51
|
Kjaer MA, Todorcević M, Torstensen BE, Vegusdal A, Ruyter B. Dietary n-3 HUFA affects mitochondrial fatty acid beta-oxidation capacity and susceptibility to oxidative stress in Atlantic salmon. Lipids 2008; 43:813-27. [PMID: 18615261 DOI: 10.1007/s11745-008-3208-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 06/03/2008] [Indexed: 11/28/2022]
Abstract
Atlantic salmon (Salmo salar) (90 g) were fed four different diets for 21 weeks (final weight 344 g). The levels of n-3 highly unsaturated fatty acids (HUFA) ranged from 11% of the total fatty acids (FA) in the low n-3 diet to 21% in the intermediate n-3 diet, to 55 and 58% in the high n-3 diets. The high n-3 diets were enriched with either docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA). Increasing dietary levels of n-3 HUFA led to increasing percentages (from 31 to 52%) of these FA in liver lipids. The group fed the highest level of DHA had higher expressions of peroxisome proliferator-activated receptor (PPAR) beta and the FA beta-oxidation genes acyl-CoA oxidase (ACO) and carnitine palmitoyltransferase (CPT)-II, compared to the low n-3 groups. The high n-3 groups had reduced activity of mitochondrial cytochrome c oxidase and beta-oxidation capacity, together with increased activities of superoxide dismutase (SOD) and caspase-3 activities. In the group fed the highest level of n-3 HUFA, decreased percentages of major phospholipids (PL) in the mitochondrial and microsomal membranes of the liver were also apparent. The percentage of mitochondrial cardiolipin (Ptd(2)Gro) was 3.1 in the highest n-3 group compared to 6.6 in the intermediate group. These data clearly show an increased incidence of oxidative stress in the liver of fish fed the high n-3 diets.
Collapse
|
52
|
Karalazos V, Treasurer J, Cutts CJ, Alderson R, Galloway TF, Albrektsen S, Arnason J, MacDonald N, Pike I, Bell JG. Effects of fish meal replacement with full-fat soy meal on growth and tissue fatty acid composition in Atlantic cod (Gadus morhua). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:5788-95. [PMID: 17564455 DOI: 10.1021/jf0629383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Atlantic cod of initial mean weight approximately 220 g were fed a control diet and three diets in which fish meal (FM) was replaced with increasing levels of full-fat soybean meal (FFS) supplied at 12, 24, and 36% of dry diet, for 12 weeks. There were no significant differences in final weights, but the specific growth rate (SGR) was significantly higher in fish fed the control (FFS0) diet compared to fish fed the FFS12 and FFS36 diets, and the feed conversion ratio (FCR) was significantly lower in fish fed the FFS0 diet compared to the other three treatments. The fatty acid (FA) compositions of the cod muscle and liver were highly affected by dietary treatment, and linear relationships between dietary and tissue FA concentrations were shown for some of these. Moreover, selective utilization or accumulation in the tissues of specific FA was suggested by the results.
Collapse
Affiliation(s)
- Vasileios Karalazos
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Influence of dietary lipids on the fatty acid composition and stearoyl-CoA desaturase expression in hybrid tilapia (Oreochromis niloticusxO. aureus) under cold shock. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:438-44. [PMID: 17409004 DOI: 10.1016/j.cbpb.2007.02.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Revised: 02/15/2007] [Accepted: 02/25/2007] [Indexed: 11/21/2022]
Abstract
To improve hybrid tilapia (Oreochromis niloticusxO. aureus) survival under cold shock, the influence of diets containing various dietary lipids was investigated. Four different diets were used which consisted of 12% fish oil, 12% palmitoleic oil 12% coconut oil, and a mixture of fish oil (7%) and corn oil (5%). Our results showed that during cold shock, the proportion of saturated fatty acids in the fish steadily and significantly decreased for all of the diets, but the proportion of monounsaturated fatty acids increased. Proportions of polyenoic fatty acids initially increased then stabilized for the mixed, fish, and coconut oil diets, but did not significantly increase until day 4 for the palmitoleic oil diet. The stearoyl-CoA desaturase (SCD) activity was the lowest on day 0 and then gradually increased for all diets. At any point, the enzymatic activity of SCD was the highest for fish on the mixed and the coconut oil diet, followed by the palmitoleic oil diet, and was lowest for the fish oil diet. The expression of SCD mRNA steadily increased for all diets, but increased more substantially for the mixed diet. On day 6, the expression was the highest for fish on the mixed diet, followed by the coconut oil diet, with the lowest levels for those on the palmitoleic and fish oil diets. These results show that dietary lipids strongly affect the fatty acid composition and SCD expression in tilapia under cold shock, and cold tolerance of this species is also affected.
