51
|
Lawo NC, Griesser M, Forneck A. Expression of putative expansin genes in phylloxera ( Daktulosphaira vitifoliae Fitch) induced root galls of Vitis spp. EUROPEAN JOURNAL OF PLANT PATHOLOGY 2013; 136:383-391. [PMID: 26074670 PMCID: PMC4461154 DOI: 10.1007/s10658-013-0173-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/14/2013] [Indexed: 05/29/2023]
Abstract
Grape phylloxera (Daktulosphaira vitifoliae Fitch) is a serious global pest in viticulture. The insects are sedentary feeders and require a gall to feed and reproduce. The insects induce their feeding site within the meristematic zone of the root tip, where they stay attached, feeding both intra- and intercellularly, and causing damage by reducing plant vigour. Several changes in cell structure and composition, including increased cell division and tissue swelling close to the feeding site, cause an organoid gall called a nodosity to develop. Because alpha expansin genes are involved in cell enlargement and cell wall loosening in many plant tissues it may be anticipated that they are also involved in nodosity formation. To identify expansin genes in Vitis vinifera cv. Pinot noir, we mined for orthologues genes in a comparative analysis. Eleven putative expansin genes were identified and shown to be present in the rootstock Teleki 5C (V. berlandieri Planch. x V. riparia Michx.) using specific PCR followed by DNA sequencing. Expression analysis of young and mature nodosities and uninfested root tips were conducted via quantitative real time PCR (qRT-PCR). Up-regulation was measured for three putative expansin genes (VvEXPA15, -A17 and partly -A20) or down-regulation for three other putative genes (VvEXPA7, -A12, -A20) in nodosities. The present study clearly shows the involvement of putative expansin genes in the phylloxera-root interaction.
Collapse
Affiliation(s)
- N. C. Lawo
- Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz Str. 24, 3430 Tulln, Austria
- Present Address: Syngenta Crop Protection Research Stein, Schaffhauserstrasse 101, 4332 Stein, Switzerland
| | - M. Griesser
- Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz Str. 24, 3430 Tulln, Austria
| | - A. Forneck
- Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz Str. 24, 3430 Tulln, Austria
| |
Collapse
|
52
|
Studham ME, MacIntosh GC. Multiple phytohormone signals control the transcriptional response to soybean aphid infestation in susceptible and resistant soybean plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:116-29. [PMID: 22992001 DOI: 10.1094/mpmi-05-12-0124-fi] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The soybean aphid (Aphis glycines) is a major phloem-feeding pest of soybean (Glycine max). A. glycines feeding can cause the diversion of photosynthates and transmission of plant viruses, resulting in significant yield losses. In this study, we used oligonucleotide microarrays to characterize the long-term transcriptional response to soybean aphid colonization of two related soybean cultivars, one with the Rag1 aphid-resistance gene and one aphid-susceptible cultivar (without Rag1). Transcriptome profiles were determined after 1 and 7 days of aphid infestation. Our results revealed a susceptible response involving hundreds of transcripts, whereas only one transcript changed in the resistant response to aphids. This nonexistent resistance response might be explained by the fact that many defense-related transcripts are constitutively expressed in resistant plants, whereas these same genes are activated in susceptible plants only during aphid infestation. Analysis of phytohormone-related transcripts in the susceptible response showed different hormone profiles for the two time points, and suggest that aphids are able to suppress hormone signals in susceptible plants. A significant activation of abscissic acid, normally associated with abiotic stress responses, at day 7, might be a decoy strategy implemented by the aphid to suppress effective salicylic acid- and jasmonate-related defenses.
Collapse
|
53
|
Dinant S, Kehr J. Sampling and analysis of phloem sap. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013; 953:185-94. [PMID: 23073884 DOI: 10.1007/978-1-62703-152-3_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The transport tubes of the phloem are essential for higher plants. They not only provide the route for the distribution of assimilates produced during photosynthesis from source to sink organs but also (re-) distribute mineral nutrients. Additionally, the phloem is essential for sending information between distant plant organs and steering developmental and defense processes. For example, flowering and tuberization time are controlled by phloem-mobile signals and important defense reactions on the whole plant level, like systemic acquired resistance or systemic gene silencing, are spread through the phloem. In addition, recent results demonstrate that also the allocation of mineral nutrients is coordinated by phloem mobile signaling molecules. However, in many studies the important analysis of phloem sap is neglected, probably because the content of sieve tubes is not easy to access. This chapter will describe the current methods for sampling and analysis of phloem sap in order to encourage researchers to include the analysis of this crucial compartment in their relevant studies.
Collapse
Affiliation(s)
- Sylvie Dinant
- Institut Jean Pierre Bourgin (IJPB), INRA-AgroParisTech, Versailles, France
| | | |
Collapse
|
54
|
Rawat N, Neeraja CN, Nair S, Bentur JS. Differential gene expression in gall midge susceptible rice genotypes revealed by suppressive subtraction hybridization (SSH) cDNA libraries and microarray analysis. RICE (NEW YORK, N.Y.) 2012; 5:8. [PMID: 27234234 PMCID: PMC5520839 DOI: 10.1186/1939-8433-5-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/03/2012] [Indexed: 05/09/2023]
Abstract
BACKGROUND A major pest of rice, the Asian rice gall midge (Orseolia oryzae Wood-Mason), causes significant yield losses in the rice growing regions throughout Asia. Feeding by the larvae induces susceptible plants to produce nutritive tissue to support growth and development. In order to identify molecular signatures during compatible interactions, genome wide transcriptional profiling was performed using SSH library and microarray technology. RESULTS Results revealed up-regulation of genes related to primary metabolism, nutrient relocation, cell organization and DNA synthesis. Concomitantly, defense, secondary metabolism and signaling genes were suppressed. Further, real-time PCR validation of a selected set of 20 genes, in three susceptible rice varieties (TN1, Kavya and Suraksha) during the interaction with the respective virulent gall midge biotypes, also revealed variation in gene expression in Kavya as compared to TN1 and Suraksha. CONCLUSIONS These studies showed that virulent insects induced the plants to step up metabolism and transport nutrients to their feeding site and suppressed defense responses. But Kavya rice mounted an elevated defense response during early hours of virulent gall midge infestation, which was over-powered later, resulting in host plant susceptibility.
Collapse
Affiliation(s)
- Nidhi Rawat
- Directorate of Rice Research, Rajendranagar, Hyderabad, 500 030 AP India
| | | | - Suresh Nair
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Jagadish S Bentur
- Directorate of Rice Research, Rajendranagar, Hyderabad, 500 030 AP India
| |
Collapse
|
55
|
Lionetti V, Cervone F, Bellincampi D. Methyl esterification of pectin plays a role during plant-pathogen interactions and affects plant resistance to diseases. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1623-30. [PMID: 22717136 DOI: 10.1016/j.jplph.2012.05.006] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 05/18/2023]
Abstract
The cell wall is a complex structure mainly composed by a cellulose-hemicellulose network embedded in a cohesive pectin matrix. Pectin is synthesized in a highly methyl esterified form and is de-esterified in muro by pectin methyl esterases (PMEs). The degree and pattern of methyl esterification affect the cell wall structure and properties with consequences on both the physiological processes of the plants and their resistance to pathogens. PME activity displays a crucial role in the outcome of the plant-pathogen interactions by making pectin more susceptible to the action of the enzymes produced by the pathogens. This review focuses on the impact of pectin methyl esterification in plant-pathogen interactions and on the dynamic role of its alteration during pathogenesis.
