51
|
Clementino LDC, Fernandes GFS, Prokopczyk IM, Laurindo WC, Toyama D, Motta BP, Baviera AM, Henrique-Silva F, dos Santos JL, Graminha MAS. Design, synthesis and biological evaluation of N-oxide derivatives with potent in vivo antileishmanial activity. PLoS One 2021; 16:e0259008. [PMID: 34723989 PMCID: PMC8559926 DOI: 10.1371/journal.pone.0259008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/09/2021] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a neglected disease that affects 12 million people living mainly in developing countries. Herein, 24 new N-oxide-containing compounds were synthesized followed by in vitro and in vivo evaluation of their antileishmanial activity. Compound 4f, a furoxan derivative, was particularly remarkable in this regard, with EC50 value of 3.6 μM against L. infantum amastigote forms and CC50 value superior to 500 μM against murine peritoneal macrophages. In vitro studies suggested that 4f may act by a dual effect, by releasing nitric oxide after biotransformation and by inhibiting cysteine protease CPB (IC50: 4.5 μM). In vivo studies using an acute model of infection showed that compound 4f at 7.7 mg/Kg reduced ~90% of parasite burden in the liver and spleen of L. infantum-infected BALB/c mice. Altogether, these outcomes highlight furoxan 4f as a promising compound for further evaluation as an antileishmanial agent.
Collapse
Affiliation(s)
- Leandro da Costa Clementino
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Guilherme Felipe Santos Fernandes
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | | | - Wilquer Castro Laurindo
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Danyelle Toyama
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Bruno Pereira Motta
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Amanda Martins Baviera
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Flávio Henrique-Silva
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Jean Leandro dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
- * E-mail: (JLS); (MASG)
| | - Marcia A. S. Graminha
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
- * E-mail: (JLS); (MASG)
| |
Collapse
|
52
|
Herrera-Acevedo C, Dos Santos Maia M, Cavalcanti ÉBVS, Coy-Barrera E, Scotti L, Scotti MT. Selection of antileishmanial sesquiterpene lactones from SistematX database using a combined ligand-/structure-based virtual screening approach. Mol Divers 2021; 25:2411-2427. [PMID: 32909084 DOI: 10.1007/s11030-020-10139-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/30/2020] [Indexed: 12/20/2022]
Abstract
Leishmaniasis refers to a complex of diseases, caused by the intracellular parasitic protozoans belonging to the genus Leishmania. Among the three types of disease manifestations, the most severe type is visceral leishmaniasis, which is caused by Leishmania donovani, and is diagnosed in more than 20,000 cases annually, worldwide. Because the current therapeutic options for disease treatment are associated with several limitations, the identification of new potential leads/drugs remains necessary. In this study, a combined approach was used, based on two different virtual screening (VS) methods, which were designed to select promising antileishmanial agents from among the entire sesquiterpene lactone (SL) dataset registered in SistematX, a web interface for managing a secondary metabolite database that is accessible by multiple platforms on the Internet. Thus, a ChEMBL dataset, including 3159 and 1569 structures that were previously tested against L. donovani amastigotes and promastigotes in vitro, respectively, was used to develop two random forest models, which performed with greater than 74% accuracy in both the cross-validation and test sets. Subsequently, a ligand-based VS assay was performed against the 1306 SistematX-registered SLs. In parallel, the crystal structures of three L. donovani target proteins, N-myristoyltransferase, ornithine decarboxylase, and mitogen-activated protein kinase 3, and a homology model of pteridine reductase 1 were used to perform a structure-based VS, using molecular docking, of the entire SistematX SL dataset. The consensus analysis of these two VS approaches resulted in the normalization of probability scores and identified 13 promising, enzyme-targeting, antileishmanial SLs from SistematX that may act against L. donovani. A combined approach based on two different virtual screening methods (structure-based and ligand-based) was performed using an in-house dataset composed of 1306 sesquiterpene lactones to identify potential antileishmanial (Leishmania donovani) structures.
Collapse
Affiliation(s)
- Chonny Herrera-Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| | - Mayara Dos Santos Maia
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil
| | | | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil.
| |
Collapse
|
53
|
New insights into the mechanism of action of the cyclopalladated complex - CP2 in Leishmania: Calcium Dysregulation, Mitochondrial Dysfunction and Cell Death. Antimicrob Agents Chemother 2021; 66:e0076721. [PMID: 34633848 DOI: 10.1128/aac.00767-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current treatment of leishmaniasis is based on few drugs that present several drawbacks such as high toxicity, difficult administration route, and low efficacy. These disadvantages raise the necessity to develop novel antileishmanial compounds allied to a comprehensive understanding of their mechanisms of action. Here, we elucidate the probably mechanism of action of the antileishmanial binuclear cyclopalladated complex [Pd(dmba)(μ-N3)]2 (CP2) in Leishmania amazonensis. CP2 causes oxidative stress in the parasite resulting in disruption of mitochondrial Ca2+ homeostasis, cell cycle arrest at S-phase, increasing the ROS production and overexpression of stress-related and cell detoxification proteins, collapsing the Leishmania mitochondrial membrane potential and promotes apoptotic-like features in promastigotes leading to necrosis or directs programmed cell death (PCD)-committed cells toward necrotic-like destruction. Moreover, CP2 is able to reduce the parasite load in both liver and spleen in Leishmania infantum-infected hamsters when treated for 15 days with 1.5 mg/Kg/day CP2, expanding its potential application in addition to the already known effectiveness on cutaneous leishmaniasis for the treatment of visceral leishmaniasis, showing the broad spectrum of action of this cyclopalladated complex. The data herein presented bring new insights into the CP2 molecular mechanisms of action, assisting to promote its rational modification to improve both safety and efficacy.