Collapse
|
54
|
Tocher DR, Dick JR, MacGlaughlin P, Bell JG. Effect of diets enriched in Δ6 desaturated fatty acids (18:3n−6 and 18:4n−3), on growth, fatty acid composition and highly unsaturated fatty acid synthesis in two populations of Arctic charr (Salvelinus alpinus L.). Comp Biochem Physiol B Biochem Mol Biol 2006; 144:245-53. [PMID: 16630735 DOI: 10.1016/j.cbpb.2006.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 03/06/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
This study aimed to test the hypothesis that diets containing relatively high amounts of the Delta6 desaturated fatty acids stearidonic acid (STA, 18:4n-3) and gamma-linolenic acid (GLA, 18:3n-6), may be beneficial in salmonid culture. The rationale being that STA and GLA would be better substrates for highly unsaturated fatty acid (HUFA) synthesis as their conversion does not require the activity of the reputed rate-limiting enzyme, fatty acid Delta6 desaturase. Duplicate groups of two Arctic charr (Salvelinus alpinus L.) populations with different feeding habits, that had been reported previously to show differences in HUFA biosynthetic capacity, were fed for 16 weeks on two fish meal based diets containing 47% protein and 21% lipid differing only in the added lipid component, which was either fish oil (FO) or echium oil (EO). Dietary EO had no detrimental effect on growth performance and feed efficiency, mortalities, or liver and flesh lipid contents in either population. The proportions of 18:2n-6, 18:3n-3, 18:3n-6, 18:4n-3, 20:3n-6 and 20:4n-3 in total lipid in both liver and flesh were increased by dietary EO in both populations. However, the percentages of 20:5n-3 and 22:6n-3 were reduced by EO in both liver and flesh in both strains, whereas 20:4n-6 was only significantly reduced in flesh. In fish fed FO, HUFA synthesis from both [1-(14)C]18:3n-3 and [1-(14)C]20:5n-3 was significantly higher in the planktonivorous Coulin charr compared to the demersal, piscivorous Rannoch charr morph. However, HUFA synthesis was increased by EO in Rannoch charr, but not in Coulin charr. In conclusion, dietary EO had differential effects in the two populations of charr, with HUFA synthesis only stimulated by EO in the piscivorous Rannoch morph, which showed lower activities in fish fed FO. However, the hypothesis was not proved as, irrespective of the activity of the HUFA synthesis pathway in either population, feeding EO resulted in decreased tissue levels of n-3HUFA and 20:4n-6. This has been observed previously in salmonids fed vegetable oils, and thus the increased levels of Delta6 desaturated fatty acids in EO did not effectively compensate for the lack of dietary HUFA.