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | |
Collapse
|
56
|
Louis J, Singh V, Shah J. Arabidopsis thaliana-Aphid Interaction. THE ARABIDOPSIS BOOK 2012; 10:e0159. [PMID: 22666177 PMCID: PMC3365623 DOI: 10.1199/tab.0159] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Aphids are important pests of plants that use their stylets to tap into the sieve elements to consume phloem sap. Besides the removal of photosynthates, aphid infestation also alters source-sink patterns. Most aphids also vector viral diseases. In this chapter, we will summarize on recent significant findings in plant-aphid interaction, and how studies involving Arabidopsis thaliana and Myzus persicae (Sülzer), more commonly known as the green peach aphid (GPA), are beginning to provide important insights into the molecular basis of plant defense and susceptibility to aphids. The recent demonstration that expression of dsRNA in Arabidopsis can be used to silence expression of genes in GPA has further expanded the utility of Arabidopsis for evaluating the contribution of the aphid genome-encoded proteins to this interaction.
Collapse
Affiliation(s)
- Joe Louis
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- Current address: Department of Entomology and Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Vijay Singh
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Jyoti Shah
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
57
|
Abstract
Recently, we demonstrated that leaf wounding results in the synthesis of pectin methylesterase (PME), which causes the plant to release methanol into the air. Methanol emitted by a wounded plant increases the accumulation of methanol-inducible gene mRNA and enhances antibacterial resistance as well as cell-to-cell communication, which facilitates virus spreading in neighboring plants. We concluded that methanol is a signaling molecule involved in within-plant and plant-to-plant communication. Methanol is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of methanol into toxic formaldehyde. However, recent data showed that methanol is a natural compound in normal, healthy humans. These data call into question whether human methanol is a metabolic waste product or whether methanol has specific function in humans. Here, to reveal human methanol-responsive genes (MRGs), we used suppression subtractive hybridization cDNA libraries of HeLa cells lacking ADH and exposed to methanol. This design allowed us to exclude genes involved in formaldehyde and formic acid detoxification from our analysis. We identified MRGs and revealed a correlation between increases in methanol content in the plasma and changes in human leukocyte MRG mRNA levels after fresh salad consumption by volunteers. Subsequently, we showed that the methanol generated by the pectin/PME complex in the gastrointestinal tract of mice induces the up- and downregulation of brain MRG mRNA. We used an adapted Y-maze to measure the locomotor behavior of the mice while breathing wounded plant vapors in two-choice assays. We showed that mice prefer the odor of methanol to other plant volatiles and that methanol changed MRG mRNA accumulation in the mouse brain. We hypothesize that the methanol emitted by wounded plants may have a role in plant-animal signaling. The known positive effect of plant food intake on human health suggests a role for physiological methanol in human gene regulation.
Collapse
|
58
|
Dorokhov YL, Komarova TV, Petrunia IV, Frolova OY, Pozdyshev DV, Gleba YY. Airborne signals from a wounded leaf facilitate viral spreading and induce antibacterial resistance in neighboring plants. PLoS Pathog 2012; 8:e1002640. [PMID: 22496658 PMCID: PMC3320592 DOI: 10.1371/journal.ppat.1002640] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 02/26/2012] [Indexed: 01/19/2023] Open
Abstract
Many plants release airborne volatile compounds in response to wounding due to pathogenic assault. These compounds serve as plant defenses and are involved in plant signaling. Here, we study the effects of pectin methylesterase (PME)-generated methanol release from wounded plants ("emitters") on the defensive reactions of neighboring "receiver" plants. Plant leaf wounding resulted in the synthesis of PME and a spike in methanol released into the air. Gaseous methanol or vapors from wounded PME-transgenic plants induced resistance to the bacterial pathogen Ralstonia solanacearum in the leaves of non-wounded neighboring "receiver" plants. In experiments with different volatile organic compounds, gaseous methanol was the only airborne factor that could induce antibacterial resistance in neighboring plants. In an effort to understand the mechanisms by which methanol stimulates the antibacterial resistance of "receiver" plants, we constructed forward and reverse suppression subtractive hybridization cDNA libraries from Nicotiana benthamiana plants exposed to methanol. We identified multiple methanol-inducible genes (MIGs), most of which are involved in defense or cell-to-cell trafficking. We then isolated the most affected genes for further analysis: β-1,3-glucanase (BG), a previously unidentified gene (MIG-21), and non-cell-autonomous pathway protein (NCAPP). Experiments with Tobacco mosaic virus (TMV) and a vector encoding two tandem copies of green fluorescent protein as a tracer of cell-to-cell movement showed the increased gating capacity of plasmodesmata in the presence of BG, MIG-21, and NCAPP. The increased gating capacity is accompanied by enhanced TMV reproduction in the "receivers". Overall, our data indicate that methanol emitted by a wounded plant acts as a signal that enhances antibacterial resistance and facilitates viral spread in neighboring plants.
Collapse
Affiliation(s)
- Yuri L Dorokhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
59
|
Hirao T, Fukatsu E, Watanabe A. Characterization of resistance to pine wood nematode infection in Pinus thunbergii using suppression subtractive hybridization. BMC PLANT BIOLOGY 2012; 12:13. [PMID: 22272988 PMCID: PMC3398268 DOI: 10.1186/1471-2229-12-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 01/24/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Pine wilt disease is caused by the pine wood nematode, Bursaphelenchus xylophilus, which threatens pine forests and forest ecosystems worldwide and causes serious economic losses. In the 40 years since the pathogen was identified, the physiological changes occurring as the disease progresses have been characterized using anatomical and biochemical methods, and resistant trees have been selected via breeding programs. However, no studies have assessed the molecular genetics, e.g. transcriptional changes, associated with infection-induced physiological changes in resistant or susceptible trees. RESULTS We constructed seven subtractive suppression hybridization (SSH) cDNA libraries using time-course sampling of trees inoculated with pine wood nematode at 1, 3, or 7 days post-inoculation (dpi) in susceptible trees and at 1, 3, 7, or 14 dpi in resistant trees. A total of 3,299 sequences was obtained from these cDNA libraries, including from 138 to 315 non-redundant sequences in susceptible SSH libraries and from 351 to 435 in resistant SSH libraries. Using Gene Ontology hierarchy, those non-redundant sequences were classified into 15 subcategories of the biological process Gene Ontology category and 17 subcategories of the molecular function category. The transcriptional components revealed by the Gene Ontology classification clearly differed between resistant and susceptible libraries. Some transcripts were discriminative: expression of antimicrobial peptide and putative pathogenesis-related genes (e.g., PR-1b, 2, 3, 4, 5, 6) was much higher in susceptible trees than in resistant trees at every time point, whereas expression of PR-9, PR-10, and cell wall-related genes (e.g., for hydroxyproline-rich glycoprotein precursor and extensin) was higher in resistant trees than in susceptible trees at 7 and 14 dpi. CONCLUSIONS Following inoculation with pine wood nematode, there were marked differences between resistant and susceptible trees in transcript diversity and the timing and level of transcripts expressed in common; in particular, expression of stress response and defense genes differed. This study provided new insight into the differences in the physiological changes between resistant and susceptible trees that have been observed in anatomical and biochemical studies.
