocampal alterations induced by cannabis.
Collapse
Affiliation(s)
- Aminu Imam
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Moyosore Saliu Ajao
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Abdulbasit Amin
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Wahab Imam Abdulmajeed
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Abdulmumin Ibrahim
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olayemi Joseph Olajide
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Musa Iyiola Ajibola
- Institute of Neuroscience, National Yang-Ming University, Shih-Pai, Taipei 11221, Taiwan
| | - Abdulmusawir Alli-Oluwafuyi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Wasiu Gbolahan Balogun
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
73
|
Lee Y, Jo J, Chung HY, Pothoulakis C, Im E. Endocannabinoids in the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2016; 311:G655-G666. [PMID: 27538961 DOI: 10.1152/ajpgi.00294.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 08/13/2016] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system mainly consists of endogenously produced cannabinoids (endocannabinoids) and two G protein-coupled receptors (GPCRs), cannabinoid receptors 1 and 2 (CB1 and CB2). This system also includes enzymes responsible for the synthesis and degradation of endocannabinoids and molecules required for the uptake and transport of endocannabinoids. In addition, endocannabinoid-related lipid mediators and other putative endocannabinoid receptors, such as transient receptor potential channels and other GPCRs, have been identified. Accumulating evidence indicates that the endocannabinoid system is a key modulator of gastrointestinal physiology, influencing satiety, emesis, immune function, mucosal integrity, motility, secretion, and visceral sensation. In light of therapeutic benefits of herbal and synthetic cannabinoids, the vast potential of the endocannabinoid system for the treatment of gastrointestinal diseases has been demonstrated. This review focuses on the role of the endocannabinoid system in gut homeostasis and in the pathogenesis of intestinal disorders associated with intestinal motility, inflammation, and cancer. Finally, links between gut microorganisms and the endocannabinoid system are briefly discussed.
Collapse
Affiliation(s)
- Yunna Lee
- College of Pharmacy, Pusan National University, Busan, Korea; and
| | - Jeongbin Jo
- College of Pharmacy, Pusan National University, Busan, Korea; and
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan, Korea; and
| | - Charalabos Pothoulakis
- Section of Inflammatory Bowel Disease & Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, Korea; and
| |
Collapse
|
74
|
Ortega A, García-Hernández VM, Ruiz-García E, Meneses-García A, Herrera-Gómez A, Aguilar-Ponce JL, Montes-Servín E, Prospero-García O, Del Angel SA. Comparing the effects of endogenous and synthetic cannabinoid receptor agonists on survival of gastric cancer cells. Life Sci 2016; 165:56-62. [PMID: 27640887 DOI: 10.1016/j.lfs.2016.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 01/28/2023]
Abstract
AIMS Anti-neoplastic activity induced by cannabinoids has been extensively documented for a number of cancer cell types; however, this topic has been explored in gastric cancer cells only in a limited number of approaches. Thus, the need of integrative and comparative studies still persists. MATERIALS AND METHODS In this study we tested and compared the effects of three different cannabinoid receptor agonists-anandamide (AEA), (R)-(+)-methanandamide (Meth-AEA) and CP 55,940 (CP)- on gastric cancer cell morphology, viability and death events in order to provide new insights to the use of these agents for therapeutic purposes. KEY FINDINGS The three agents tested exhibited similar concentration-dependent effects in the induction of changes in cell morphology and cell loss, as well as in the decrease of cell viability and DNA laddering in the human gastric adenocarcinoma cell line (AGS). Differences among the cannabinoids tested were mostly observed in the density of cells found in early and late apoptosis and necrosis, favoring AEA and CP as the more effective inducers of apoptotic mechanisms, and Meth-AEA as a more effective inducer of necrosis through transient and rapid apoptosis. SIGNIFICANCE Through a comparative approach, our results support and confirm the therapeutic potential that cannabinoid receptor agonists exert in gastric cancer cells and open possibilities to use cannabinoids as part of a new gastric cancer therapy.
Collapse
Affiliation(s)
- A Ortega
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, SSA. Mexico City 14080, Mexico
| | - V M García-Hernández
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, SSA. Mexico City 14080, Mexico
| | - E Ruiz-García
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, SSA. Mexico City 14080, Mexico
| | - A Meneses-García
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, SSA. Mexico City 14080, Mexico
| | - A Herrera-Gómez
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, SSA. Mexico City 14080, Mexico
| | - J L Aguilar-Ponce
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, SSA. Mexico City 14080, Mexico
| | - E Montes-Servín
- Unidad de Oncología Torácica, Instituto Nacional de Cancerología, SSA. Mexico City 14080, Mexico
| | - O Prospero-García
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico City, 04510, Mexico
| | - S A Del Angel
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA. Mexico City 14269, Mexico.
| |
Collapse
|
75
|
Gęgotek A, Nikliński J, Žarković N, Žarković K, Waeg G, Łuczaj W, Charkiewicz R, Skrzydlewska E. Lipid mediators involved in the oxidative stress and antioxidant defence of human lung cancer cells. Redox Biol 2016; 9:210-219. [PMID: 27567474 PMCID: PMC5007445 DOI: 10.1016/j.redox.2016.08.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/22/2016] [Accepted: 08/18/2016] [Indexed: 01/24/2023] Open
Abstract
Background The oxidative modifications of bioactive macromolecules have important roles in carcinogenesis. Of particular interest are lipid peroxidation products, which are involved in the activation of Nrf2 and endocannabinoids that affect cancer progression. Methods In lung cancer tissues (squamous cell lung carcinoma - SCC and adenocarcinoma - AC), the glutathione peroxidase and catalase activity and glutathione level, together with the expression of Nrf2 and its activators/inhibitors were estimated. The oxidative modifications of DNA (8-hydroxy-2′-deoxyguanosine and N7-methylguanine), endocannabinoids (anandamide and 2- arachidonylglyceriol), their receptors (CB1/2, TRV1, GPR55), phospholipid fatty acids (arachidonic, linoleic and docosahexaenoic), and reactive aldehydes (4-hydroxynonenal, 4-oxononenal and malondialdehyde) were determined. Results Tumour tissues showed lower antioxidant capacity than healthy tissues, which was accompanied by lower levels of fatty acids and higher levels of reactive aldehydes. Disturbances in antioxidant capacity and enhanced DNA oxidative modifications were observed in 88% of AC patients and 81% of SCC patients. The 4-hydroxynonenal-Histidine adducts were detected in the necrotic and stromal cells in all tumours. These findings were associated with the enhanced Nrf2 activity, especially in AC. The strong difference between the cancer subtypes was evident in the levels of endocannabinoids, with an increase in 89% of SCC and a decrease in 85% of AC patients being observed. Additionally, the increase in the expression of CB1/2 receptors was observed only in 82% of AC, while the expression of VR1 and GPR55 was enhanced in 79% of SCC and 82% of AC patients. Conclusions This study shows significant differences in the redox status, Nrf2 pathway and endocannabinoid system between SCC and AC tissues. Understanding the relation between the various lipid mediators and antioxidants in different lung cancer subtypes may be beginning for further research on the effective anticancer therapy. AC tissues show lower antioxidant capacity than SCC. Nrf2/ARE pathway is activated stronger in AC than in SCC. AC exhibits more lipid oxidative modifications than SCC. HNE-protein adducts are detected in the necrotic and stromal cells in SCC and AC. SCC exhibits increase in endocannabinoids level while in AC reverse effect is observed.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Departments of Analytical Chemistry, Medical University of Białystok, Białystok, Poland
| | - Jacek Nikliński
- Clinical Molecular Biology, Medical University of Białystok, Białystok, Poland
| | | | - Kamelija Žarković
- University of Zagreb School of Medicine, Clinical Hospital Centre Division of Pathology, Zagreb, Croatia
| | - Georg Waeg
- Institute of Molecular Biosciences, Karl Franzens University in Graz, Austria
| | - Wojciech Łuczaj
- Departments of Analytical Chemistry, Medical University of Białystok, Białystok, Poland
| | | | - Elżbieta Skrzydlewska
- Departments of Analytical Chemistry, Medical University of Białystok, Białystok, Poland.