Collapse
Affiliation(s)
- Douglas R Tocher
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
55
|
Turchini GM, Francis DS, De Silva SS. Fatty acid metabolism in the freshwater fish Murray cod (Maccullochella peelii peelii) deduced by the whole-body fatty acid balance method. Comp Biochem Physiol B Biochem Mol Biol 2006; 144:110-8. [PMID: 16513379 DOI: 10.1016/j.cbpb.2006.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 01/20/2006] [Accepted: 01/21/2006] [Indexed: 11/22/2022]
Abstract
The whole-body fatty acid balance method was used to investigate the fatty acid metabolism in Murray cod (Maccullochella peelii peelii) fed diets containing canola (CO) or linseed oil (LO). Murray cod were able to elongate and desaturate both 18:2n-6 and 18:3n-3. In fish fed the CO diet, 54.4% of the 18:2n-6 consumed was accumulated, 38.5% oxidized and 6.4% elongated and desaturated to higher homologs. Fish fed the LO diet accumulated 52.9%, oxidized 37% and elongated and desaturated 8.6% of the consumed 18:3n-3. The overall roles of n-6 fatty acids appeared more important in Murray cod compared to other freshwater species. Murray cod also showed a preferential order of utilization of C18 fatty acid for energy production (18:3n-3 > 18:2n-6 > 18:1n-9). Moreover, it is demonstrated that an increase in dietary 18:3n-3 is directly responsible of increased desaturase activity and augmented saturated fatty acid accumulation in the fish body. The present study also suggests that, in the context of the possible maximization of the natural ability of fish to produce long chain polyunsaturated fatty acids, the whole-body approach can be considered well suited and informative and Murray cod is a suited candidate to fish oil replacement for its diets.
Collapse
Affiliation(s)
- Giovanni M Turchini
- School of Life and Environmental Sciences, Deakin University, PO Box 423, Warrnambool, Victoria, Australia.
| | | | | |
Collapse
|
56
|
Torstensen BE, Bell JG, Rosenlund G, Henderson RJ, Graff IE, Tocher DR, Lie Ø, Sargent JR. Tailoring of Atlantic salmon (Salmo salar L.) flesh lipid composition and sensory quality by replacing fish oil with a vegetable oil blend. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:10166-78. [PMID: 16366711 DOI: 10.1021/jf051308i] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Atlantic salmon (Salmo salar L.) juveniles were fed either 100% fish oil (FO), 75% vegetable oil (VO), or 100% VO throughout their life cycle to harvest weight followed by a finishing diet period when all groups were fed 100% FO. The two experimental VO diets were tested at two different locations (Scotland and Norway) against the same control diet (100% FO). The VO blend was composed of rapeseed oil, palm oil, and linseed oil using capelin oil as a control for fatty acid class compositions. Flesh fatty acid profiles were measured regularly throughout the experiment, with the times of sampling determined by changes in pellet size/lipid content and fish life stage. Growth and mortality rates were not significantly affected by dietary fatty acid compositions throughout the life cycle, except during the seawater winter period in Norway when both growth and protein utilization were increased in salmon fed 100% VO compared to 100% FO. Flesh fatty acid composition was highly influenced by that of the diet, and after the finishing diet period the weekly intake recommendations of very long chain n-3 polyunsaturated fatty acid (VLCn-3 PUFA) for human health were 80 and 56% satisfied by a 200 g meal of 75% VO and 100% VO flesh, respectively. No effect on flesh astaxanthin levels was observed in relation to changing dietary oil sources. Sensory evaluation showed only minor differences between salmon flesh from the dietary groups, although prior to the finishing diet period, flesh from 100% VO had less rancid and marine characteristics and was preferred over flesh from the other dietary groups by a trained taste panel. After the finishing diet period, the levels of typical vegetable oil fatty acids in flesh were reduced, whereas those of VLCn-3 PUFA increased to levels comparable with a 100% FO fed salmon. No differences in any of the sensory characteristics were observed between dietary groups. By blending VOs to provide balanced levels of dietary fatty acids, up to 100% of the fish oil can be replaced by the VO blend without compromising growth or flesh quality. At the same time, 75% of the dietary fish oil can be replaced without compromising flesh VLCn-3 PUFA content, thereby providing a beneficial nutritional profile for human consumption.