Collapse
|
54
|
Arya R, Dhembla C, Makde RD, Sundd M, Kundu S. An overview of the fatty acid biosynthesis in the protozoan parasite Leishmania and its relevance as a drug target against leishmaniasis. Mol Biochem Parasitol 2021; 246:111416. [PMID: 34555376 DOI: 10.1016/j.molbiopara.2021.111416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Leishmaniasis is one of the fast-growing parasitic diseases worldwide. The treatment of this fatal disease presents a daunting challenge because of its adverse effects, necessity for long-term treatment regime, unavailability of functional drugs, emergence of drug resistance and the related expenditure. This calls for an urgent need for novel drugs and the evaluation of new targets. Proteins of the fatty acid biosynthetic pathway are validated as drug targets in pathogenic bacteria and certain viruses. Likewise, this pathway has been speculated as a suitable target against parasite infections. Fatty acid synthesis in parasites seems to be very complex and distinct from the counterpart mammalian host due to the presence of unique mechanisms for fatty acid biosynthesis and acquisition. In recent times, there have been few evidences of the existence of this pathway in the bloodstream form of some pathogens. The fatty acid biosynthesis thus presents a viable and attractive target for emerging therapeutics. Understanding the mechanisms underlying fatty acid metabolism is key to identifying a potential drug target. However, investigations in this direction are still limited and this article attempts to outline the existing knowledge, while highlighting the scope and relevance of the fatty acid biosynthetic pathway as a drug target. This review highlights the advances in the treatment of leishmaniasis, the importance of lipids in the pathogen, known facts about the fatty acid biosynthesis in Leishmania and how this pathway can be manipulated to combat leishmaniasis, suggesting novel drug targets.
Collapse
Affiliation(s)
- Richa Arya
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| | - Chetna Dhembla
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| | - Ravindra D Makde
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
55
|
Qureshi KA, Al Nasr I, Koko WS, Khan TA, Fatmi MQ, Imtiaz M, Khan RA, Mohammed HA, Jaremko M, Emwas AH, Azam F, Bholay AD, Elhassan GO, Prajapati DK. In Vitro and In Silico Approaches for the Antileishmanial Activity Evaluations of Actinomycins Isolated from Novel Streptomyces smyrnaeus Strain UKAQ_23. Antibiotics (Basel) 2021; 10:antibiotics10080887. [PMID: 34438937 PMCID: PMC8388687 DOI: 10.3390/antibiotics10080887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Leishmaniasis, a Neglected Tropical Parasitic Disease (NTPD), is induced by several Leishmania species and is disseminated through sandfly (Lutzomyia longipalpis) bites. The parasite has developed resistance to currently prescribed antileishmanial drugs, and it has become pertinent to the search for new antileishmanial agents. The current study aimed to investigate the in vitro and in silico antileishmanial activity of two newly sourced actinomycins, X2 and D, produced by the novel Streptomyces smyrnaeus strain UKAQ_23. The antileishmanial activity conducted on promastigotes and amastigotes of Leishmania major showed actinomycin X2 having half-maximal effective concentrations (EC50), at 2.10 ± 0.10 μg/mL and 0.10 ± 0.0 μg/mL, and selectivity index (SI) values of 0.048 and 1, respectively, while the actinomycin D exhibited EC50 at 1.90 ± 0.10 μg/mL and 0.10 ± 0.0 μg/mL, and SI values of 0.052 and 1. The molecular docking studies demonstrated squalene synthase as the most favorable antileishmanial target protein for both the actinomycins X2 and D, while the xanthine phosphoribosyltransferase was the least favorable target protein. The molecular dynamics simulations confirmed that both the actinomycins remained stable in the binding pocket during the simulations. Furthermore, the MMPBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) binding energy calculations established that the actinomycin X2 is a better binder than the actinomycin D. In conclusion, both actinomycins X2 and D from Streptomyces smyrnaeus strain UKAQ_23 are promising antileishmanial drug candidates and have strong potential to be used for treating the currently drug-resistant leishmaniasis.
Collapse
Affiliation(s)
- Kamal A. Qureshi
- Faculty of Biosciences and Biotechnology, Invertis University, Bareilly 243123, UP, India;
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Qassim, Saudi Arabia;
| | - Ibrahim Al Nasr
- Department of Biology, College of Science and Arts, Qassim University, Unaizah 51911, Qassim, Saudi Arabia;
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Qassim, Saudi Arabia;
| | - Waleed S. Koko
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Qassim, Saudi Arabia;
| | - Tariq A. Khan
- Department of Clinical Nutrition, College of Applied Health Sciences, Qassim University, Ar Rass 51921, Qassim, Saudi Arabia;
| | - M. Qaiser Fatmi
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45600, Pakistan; (M.Q.F.); (M.I.)
| | - Mahrukh Imtiaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45600, Pakistan; (M.Q.F.); (M.I.)
| | - Riaz A. Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Qassim, Saudi Arabia; (R.A.K.); (H.A.M.)
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Qassim, Saudi Arabia; (R.A.K.); (H.A.M.)
| | - Mariusz Jaremko
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Makkah, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Makkah, Saudi Arabia;
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Qassim, Saudi Arabia
- Correspondence: or (F.A.); (D.K.P.); Tel.: +966-502728652 (F.A.); +91-9454369931 (D.K.P.)
| | - Avinash D. Bholay
- Department of Microbiology, KTHM College, Savitribai Phule Pune University, Nashik 422002, MS, India;
| | - Gamal O. Elhassan
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Qassim, Saudi Arabia;
| | - Dinesh K. Prajapati
- Faculty of Biosciences and Biotechnology, Invertis University, Bareilly 243123, UP, India;
- Correspondence: or (F.A.); (D.K.P.); Tel.: +966-502728652 (F.A.); +91-9454369931 (D.K.P.)
| |
Collapse
|
56
|
Faheem, Kumar BK, Sekhar KVGC, Kunjiappan S, Jamalis J, Balaña-Fouce R, Sankaranarayanan M. Recent Update on the Anti-infective Potential of β-carboline Analogs. Mini Rev Med Chem 2021; 21:398-425. [PMID: 33001013 DOI: 10.2174/1389557520666201001130114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
β-Carboline, a naturally occurring indole alkaloid, holds a momentous spot in the field of medicinal chemistry due to its myriad of pharmacological actions like anticancer, antiviral, antibacterial, antifungal, antileishmanial, antimalarial, neuropharmacological, anti-inflammatory and antithrombotic among others. β-Carbolines exhibit their pharmacological activity via diverse mechanisms. This review provides a recent update (2015-2020) on the anti-infective potential of natural and synthetic β-carboline analogs focusing on its antibacterial, antifungal, antiviral, antimalarial, antileishmanial and antitrypanosomal properties. In cases where enough details are available, a note on its mechanism of action is also added.