Collapse
Affiliation(s)
- Tomonori Hirao
- Forest Bio-research Center, Forestry and Forest Products Research Institute, 3809-1 Ishi, Juo, Hitachi, Ibaraki 319-1301, Japan
| | - Eitaro Fukatsu
- Kyushu Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, 2320-5 Suya, Goshi, Kumamoto 860-0081, Japan
| | - Atsushi Watanabe
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, 3809-1 Ishi, Juo, Hitachi, Ibaraki 319-1301, Japan
| |
Collapse
|
60
|
|
61
|
Morkunas I, Mai VC, Gabryś B. Phytohormonal signaling in plant responses to aphid feeding. ACTA PHYSIOLOGIAE PLANTARUM 2011; 33:2057-2073. [PMID: 0 DOI: 10.1007/s11738-011-0751-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
62
|
Soler R, Badenes-Pérez FR, Broekgaarden C, Zheng SJ, David A, Boland W, Dicke M. Plant-mediated facilitation between a leaf-feeding and a phloem-feeding insect in a brassicaceous plant: from insect performance to gene transcription. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2011.01902.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
63
|
Wilson ACC, Sternberg LDSL, Hurley KB. Aphids alter host-plant nitrogen isotope fractionation. Proc Natl Acad Sci U S A 2011; 108:10220-4. [PMID: 21646532 PMCID: PMC3121841 DOI: 10.1073/pnas.1007065108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant sap-feeding insects and blood-feeding parasites are frequently depleted in (15)N relative to their diet. Unfortunately, most fluid-feeder/host nitrogen stable-isotope studies simply report stable-isotope signatures, but few attempt to elucidate the mechanism of isotopic trophic depletion. Here we address this deficit by investigating the nitrogen stable-isotope dynamics of a fluid-feeding herbivore-host plant system: the green peach aphid, Myzus persicae, feeding on multiple brassicaceous host plants. M. persicae was consistently more than 6‰ depleted in (15)N relative to their hosts, although aphid colonized plants were 1.5‰ to 2.0‰ enriched in (15)N relative to uncolonized control plants. Isotopic depletion of aphids relative to hosts was strongly related to host nitrogen content. We tested whether the concomitant aphid (15)N depletion and host (15)N enrichment was coupled by isotopic mass balance and determined that aphid (15)N depletion and host (15)N enrichment are uncoupled processes. We hypothesized that colonized plants would have higher nitrate reductase activity than uncolonized plants because previous studies had demonstrated that high nitrate reductase activity under substrate-limiting conditions can result in increased plant δ(15)N values. Consistent with our hypothesis, nitrate reductase activity in colonized plants was twice that of uncolonized plants. This study offers two important insights that are likely applicable to understanding nitrogen dynamics in fluid-feeder/host systems. First, isotopic separation of aphid and host depends on nitrogen availability. Second, aphid colonization alters host nitrogen metabolism and subsequently host nitrogen stable-isotope signature. Notably, this work establishes a metabolic framework for future hypothesis-driven studies focused on aphid manipulation of host nitrogen metabolism.
Collapse
Affiliation(s)
- Alex C C Wilson
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA.
| | | | | |
Collapse
|
64
|
He J, Chen F, Chen S, Lv G, Deng Y, Fang W, Liu Z, Guan Z, He C. Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:687-93. [PMID: 21145126 DOI: 10.1016/j.jplph.2010.10.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 10/13/2010] [Accepted: 10/13/2010] [Indexed: 05/06/2023]
Abstract
Artificial aphid infestation experiments on the three chrysanthemum cultivars 'Keiun', 'Han6' and 'Jinba' showed that the three cultivars vary markedly in their resistance. Of the three cultivars, the most resistant ('Keiun') produced the longest, highest and densest trichomes, the largest and fullest gland cells, and the most wax on the lower leaf epidermis. Superoxide dismutase (EC 1.15.1.1), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11), polyphenol oxidase activity (EC 1.14.18.1) and phenylalanine ammonia lyase (EC 4.3.1.5) were enhanced by aphid herbivory. In the two more resistant cultivars ('Keiun' and 'Han6'), the activity of superoxide dismutase and ascorbate peroxidase enzymes rapidly increased following infestation, and their levels remained high from seventy-two to one hundred and sixty-eight hours after inoculation. We suggest that these two antioxidant enzymes contribute to aphid resistance of these chrysanthemum cultivars. All three cultivars showed quick responses to aphid infestation by increasing polyphenol oxidase and phenylalanine ammonia lyase activities during the early period after inoculation. Activities of these two defense enzymes were higher in the two resistant cultivars after 72h after inoculation, suggesting involvement of these two enzymes in aphid resistance.
Collapse
Affiliation(s)
- Junping He
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Liu X, Meng J, Starkey S, Smith CM. Wheat gene expression is differentially affected by a virulent Russian wheat aphid biotype. J Chem Ecol 2011; 37:472-82. [PMID: 21499720 DOI: 10.1007/s10886-011-9949-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/08/2011] [Accepted: 03/16/2011] [Indexed: 12/16/2022]
Abstract
An improved understanding of the complex interactions between plants and aphids is emerging. Recognition of aphid feeding in plant tissues involves production of several defense response signaling pathways and downstream production of defense and detoxification compounds. Feeding by Russian wheat aphid, Diuraphis noxia (Kurdjumov), a serious pest of cereal crops worldwide, induces foliar deformity and chlorophyll loss during compatible wheat-D. noxia interactions. Experiments described here revealed significant differences in level and pattern of gene expression in defense response signaling and metabolic pathways between compatible and incompatible D. noxia-wheat interactions. The jasmonate (JA)-signaling genes LOX, AOS, and AOC were significantly more upregulated (~3- to 7 fold) in incompatible interactions than in compatible interactions (~2.5 to 3.5 fold) as early as 1 h post D. noxia infestation (hpi). Cellulose synthase, responsible for strengthening plant cell walls via cellulose production, was also more upregulated in incompatible interactions (4 to 7 fold) than in compatible interactions (1 to 3.5 fold). In contrast, glycolysis and citric acid cycle genes were significantly downregulated (~1.5 to 2 fold) in incompatible interactions and upregulated or less downregulated in compatible interactions from 6 to 72 hpi. Differences in expression of JA-signaling genes between feeding site tissues and non-feeding site tissues suggest that D. noxia defense response signals in wheat are restricted primarily to aphid feeding sites in the initial 6 hpi. This is the first report of differential upregulation of plant genes at 1 hpi in incompatible interactions involving aphid herbivory. Early wheat plant defense responses in incompatible D. noxia interactions at 1, 3, and 6 hpi appear to be important aspects of D. noxia resistance in wheat.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
66
|
Rodriguez-Medina C, Atkins CA, Mann AJ, Jordan ME, Smith PMC. Macromolecular composition of phloem exudate from white lupin (Lupinus albus L.). BMC PLANT BIOLOGY 2011; 11:36. [PMID: 21342527 PMCID: PMC3055823 DOI: 10.1186/1471-2229-11-36] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 02/22/2011] [Indexed: 05/17/2023]
Abstract
BACKGROUND Members of the legume genus Lupinus exude phloem 'spontaneously' from incisions made to the vasculature. This feature was exploited to document macromolecules present in exudate of white lupin (Lupinus albus [L.] cv Kiev mutant), in particular to identify proteins and RNA molecules, including microRNA (miRNA). RESULTS Proteomic analysis tentatively identified 86 proteins from 130 spots collected from 2D gels analysed by partial amino acid sequence determination using MS/MS. Analysis of a cDNA library constructed from exudate identified 609 unique transcripts. Both proteins and transcripts were classified into functional groups. The largest group of proteins comprised those involved in metabolism (24%), followed by protein modification/turnover (9%), redox regulation (8%), cell structural components (6%), stress and defence response (6%) with fewer in other groups. More prominent proteins were cyclophilin, ubiquitin, a glycine-rich RNA-binding protein, a group of proteins that comprise a glutathione/ascorbate-based mechanism to scavenge oxygen radicals, enzymes of glycolysis and other metabolism including methionine and ethylene synthesis. Potential signalling macromolecules such as transcripts encoding proteins mediating calcium level and the Flowering locus T (FT) protein were also identified. From around 330 small RNA clones (18-25 nt) 12 were identified as probable miRNAs by homology with those from other species. miRNA composition of exudate varied with site of collection (e.g. upward versus downward translocation streams) and nutrition (e.g. phosphorus level). CONCLUSIONS This is the first inventory of macromolecule composition of phloem exudate from a species in the Fabaceae, providing a basis to identify systemic signalling macromolecules with potential roles in regulating development, growth and stress response of legumes.