Collapse
Affiliation(s)
- Bente E Torstensen
- National Institute of Nutrition and Seafood Research, N-5817 Bergen, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Zheng X, Tocher DR, Dickson CA, Bell JG, Teale AJ. Highly unsaturated fatty acid synthesis in vertebrates: new insights with the cloning and characterization of a delta6 desaturase of Atlantic salmon. Lipids 2005; 40:13-24. [PMID: 15825826 DOI: 10.1007/s11745-005-1355-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fish are an important source of the n-3 highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids that are crucial to the health of higher vertebrates. The synthesis of HUFA involves enzyme-mediated desaturation, and a delta5 fatty acyl desaturase cDNA has been cloned from Atlantic salmon (Salmo salar) and functionally characterized previously. Here we report cloning and functional characterization of a delta6 fatty acyl desaturase of Atlantic salmon and describe its genomic structure, tissue expression, and nutritional regulation. A salmon genomic library was screened with a salmon delta5 desaturase cDNA and positive recombinant phage isolated and subcloned. The full-length cDNA for the putative fatty acyl desaturase was shown to comprise 2106 bp containing an open reading frame of 1365 bp specifying a protein of 454 amino acids (GenBank accession no. AY458652). The protein sequence included three histidine boxes, two transmembrane regions, and an N-terminal cytochrome b5 domain containing the heme-binding motif HPGG, all of which are characteristic of microsomal fatty acid desaturases. Functional expression showed that this gene possessed predominantly delta6 desaturase activity. Screening and sequence analysis of the genomic DNA of a single fish revealed that the delta6 desaturase gene constituted 13 exons in 7965 bp of genomic DNA. Quantitative real-time PCR assay of gene expression in Atlantic salmon showed that both delta6 and delta5 fatty acyl desaturase genes, and a fatty acyl elongase gene, were highly expressed in intestine, liver, and brain, and less so in kidney, heart, gill, adipose tissue, muscle, and spleen. Furthermore, expression of both delta6 and delta5 fatty acyl desaturase genes in intestine, liver, red muscle, and adipose tissue was higher in salmon fed a diet containing vegetable oil than in fish fed a diet containing fish oil.
Collapse
Affiliation(s)
- Xiaozhong Zheng
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
58
|
Stubhaug I, Tocher DR, Bell JG, Dick JR, Torstensen BE. Fatty acid metabolism in Atlantic salmon (Salmo salar L.) hepatocytes and influence of dietary vegetable oil. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1734:277-88. [PMID: 15921956 DOI: 10.1016/j.bbalip.2005.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 04/20/2005] [Accepted: 04/20/2005] [Indexed: 11/25/2022]
Abstract
Isolated hepatocytes from Atlantic salmon (Salmo salar), fed diets containing either 100% fish oil or a vegetable oil blend replacing 75% of the fish oil, were incubated with a range of seven (14)C-labelled fatty acids. The fatty acids were [1-(14)C]16:0, [1-(14)C]18:1n-9, 91-(14)C]18:2n-6, [1-(14)C]18:3n-3, [1-(14)C]20:4n-6, [1-(14)C]20:5n-3, and [1-(14)C]22:6n-3. After 2 h of incubation, the hepatocytes and medium were analysed for acid soluble products, incorporation into lipid classes, and hepatocytes for desaturation and elongation. Uptake into hepatocytes was highest with [1-(14)C]18:2n-6 and [1-(14)C]20:5n-3 and lowest with [1-(14)C]16:0. The highest recovery of radioactivity in the cells was found in triacylglycerols. Of the phospholipids, the highest recovery was found in phosphatidylcholine, with [1-(14)C]16:0 and [1-(14)C]22:6n-3 being the most prominent fatty acids. The rates of beta-oxidation were as follows: 20:4n-6>18:2n-6=16:0>18:1n-9>22:6n-3=18:3n-3=20:5n-3. Of the fatty acids taken up by the hepatocytes, [1-(14)C]16:0 and [1-(14)C]18:1n-9 were subsequently exported the most, with the majority of radioactivity recovered in phospholipids and triacylglycerols, respectively. The major products from desaturation and elongation were generally one cycle of elongation of the fatty acids. Diet had a clear effect on the overall lipid metabolism, with replacing 75% of the fish oil with vegetable oil resulting in decreased uptake of all fatty acids and reduced incorporation of fatty acids into cellular lipids, but increased beta-oxidation activity and higher recovery in products of desaturation and elongation of [1-(14)C]18:2n-6 and [1-(14)C]18:3n-3.