Collapse
Affiliation(s)
- Faheem
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India
| | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R.R. Dist. Hyderabad, 500078, Telangana, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia
| | | | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India
| |
Collapse
|
57
|
Wadanambi PM, Mannapperuma U. Computational study to discover potent phytochemical inhibitors against drug target, squalene synthase from Leishmania donovani. Heliyon 2021; 7:e07178. [PMID: 34141935 PMCID: PMC8188062 DOI: 10.1016/j.heliyon.2021.e07178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/15/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
AIMS The parasite, Leishmania donovani is responsible for lethal visceral leishmaniasis (VL) in humans. There is a need to investigate novel medicines as antileishmanial drugs, as medication currently introduced for leishmaniasis may cause resistance, serious side-effects, chemical instability and high cost. Therefore, this computational study was designed to explore potential phytochemical inhibitors against Leishmania donovani squalene synthase (LdSQS) enzyme, a drug target. MAIN METHODS Multiple sequence alignment was carried to detect conserved regions across squalene synthases from different Leishmania spp. Their evolutionary relationships were studied by generating phylogenetic tree. Homology modeling method was used to build a three dimensional model of the protein. The validated model was explored by docking simulation with the phytochemicals of interest to identify the most potent inhibitors. Two reported inhibitors were used as references in the virtual screening. The top hit compounds (binding energy less than -9 kcal/mol) were further subjected to intermolecular interaction analysis, pharmacophore modeling, pharmacokinetic and toxicity prediction. KEY FINDINGS Seven phytochemicals displayed binding energies less than -9 kcal/mol hence demonstrating ability to be strongly bound to the active site of LdSQS to inhibit the enzymatic activity. Ancistrotanzanine B demonstrated the lowest binding affinity of -9.83 kcal/mol superior to reported inhibitors in literature. Conserved two aspartate rich regions and two signatory motifs were found in the L. donovani squalene synthase by multiple sequence alignment. In addition, study of pharmacophore modeling confirmed that top hit phytochemicals and the reported inhibitor (E5700) share common chemical features for their biochemical interaction with LdSQS. Among seven phytochemicals, 3-O-methyldiplacol showed admissible physicochemical, pharmacokinetic and toxicity predictions compared to the reported inhibitors. All seven phytochemicals satisfied in silico prediction criteria for oral bioavailability. SIGNIFICANCE Based on the current study, these hits can be further structurally optimized and validated under laboratory conditions to develop antileishmanial drugs.
Collapse
Affiliation(s)
| | - Uthpali Mannapperuma
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Sri Lanka
| |
Collapse
|
58
|
Rahman F, Tabrez S, Ali R, Akand SK, Zahid M, Alaidarous MA, Alsaweed M, Alshehri BM, Banawas S, Bin Dukhyil AA, Rub A. Virtual screening of natural compounds for potential inhibitors of Sterol C-24 methyltransferase of Leishmania donovani to overcome leishmaniasis. J Cell Biochem 2021; 122:1216-1228. [PMID: 33955051 DOI: 10.1002/jcb.29944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Leishmaniasis is a neglected tropical disease caused by trypanosomatid parasite belonging to the genera Leishmania. Leishmaniasis is transmitted from one human to other through the bite of sandflies. It is endemic in around 98 countries including tropical and subtropical regions of Asia, Africa, Southern America, and the Mediterranean region. Sterol C-24 methyltransferase (LdSMT) of Leishmania donovani (L. donovani) mediates the transfer of CH3-group from S-adenosyl methionine to C-24 position of sterol side chain which makes the ergosterol different from cholesterol. Absence of ortholog in human made it potential druggable target. Here, we performed virtual screening of library of natural compounds against LdSMT to identify the potential inhibitor for it and to fight leishmaniasis. Gigantol, flavan-3-ol, and parthenolide showed the best binding affinity towards LdSMT. Further, based on absorption, distribution, metabolism, and excretion properties and biological activity prediction, gigantol showed the best lead-likeness and drug-likeness properties. Therefore, we further elucidated its antileishmanial properties. We found that gigantol inhibited the growth and proliferation of promastigotes as well as intra-macrophagic amastigotes. Gigantol exerted its antileishmanial action through the induction of reactive oxygen species in dose-dependent manner. Our study, suggested the possible use of gigantol as antileishmanial drug after further validations to overcome leishmaniasis.
Collapse
Affiliation(s)
- Fazlur Rahman
- Department of Biotechnology, Infection and Immunity Lab (414), Jamia Millia Islamia (A Central University), New Delhi, India
| | - Shams Tabrez
- Department of Biotechnology, Infection and Immunity Lab (414), Jamia Millia Islamia (A Central University), New Delhi, India
| | - Rahat Ali
- Department of Biotechnology, Infection and Immunity Lab (414), Jamia Millia Islamia (A Central University), New Delhi, India
| | - Sajjadul Kadir Akand
- Department of Biotechnology, Infection and Immunity Lab (414), Jamia Millia Islamia (A Central University), New Delhi, India
| | - Mariya Zahid
- Department of Biotechnology, Infection and Immunity Lab (414), Jamia Millia Islamia (A Central University), New Delhi, India
| | - Mohammed A Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Department of Vice Rector for Graduate Studies and Scientific Research, Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Bader Mohammed Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Department of Vice Rector for Graduate Studies and Scientific Research, Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Abdur Rub
- Department of Biotechnology, Infection and Immunity Lab (414), Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
59
|
Sezavar M, Sharifi I, Ghasemi Nejad Almani P, Kazemi B, Davoudi N, Salari S, Salarkia E, Khosravi A, Bamorovat M. The potential therapeutic role of PTR1 gene in non-healing anthroponotic cutaneous leishmaniasis due to Leishmania tropica. J Clin Lab Anal 2021; 35:e23670. [PMID: 33283321 PMCID: PMC7957997 DOI: 10.1002/jcla.23670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Drug resistance is a common phenomenon frequently observed in countries where leishmaniasis is endemic. Due to the production of the pteridine reductase enzyme (PTR1), drugs lose their efficacy, and consequently, the patient becomes unresponsive to treatment. This study aimed to compare the in vitro effect of meglumine antimoniate (MA) on non- healing Leishmania tropica isolates and on MA transfected non-healing one to PTR1. METHODS Two non-healing and one healing isolates of L. tropica were collected from patients who received two courses or one cycle of intralesional MA along with biweekly liquid nitrogen cryotherapy or systemic treatment alone, respectively. After confirmation of L. tropica isolates by polymerase chain reaction (PCR), the recombinant plasmid pcDNA-rPTR (antisense) was transfected via electroporation and cultured on M199. Isolates in form of promastigotes were treated with different concentrations of MA and read using an enzyme-linked immunosorbent assay (ELISA) reader and the half inhibitory concentration (IC50 ) value was calculated. The amastigotes were grown in mouse macrophages and were similarly treated with various concentrations of MA. The culture glass slides were stained, and the mean number of intramacrophage amastigotes and infected macrophages were assessed in triplicate for both stages. RESULTS All three transfected isolates displayed a reduction in optical density compared with the promastigotes in respective isolates, although there was no significant difference between non-healing and healing isolates. In contrast, in the clinical form (amastigotes), there was a significant difference between non-healing and healing isolates (p < 0.05). CONCLUSION The results indicated that the PTR1 gene reduced the efficacy of the drug, and its inhibition by antisense and could improve the treatment of non-healing cases. These findings have future implications in the prophylactic and therapeutic modality of non- healing Leishmania isolates to drug.