| |
Collapse
|
76
|
Park SW, Hah JH, Oh SM, Jeong WJ, Sung MW. 5-lipoxygenase mediates docosahexaenoyl ethanolamide and N-arachidonoyl-L-alanine-induced reactive oxygen species production and inhibition of proliferation of head and neck squamous cell carcinoma cells. BMC Cancer 2016; 16:458. [PMID: 27411387 PMCID: PMC4942960 DOI: 10.1186/s12885-016-2499-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 07/04/2016] [Indexed: 01/01/2023] Open
Abstract
Background Endocannabinoids have recently drawn attention as promising anti-cancer agents. We previously observed that anandamide (AEA), one of the representative endocannabinoids, effectively inhibited the proliferation of head and neck squamous cell carcinoma (HNSCC) cell lines in a receptor-independent manner. In this study, using HNSCC cell lines, we examined the anti-cancer effects and the mechanisms of action of docosahexaenoyl ethanolamide (DHEA) and N-arachidonoyl-L-alanine (NALA), which are polyunsaturated fatty acid (PUFA)-based ethanolamides like AEA. Methods and Results DHEA and NALA were found to effectively inhibit HNSCC cell proliferation. These anti-proliferative effects seemed to be mediated in a cannabinoid receptor-independent manner, since the antagonist of cannabinoid receptor-1 (CB1) and vanilloid receptor-1 (VR1), two endocannabinoid receptors, did not reverse the ability of DHEA and NALA to induce cell death. Instead, we observed an increase in reactive oxygen species (ROS) production and a decrease of phosphorylated Akt as a result of DHEA and NALA treatment. Antioxidants efficiently reversed the inhibition of cell proliferation and the decrease of phosphorylated Akt induced by DHEA and NALA; inhibition of 5-lipoxygenase (5-LO), which is expected to be involved in DHEA- and NALA-degradation pathway, also partially blocked the ability of DHEA and NALA to inhibit cell proliferation and phosphorylated Akt. Interestingly, ROS production as a result of DHEA and NALA treatment was decreased by inhibition of 5-LO. Conclusions From these findings, we suggest that ROS production induced by the 5-LO pathway mediates the anti-cancer effects of DHEA and NALA on HNSCC cells. Finally, our findings suggest the possibility of a new cancer-specific therapeutic strategy, which utilizes 5-LO activity rather than inhibiting it. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2499-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seok-Woo Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - J Hun Hah
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea.,Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Sang-Mi Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Woo-Jin Jeong
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Myung-Whun Sung
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea. .,Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea. .,Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea. .,Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul National University Hospital, Seoul, South Korea.
| |
Collapse
|
77
|
Montalbano R, Honrath B, Wissniowski TT, Elxnat M, Roth S, Ocker M, Quint K, Churin Y, Roederfeld M, Schroeder D, Glebe D, Roeb E, Fazio PD. Exogenous hepatitis B virus envelope proteins induce endoplasmic reticulum stress: involvement of cannabinoid axis in liver cancer cells. Oncotarget 2016; 7:20312-20323. [PMID: 26967385 PMCID: PMC4991457 DOI: 10.18632/oncotarget.7950] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 02/13/2016] [Indexed: 02/07/2023] Open
Abstract
HBV represents the most common chronic viral infection and major cause of hepatocellular carcinoma (HCC), although its exact role in liver tumorigenesis is unclear. Massive storage of the small (SHBs), middle (MHBs) and large surface (LHBs) HBV envelope proteins leads to cell stress and sustained inflammatory responses. Cannabinoid (CB) system is involved in the pathogenesis of liver diseases, stimulating acute and chronic inflammation, liver damage and fibrogenesis; it triggers endoplasmic reticulum (ER) stress response. The aim of our work was to investigate the activation of ER stress pathway after ectopic HBV envelope proteins expression, in liver cancer cells, and the role exerted by CB receptors. PCR, immunofluorescence and western blotting showed that exogenous LHBs and MHBs induce a clear ER stress response in Huh-7 cells expressing CB1 receptor. Up-regulation of the chaperone BiP/GRP78 (Binding Immunoglobulin Protein/Glucose-Regulated Protein 78) and of the transcription factor CHOP/GADD153 (C/EBP Homologous Protein/Growth Arrest and DNA Damage inducible gene 153), phosphorylation of PERK (PKR-like ER Kinase) and eIF2α (Eukaryotic Initiation Factor 2α) and splicing of XBP1 (X-box binding protein 1) was observed. CB1-/- HepG2 cells did not show any ER stress activation. Inhibition of CB1 receptor counteracted BiP expression in transfected Huh-7 and in HBV+ PLC/PRF/5 cells; whereas no effect was observed in HBV- HLF cells. These results suggest that HBV envelope proteins are able to induce the ER stress pathway. CB1 expression is directly correlated with ER stress function. Further investigations are needed to clarify the involvement of cannabinoid in HCC progression after HBV infection.