Collapse
Affiliation(s)
- Caren Rodriguez-Medina
- INRA Center Colmar. France
- School of Plant Biology, The University of Western Australia, Crawley. WA 6009. Australia
- School of Biological Science, The University of Sydney. NSW 2006. Australia
| | - Craig A Atkins
- School of Plant Biology, The University of Western Australia, Crawley. WA 6009. Australia
| | - Anthea J Mann
- School of Plant Biology, The University of Western Australia, Crawley. WA 6009. Australia
| | - Megan E Jordan
- School of Plant Biology, The University of Western Australia, Crawley. WA 6009. Australia
| | - Penelope MC Smith
- School of Biological Science, The University of Sydney. NSW 2006. Australia
| |
Collapse
|
67
|
Landouar-Arsivaud L, Juchaux-Cachau M, Jeauffre J, Biolley JP, Maurousset L, Lemoine R. The promoters of 3 celery salt-induced phloem-specific genes as new tools for monitoring salt stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:2-8. [PMID: 20980156 DOI: 10.1016/j.plaphy.2010.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 09/19/2010] [Accepted: 09/22/2010] [Indexed: 05/30/2023]
Abstract
Genes induced by a progressive 3 week salt stress (final NaCl concentration 300 mM) were identified in the phloem of celery (Apium graveolens L., cv Vert d'Elne). A subtractive library was constructed and screened for salt-induced, phloem-specific genes. Work was focused on phloem due to its central role in inter-organ exchanges. Three genes were studied in more details, 2 coding for metallothioneins (AgMT2 and AgMT3) and one for a new mannitol transporter (AgMaT3). Expression of a reporter gene in transgenic Arabidopsis under control of promoter of each gene was located in the phloem. pAgMT2 has a typical phloem pattern with slight induction by salt stress. pAgMT3 and pAgMaT3 expression was induced by salt stress, except in minor veins. pAgMaT3 was highly active in stressed roots. The promoters described here could be regarded as new tools for engineering salt-resistant plants.
Collapse
Affiliation(s)
- Lucie Landouar-Arsivaud
- UMR-CNRS-UP 6503, LACCO - Laboratoire de Catalyse en Chimie Organique, Equipe Physiologie Moléculaire du Transport de Sucres, Université de Poitiers, Bâtiment Botanique, 40 Avenue du Recteur Pineau, 86022 Poitiers cedex, France
| | | | | | | | | | | |
Collapse
|
68
|
Atkins CA, Smith PMC, Rodriguez-Medina C. Macromolecules in phloem exudates--a review. PROTOPLASMA 2011; 248:165-72. [PMID: 21057827 DOI: 10.1007/s00709-010-0236-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 10/26/2010] [Indexed: 05/02/2023]
Abstract
Proteomic and transcriptomic analyses using the growing resources of genomic information have been applied to identification of macromolecules in exudates collected from phloem. Most of the analyses rely on collection of exudate following incisions made to the vasculature, but some limited data are available for exudates collected from excised aphid stylets. Species examined, to date, include a number of cereals (rice, barley, and wheat), a number of cucurbits, castor bean, members of the genus Lupinus, brassicas, and Arabidopsis. As many as 1,100 proteins, some hundreds of transcripts, and a growing number of small ribonucleic acids (RNAs), including micro-RNAs, have been identified across the species with a high degree of commonality. Questions relating to the nature and extent of contamination of sieve element contents with those of surrounding companion cells and nonvascular cells are addressed together with likely functions of identified macromolecules. The review considers likely translocation and systemic signaling functions among the macromolecular inventory of phloem exudates.
Collapse
Affiliation(s)
- Craig A Atkins
- School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia.
| | | | | |
Collapse
|
69
|
Rodriguez-Saona CR, Musser RO, Vogel H, Hum-Musser SM, Thaler JS. Molecular, biochemical, and organismal analyses of tomato plants simultaneously attacked by herbivores from two feeding guilds. J Chem Ecol 2010; 36:1043-57. [PMID: 20820890 DOI: 10.1007/s10886-010-9854-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/15/2010] [Accepted: 08/19/2010] [Indexed: 01/12/2023]
Abstract
Previous work identified aphids and caterpillars as having distinct effects on plant responses to herbivory. We sought to decipher these interactions across different levels of biological organization, i.e., molecular, biochemical, and organismal, with tomato plants either damaged by one 3rd-instar beet armyworm caterpillar (Spodoptera exigua), damaged by 40 adult potato aphids (Macrosiphum euphorbiae), simultaneous damaged by both herbivores, or left undamaged (controls). After placing insects on plants, plants were transferred to a growth chamber for 5 d to induce a systemic response. Subsequently, individual leaflets from non-damaged parts of plants were excised and used for gene expression analysis (microarrays and quantitative real-time PCR), C/N analysis, total protein analysis, proteinase inhibitor (PI) analysis, and for performance assays. At the molecular level, caterpillars up-regulated 56 and down-regulated 29 genes systemically, while aphids up-regulated 93 and down-regulated 146 genes, compared to controls. Although aphids induced more genes than caterpillars, the magnitude of caterpillar-induced gene accumulation, particularly for those associated with plant defenses, was often greater. In dual-damaged plants, aphids suppressed 27% of the genes regulated by caterpillars, while caterpillars suppressed 66% of the genes regulated by aphids. At the biochemical level, caterpillars induced three-fold higher PI activity compared to controls, while aphids had no effects on PIs either alone or when paired with caterpillars. Aphid feeding alone reduced the foliar C/N ratio, but not when caterpillars also fed on the plants. Aphid and caterpillar feeding alone had no effect on the amount of protein in systemic leaves; however, both herbivores feeding on the plant reduced the amount of protein compared to aphid-damaged plants. At the organismal level, S. exigua neonate performance was negatively affected by prior caterpillar feeding, regardless of whether aphids were present or absent. This study highlights areas of concordance and disjunction between molecular, biochemical, and organismal measures of induced plant resistance when plants are attacked by multiple herbivores. In general, our data produced consistent results when considering each herbivore separately but not when considering them together.
Collapse
Affiliation(s)
- Cesar R Rodriguez-Saona
- Department of Entomology, Philip E. Marucci Center for Blueberry and Cranberry Research & Extension, Rutgers University, Chatsworth, NJ 08019, USA.