Collapse
Affiliation(s)
- Ingunn Stubhaug
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen, Norway.
| | | | | | | | | |
Collapse
|
59
|
Moya-Falcón C, Thomassen MS, Jakobsen JV, Ruyter B. Effects of dietary supplementation of rapeseed oil on metabolism of [1-14C]18∶1n−9, [1-14C]20∶3n−6, and [1-14C]20∶4n−3 in atlantic salmon heaptocytes. Lipids 2005; 40:709-17. [PMID: 16196422 DOI: 10.1007/s11745-005-1434-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Atlantic salmon were fed fish meal-based diets supplemented with either 100% fish oil (FO) or 100% rapeseed oil (RO) from an initial weight of 85 g to a final average weight of 280 g. The effects of these diets on the capacity of Atlantic salmon hepatocytes to elongate, desaturate, and esterify [1-14C] 18:1n-9 and the immediate substrates for the delta5 desaturase, [1-14C] 20:3 n-6 and [1-14C] 20:4n-3, were investigated. Radiolabeled 18:1n-9 was mainly esterified into cellular TAG, whereas the more polyunsaturated FA, [1-14C] 20:3n-6 and [1-14C] 20:4n-3, were primarily esterified into cellular PL. More of the elongation product, [1-14C] 20:1n-9, was produced from 18:1n-9 and more of the desaturation and elongation products, 22:5n-6 and 22:6n-3, were produced from [1-14C]20:3n-6 and [1-14C] 20:4n-3, respectively, in RO hepatocytes than in FO hepatocytes. Further, we studied whether increased addition of [1-14C]18:1n-9 to the hepatocyte culture media would affect the capacity of hepatocytes to oxidize 18:1n-9 to acid-soluble products and CO2. An increase in exogenous concentration of 18:1 n-9 from 7 to 100 microM resulted in a nearly twofold increase in the amount of 18:1n-9 that was oxidized. The conversion of 20:4n-3 and 20:3n-6 to the longer-chain 22:6n-3 and 22:5n-6 was enhanced by RO feeding in Atlantic salmon hepatocytes. The increased capacity of RO hepatocytes to produce 22:6n-3 was, however, not enough to achieve the levels found in FO hepatocytes. Our data further showed that there were no differences in the hepatocyte FA oxidation capacity and the lipid deposition of carcass and liver between the two groups.
Collapse
Affiliation(s)
- C Moya-Falcón
- AKVAFORSK, Institute of Aquaculture Research, NO-1432 As, Norway.