Collapse
Affiliation(s)
- Roberta Montalbano
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Marburg, Germany
| | - Birgit Honrath
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Marburg, Germany
| | | | - Moritz Elxnat
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Marburg, Germany
| | - Silvia Roth
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Marburg, Germany
| | - Matthias Ocker
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
- Present address: Department of Gastroenterology CBF, Charité University Medicine Berlin and Bayer Pharma AG, Experimental Medicine Oncology, Berlin, Germany
| | - Karl Quint
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
| | - Yuri Churin
- Department of Gastroenterology, Justus Liebig University, Giessen, Germany
| | - Martin Roederfeld
- Department of Gastroenterology, Justus Liebig University, Giessen, Germany
| | - Dirk Schroeder
- Department of Gastroenterology, Justus Liebig University, Giessen, Germany
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, Justus Liebig University, Giessen, Germany
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University, Giessen, Germany
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
78
|
MA MUYUAN, BAI JIE, LING YE, CHANG WEILONG, XIE GENGCHEN, LI RUIDONG, WANG GUOBIN, TAO KAIXIONG. Monoacylglycerol lipase inhibitor JZL184 regulates apoptosis and migration of colorectal cancer cells. Mol Med Rep 2016; 13:2850-6. [DOI: 10.3892/mmr.2016.4829] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 12/11/2015] [Indexed: 11/06/2022] Open
|
79
|
Aghazadeh Tabrizi M, Baraldi PG, Borea PA, Varani K. Medicinal Chemistry, Pharmacology, and Potential Therapeutic Benefits of Cannabinoid CB2 Receptor Agonists. Chem Rev 2016; 116:519-60. [PMID: 26741146 DOI: 10.1021/acs.chemrev.5b00411] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Andrea Borea
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Katia Varani
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| |
Collapse
|
80
|
Quintana PG, García Liñares G, Chanquia SN, Gorojod RM, Kotler ML, Baldessari A. Improved Enzymatic Procedure for the Synthesis of Anandamide andN-Fatty Acylalkanolamine Analogues: A Combination Strategy to Antitumor Activity. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501263] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
81
|
Xu D, Wang J, Zhou Z, He Z, Zhao Q. Cannabinoid WIN55, 212-2 induces cell cycle arrest and inhibits the proliferation and migration of human BEL7402 hepatocellular carcinoma cells. Mol Med Rep 2015; 12:7963-70. [PMID: 26500101 PMCID: PMC4758282 DOI: 10.3892/mmr.2015.4477] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 09/22/2015] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-associated mortality worldwide; however, only limited therapeutic treatments are currently available. The present study aimed to investigate the effects of cannabinoids as novel therapeutic targets in HCC. In addition, the mechanism underlying the effects of a synthetic cannabinoid, WIN55, 212-2, on the BEL7402 HCC cell line was investigated. The results demonstrated that WIN55, 212-2 induced cell cycle arrest of the BEL7402 cells at the G0/G1 phase via can nabinoid receptor 2 (CB2)-mediated down regulation of phosphorylated-extracellular signal-regulated kinases (ERK)1/2, upregulation of p27, and downregulation of cyclin D1 and cyclin-dependent kinase 4. Furthermore, inhibition of CB2 with the CB2 antagonist AM630 abrogated WIN55, 212-2-induced cell cycle arrest. Inhibition of ERK1/2 also resulted in cell cycle dysregulation and cell cycle arrest at the G0/G1 phase, which subsequently resulted in cell growth inhibition. In addition, the present study detected a significant reduction in matrix metalloproteinase-9, retinoblastoma protein and E2F1 expression, and migration inhibition by WIN treatment. These results suggested that cannabinoid receptor agonists, including WIN, may be considered as novel therapeutics for the treatment of HCC.
Collapse
Affiliation(s)
- Dacai Xu
- Department of Biochemistry, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| | - Jianglin Wang
- Department of Biochemistry, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| | - Zhenkang Zhou
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, P.R. China
| | - Zhiwei He
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan, Guangdong 523376, P.R. China
| | - Qing Zhao
- Department of Biochemistry, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| |
Collapse
|
82
|
Krug RG, Clark KJ. Elucidating cannabinoid biology in zebrafish (Danio rerio). Gene 2015; 570:168-79. [PMID: 26192460 DOI: 10.1016/j.gene.2015.07.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/11/2015] [Indexed: 02/01/2023]
Abstract
The number of annual cannabinoid users exceeds 100,000,000 globally and an estimated 9% of these individuals will suffer from dependency. Although exogenous cannabinoids, like those contained in marijuana, are known to exert their effects by disrupting the endocannabinoid system, a dearth of knowledge exists about the potential toxicological consequences on public health. Conversely, the endocannabinoid system represents a promising therapeutic target for a plethora of disorders because it functions to endogenously regulate a vast repertoire of physiological functions. Accordingly, the rapidly expanding field of cannabinoid biology has sought to leverage model organisms in order to provide both toxicological and therapeutic insights about altered endocannabinoid signaling. The primary goal of this manuscript is to review the existing field of cannabinoid research in the genetically tractable zebrafish model-focusing on the cannabinoid receptor genes, cnr1 and cnr2, and the genes that produce enzymes for synthesis and degradation of the cognate ligands anandamide and 2-arachidonylglycerol. Consideration is also given to research that has studied the effects of exposure to exogenous phytocannabinoids and synthetic cannabinoids that are known to interact with cannabinoid receptors. These results are considered in the context of either endocannabinoid gene expression or endocannabinoid gene function, and are integrated with findings from rodent studies. This provides the framework for a discussion of how zebrafish may be leveraged in the future to provide novel toxicological and therapeutic insights in the field of cannabinoid biology, which has become increasingly significant given recent trends in cannabis legislation.
Collapse
Affiliation(s)
- Randall G Krug
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Mayo Graduate School, Neurobiology of Disease Track, Mayo Clinic, Rochester, MN, USA
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
83
|
Ma MY, Bai J, Chang WL, Tao KX. Effect of monoacylglycerol lipase inhibitor JZL184 on apoptosis of colorectal cancer cells. Shijie Huaren Xiaohua Zazhi 2015; 23:2256-2263. [DOI: 10.11569/wcjd.v23.i14.2256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether JZL184, a monoacylglycerol lipase inhibitor, induces apoptosis of colorectal cancer cells and to explore the possible mechanism.
METHODS: SW480 and Lovo cells were treated with JZL184, JZL184 + 5-fluorouracil (5-Fu) or 5-Fu alone for 48 h. Apoptosis was assessed by flow cytometry. The protein levels of p-AKT, p-mTOR, pro-Caspase3 and pro-Caspase8 were assessed by Western blot.
RESULTS: Treatment with JZL184 + 5-Fu increased SW480 and Lovo cell apoptosis more significantly than 5-Fu alone (apoptosis increase in SW480 cells: JZL184 + 500 μmol/L 5-Fu 13.91% ± 9.13%, JZL184 + 200 μmol/L 5-Fu 26.34% ± 13.32%, JZL184 + 100 μmol 5-Fu 43.32% ± 8.04%, JZL184 + 10 μmol 5-Fu 31.4% ± 5.82%; Lovo cells: JZL184 + 500 μmol/L 5-Fu 17.56% ± 8.14%, JZL184 + 200 μmol/L 5-Fu 33.04% ± 9.49%, JZL184 + 100 μmol/L 5-Fu 36.91% ± 16.63%, JZL184 + 10 μmol/L 5-Fu 21.26% ± 11.03%). Treatment with JZL184 significantly decreased the protein levels of p-AKT, p-mTOR, pro-Caspase3 and pro-Caspase8 in colorectal cancer SW480 and Lovo cells (P < 0.05).