| | | | | | | | | |
Collapse
|
70
|
Goggin FL, Avila CA, Lorence A. Vitamin C content in plants is modified by insects and influences susceptibility to herbivory. Bioessays 2010; 32:777-90. [DOI: 10.1002/bies.200900187] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
71
|
Giordanengo P, Brunissen L, Rusterucci C, Vincent C, van Bel A, Dinant S, Girousse C, Faucher M, Bonnemain JL. Compatible plant-aphid interactions: How aphids manipulate plant responses. C R Biol 2010; 333:516-23. [PMID: 20541163 DOI: 10.1016/j.crvi.2010.03.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Philippe Giordanengo
- Plant Biology and Insect Pest Control (EA 3900), université de Picardie Jules-Verne, Amiens cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Dinant S, Bonnemain JL, Girousse C, Kehr J. Phloem sap intricacy and interplay with aphid feeding. C R Biol 2010; 333:504-15. [PMID: 20541162 DOI: 10.1016/j.crvi.2010.03.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aphididae feed upon the plant sieve elements (SE), where they ingest sugars, nitrogen compounds and other nutrients. For ingestion, aphid stylets penetrate SE, and because of the high hydrostatic pressure in SE, phloem sap exudes out into the stylets. Severing stylets to sample phloem exudates (i.e. stylectomy) has been used extensively for the study of phloem contents. Alternative sampling techniques are spontaneous exudation upon wounding that only works in a few plant species, and the popular EDTA-facilitated exudation technique. These approaches have allowed fundamental advances on the understanding of phloem sap composition and sieve tube physiology, which are surveyed in this review. A more complete picture of metabolites, ions, proteins and RNAs present in phloem sap is now available, which has provided large evidence for the phloem role as a signalling network in addition to its primary role in partitioning of photo-assimilates. Thus, phloem sap sampling methods can have remarkable applications to analyse plant nutrition, physiology and defence responses. Since aphid behaviour is suspected to be affected by phloem sap quality, attempts to manipulate phloem sap content were recently undertaken based on deregulation in mutant plants of genes controlling amino acid or sugar content of phloem sap. This opens up new strategies to control aphid settlement on a plant host.
Collapse
Affiliation(s)
- Sylvie Dinant
- UMR 1318 INRA-AgroParisTech, institut Jean-Pierre-Bourgin, bâtiment 2, route de Saint-Cyr, Versailles, France.
| | | | | | | |
Collapse
|
73
|
How aphids decide what is good for them: experiments to test aphid feeding behaviour on Tanacetum vulgare (L.) using different nitrogen regimes. Oecologia 2010; 163:973-84. [PMID: 20461410 DOI: 10.1007/s00442-010-1652-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 04/21/2010] [Indexed: 10/19/2022]
Abstract
Leaf-chewing herbivores select food with a protein/carbohydrate ratio of 0.8-1.5, whereas phloem sap, which aphids feed on, has a ratio of approximately 0.1. Enhanced N fertilization increases the amino acid concentration in phloem sap and elevates the N/C ratio. The study examines: (1) whether aphids select between plants of different N nutrition, (2) whether feeding time correlates with the amino acid composition of phloem sap, and (3) at which stage of probing aphids identify the quality of the plant. Uroleucon tanaceti (Mordvilko) and Macrosiphoniella tanacetaria (Kaltenbach), specialist aphids feeding on tansy (Tanacetum vulgare L.), were reared on this host plant grown essentially hydroponically (in Vermiculite) in the greenhouse on 1, 3, 6, or 12 mM NH(4)NO(3). One and 3 mM NH(4)NO(3) corresponds to the situation found in natural tansy stands. Aphid stylet penetration was monitored by electrical penetration graphs whilst phloem sap was sampled by stylectomy. Both aphid species settled 2-3 times more frequently on plants fertilized with 6 or 12 mM NH(4)NO(3). The phloem sap of these plants contained up to threefold higher amino acid concentrations, without a change in the proportion of essential amino acids. No time differences were observed before stylet penetration of plant tissue. After the first symplast contact, most aphids penetrated further, except M. tanacetaria on low-N plants, where 50% withdrew the stylet after the first probing. The duration of phloem feeding was 2-3 times longer in N-rich plants and the time spent in individual sieve tubes was up to tenfold longer. Aphids identified the nutritional quality of the host plant mainly by the amino acid concentration of phloem sap, not by leaf surface cues nor the proportion of essential amino acids. However, U. tanaceti infestation increased the percentage of methionine plus tryptophan in phloem tenfold, thus manipulating the plants nutritional quality, and causing premature leaf senescence.
Collapse
|
74
|
Abstract
Production of reactive oxygen species (ROS) is a hallmark of successful recognition of infection and activation of plant defenses. ROS play multifaceted signaling functions mediating the establishment of multiple responses and can act as local toxins. Controversy surrounds the origin of these ROS. Several enzymatic mechanisms, among them a plasma membrane NADPH oxidase and cell wall peroxidases, can be responsible for the ROS detected in the apoplast. However, high levels of ROS from metabolic origins and/or from downregulation of ROS-scavenging systems can also accumulate in different compartments of the plant cell. This compartmentalization could contribute to the specific functions attributed to ROS. Additionally, ROS interact with other signals and phytohormones, which could explain the variety of different scenarios where ROS signaling plays an important part. Interestingly, pathogens have developed ways to alter ROS accumulation or signaling to modify plant defenses. Although ROS have been mainly associated with pathogen attack, ROS are also detected in other biotic interactions including beneficial symbiotic interactions with bacteria or mycorrhiza, suggesting that ROS production is a common feature of different biotic interactions. Here, we present a comprehensive review describing the newer views in ROS signaling and function during biotic stress.
Collapse
Affiliation(s)
- Miguel Angel Torres
- Centro de Biotecnología y Genómica de Plantas (UPM, INIA), Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus Montegancedo, Autopista M40 Km 38, Pozuelo de Alarcón, 28223, Madrid, Spain.
| |
Collapse
|
75
|
Abstract
The majority of plant viruses rely on vectors for their transmission and completion of their life cycle. These vectors comprise a diverse range of life forms including insects, nematodes, and fungi with the most common of these being insects. The geographic range of many of these vectors is continually expanding due to climate change. The viruses that they carry are therefore also expanding their range to exploit novel and naïve plant hosts. There are many forms of naturally occurring vector resistance ranging from broad nonhost resistance to more specific types of inducible resistance. Understanding and exploiting the many and varied forms of natural resistance to virus vectors is therefore extremely important for current and future agricultural production systems. To demonstrate the range and extent of these resistance mechanisms, this chapter will primarily focus on aphids to highlight key developments appropriate to plant-insect-virus interactions.
Collapse
Affiliation(s)
- Jack H Westwood
- Department of Plant Sciences, University of Cambridge CB2 3EA, Cambridge, United Kingdom.
| | | |
Collapse
|
76
|
Smith CM, Liu X, Wang LJ, Liu X, Chen MS, Starkey S, Bai J. Aphid feeding activates expression of a transcriptome of oxylipin-based defense signals in wheat involved in resistance to herbivory. J Chem Ecol 2010; 36:260-76. [PMID: 20229216 PMCID: PMC3831272 DOI: 10.1007/s10886-010-9756-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 12/08/2009] [Accepted: 01/20/2010] [Indexed: 11/24/2022]
Abstract
Damage by the Russian wheat aphid (RWA), Diuraphis noxia, significantly reduces wheat and barley yields worldwide. In compatible interactions, virulent RWA populations flourish and susceptible plants suffer extensive leaf chlorophyll loss. In incompatible interactions, RWA reproduction and population growth are significantly reduced and RWA-related chlorophyll loss in resistant plants is minor. The objectives of this study were to develop an understanding of the molecular and phytochemical bases of RWA resistance in plants containing the Dnx resistance gene. Microarray, real-time polymerase chain reaction, and phytohormone assays were conducted to identify transcriptome components unique to RWA-infested Dnx plants and susceptible (Dn0) plants, and to identify and characterize putative genes involved in Dnx plant defense responses. We found that RWA-infested Dnx plants upregulated >180 genes related to reactive oxygen species, signaling, pathogen defense, and arthropod allelochemical and physical defense. The expression of several of these genes in RWA-infested Dnx plants increased significantly from 6- to 24-h post infestation (hpi), but their expression in Dn0 plants, when present, was delayed until 48- to 96 hpi. Concentrations of 16- and 18-carbon fatty acids, trans-methyl-12-oxophytodienoic acid, and abscisic acid were significantly greater in Dnx foliage than in Dn0 foliage after RWA infestation, suggesting that Dnx RWA defense and resistance genes may be regulated via the oxylipin pathway. These findings provide a foundation for the elucidation of the molecular basis for compatible- and incompatible plant-aphid interactions.