Collapse
Affiliation(s)
- Monireh Sezavar
- Department of Experimental SciencesFaculty of Allied medicineAlborz University of Medical SciencesKarajIran
| | - Iraj Sharifi
- Leishmaniasis Research CentreKerman University of Medical SciencesKermanIran
| | | | - Bahram Kazemi
- Cellular and Molecular Biology, Research CentreShahid Beheshti University of Medical SciencesTehranIran
- Biotechnology Department, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesIran
| | - Noushin Davoudi
- Department of BiotechnologyPasteur Institute of IranTehranIran
| | - Samira Salari
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesKermanIran
| | - Ehsan Salarkia
- Leishmaniasis Research CentreKerman University of Medical SciencesKermanIran
| | - Ahmad Khosravi
- Leishmaniasis Research CentreKerman University of Medical SciencesKermanIran
| | - Mehdi Bamorovat
- Leishmaniasis Research CentreKerman University of Medical SciencesKermanIran
| |
Collapse
|
60
|
Côrtes LMDC, de Pita-Pereira D, Farani PSG, Pereira BAS, Dias-Lopes G, da Silva FS, Corrêa PR, Silva RMM, Côrte-Real S, Bello FJ, Mendonça-Lima L, Moreira ODC, Waghabi MC, Alves CR. Insights into the proteomic profile and gene expression of Lutzomyia longipalpis-derived Lulo cell line. Mem Inst Oswaldo Cruz 2020; 115:e200113. [PMID: 33111757 PMCID: PMC7586444 DOI: 10.1590/0074-02760200113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Lutzomyia longipalpis-derived cell line (Lulo) has been suggested as a model for studies of interaction between sandflies and Leishmania. OBJECTIVES Here, we present data of proteomic and gene expression analyses of Lulo cell related to interactions with Leishmania (Viannia) braziliensis. METHODS Lulo cell protein extracts were analysed through a combination of two-dimensional gel electrophoresis and mass spectrometry and resulting spots were further investigated in silico to identify proteins using Mascot search and, afterwards, resulting sequences were applied for analysis with VectorBase. RESULTS Sixty-four spots were identified showing similarities to other proteins registered in the databases and could be classified according to their biological function, such as ion-binding proteins (23%), proteases (14%), cytoskeletal proteins (11%) and interactive membrane proteins (9.5%). Effects of interaction with L. (V.) braziliensis with the expression of three genes (enolase, tubulin and vacuolar transport protein) were observed after an eight-hour timeframe and compared to culture without parasites, and demonstrated the impact of parasite interaction with the expression of the following genes: LLOJ000219 (1.69-fold), LLOJ000326 (1.43-fold) and LLOJ006663 (2.41-fold). CONCLUSIONS This set of results adds relevant information regarding the usefulness of the Lulo cell line for studies with Leishmania parasites that indicate variations of protein expression.
Collapse
Affiliation(s)
- Luzia Monteiro de Castro Côrtes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Daniela de Pita-Pereira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Priscila Silva Grijó Farani
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Bernardo Acácio Santini Pereira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Geovane Dias-Lopes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Franklin Souza da Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Paloma Resende Corrêa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Roger Magno Macedo Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Plataforma de Microscopia Eletrônica Rudolf Barth, Rio de Janeiro, RJ, Brasil
| | - Suzana Côrte-Real
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Estrutural, Rio de Janeiro, RJ, Brasil
| | - Felio Jesus Bello
- Facultad de Ciencias Agropecuarias, Programa de Medicina Veterinaria, Universidad de La Salle, Bogotá, Colombia
| | - Leila Mendonça-Lima
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Otacilio da Cruz Moreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Mariana Caldas Waghabi
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Carlos Roberto Alves
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
61
|
Silva SF, Klippel AH, Ramos PZ, Santiago ADS, Valentini SR, Bengtson MH, Massirer KB, Bilsland E, Couñago RM, Zanelli CF. Structural features and development of an assay platform of the parasite target deoxyhypusine synthase of Brugia malayi and Leishmania major. PLoS Negl Trop Dis 2020; 14:e0008762. [PMID: 33044977 PMCID: PMC7581365 DOI: 10.1371/journal.pntd.0008762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/22/2020] [Accepted: 08/31/2020] [Indexed: 01/03/2023] Open
Abstract
Deoxyhypusine synthase (DHS) catalyzes the first step of the post-translational modification of eukaryotic translation factor 5A (eIF5A), which is the only known protein containing the amino acid hypusine. Both proteins are essential for eukaryotic cell viability, and DHS has been suggested as a good candidate target for small molecule-based therapies against eukaryotic pathogens. In this work, we focused on the DHS enzymes from Brugia malayi and Leishmania major, the causative agents of lymphatic filariasis and cutaneous leishmaniasis, respectively. To enable B. malayi (Bm)DHS for future target-based drug discovery programs, we determined its crystal structure bound to cofactor NAD+. We also reported an in vitro biochemical assay for this enzyme that is amenable to a high-throughput screening format. The L. major genome encodes two DHS paralogs, and attempts to produce them recombinantly in bacterial cells were not successful. Nevertheless, we showed that ectopic expression of both LmDHS paralogs can rescue yeast cells lacking the endogenous DHS-encoding gene (dys1). Thus, functionally complemented dys1Δ yeast mutants can be used to screen for new inhibitors of the L. major enzyme. We used the known human DHS inhibitor GC7 to validate both in vitro and yeast-based DHS assays. Our results show that BmDHS is a homotetrameric enzyme that shares many features with its human homologue, whereas LmDHS paralogs are likely to form a heterotetrameric complex and have a distinct regulatory mechanism. We expect our work to facilitate the identification and development of new DHS inhibitors that can be used to validate these enzymes as vulnerable targets for therapeutic interventions against B. malayi and L. major infections. Target-based drug discovery strategies hold the promise to discover safer and more effective treatments for Neglected Tropical Diseases (NTDs). Genetic manipulation techniques have been used to successfully identify essential genes in eukaryotic parasites. Unfortunately, the fact that a gene is essential under controlled laboratory conditions does not automatically make the corresponding gene-product vulnerable to pharmacological intervention in a clinical setting within the human host. To allow the discovery and development of small molecule tool compounds that can be used to validate pharmacologically vulnerable targets, one must first establish compound screening assays and obtain structural information for the candidate target. Eukaryotic cells lacking deoxyhypusine synthase (DHS) function are not viable. DHS catalyzes the first step in a post-translational modification that is critical for the function of eIF5A. Presence of mature eIF5A is also essential for eukaryotic cell viability. Here we reported compound screening assays (yeast-based for Brugia malayi and Leishmania major; in vitro for B. malayi only) and provided further regulatory and structural insights we hope will aid in the identification and development of inhibitors for the DHS enzymes from two NTD-causing organisms—B. malayi, the causative agent of lymphatic filariasis and L. major, the causative agent of cutaneous leishmaniasis.