CONCLUSION: JZL184 can inhibit the AKT-mTOR pathway and promote pro-Caspase8 and pro-Caspase3 activation to increase the apoptosis of SW480 and Lovo cells treated with 5-Fu.
Collapse
|
84
|
Ayakannu T, Taylor AH, Willets JM, Konje JC. The evolving role of the endocannabinoid system in gynaecological cancer. Hum Reprod Update 2015; 21:517-35. [PMID: 25958409 DOI: 10.1093/humupd/dmv022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/09/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The 'endocannabinoid system' (ECS), comprising endogenous ligands (endocannabinoids) and their regulating enzymes, together with the cannabinoid receptors, has attracted a great deal of attention because it affects not only all facets of human reproduction, from gametogenesis through to parturition and beyond, but also targets key mechanisms affecting some hallmarks of cancer. Recent evidence showing that cannabinoid receptors play a very important role in the development of malignancies outside of the reproductive organs suggests a similar role for the ECS in the establishment or continued development of gynaecological malignancy. METHODS Primary papers and review articles, and primary sources within these papers, up to December 2014, on the evolving role of the ECS in cancer, with a special focus on gynaecological cancers, were obtained by Medline and PubMed searches using the search terms: 'cancer', 'cannabinoid', 'endocannabinoid', 'gynaecology' and 'malignancy'. Non-English manuscripts were excluded. RESULTS More than 2100 sources were obtained from which only 112 were specifically important to the topic. Analysis of those articles supports a role of the ECS in gynaecological cancers but leaves many gaps in our knowledge that need to be filled. How some of the relevant receptors are activated and cause changes in cell phenotypes that progress to malignancy remains undiscovered and an area for future research. Increasing evidence suggests that malignant transformation within the female genital tract could be accompanied by deregulation of components of the ECS, acting through rather complex cannabinoid receptor-dependent and receptor-independent mechanisms. CONCLUSIONS The paucity of studies in this area suggests that research using animal models is needed to evaluate endocannabinoid signalling in cancer networks. Future randomized clinical studies should reveal whether endocannabinoids or their derivatives prove to be useful therapeutic targets for gynaecological and other cancers.
Collapse
Affiliation(s)
- Thangesweran Ayakannu
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK
| | - Anthony H Taylor
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK Biosciences, School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG1 4BU, UK
| | - Jonathan M Willets
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK
| | - Justin C Konje
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK Department of Obstetrics and Gynaecology, Sidra Medical and Research Centre, Doha P.O. Box 26999, Qatar
| |
Collapse
|
85
|
ORELLANA-SERRADELL O, POBLETE C, SANCHEZ C, CASTELLÓN E, GALLEGOS I, HUIDOBRO C, LLANOS M, CONTRERAS H. Proapoptotic effect of endocannabinoids in prostate cancer cells. Oncol Rep 2015; 33:1599-608. [PMID: 25606819 PMCID: PMC4358087 DOI: 10.3892/or.2015.3746] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/29/2014] [Indexed: 02/06/2023] Open
Abstract
In the early stages, prostate cancer is androgen‑ dependent; therefore, medical castration has shown significant results during the initial stages of this pathology. Despite this early effect, advanced prostate cancer is resilient to such treatment. Recent evidence shows that derivatives of Cannabis sativa and its analogs may exert a protective effect against different types of oncologic pathologies. The purpose of the present study was to detect the presence of cannabinoid receptors (CB1 and CB2) on cancer cells with a prostatic origin and to evaluate the effect of the in vitro use of synthetic analogs. In order to do this, we used a commercial cell line and primary cultures derived from prostate cancer and benign prostatic hyperplasia. The presence of the CB1 and CB2 receptors was determined by immunohistochemistry where we showed a higher expression of these receptors in later stages of the disease (samples with a high Gleason score). Later, treatments were conducted using anandamide, 2-arachidonoyl glycerol and a synthetic analog of anandamide, methanandamide. Using the MTT assay, we proved that the treatments produced a cell growth inhibitory effect on all the different prostate cancer cultures. This effect was demonstrated to be dose-dependent. The use of a specific CB1 receptor blocker (SR141716) confirmed that this effect was produced primarily from the activation of the CB1 receptor. In order to understand the MTT assay results, we determined cell cycle distribution by flow cytometry, which showed no variation at the different cell cycle stages in all the cultures after treatment. Treatment with endocannabinoids resulted in an increase in the percentage of apoptotic cells as determined by Annexin V assays and caused an increase in the levels of activated caspase-3 and a reduction in the levels of Bcl-2 confirming that the reduction in cell viability noted in the MTT assay was caused by the activation of the apoptotic pathway. Finally, we observed that endocannabinoid treatment activated the Erk pathway and at the same time, produced a decrease in the activation levels of the Akt pathway. Based on these results, we suggest that endocannabinoids may be a beneficial option for the treatment of prostate cancer that has become nonresponsive to common therapies.