Collapse
|
77
|
Ma R, Chen JL, Cheng DF, Sun JR. Activation of defense mechanism in wheat by polyphenol oxidase from aphid saliva. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:2410-2418. [PMID: 20112908 DOI: 10.1021/jf9037248] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The saliva of two cereal aphids, Sitobion avenae and Schizaphis graminum in third-instar nymphs, was collected after 24 h of feeding by 30 aphids, separately, on artificial diet sachets, and the salivary enzymes were determined. The result showed that polyphenol oxidase (PPO) existed in the saliva of both aphid species, and the enzymatic activities were 6.2 x 10(-3) U/g for S. avenae and 2.37 x 10(-1) U/g for S. graminum, revealing a 38-fold higher activity in the saliva of S. graminum than in the saliva of S. avenae. It was speculated that the higher PPO activity in S. graminum saliva was a contributing factor to the light yellow spot left on the feeding site of the wheat leaf by S. graminum; no such spot was left by S. avenae. After treatment of a wheat seedling with the saliva of S. avenae and S. graminum and PPO at the concentration of aphid saliva, transcript profiling data showed that aphid saliva and PPO significantly induced expression of the genes aos and fps. Because genes aos and fps encode the key enzymes in the defense signal pathways jasmonic acid and terpene signal pathways, respectively, it was deduced that PPO from aphid saliva, as the main elicitor, triggers an appropriate defense response in wheat through jasmonic acid and terpene signal pathways.
Collapse
Affiliation(s)
- Rui Ma
- The State Key Laboratory for Biology of Plant Diseases of Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | | | | | | |
Collapse
|
78
|
Körner E, von Dahl CC, Bonaventure G, Baldwin IT. Pectin methylesterase NaPME1 contributes to the emission of methanol during insect herbivory and to the elicitation of defence responses in Nicotiana attenuata. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2631-40. [PMID: 19380422 PMCID: PMC2692009 DOI: 10.1093/jxb/erp106] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/04/2009] [Accepted: 03/13/2009] [Indexed: 05/21/2023]
Abstract
Pectin methylesterases (PMEs) catalyse the demethylation of pectin within plant cell walls, releasing methanol (MeOH) in the process. Thus far, PMEs have been found to be involved in diverse processes such as plant growth and development and defence responses against pathogens. Herbivore attack increases PME expression and activity and MeOH emissions in several plant species. To gain further insights into the role of PMEs in defence responses against herbivores, the expression of a Manduca sexta oral secretion (OS)-inducible PME in Nicotiana attenuata (NaPME1) was silenced by RNA interference (RNAi)-mediated gene silencing. Silenced lines (ir-pme) showed 50% reduced PME activity in leaves and 70% reduced MeOH emissions after OS elicitation compared with the wild type (WT), demonstrating that the herbivore-induced MeOH emissions originate from the demethylation of pectin by PME. In the initial phase of the OS-induced jasmonic acid (JA) burst (first 30 min), ir-pme lines produced WT levels of this hormone and of jasmonyl-isoleucine (JA-Ile); however, these levels were significantly reduced in the later phase (60-120 min) of the burst. Similarly, suppressed levels of the salicylic acid (SA) burst induced by OS elicitation were observed in ir-pme lines even though wounded ir-pme leaves contained slightly increased amounts of SA. This genotype also presented reduced levels of OS-induced trypsin proteinase inhibitor activity in leaves and consistently increased M. sexta larvae performance compared with WT plants. These latter responses could not be recovered by application of exogenous MeOH. Together, these results indicated that PME contributes, probably indirectly by affecting cell wall properties, to the induction of anti-herbivore responses.
Collapse
Affiliation(s)
| | | | | | - Ian T. Baldwin
- Max-Planck-Institute for Chemical Ecology, Department of Molecular Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| |
Collapse
|
79
|
Gutsche A, Heng-Moss T, Sarath G, Twigg P, Xia Y, Lu G, Mornhinweg D. Gene expression profiling of tolerant barley in response to Diuraphis noxia (Hemiptera: Aphididae) feeding. BULLETIN OF ENTOMOLOGICAL RESEARCH 2009; 99:163-73. [PMID: 18840314 DOI: 10.1017/s0007485308006184] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Aphids are, arguably, the single most damaging group of agricultural insect pests throughout the world. Plant tolerance, which is a plant response to an insect pest, is viewed as an excellent management strategy. Developing testable hypotheses based on genome-wide and more focused methods will help in understanding the molecular underpinnings of plant tolerance to aphid herbivory. As a first step in this process, we undertook transcript profiling with Affymetrix GeneChip Barley Genome arrays using RNA extracted from tissues of tolerant and susceptible genotypes collected at three hours, three days and six days after Diuraphis noxia introduction. Acquired data were compared to identify changes unique to the tolerant barley at each harvest date. Transcript abundance of 4086 genes was differentially changed over the three harvest dates in tolerant and susceptible barley in response to D. noxia feeding. Across the three harvest dates, the greatest number of genes was differentially expressed in both barleys at three days after aphid introduction. A total of 909 genes showed significant levels of change in the tolerant barley in response to D. noxia feeding as compared to susceptible plants infested with aphids. Many of these genes could be assigned to specific metabolic categories, including several associated with plant defense and scavenging of reactive oxygen species (ROS). Interestingly, two peroxidase genes, designated HvPRXA1 and HvPRXA2, were up-regulated to a greater degree in response to D. noxia feeding on tolerant barley plants, indicating that specific peroxidases could be important for the tolerance process. These findings suggest that the ability to elevate and sustain levels of ROS-scavenging enzymes could play an important role in the tolerant response.
Collapse
Affiliation(s)
- A Gutsche
- Department of Entomology, University of Nebraska, 202 Entomology Hall, Lincoln, NE 68583, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Broekgaarden C, Poelman EH, Steenhuis G, Voorrips RE, Dicke M, Vosman B. Responses of Brassica oleracea cultivars to infestation by the aphid Brevicoryne brassicae: an ecological and molecular approach. PLANT, CELL & ENVIRONMENT 2008; 31:1592-605. [PMID: 18721268 DOI: 10.1111/j.1365-3040.2008.01871.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Intraspecific variation in resistance or susceptibility to herbivorous insects has been widely studied through bioassays. However, few studies have combined this with a full transcriptomic analysis. Here, we take such an approach to study the interaction between the aphid Brevicoryne brassicae and four white cabbage (Brassica oleracea var. capitata) cultivars. Both under glasshouse and field conditions, two of the cultivars clearly supported a faster aphid population development than the other two, indicating that aphid population development was largely independent of the environmental conditions. Genome-wide transcriptomic analysis using 70-mer oligonucleotide microarrays based on the Arabidopsis thaliana genome showed that only a small number of genes were differentially regulated, and that this regulation was highly cultivar specific. The temporal pattern in the expression behaviour of two B. brassicae-responsive genes in all four cultivars together with targeted studies employing A. thaliana knockout mutants revealed a possible role for a trypsin-and-protease inhibitor in defence against B. brassicae. Conversely, a xyloglucan endotransglucosylase seemed to have no effect on aphid performance. Overall, this study shows clear intraspecific variation in B. brassicae susceptibility among B. oleracea cultivars under glasshouse and field conditions that can be partly explained by certain differences in induced transcriptional changes.