Collapse
Affiliation(s)
| | | | - Priscila Zonzini Ramos
- Molecular Biology and Genetic Engineering Center (CBMEG), Medicinal Chemistry Center (CQMED), Structural Genomics Consortium (SGC-UNICAMP), University of Campinas-UNICAMP, Campinas, SP, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - André da Silva Santiago
- Molecular Biology and Genetic Engineering Center (CBMEG), Medicinal Chemistry Center (CQMED), Structural Genomics Consortium (SGC-UNICAMP), University of Campinas-UNICAMP, Campinas, SP, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, SP, Brazil
| | | | - Mario Henrique Bengtson
- Molecular Biology and Genetic Engineering Center (CBMEG), Medicinal Chemistry Center (CQMED), Structural Genomics Consortium (SGC-UNICAMP), University of Campinas-UNICAMP, Campinas, SP, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Katlin Brauer Massirer
- Molecular Biology and Genetic Engineering Center (CBMEG), Medicinal Chemistry Center (CQMED), Structural Genomics Consortium (SGC-UNICAMP), University of Campinas-UNICAMP, Campinas, SP, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Elizabeth Bilsland
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Rafael Miguez Couñago
- Molecular Biology and Genetic Engineering Center (CBMEG), Medicinal Chemistry Center (CQMED), Structural Genomics Consortium (SGC-UNICAMP), University of Campinas-UNICAMP, Campinas, SP, Brazil
- * E-mail: (RMC); (CFZ)
| | - Cleslei Fernando Zanelli
- School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara, SP, Brazil
- * E-mail: (RMC); (CFZ)
| |
Collapse
|
62
|
Husein-ElAhmed H, Gieler U, Steinhoff M. Evidence supporting the enhanced efficacy of pentavalent antimonials with adjuvant therapy for cutaneous leishmaniasis: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol 2020; 34:2216-2228. [PMID: 32118322 DOI: 10.1111/jdv.16333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/10/2020] [Indexed: 11/29/2022]
Abstract
Cutaneous leishmaniasis (CL) is one of the major neglected disease worldwide. Although many drugs have been used, the pentavalent antimonials (PA) remain as the first-line choice despite their toxicity and limited efficacy. The combination of two drugs has risen as a potential alternative to increase the cure rate while lowering the side-effects caused by pentavalent antimonials (PA). The objective of this study was to critically review and appraise the potential synergism of the adjuvant therapies of PA with other drugs/interventions previously used in the literature. We carried out a search of literature from PubMed, MEDLINE, Embase, Cochrane and clinicaltrials.gov. Articles that described a two-arm or three-arm design in which one of the arms consisted in a combination of a drug/intervention with intralesional or systemic PA were selected. The primary outcome was proportion of complete clearance of the lesions defined as complete re-epithelization and/or negative direct smear. Our literature search identified 554 references. Thirty-one records with a total sample size of 2668 participants met the eligibility criteria. The studies investigated the association of PA with the following: cryotherapy (five studies), allopurinol, imiquimod, pentoxifylline (four studies each), trichloroacetic acid 50% (three studies) and other additional interventions (eleven studies). Overall, the combined therapy of PA with a supplementary intervention was superior to PA monotherapy (RR: 1.23 95% CI: 1.11-1.35, I2 = 64%). In association with PA, the comparator-specific stratified analysis showed that cryotherapy (RR: 1.50 95% CI: 1.25-1.81, I2 = 57%) and allopurinol (RR: 1.70 95% CI: 1.37-2.12, I2 = 28%) were superior to PA in monotherapy. On the contrary, the combined therapy with imiquimod (RR: 1.08 95% CI: 0.88-1.32, I2 = 40%) and pentoxifylline (RR: 1.14 95% CI: 0.94-1.40, I2 = 41%) revealed a non-significant result. The application of TCA along with PA did not show significant differences in the clearance rate, although it was close to it (RR: 1.31 95% CI: 0.99-1.73, I2 = 84%). The present work represents an attempt to find new and reliable treatment modalities to enhance the efficacy based on the adjuvant therapy of pre-existing drugs/interventions with PA. According to our results, the combination of allopurinol-PA is the most effective adjuvant therapy. The application of cryotherapy and TCA stand as useful and encouraging supplementary interventions. The combination of imiquimod-PA and pentoxifylline adds no additional benefit. The results of this work may be helpful in devising and modifying the current guidelines for CL which face major remaining evidence gaps. Triple therapies consisting in cryotherapy-PA-TCA or allopurinol-PA-cryotherapy or allopurinol-PA-TCA can represent promising treatments yet to be confirmed in future trials.
Collapse
Affiliation(s)
- H Husein-ElAhmed
- Department of Dermatology and Venereology, Hospital de Baza, Granada, Spain
- Translational Research Institute, Academic Health System, Medical School, Hamad Medical Corporation, Doha, Qatar
| | - U Gieler
- Translational Research Institute, Academic Health System, Medical School, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - M Steinhoff
- Translational Research Institute, Academic Health System, Medical School, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- College of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Medical School, Qatar University, Doha, Qatar
- College of Medicine, Weill Cornell University, New York, NY, USA
| |
Collapse
|
63
|
Banoth KK, Faheem, ChandraSekhar KVG, Adinarayana N, Murugesan S. Recent evolution on synthesis strategies and anti-leishmanial activity of β-carboline derivatives - An update. Heliyon 2020; 6:e04916. [PMID: 32995612 PMCID: PMC7501441 DOI: 10.1016/j.heliyon.2020.e04916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is the most widespread pathogenic disease in several countries. Currently, no effective vaccines are available, and the control of Leishmaniasis primarily relies on decade-old chemotherapy. The treatment for the Leishmaniasis is not up to the mark. Current therapy for Leishmaniasis is ancient and requires hospitalization for the administration. These medications are also highly toxic and resistant. β-carboline, a natural indole containing alkaloid, holds a vital position in the field of medicinal chemistry with a diversified pharmacological action. The current review focuses mainly on the anti-leishmanial effects of β-carboline analogs and their synthetic strategies, structural activity relationship studies (SAR). The past ten years alterations unveiled by β-carboline analogs present in phytoconstituents and various derivatives of synthesized analogs with the mechanism of action were briefly shortlisted and illustrated.