Collapse
MESH Headings
- Adenocarcinoma/pathology
- Apoptosis/drug effects
- Arachidonic Acids/pharmacology
- Cell Cycle/drug effects
- Drug Screening Assays, Antitumor
- Endocannabinoids/pharmacology
- Glycerides/pharmacology
- Humans
- MAP Kinase Signaling System/drug effects
- Male
- Neoplasm Proteins/analysis
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/drug effects
- Piperidines/pharmacology
- Polyunsaturated Alkamides/pharmacology
- Prostatic Hyperplasia/pathology
- Prostatic Neoplasms/pathology
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Pyrazoles/pharmacology
- Receptor, Cannabinoid, CB1/analysis
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB2/analysis
- Receptor, Cannabinoid, CB2/drug effects
- Rimonabant
- Signal Transduction/drug effects
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- O. ORELLANA-SERRADELL
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8389100, Chile
| | - C.E. POBLETE
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8389100, Chile
| | - C. SANCHEZ
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8389100, Chile
| | - E.A. CASTELLÓN
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8389100, Chile
| | - I. GALLEGOS
- Pathological Anatomy Service, Clinic Hospital of the University of Chile, University of Chile, Santiago 8389100, Chile
| | - C. HUIDOBRO
- Urology Service, Clinic Hospital of the University of Chile, University of Chile, Santiago 8389100, Chile
| | - M.N. LLANOS
- Laboratory of Nutrition and Metabolic Regulation, INTA, University of Chile, Santiago 8389100, Chile
| | - H.R. CONTRERAS
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8389100, Chile
| |
Collapse
|
86
|
Ravi J, Sneh A, Shilo K, Nasser MW, Ganju RK. FAAH inhibition enhances anandamide mediated anti-tumorigenic effects in non-small cell lung cancer by downregulating the EGF/EGFR pathway. Oncotarget 2015; 5:2475-86. [PMID: 24811863 PMCID: PMC4058020 DOI: 10.18632/oncotarget.1723] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The endocannabinoid anandamide (AEA), a neurotransmitter was shown to have anti-cancer effects. Fatty acid amide hydrolase (FAAH) metabolizes AEA and decreases its anti-tumorigenic activity. In this study, we have analyzed the role of FAAH inhibition in non-small cell lung cancer (NSCLC). We have shown that FAAH and CB1 receptor which is activated by AEA are expressed in lung adenocarcinoma patient samples and NSCLC cell lines A549 and H460. Since the synthetic analogue of anandamide (Met-F-AEA) did not possess significant anti-tumorigenic effects, we used Met-F-AEA in combination with FAAH inhibitor URB597 which significantly reduced EGF (epidermal growth factor)-induced proliferative and chemotactic activities in vitro when compared to anti-tumorigenic activity of Met-F-AEA alone. Further analysis of signaling mechanisms revealed that Met-F-AEA in combination with URB597 inhibits activation of EGFR and its downstream signaling ERK, AKT and NF-kB. In addition, it inhibited MMP2 secretion and stress fiber formation. We have also shown that the Met-F-AEA in combination with URB597 induces G0/G1 cell cycle arrest by downregulating cyclin D1 and CDK4 expressions, ultimately leading to apoptosis via activation of caspase-9 and PARP. Furthermore, the combination treatment inhibited tumor growth in a xenograft nude mouse model system. Tumors derived from Met-F-AEA and URB597 combination treated mice showed reduced EGFR, AKT and ERK activation and MMP2/MMP9 expressions when compared to Met-F-AEA or URB597 alone. Taken together, these data suggest in EGFR overexpressing NSCLC that the combination of Met-F-AEA with FAAH inhibitor resulted in superior therapeutic response compared to individual compound activity alone.
Collapse
Affiliation(s)
- Janani Ravi
- Department of Pathology, The Ohio State University, Ohio, USA
| | | | | | | | | |
Collapse
|
87
|
Martínez-Martínez E, Gómez I, Martín P, Sánchez A, Román L, Tejerina E, Bonilla F, Merino AG, de Herreros AG, Provencio M, García JM. Cannabinoids receptor type 2, CB2, expression correlates with human colon cancer progression and predicts patient survival. Oncoscience 2015; 2:131-41. [PMID: 25859556 PMCID: PMC4381706 DOI: 10.18632/oncoscience.119] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/06/2015] [Indexed: 12/28/2022] Open
Abstract
Many studies have demonstrated that the endocannabinoid system (ECS) is altered in different tumor types, including colon cancer. However, little is known about the role of the ECS in tumor progression. Here we report the correlation between CB2 expression and pathological data in a series of 175 colorectal cancer patients, as well as the response of the HT29 colon cancer-derived cell line upon CB2 activation. CB2 mRNA was detected in 28.6% of samples tested. It was more frequent in N+ patients and predicts disease free survival and overall survival in colon cancer. In positive samples, CB2 was expressed with great intensity in tumor epithelial cells and correlated with tumor growth. Treatment of HT29 with CB2 agonist revealed membrane loss of E-cadherin and SNAIL1 overexpression. A direct correlation between CB2 and SNAIL1 expression was also found in human tumors. CB2 receptor expression is a poor prognostic marker for colon cancer and the activation of this receptor, with non-apoptotic doses of agonists, could be collaborating with disease progression. These results raise the question whether the activation of CB2 should be considered as anti-tumoral therapy.
Collapse
Affiliation(s)
| | - Irene Gómez
- Department of Medical Oncology, IIS Puerta de Hierro-Majadahonda, Madrid
| | - Paloma Martín
- Department of Pathology, IIS Puerta de Hierro-Majadahonda, Madrid
| | - Antonio Sánchez
- Department of Neuroimmunology, IIS Puerta de Hierro-Majadahonda, Madrid
| | - Laura Román
- Department of Neuroimmunology, IIS Puerta de Hierro-Majadahonda, Madrid
| | - Eva Tejerina
- Department of Pathology, IIS Puerta de Hierro-Majadahonda, Madrid
| | - Félix Bonilla
- Department of Medical Oncology, IIS Puerta de Hierro-Majadahonda, Madrid
| | | | | | - Mariano Provencio
- Department of Medical Oncology, IIS Puerta de Hierro-Majadahonda, Madrid
| | - Jose M García
- Department of Medical Oncology, IIS Puerta de Hierro-Majadahonda, Madrid
| |
Collapse
|
88
|
Harnett JJ, Dolo C, Viossat I, Auger F, Ferrandis E, Bigg D, Auguet M, Auvin S, Chabrier PE. Novel azoles as potent and selective cannabinoid CB2 receptor agonists. Bioorg Med Chem Lett 2015; 25:88-91. [DOI: 10.1016/j.bmcl.2014.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/28/2014] [Accepted: 11/01/2014] [Indexed: 01/01/2023]
|
89
|
Ostadhadi S, Rahmatollahi M, Dehpour AR, Rahimian R. Therapeutic Potential of Cannabinoids in Counteracting Chemotherapy-induced Adverse Effects: An Exploratory Review. Phytother Res 2014; 29:332-8. [DOI: 10.1002/ptr.5265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/09/2014] [Accepted: 11/12/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Sattar Ostadhadi
- Department of Pharmacology, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Mahdieh Rahmatollahi
- Department of Pharmacology, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Ahmad-Reza Dehpour
- Department of Pharmacology, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Experimental Medicine Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Reza Rahimian
- Department of Pharmacology, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
90
|
Dempsey DR, Jeffries KA, Bond JD, Carpenter AM, Rodriguez-Ospina S, Breydo L, Caswell KK, Merkler DJ. Mechanistic and structural analysis of Drosophila melanogaster arylalkylamine N-acetyltransferases. Biochemistry 2014; 53:7777-93. [PMID: 25406072 PMCID: PMC4270386 DOI: 10.1021/bi5006078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Arylalkylamine N-acetyltransferase (AANAT) catalyzes the penultimate step in the
biosynthesis of melatonin and other N-acetylarylalkylamides
from the corresponding arylalkylamine and acetyl-CoA. The N-acetylation
of arylalkylamines is a critical step in Drosophila melanogaster for the inactivation of the bioactive amines and the sclerotization
of the cuticle. Two AANAT variants (AANATA and AANATB) have been identified
in D. melanogaster, in which AANATA differs from
AANATB by the truncation of 35 amino acids from the N-terminus. We
have expressed and purified both D. melanogaster AANAT
variants (AANATA and AANATB) in Escherichia coli and
used the purified enzymes to demonstrate that this N-terminal truncation
does not affect the activity of the enzyme. Subsequent characterization
of the kinetic and chemical mechanism of AANATA identified an ordered
sequential mechanism, with acetyl-CoA binding first, followed by tyramine.