| | | | | | | |
Collapse
|
60
|
Zheng X, Torstensen BE, Tocher DR, Dick JR, Henderson RJ, Bell JG. Environmental and dietary influences on highly unsaturated fatty acid biosynthesis and expression of fatty acyl desaturase and elongase genes in liver of Atlantic salmon (Salmo salar). Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1734:13-24. [PMID: 15866479 DOI: 10.1016/j.bbalip.2005.01.006] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 01/27/2005] [Accepted: 01/28/2005] [Indexed: 11/30/2022]
Abstract
Highly unsaturated fatty acid (HUFA) synthesis in Atlantic salmon (Salmo salar) was known to be influenced by both nutritional and environmental factors. Here we aimed to test the hypothesis that both these effectors involved similar molecular mechanisms. Thus, HUFA biosynthetic activity and the expression of fatty acyl desaturase and elongase genes were determined at various points during an entire 2 year production cycle in salmon fed diets containing either 100% fish oil or diets in which a high proportion (75% and 100%) of fish oil was replaced by C18 polyunsaturated fatty acid-rich vegetable oil. The results showed that HUFA biosynthesis in Atlantic salmon varied during the growth cycle with peak activity around seawater transfer and subsequent low activities in seawater. Consistent with this, the gene expression of Delta6 desaturase, the rate-limiting step in the HUFA biosynthetic pathway, was highest around the point of seawater transfer and lowest during the seawater phase. In addition, the expression of both Delta6 and Delta5 desaturase genes was generally higher in fish fed the vegetable oil-substituted diets compared to fish fed fish oil, particularly in the seawater phase. Again, generally consistent with this, the activity of the HUFA biosynthetic pathway was invariably higher in fish fed diets in which fish oil was substituted by vegetable oil compared to fish fed only fish oil. In conclusion, these studies showed that both nutritional and environmental modulation of HUFA biosynthesis in Atlantic salmon involved the regulation of fatty acid desaturase gene expression.
Collapse
Affiliation(s)
- Xiaozhong Zheng
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | | | | | | | | | | |
Collapse
|
61
|
Brown JE. A critical review of methods used to estimate linoleic acid ?6-desaturationex vivo andin vivo. EUR J LIPID SCI TECH 2005. [DOI: 10.1002/ejlt.200401098] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
62
|
Tocher DR, Fonseca-Madrigal J, Dick JR, Ng WK, Bell JG, Campbell PJ. Effects of water temperature and diets containing palm oil on fatty acid desaturation and oxidation in hepatocytes and intestinal enterocytes of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2004; 137:49-63. [PMID: 14698910 DOI: 10.1016/j.cbpc.2003.10.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Food grade fisheries have reached their sustainable limits while aquaculture production has increased to meet consumer demands. However, for growth in aquaculture to continue and utilise sustainable, feeding ingredients, alternatives to fish oil (FO), the predominant lipid component of fish diets, must be developed. Therefore, there is currently considerable interest in the regulation of fatty acid metabolism in fish in order to determine strategies for the best use of plant oils in diets for commercially important cultured fish species. Plant oils are characteristically rich in C18 polyunsaturated fatty acids (PUFA) but devoid of C20 and C22 highly unsaturated fatty acids (HUFA) found in FO. The fatty acyl desaturase enzyme activities involved in the biosynthesis of HUFA from PUFA are known to be under nutritional regulation and can be increased in fish fed diets rich in plant oils. However, fatty acid desaturase activity is also known to be modulated by water temperature in fish. The present study aimed to investigate the interaction between water temperature and diet in the regulation of fatty acid metabolism in rainbow trout. Trout, acclimatized to 7, 11 or 15 degrees C, were fed for 4 weeks on diets in which the FO was replaced in a graded manner by palm oil. At the end of the trial, fatty acyl desaturation/elongation and beta-oxidation activities were determined in isolated hepatocytes and intestinal enterocytes using [1-14C]18:3n-3 as substrate, and samples of liver were collected for analysis of lipid and fatty acid composition. The most obvious effect of temperature was that fatty acid desaturation/elongation and beta-oxidation were reduced in both hepatocytes and intestinal enterocytes from fish maintained at the highest water temperature (15 degrees C). There were differences between the two tissues with the highest desaturation/elongation and beta-oxidation activities tending to be in fish held at 11 degrees C in the case of hepatocytes, but 7 degrees C in enterocytes. Correlations between fatty acid metabolism and dietary palm oil were most clearly observed in desaturation/elongation activities in both hepatocytes and enterocytes at 11 degrees C. The highest beta-oxidation activities were generally observed in fish fed FO alone in both hepatocytes and enterocytes with palm oil having differential effects in the two cell types.
Collapse
Affiliation(s)
- Douglas R Tocher
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | | | | | | | | | | |
Collapse
|