Collapse
Affiliation(s)
- Colette Broekgaarden
- Plant Research International, Wageningen University and Research Centre, Wageningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
81
|
Kuśnierczyk A, Winge P, Jørstad TS, Troczyńska J, Rossiter JT, Bones AM. Towards global understanding of plant defence against aphids--timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. PLANT, CELL & ENVIRONMENT 2008; 31:1097-115. [PMID: 18433442 DOI: 10.1111/j.1365-3040.2008.01823.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Insect feeding on plants causes a complex series of coordinated defence responses. Little is known, however, about the time-dependent aspect of induced changes. Here we present a time series-based investigation of Arabidopsis thaliana Ler subjected to attack by a specialist pest of Brassicaceae species, Brevicoryne brassicae. Transcriptome and metabolome changes were studied at 6, 12, 24 and 48 h after infestation to monitor the progress of early induced responses. The use of full-genome oligonucleotide microarrays revealed the initiation of extensive gene expression changes already during the first 6 h of infestation. Data indicated the involvement of reactive oxygen species (ROS) and calcium in early signalling, and salicylic acid (SA) and jasmonic acid (JA) in the regulation of defence responses. Transcripts related to senescence, biosynthesis of anti-insect proteins, indolyl glucosinolates (GS) and camalexin, as well as several uncharacterized to date WRKY transcription factors, were induced. Follow-up studies of defence-involved secondary metabolites revealed depositions of callose at the insects' feeding sites, a decrease in the total level of aliphatic GS, particularly 3-hydroxypropyl glucosinolate, and accumulation of 4-methoxyindol-3-ylmethyl glucosinolate 48 h after the attack. The novel role of camalexin, induced as a part of defence against aphids, was verified in fitness experiments. Fecundity of B. brassicae was reduced on camalexin-accumulating wild-type (WT) plants as compared with camalexin-deficient pad3-1 mutants. Based on experimental data, a model of plant-aphid interactions at the early phase of infestation was proposed.
Collapse
Affiliation(s)
- Anna Kuśnierczyk
- Department of Biology, The Norwegian University of Science and Technology, Realfagbygget, 7491 Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
82
|
[Phloem, transport between organs and long-distance signalling]. C R Biol 2008; 331:334-46. [PMID: 18472079 DOI: 10.1016/j.crvi.2008.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 03/03/2008] [Accepted: 03/05/2008] [Indexed: 01/17/2023]
Abstract
Phloem plays a major role in carbohydrate partitioning in the plant. It also controls the redistribution of various metabolites such as amino acids, vitamins, hormones, and ions. The molecular mechanisms responsible for phloem loading and unloading have been particularly well characterised, with the identification of sucrose and polyol transporters. The discovery of the role of phloem in the long-distance translocation of macromolecules, proteins, mRNA and small RNA has modified our understanding of the regulation of the coordination of some developmental and adaptation processes. This review details recent results concerning the transport and long-distance signalling that take place in the phloem.
Collapse
|
83
|
Harmel N, Létocart E, Cherqui A, Giordanengo P, Mazzucchelli G, Guillonneau F, De Pauw E, Haubruge E, Francis F. Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae. INSECT MOLECULAR BIOLOGY 2008; 17:165-74. [PMID: 18353105 DOI: 10.1111/j.1365-2583.2008.00790.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The role of insect saliva in the first contact between an insect and a plant is crucial during feeding. Some elicitors, particularly in insect regurgitants, have been identified as inducing plant defence reactions. Here, we focused on the salivary proteome of the green peach aphid, Myzus persicae. Proteins were either directly in-solution digested or were separated by 2D SDS-PAGE before trypsin digestion. Resulting peptides were then identified by mass spectrometry coupled with database investigations. A homemade database was constituted of expressed sequence tags from the pea aphid Acyrtosiphon pisum and M. persicae. The databases were used to identify proteins related to M. persicae with a nonsequenced genome. This procedure enabled us to discover glucose oxidase, glucose dehydrogenase, NADH dehydrogenase, alpha-glucosidase and alpha-amylase in M. persicae saliva. The presence of these enzymes is discussed in terms of plant-aphid interactions.
Collapse
Affiliation(s)
- N Harmel
- Gembloux Agricultural University, Functional and Evolutionary Entomology, Gembloux, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
de Vos M, Kim JH, Jander G. Biochemistry and molecular biology of Arabidopsis-aphid interactions. Bioessays 2007; 29:871-83. [PMID: 17691101 DOI: 10.1002/bies.20624] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To ensure their survival in natural habitats, plants must recognize and respond to a wide variety of insect herbivores. Aphids and other Hemiptera pose a particular challenge, because they cause relatively little direct tissue damage when inserting their slender stylets intercellularly to feed from the phloem sieve elements. Plant responses to this unusual feeding strategy almost certainly include recognition of aphid salivary components and the induction of phloem-specific defenses. Due to the excellent genetic and genomic resources that are available for Arabidopsis thaliana (Arabidopsis), this plant was chosen as a model system to study the metabolic and transcriptional responses to infestation by two aphids, Myzus persicae (green peach aphid, a broad generalist) and Brevicoryne brassicae (cabbage aphid, a crucifer-feeding specialist). Future research on Arabidopsis-aphid interactions will lead to the identification of aphid-specific elicitors, components of the defense-signaling pathway, and additional metabolic responses that are induced by aphid infestation.
Collapse
Affiliation(s)
- Martin de Vos
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
85
|
Couldridge C, Newbury HJ, Ford-Lloyd B, Bale J, Pritchard J. Exploring plant responses to aphid feeding using a full Arabidopsis microarray reveals a small number of genes with significantly altered expression. BULLETIN OF ENTOMOLOGICAL RESEARCH 2007; 97:523-32. [PMID: 17916270 DOI: 10.1017/s0007485307005160] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The aim of this study was to determine which Arabidopsis thaliana (L.) genes had significantly altered expression following 2-36 h of infestation by the aphid Myzus persicae (Sulzer). Six biological replicates were performed for both control and treatment at each time point, allowing rigorous statistical analysis of any changes. Only two genes showed altered expression after 2 h (one up- and one down-regulated) while two were down-regulated and twenty three were up-regulated at 36 h. The transcript annotation allowed classification of the significantly altered genes into a number of classes, including those involved in cell wall modification, carbon metabolism and signalling. Additionally, a number of genes were implicated in oxidative stress and defence against other pathogens. Five genes could not currently be assigned any function. The changes in gene expression are discussed in relation to current models of plant-insect interactions.
Collapse
Affiliation(s)
- C Couldridge
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
86
|
Goggin FL. Plant-aphid interactions: molecular and ecological perspectives. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:399-408. [PMID: 17652010 DOI: 10.1016/j.pbi.2007.06.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 06/01/2007] [Accepted: 06/08/2007] [Indexed: 05/16/2023]
Abstract
Many aphids are major agricultural pests because of their unparalleled reproductive capacity and their ability to manipulate host plant physiology. Aphid population growth and its impact on plant fitness are strongly influenced by interactions with other organisms, including plant pathogens, endophytes, aphid endosymbionts, predators, parasitoids, ants, and other herbivores. Numerous molecular and genomic resources have recently been developed to identify sources of aphid resistance in plants, as well as potentially novel targets for control in aphids. Moreover, the same model systems that are used to explore direct molecular interactions between plants and aphids can be utilized to study the ecological context in which they occur.