We used a combination of pH–activity profiling and site-directed
mutagenesis to study prospective residues believed to function in
AANATA catalysis. These data led to an assignment of Glu-47 as the
general base in catalysis with an apparent pKa of 7.0. Using the data generated for the kinetic mechanism,
structure–function relationships, pH–rate profiles,
and site-directed mutagenesis, we propose a chemical mechanism for
AANATA.
Collapse
Affiliation(s)
- Daniel R Dempsey
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Gasperi V, Evangelista D, Oddi S, Florenzano F, Chiurchiù V, Avigliano L, Catani MV, Maccarrone M. Regulation of inflammation and proliferation of human bladder carcinoma cells by type-1 and type-2 cannabinoid receptors. Life Sci 2014; 138:41-51. [PMID: 25445433 DOI: 10.1016/j.lfs.2014.09.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 01/14/2023]
Abstract
AIMS Pro-inflammatory cytokines, growth and angiogenic factors released by leukocytes are involved in carcinogenesis and cancer progression, but they are also crucial for fighting tumour growth and spreading. We have previously demonstrated that endocannabinoids modulate cell-to-cell crosstalk during inflammation. Here, we investigated the inflammatory and tumourigenic properties of endocannabinoids in a human urinary bladder carcinoma cell line. MAIN METHODS Endocannabinoid-treated ECV304 cells were checked for tumour necrosis factor (TNF)-α secretion (by ELISA assay) and surface exposure of selectins (by in situ ELISA and FACS analysis). ECV304/Jurkat T cell interaction was assessed by adhesion and live imaging experiments. Proliferation rate, cell death and cell cycle were determined by FACS analysis. KEY FINDINGS By binding to type-1 (CB1) and type-2 (CB2) cannabinoid receptors, the endocannabinoid 2-arachidonoylglycerol (2-AG) exacerbates the pro-inflammatory status surrounding bladder carcinoma ECV304 cells, by: (i) enhancing TNF-α release, (ii) increasing surface exposure of P- and E-selectins, and (iii) allowing Jurkat T lymphocytes to adhere to treated cancer cells. We also found that the CB1 inverse agonist AM281, unlike 2-AG, decreases cancer proliferation by delaying cell cycle progression. SIGNIFICANCE Our data suggest that 2-AG modulates the inflammatory milieu of cancer cells in vitro, while AM281 plays a more specific role in proliferation. Collectively, these findings suggest that CB receptors may play distinct roles in cancer biology, depending on the specific ligand employed. CONCLUSIONS The in vivo assessment of the role of CB receptors in inflammation and cancer might be instrumental in broadening the understanding about bladder cancer biology.
Collapse
Affiliation(s)
- Valeria Gasperi
- Department of Experimental Medicine & Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Daniela Evangelista
- Department of Experimental Medicine & Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy; European Center for Brain Research (CERC)/IRCCS S. Lucia Foundation, Rome, Italy
| | | | - Valerio Chiurchiù
- European Center for Brain Research (CERC)/IRCCS S. Lucia Foundation, Rome, Italy; Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
| | - Luciana Avigliano
- Department of Experimental Medicine & Surgery, Tor Vergata University of Rome, Rome, Italy
| | - M Valeria Catani
- Department of Experimental Medicine & Surgery, Tor Vergata University of Rome, Rome, Italy.
| | - Mauro Maccarrone
- European Center for Brain Research (CERC)/IRCCS S. Lucia Foundation, Rome, Italy; Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy.
| |
Collapse
|
92
|
Messalli EM, Grauso F, Luise R, Angelini A, Rossiello R. Cannabinoid receptor type 1 immunoreactivity and disease severity in human epithelial ovarian tumors. Am J Obstet Gynecol 2014; 211:234.e1-6. [PMID: 24721263 DOI: 10.1016/j.ajog.2014.04.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/24/2014] [Accepted: 04/04/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE In light of recent findings indicating that endocannabinoid system has antitumor actions, our study aimed to localize it in the human epithelial ovarian tumors, highlighting the differences among benign, borderline, and invasive forms and correlating cannabinoid receptor type 1 (CB1R) expression with disease severity. STUDY DESIGN We determined CB1R immunohistochemical expression in 66 epithelial ovarian tumors treated in the Department of Woman, Child, and General and Specialized Surgery, Second University of Naples, at S. Maria del Popolo degli Incurabili Hospital (Naples): 36 borderline ovarian tumors, the main target of interest being intermediate forms, 15 benign and 15 invasive ovarian tumors. RESULTS The benign ovarian tumors showed a weak expression of CB1R in the 33% of the cases and moderate expression in the 67% of the cases. Borderline ovarian tumors had a similar trend. They showed weak CB1R expression in 28% of the cases, moderate expression in 53% of the cases, and strong expression in 19% of the cases. In contrast, invasive tumors showed a weak expression of CB1R in 7% of the cases, moderate expression in 20% of the cases, and strong expression in 73% of the cases. CONCLUSION The recorded data show that the expression of CB1R increased from benign and borderline to malignant tumors. In the near future, endocannabinoid receptors might be used in clinical practice, alone or in combination with other markers, to identify or better characterize ovarian tumors, without considering the great opportunity that they might represent as therapeutic targets.
Collapse
Affiliation(s)
- Enrico Michelino Messalli
- Department of Woman, Child, and General and Specialized Surgery, Second University of Naples, Naples, Italy.
| | - Flavio Grauso
- Department of Woman, Child, and General and Specialized Surgery, Second University of Naples, Naples, Italy
| | - Rossella Luise
- Division of Pathology, Department of Public, Clinic, and Preventive Medicine, Second University of Naples, Naples, Italy
| | - Anna Angelini
- Pathologic Service, P.O.S. Maria del Popolo degli Incurabili, Naples, Italy
| | - Raffaele Rossiello
- Division of Pathology, Department of Public, Clinic, and Preventive Medicine, Second University of Naples, Naples, Italy
| |
Collapse
|
93
|
Hermanson DJ, Gamble-George JC, Marnett LJ, Patel S. Substrate-selective COX-2 inhibition as a novel strategy for therapeutic endocannabinoid augmentation. Trends Pharmacol Sci 2014; 35:358-67. [PMID: 24845457 PMCID: PMC4074568 DOI: 10.1016/j.tips.2014.04.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 12/20/2022]
Abstract
Pharmacologic augmentation of endogenous cannabinoid (eCB) signaling is an emerging therapeutic approach for the treatment of a broad range of pathophysiological conditions. Thus far, pharmacological approaches have focused on inhibition of the canonical eCB inactivation pathways - fatty acid amide hydrolase (FAAH) for anandamide and monoacylglycerol lipase (MAGL) for 2-arachidonoylglycerol. We review here the experimental evidence that cyclooxygenase-2 (COX-2)-mediated eCB oxygenation represents a third mechanism for terminating eCB action at cannabinoid receptors. We describe the development, molecular mechanisms, and in vivo validation of 'substrate-selective' COX-2 inhibitors (SSCIs) that prevent eCB inactivation by COX-2 without affecting prostaglandin (PG) generation from arachidonic acid (AA). Lastly, we review recent data on the potential therapeutic applications of SSCIs with a focus on neuropsychiatric disorders.