Collapse
Affiliation(s)
- Karan Kumar Banoth
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, BITS Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Faheem
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, BITS Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| | | | - Nandikolla Adinarayana
- Department of Chemistry, BITS Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R.R. Dist. Hyderabad, 500078, Telangana, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, BITS Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| |
Collapse
|
64
|
Yadav S, Mandal H, Saravanan V, Das P, Singh SK. In vitro and in silico analysis of L. donovani enoyl acyl carrier protein reductase - A possible drug target. J Biomol Struct Dyn 2020; 39:6056-6069. [PMID: 32762412 DOI: 10.1080/07391102.2020.1802337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emergence of increased resistance to the available drugs has created a situation that demands to find out more specific molecular drug targets for Leishmaniasis. The enoyl acyl carrier protein reductase (ENR), a regulatory enzyme in type II fatty acid synthesis, was confirmed as a novel drug target and triclosan as its specific inhibitor in many microorganisms. In this study, the triclosan was tested for the leishmanicidal property against Leishmania donovani (L. donovani) and the results of in vitro and ex vivo drug assays on promastigotes and amastigotes showed that triclosan possessed antileishmanial activity with a half minimal inhibitory concentration (IC50) of 30 µM. Consequently, adopting in silico approach, we have tested the triclosan's ability to bind with the L. donovani enoyl acyl carrier protein reductase (LdENR). The 3D structure of LdENR was modelled, triclosan and cofactors were docked in LdENR model and molecular dynamic simulations were performed to observe the protein-ligands interactions, stability, compactness and binding energy calculation of the ligands-LdENR complexes. The observation showed that triclosan stably interacted with LdENR in presence of both the cofactors (NADPH and NADH), however, simulation results favor NADH as a preferred co-factor for LdENR. These results support that the reduction of L. donovani growth in the in vitro and ex vivo drug assays may be due to the interaction of triclosan with LdENR, which should be confirmed through enzymatic assays. The results of this study suggest that LdENR could be a potential drug target and triclosan as a lead for Leishmaniasis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shalini Yadav
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, ICMR, Patna, India
| | - Haraprasad Mandal
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, ICMR, Patna, India.,Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Vijayakumar Saravanan
- Division of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, ICMR, Patna, India
| | - Pradeep Das
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), ICMR, Patna, India
| | - Shubhankar Kumar Singh
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, ICMR, Patna, India
| |
Collapse
|
65
|
Mesquita JT, Romanelli MM, de Melo Trinconi Trinconi Cm C, Guerra JM, Taniwaki NN, Uliana SRB, Reimão JQ, Tempone AG. Repurposing topical triclosan for cutaneous leishmaniasis: Preclinical efficacy in a murine Leishmania (L.) amazonensis model. Drug Dev Res 2020; 83:285-295. [PMID: 32767443 DOI: 10.1002/ddr.21725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 01/07/2023]
Abstract
Leishmaniasis remains an important neglected tropical infection caused by the protozoan Leishmania and affects 12 million people in 98 countries. The treatment is limited with severe adverse effects. In the search for new therapies, the drug repositioning and combination therapy have been successfully applied to neglected diseases. The aim of the present study was to evaluate the in vitro and in vivo anti-Leishmania (Leishmania) amazonensis potential of triclosan, an approved topical antimicrobial agent used for surgical procedures. in vitro phenotypic studies of drug-treated parasites were performed to evaluate the lethal action of triclosan, accompanied by an isobolographic ex-vivo analysis with the association of triclosan and miltefosine. The results showed that triclosan has activity against L. (L.) amazonensis intracellular amastigotes, with a 50% inhibitory concentration of 16 μM. By using fluorescent probes and transmission electron microscopy, a pore-forming activity of triclosan toward the parasite plasma membrane was demonstrated, leading to depolarization of the mitochondrial membrane potential and reduction of the reactive oxygen species levels in the extracellular promastigotes. The in vitro interaction between triclosan and miltefosine in the combination therapy assay was classified as additive against intracellular amastigotes. Leishmania-infected mice were treated with topical triclosan (1% base cream for 14 consecutive days), and showed 89% reduction in the parasite burden. The obtained results contribute to the investigation of new alternatives for the treatment of cutaneous leishmaniasis and suggest that the coadministration of triclosan and miltefosine should be investigated in animal models.
Collapse
Affiliation(s)
| | | | | | | | | | - Silvia Reni Bortolin Uliana
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Juliana Quero Reimão
- Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí, Brazil
| | | |
Collapse
|
66
|
Crentsil JA, Yamthe LRT, Anibea BZ, Broni E, Kwofie SK, Tetteh JKA, Osei-Safo D. Leishmanicidal Potential of Hardwickiic Acid Isolated From Croton sylvaticus. Front Pharmacol 2020; 11:753. [PMID: 32523532 PMCID: PMC7261830 DOI: 10.3389/fphar.2020.00753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/06/2020] [Indexed: 01/31/2023] Open
Abstract
Leishmania is a parasitic protozoon responsible for the neglected tropical disease Leishmaniasis. Approximately, 350 million people are susceptible and close to 70,000 death cases globally are reported annually. The lack of effective leishmanicides, the emergence of drug resistance and toxicity concerns necessitate the pursuit for effective antileishmanial drugs. Natural compounds serve as reservoirs for discovering new drugs due to their chemical diversity. Hardwickiic acid (HA) isolated from the stembark of Croton sylvaticus was evaluated for its leishmanicidal potential against Leishmania donovani and L. major promastigotes. The susceptibility of the promastigotes to HA was determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide/phenazine methosulfate colorimetric assay with Amphotericin B serving as positive control. HA showed a significant antileishmanial activity on L. donovani promastigotes with an IC50 value of 31.57± 0.06 µM with respect to the control drug, amphotericin B with IC50 of 3.35 ± 0.14 µM). The cytotoxic activity was observed to be CC50 = 247.83 ± 6.32 µM against 29.99 ± 2.82 µM for curcumin, the control, resulting in a selectivity index of SI = 7.85. Molecular modeling, docking and dynamics simulations of selected drug targets corroborated the observed antileishmanial activity of HA. Novel insights into the mechanisms of binding were obtained for trypanothione reductase (TR), pteridine reductase 1 (PTR1), and glutamate cysteine ligase (GCL). The binding affinity of HA to the drug targets LmGCL, LmPTR1, LdTR, LmTR, LdGCL, and LdPTR1 were obtained as -8.0, -7.8, -7.6, -7.5, -7.4 and -7.1 kcal/mol, respectively. The role of Lys16, Ser111, and Arg17 as critical residues required for binding to LdPTR1 was reinforced. HA was predicted as a Caspase-3 stimulant and Caspase-8 stimulant, implying a possible role in apoptosis, which was shown experimentally that HA induced parasite death by loss of membrane integrity. HA was also predicted as antileishmanial molecule corroborating the experimental activity. Therefore, HA is a promising antileishmanial molecule worthy of further development as a biotherapeutic agent.