Collapse
Affiliation(s)
- Fiona L Goggin
- Department of Entomology, 320 Agriculture Building, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
87
|
Divol F, Vilaine F, Thibivilliers S, Kusiak C, Sauge MH, Dinant S. Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. PLANT, CELL & ENVIRONMENT 2007; 30:187-201. [PMID: 17238910 DOI: 10.1111/j.1365-3040.2006.01618.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
During infestation, phloem-feeding insects induce transcriptional reprogramming in plants that may lead to protection. Transcripts of the celery XTH1 gene, encoding a xyloglucan endotransglycosylase/hydrolase (XTH), were previously found to accumulate systemically in celery (Apium graveolens) phloem, following infestation with the generalist aphid Myzus persicae. XTH1 induction was specific to the phloem but was not correlated with an increase in xyloglucan endotransglycosylase (XET) activity in the phloem. XTH1 is homologous to the Arabidopsis thaliana XTH33 gene. XTH33 expression was investigated following M. persicae infestation. The pattern of XTH33 expression is tightly controlled during development and indicates a possible role in cell expansion. An xth33 mutant was assayed for preference assay with M. persicae. Aphids settled preferentially on the mutant rather than on the wild type. This suggests that XTH33 is involved in protecting plants against aphids; therefore, that cell wall modification can alter the preference of aphids for a particular plant. Nevertheless, the ectopic expression of XTH33 in phloem tissue was not sufficient to confer protection, demonstrating that modifying the expression of this single gene does not readily alter plant-aphid interactions.
Collapse
Affiliation(s)
- Fanchon Divol
- Laboratoire de Biologie Cellulaire UR501, Institut National de la Recherche Agronomique (INRA), Versailles F-78026, France
| | | | | | | | | | | |
Collapse
|
88
|
Amiard V, Demmig-Adams B, Mueh KE, Turgeon R, Combs AF, Adams WW. Role of light and jasmonic acid signaling in regulating foliar phloem cell wall ingrowth development. THE NEW PHYTOLOGIST 2007; 173:722-731. [PMID: 17286821 DOI: 10.1111/j.1469-8137.2006.01954.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phloem cells adjacent to sieve elements can possess wall invaginations. The role of light and jasmonic acid signaling in wall ingrowth development was examined in pea companion cells (CCs), Arabidopsis thaliana phloem parenchyma cells (PCs), and in Senecio vulgaris (with ingrowths in both cell types). Features characterized included wall ingrowths (from electron microscopic images), foliar vein density and photosynthetic capacity. In Arabidopsis, wall ingrowths were bulky compared with finger-like invaginations in pea and S. vulgaris. Relative to low light (LL), wall invagination in both CCs and PCs was greater in high light (HL). Treatment with methyl jasmonate in LL had no effect on CCs, but increased PC wall ingrowths. LL-to-HL transfer resulted in significantly less wall ingrowth in the fad7-1 fad8-1 (jasmonate-deficient) Arabidopsis mutant relative to the wild type. These results suggest that chloroplast oxidative status, via chloroplast-derived jasmonates, may modulate phloem structure and function. While CC wall ingrowths facilitate phloem loading by expanding the membrane area available for active uptake, one can speculate that phloem PC ingrowths may have two potential roles: to increase the efflux of sugars and/or protons into the apoplast to augment phloem loading; and/or to protect the phloem against pathogens and/or insects.
Collapse
Affiliation(s)
- Véronique Amiard
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
- Present address: Instituto de Investigaciones Agropecuarias, Unidad de Biotecnología, INIA Carillanca, Casilla 58-D, Temuco, Chile
| | - Barbara Demmig-Adams
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
| | - Kristine E Mueh
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
| | - Robert Turgeon
- Department of Plant Biology, 256 Plant Science Building, Cornell University, Ithaca, NY 14853, USA
| | - Andrew F Combs
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - William W Adams
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
| |
Collapse
|
89
|
Sauge MH, Mus F, Lacroze JP, Pascal T, Kervella J, Poëssel JL. Genotypic variation in induced resistance and induced susceptibility in the peach-Myzus persicae
aphid system. OIKOS 2006. [DOI: 10.1111/j.2006.0030-1299.14250.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
90
|
Ferry N, Edwards MG, Gatehouse J, Capell T, Christou P, Gatehouse AMR. Transgenic plants for insect pest control: a forward looking scientific perspective. Transgenic Res 2006; 15:13-9. [PMID: 16475006 DOI: 10.1007/s11248-005-4803-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 11/04/2005] [Indexed: 10/25/2022]
Abstract
One of the first successes of plant biotechnology has been the creation and commercialisation of transgenic crops exhibiting resistance to major insect pests. First generation products encompassed plants with single insecticidal Bt genes with resistance against major pests of corn and cotton. Modelling studies predicted that usefulness of these resistant plants would be short-lived, as a result of the ability of insects to develop resistance against single insecticidal gene products. However, despite such dire predictions no such collapse has taken place and the acreage of transgenic insect resistance crops has been increasing at a steady rate over the 9 years since the deployment of the first transgenic insect resistant plant. However, in order to assure durability and sustainability of resistance, novel strategies have been contemplated and are being developed. This perspective addresses a number of potentially useful strategies to assure the longevity of second and third generation insect resistant plants.
Collapse
Affiliation(s)
- N Ferry
- School of Biology, University of Newcastle-upon-Tyne, NE1 7RU, Newcastle-upon-Tyne, UK
| | | | | | | | | | | |
Collapse
|
91
|
Kehr J. Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:767-74. [PMID: 16495410 DOI: 10.1093/jxb/erj087] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The phloem is a well-known target of sucking and piercing insects that utilize the transported fluid as their major nutrient source. In addition to small molecules like sugars and amino acids, phloem sap of higher land plants contains proteins that can accumulate up to high concentrations. Although the knowledge about the identities of these phloem sap proteins is increasing, the functions of most of them are still poorly understood. Since many phloem sap proteins have predicted roles in wound and defence responses, they constitute a class of compounds that can potentially influence plant-insect interactions. However, there are as yet no studies published that have examined direct effects of phloem sap proteins on insect feeding or vice versa. This review summarizes the current knowledge about the identities of phloem sap proteins, focused on polypeptides with probable functions in wound and defence reactions, and their potential impact on plant-insect interactions is discussed.
Collapse
Affiliation(s)
- Julia Kehr
- Max Planck Institute of Molecular Plant Physiology, Department Willmitzer, Am Mühlenberg 1, D-14424 Potsdam, Germany.
| |
Collapse
|
92
|
Doering-Saad C, Newbury HJ, Couldridge CE, Bale JS, Pritchard J. A phloem-enriched cDNA library from Ricinus: insights into phloem function. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:3183-93. [PMID: 16936221 DOI: 10.1093/jxb/erl082] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The aim of this study was to identify genes that are expressed in the phloem. Increased knowledge of phloem regulation will contribute to our understanding of its many roles, from transport of solutes to information about interactions with pathogens. A cDNA library constructed from phloem-enriched sap exuding from cut Ricinus communis (L.) hypocotyls was sequenced. To assess contamination from other tissues, two libraries were constructed: one using the first 15 min of exudation and the other from sap collected after 120 min of exudation had elapsed. Of 1012 clones sequenced, 158 unique transcripts were identified. The presence of marker molecules such as profilin, the low occurrence of chloroplast-related mRNAs, and the sieve element localization of constituent mRNA using in situ hybridization were consistent with a phloem origin of the sap. Functional analysis of the cDNAs revealed classifications including ribosomal function, interaction with the environment, transport, DNA/RNA binding, and protein turnover. An analysis of the closest Arabidopsis thaliana (L.) homologue for each clone indicated that genes involved in cell localization, protein synthesis, tissue localization, organ localization, organ differentiation, and cell fate were represented at twice the level occurring in the whole Arabidopsis genome. The transcripts found in this phloem-enriched library are discussed in the context of phloem function and the relationship between the companion cell and sieve element.
Collapse
Affiliation(s)
- C Doering-Saad
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|