Collapse
Affiliation(s)
- Daniel J Hermanson
- A.B. Hancock Jr Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology Center in Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Joyonna C Gamble-George
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lawrence J Marnett
- A.B. Hancock Jr Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology Center in Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Sachin Patel
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
94
|
Qin H, Ruan ZH. The Role of Monoacylglycerol Lipase (MAGL) in the Cancer Progress. Cell Biochem Biophys 2014; 70:33-6. [DOI: 10.1007/s12013-014-9899-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
95
|
A role for oleoylethanolamide in chronic lymphocytic leukemia. Leukemia 2014; 28:1381-7. [PMID: 24413323 DOI: 10.1038/leu.2014.10] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/26/2013] [Accepted: 01/03/2014] [Indexed: 01/22/2023]
Abstract
Oleoylethanolamide (OEA) is a bioactive lipid that stimulates nuclear and G protein-coupled receptors and regulates appetite and fat metabolism. It has not previously been shown to have a role in cancer. However, a mass spectrometry-based lipidomics platform revealed the presence of high amounts of OEA in the plasma of chronic lymphocytic leukemia (CLL) patients compared with normal donors. CLL cells produced OEA and the magnitude of plasma OEA levels was related directly to the circulating leukemic cell number. OEA from CLL cells was increased by URB-597, an inhibitor of fatty acid amide hydrolase (FAAH), and decreased by inflammatory mediators that downregulate expression of N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD). These enzymes degrade and synthesize OEA, respectively. Nonphysiologic doses of OEA prevented spontaneous apoptosis of CLL cells in a receptor-independent manner that was mimicked by its free fatty acid (FFA) derivative oleate. However, OEA-containing supernatants from CLL cells induced lipolysis in adipocytes, lipid products from adipocytes protected CLL cells from cytotoxic chemotherapy, and increased levels of FFAs were found in CLL plasma that correlated with OEA. We suggest OEA is a lipolytic factor produced by CLL cells to fuel their growth with a potential role in drug resistance and cancer cachexia.
Collapse
|
96
|
Paul RK, Wnorowski A, Gonzalez-Mariscal I, Nayak SK, Pajak K, Moaddel R, Indig FE, Bernier M, Wainer IW. (R,R')-4'-methoxy-1-naphthylfenoterol targets GPR55-mediated ligand internalization and impairs cancer cell motility. Biochem Pharmacol 2013; 87:547-61. [PMID: 24355564 DOI: 10.1016/j.bcp.2013.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 12/13/2022]
Abstract
(R,R')-4'-Methoxy-1-naphthylfenoterol (MNF) promotes growth inhibition and apoptosis of human HepG2 hepatocarcinoma cells via cannabinoid receptor (CBR) activation. The synthetic CB1R inverse agonist, AM251, has been shown to block the anti-mitogenic effect of MNF in these cells; however, AM251 is also an agonist of the recently deorphanized, lipid-sensing receptor, GPR55, whose upregulation contributes to carcinogenesis. Here, we investigated the role of MNF in GPR55 signaling in human HepG2 and PANC-1 cancer cell lines in culture by focusing first on internalization of the fluorescent ligand Tocrifluor 1117 (T1117). Initial results indicated that cell pretreatment with GPR55 agonists, including the atypical cannabinoid O-1602 and l-α-lysophosphatidylinositol, dose-dependently reduced the rate of cellular T1117 uptake, a process that was sensitive to MNF inhibition. GPR55 internalization and signaling mediated by O-1602 was blocked by MNF in GPR55-expressing HEK293 cells. Pretreatment of HepG2 and PANC-1 cells with MNF significantly abrogated the induction of ERK1/2 phosphorylation in response to AM251 and O-1602. Moreover, MNF exerted a coordinated negative regulation of AM251 and O-1602 inducible processes, including changes in cellular morphology and cell migration using scratch wound healing assay. This study shows for the first time that MNF impairs GPR55-mediated signaling and, therefore, may have therapeutic potential in the management of cancer.
Collapse
Affiliation(s)
- Rajib K Paul
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD 21224, USA.
| | - Artur Wnorowski
- Laboratory of Medicinal Chemistry and Neuroengineering, Department of Chemistry, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Isabel Gonzalez-Mariscal
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD 21224, USA.
| | | | - Karolina Pajak
- Laboratory of Medicinal Chemistry and Neuroengineering, Department of Chemistry, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD 21224, USA.
| | - Fred E Indig
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD 21224, USA.
| | - Michel Bernier
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD 21224, USA.
| | - Irving W Wainer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD 21224, USA.
| |
Collapse
|
97
|
CB1 and CB2 receptors are novel molecular targets for Tamoxifen and 4OH-Tamoxifen. Biochem Biophys Res Commun 2013; 441:339-43. [PMID: 24148245 DOI: 10.1016/j.bbrc.2013.10.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 11/24/2022]
Abstract
Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for the ER-independent effects of Tam and its derivatives are poorly understood. Interestingly, similar to Tam and 4OH-Tam, cannabinoids have also been shown to exhibit anti-proliferative and apoptotic effects in ER-negative breast cancer cells, and estrogen can regulate expression levels of cannabinoid receptors (CBRs). Therefore, this study investigated whether CBRs might serve as novel molecular targets for Tam and 4OH-Tam. We report that both compounds bind to CB1 and CB2Rs with moderate affinity (0.9-3 μM). Furthermore, Tam and 4OH-Tam exhibit inverse activity at CB1 and CB2Rs in membrane preparations, reducing basal G-protein activity. Tam and 4OH-Tam also act as CB1/CB2R-inverse agonists to regulate the downstream intracellular effector adenylyl cyclase in intact cells, producing concentration-dependent increases in intracellular cAMP. These results suggest that CBRs are molecular targets for Tam and 4OH-Tam and may contribute to the ER-independent cytotoxic effects reported for these drugs. Importantly, these findings also indicate that Tam and 4OH-Tam might be used as structural scaffolds for development of novel, efficacious, non-toxic cancer drugs acting via CB1 and/or CB2Rs.