Collapse
Affiliation(s)
- Justice Afrifa Crentsil
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences (CBAS), University of Ghana, Accra, Ghana
| | - Lauve Rachel Tchokouaha Yamthe
- Institute for Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon.,Department of Parasitology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.,Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Barbara Zenabu Anibea
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences (CBAS), University of Ghana, Accra, Ghana
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, CBAS, University of Ghana, Accra, Ghana
| | - Samuel Kojo Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, CBAS, University of Ghana, Accra, Ghana.,West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, CBAS, University of Ghana, Accra, Ghana.,Department of Medicine, Loyola University Medical Center, Maywood, IL, United States.,Department of Physics and Engineering Science, Coastal Carolina University, Conway, SC, United States
| | - John Kweku Amissah Tetteh
- Department of Immunology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences (CBAS), University of Ghana, Accra, Ghana
| |
Collapse
|
67
|
Bhowmik D, Jagadeesan R, Rai P, Nandi R, Gugan K, Kumar D. Evaluation of potential drugs against leishmaniasis targeting catalytic subunit of Leishmania donovani nuclear DNA primase using ligand based virtual screening, docking and molecular dynamics approaches. J Biomol Struct Dyn 2020; 39:1838-1852. [PMID: 32141397 DOI: 10.1080/07391102.2020.1739557] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Leishmania donovani, causes leishmaniasis, a global health trouble with around 89 different countries and its population under its risk. Replication initiation events have been instrumental in regulating the DNA duplication and as the small subunit of L. donovani nuclear DNA primase (Ld-PriS) inherits the catalytic site, it plays a vital role in DNA replication. In this study we have aimed Ld-PriS for the first time as a prospective target for the application of drug against Leishmania parasite. 3-D structures of Ld-PriS were built and ligand-based virtual screening was performed using hybrid similarity recognition techniques. Ligands from the ZINC database were used for the screening purposes based on known DNA primase inhibitor Sphingosine as a query. Top 150 ligands were taken into consideration for molecular docking against the query protein (Ld-PriS) using PyRx and iGEMDOCK softwares. Top five compounds with the best docking score were selected for pharmacokinetic investigation and molecular dynamic simulation. These top five screened inhibitors showed very poor binding affinity toward the catalytic subunit of human primase indicating their safety toward the host normal replication mechanism. The top five compounds showed good pharmacokinetic profiles and ADMET predictions revealed good absorption, solubility, permeability, uniform distribution, proper metabolism, minimal toxicity and good bioavailability. Simulation studies upto 50 ns revealed the three leads ZINC000009219046, ZINC000025998119 and ZINC000004677901 bind with Ld-PriS throughout the simulation and there were no huge variations in their backbone suggesting that these three may play as potential lead compounds for developing new drug against leishmaniasis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deep Bhowmik
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Rahul Jagadeesan
- CAS in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, India
| | - Praveen Rai
- Department of Biotechnology, Central University of Rajasthan, Bandarsindri, India
| | - Rajat Nandi
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Kothandan Gugan
- CAS in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, Assam, India
| |
Collapse
|
68
|
Scotti MT, Monteiro AFM, de Oliveira Viana J, Bezerra Mendonça Junior FJ, Ishiki HM, Tchouboun EN, De Araújo RSA, Scotti L. Recent Theoretical Studies Concerning Important Tropical Infections. Curr Med Chem 2020; 27:795-834. [DOI: 10.2174/0929867326666190711121418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Neglected Tropical Diseases (NTDs) form a group of diseases that are strongly associated
with poverty, flourish in impoverished environments, and thrive best in tropical areas,
where they tend to present overlap. They comprise several diseases, and the symptoms
vary dramatically from disease to disease, often causing from extreme pain, and untold misery
that anchors populations to poverty, permanent disability, and death. They affect more than 1
billion people worldwide; mostly in poor populations living in tropical and subtropical climates.
In this review, several complementary in silico approaches are presented; including
identification of new therapeutic targets, novel mechanisms of activity, high-throughput
screening of small-molecule libraries, as well as in silico quantitative structure-activity relationship
and recent molecular docking studies. Current and active research against Sleeping
Sickness, American trypanosomiasis, Leishmaniasis and Schistosomiasis infections will hopefully
lead to safer, more effective, less costly and more widely available treatments against
these parasitic forms of Neglected Tropical Diseases (NTDs) in the near future.