Collapse
|
98
|
PPARγ mediates the effects of WIN55,212-2, an synthetic cannabinoid, on the proliferation and apoptosis of the BEL-7402 hepatocarcinoma cells. Mol Biol Rep 2013; 40:6287-93. [PMID: 24062073 DOI: 10.1007/s11033-013-2741-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
Cannabis sativa has long been used as a traditional medicine in China. Among its effective compounds are cannabinoids. This study determined the effect of WIN55,212-2 (WIN), a synthetic cannabinoid, on the BEL-7402 human hepatocellular carcinoma (HCC) cell line. The results showed that WIN could decrease the proliferation of BEL-7402 cells. Moreover, WIN could cause apoptosis of the cells via up-regulation of Bax expression, down-regulation of Bcl-2 expression, induction of the mitochondrial membrane potential, increase of caspase-3, -8 and -9 activities, and induction of the cleavage of caspase-3 and poly-ADP-ribose polymerase (PARP). The WIN-induced apoptosis was accompanied by the up-regulation of PPARγ expression, the activation of PPARγ DNA binding activity, and a down-regulation of PPARγ target oncogene c-myc. Conversely, the effects of WIN could be attenuated by PPARγ antagonist GW9662, and the WIN induced PPARγ expression was partially attenuated by AM630, a cannabinoid receptor-2 antagonist, whereas the WIN-induced reduction of c-myc expression was partially restored by GW9662. Collectively, our results suggest that WIN can decrease the proliferation and cause apoptosis of the BEL-7402 cells via a mitochondrial-caspase pathway and mediated by PPARγ. These results may provide a basis for the application of WIN in HCC treatment.
Collapse
|
99
|
Teodoro R, Moldovan RP, Lueg C, Günther R, Donat CK, Ludwig FA, Fischer S, Deuther-Conrad W, Wünsch B, Brust P. Radiofluorination and biological evaluation of N-aryl-oxadiazolyl-propionamides as potential radioligands for PET imaging of cannabinoid CB2 receptors. Org Med Chem Lett 2013; 3:11. [PMID: 24063584 PMCID: PMC3856494 DOI: 10.1186/2191-2858-3-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/15/2013] [Indexed: 11/10/2022] Open
Abstract
Background The level of expression of cannabinoid receptor type 2 (CB2R) in healthy and diseased brain has not been fully elucidated. Therefore, there is a growing interest to assess the regional expression of CB2R in the brain. Positron emission tomography (PET) is an imaging technique, which allows quantitative monitoring of very low amounts of radiolabelled compounds in living organisms at high temporal and spatial resolution and, thus, has been widely used as a diagnostic tool in nuclear medicine. Here, we report on the radiofluorination of N-aryl-oxadiazolyl-propionamides at two different positions in the lead structure and on the biological evaluation of the potential of the two tracers [18F]1 and [18F]2 as CB2 receptor PET imaging agents. Results High binding affinity and specificity towards CB2 receptors of the lead structure remained unaffected by the structural changes such as the insertion of the aliphatic and aromatic fluorine in the selected labelling sites of 1 and 2. Aliphatic and aromatic radiofluorinations were optimized, and [18F]1 and [18F]2 were achieved in radiochemical yields of ≥30% with radiochemical purities of ≥98% and specific activities of 250 to 450 GBq/μmol. Organ distribution studies in female CD1 mice revealed that both radiotracers cross the blood–brain barrier (BBB) but undergo strong peripheral metabolism. At 30 min after injection, unmetabolized [18F]1 and [18F]2 accounted for 60% and 2% as well as 68% and 88% of the total activity in the plasma and brain, respectively. The main radiometabolite of [18F]2 could be identified as the free acid [18F]10, which has no affinity towards the CB1 and CB2 receptors but can cross the BBB. Conclusions N-aryl-oxadiazolyl-propionamides can successfully be radiolabelled with 18F at different positions. Fluorine substitution at these positions did not affect affinity and specificity towards CB2R. Despite a promising in vitro behavior, a rather rapid peripheral metabolism of [18F]1 and [18F]2 in mice and the generation of brain permeable radiometabolites hamper the application of these radiotracers in vivo. However, it is expected that future synthetic modification aiming at a replacement of metabolically susceptible structural elements of [18F]1 and [18F]2 will help to elucidate the potential of this class of compounds for CB2R PET studies.
Collapse
Affiliation(s)
- Rodrigo Teodoro
- Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 58-62, 48149 Münster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Adinolfi B, Romanini A, Vanni A, Martinotti E, Chicca A, Fogli S, Nieri P. Anticancer activity of anandamide in human cutaneous melanoma cells. Eur J Pharmacol 2013; 718:154-9. [PMID: 24041928 DOI: 10.1016/j.ejphar.2013.08.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/26/2013] [Accepted: 08/27/2013] [Indexed: 02/04/2023]
Abstract
Cannabinoids are implicated in the control of cell proliferation, but little is known about the role of the endocannabinoid system in human malignant melanoma. This study was aimed at characterizing the in vitro antitumor activity of anandamide (AEA) in A375 melanoma cells. The mRNA expression of genes that code for proteins involved in the metabolism and in the mechanism of AEA action was assessed by RT-PCR. Cell viability was tested using WST-1 assay and the apoptotic cell death was determined by measuring caspase 3/7 activities. A375 cells express high levels of fatty acid amide hydrolase (FAAH), cyclooxygenase (COX)-2, cannabinoid receptor 1 (CB1), transient receptor potential cation channel subfamily V member 1 (TRPV1) and G-protein-coupled receptor 55 (GPR55) genes. AEA induced a concentration-dependent cytotoxicity with an IC50 of 5.8 ± 0.7 µM and such an effect was associated to a caspase-dependent apoptotic pathway. AEA cytotoxicity was potentiated by FAAH inhibition (2-fold increase, p<0.05) and mitigated by COX-2 or lipoxygenase (LOX) inhibition (5- and 3-fold decrease, respectively; p<0.01). Blocking CB1 receptors partially decreased AEA cytotoxicity, whereas selective antagonism on the TRPV1 barely affected the mechanism of AEA action. Finally, methyl-β-cyclodextrin, a membrane cholesterol depletory, completely reversed the cytotoxicity induced by the selective GPR55 agonist, O-1602, and AEA. Overall, these findings demonstrate that AEA induces cytotoxicity against human melanoma cells in the micromolar range of concentrations through a complex mechanism, which involves COX-2 and LOX-derived product synthesis and CB1 activation. Lipid raft modulation, probably linked to GPR55 activation, might also have a role.
Collapse
Affiliation(s)
- Barbara Adinolfi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56100 Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|