Collapse
Affiliation(s)
- Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Alex France Messias Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Jéssika de Oliveira Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | | | - Hamilton M. Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | - Rodrigo Santos A. De Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| |
Collapse
|
69
|
Bora N, Jha AN. In silico Metabolic Pathway Analysis Identifying Target Against Leishmaniasis - A Kinetic Modeling Approach. Front Genet 2020; 11:179. [PMID: 32211028 PMCID: PMC7068213 DOI: 10.3389/fgene.2020.00179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 02/14/2020] [Indexed: 01/14/2023] Open
Abstract
The protozoan Leishmania donovani, from trypanosomatids family is a deadly human pathogen responsible for causing Visceral Leishmaniasis. Unavailability of proper treatment in the developing countries has served as a major threat to the people. The absence of vaccines has made treatment possibilities to rely solely over chemotherapy. Also, reduced drug efficacy due to emerging resistant strains magnifies the threat. Despite years of formulations for an effective drug therapy, complexity of the disease is also unfortunately increasing. Absence of potential drug targets has worsened the scenario. Therefore exploring new therapeutic approach is a priority for the scientific community to combat the disease. One of the most reliable ways to alter the adversities of the infection is finding new biological targets for designing potential drugs. An era of computational biology allows identifying targets, assisting experimental studies. It includes sorting the parasite’s metabolic pathways that pins out proteins essential for its survival. We have directed our study towards a computational methodology for determining targets against L. donovani from the “purine salvage” pathway. This is a mainstay pathway towards the maintenance of purine amounts in the parasitic pool of nutrients proving to be mandatory for its survival. This study represents an integration of metabolic pathway and Protein-Protein Interactions analysis. It consists of incorporating the available experimental data to the theoretical methods with a prospective to develop a kinetic model of Purine salvage pathway. Simulation data revealed the time course mechanism of the enzymes involved in the synthesis of the metabolites. Modeling of the metabolic pathway helped in marking of crucial enzymes. Additionally, the PPI analysis of the pathway assisted in building a static interaction network for the proteins. Topological analysis of the PPI network through centrality measures (MCC and Closeness) detected targets found common with Dynamic Modeling. Therefore our analysis reveals the enzymes ADSL (Adenylosuccinate lyase) and IMPDH (Inosine-5′-monophosphate dehydrogenase) to be important having a central role in the modeled network based on PPI and kinetic modeling techniques. Further the available three dimensional structure of the enzyme “ADSL” aided towards the search for potential inhibitors against the protein. Hence, the study presented the significance of integrating methods to identify key proteins which might be putative targets against the treatment of Visceral Leishmaniasis and their potential inhibitors.
Collapse
Affiliation(s)
- Nikita Bora
- Computational Biophysics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Anupam Nath Jha
- Computational Biophysics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| |
Collapse
|
70
|
Kwofie SK, Broni E, Dankwa B, Enninful KS, Kwarko GB, Darko L, Durvasula R, Kempaiah P, Rathi B, Miller Iii WA, Yaya A, Wilson MD. Outwitting an Old Neglected Nemesis: A Review on Leveraging Integrated Data-Driven Approaches to Aid in Unraveling of Leishmanicides of Therapeutic Potential. Curr Top Med Chem 2020; 20:349-366. [PMID: 31994465 DOI: 10.2174/1568026620666200128160454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/20/2019] [Accepted: 09/12/2019] [Indexed: 11/22/2022]
Abstract
The global prevalence of leishmaniasis has increased with skyrocketed mortality in the past decade. The causative agent of leishmaniasis is Leishmania species, which infects populations in almost all the continents. Prevailing treatment regimens are consistently inefficient with reported side effects, toxicity and drug resistance. This review complements existing ones by discussing the current state of treatment options, therapeutic bottlenecks including chemoresistance and toxicity, as well as drug targets. It further highlights innovative applications of nanotherapeutics-based formulations, inhibitory potential of leishmanicides, anti-microbial peptides and organometallic compounds on leishmanial species. Moreover, it provides essential insights into recent machine learning-based models that have been used to predict novel leishmanicides and also discusses other new models that could be adopted to develop fast, efficient, robust and novel algorithms to aid in unraveling the next generation of anti-leishmanial drugs. A plethora of enriched functional genomic, proteomic, structural biology, high throughput bioassay and drug-related datasets are currently warehoused in both general and leishmania-specific databases. The warehoused datasets are essential inputs for training and testing algorithms to augment the prediction of biotherapeutic entities. In addition, we demonstrate how pharmacoinformatics techniques including ligand-, structure- and pharmacophore-based virtual screening approaches have been utilized to screen ligand libraries against both modeled and experimentally solved 3D structures of essential drug targets. In the era of data-driven decision-making, we believe that highlighting intricately linked topical issues relevant to leishmanial drug discovery offers a one-stop-shop opportunity to decipher critical literature with the potential to unlock implicit breakthroughs.
Collapse
Affiliation(s)
- Samuel K Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana.,West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Bismark Dankwa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra, Ghana
| | - Kweku S Enninful
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra, Ghana
| | - Gabriel B Kwarko
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Louis Darko
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Ravi Durvasula
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States
| | - Prakasha Kempaiah
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States
| | - Brijesh Rathi
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States.,Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi, 110007, India
| | - Whelton A Miller Iii
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States.,Department of Chemistry, Physics, & Engineering, Lincoln University, Lincoln University, PA 19352, United States.,Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Abu Yaya
- Department of Materials Science and Engineering, College of Basic & Applied Sciences, University of Ghana, Legon, Ghana
| | - Michael D Wilson
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States.,Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
71
|
Morotti ALM, Martins-Teixeira MB, Carvalho I. Protozoan Parasites Glycosylphosphatidylinositol Anchors: Structures, Functions and Trends for Drug Discovery. Curr Med Chem 2019; 26:4301-4322. [PMID: 28748758 DOI: 10.2174/0929867324666170727110801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glycosylphosphatidylinositol (GPI) anchors are molecules located on cell membranes of all eukaryotic organisms. Proteins, enzymes, and other macromolecules which are anchored by GPIs are essential elements for interaction between cells, and are widely used by protozoan parasites when compared to higher eukaryotes. METHODS More than one hundred references were collected to obtain broad information about mammalian and protozoan parasites' GPI structures, biosynthetic pathways, functions and attempts to use these molecules as drug targets against parasitic diseases. Differences between GPI among species were compared and highlighted. Strategies for drug discovery and development against protozoan GPI anchors were discussed based on what has been reported on literature. RESULTS There are many evidences that GPI anchors are crucial for parasite's survival and interaction with hosts' cells. Despite all GPI anchors contain a conserved glycan core, they present variations regarding structural features and biosynthetic pathways between organisms, which could offer adequate selectivity to validate GPI anchors as drug targets. Discussion was developed with focus on the following parasites: Trypanosoma brucei, Trypanosoma cruzi, Leishmania, Plasmodium falciparum and Toxoplasma gondii, causative agents of tropical neglected diseases. CONCLUSION This review debates the main variances between parasitic and mammalian GPI anchor biosynthesis and structures, as well as clues for strategic development for new anti-parasitic therapies based on GPI anchors.
Collapse
Affiliation(s)
- Ana Luísa Malaco Morotti
- School of Pharmaceutical Sciences of Ribeirao Preto - University of Sao Paulo, Sao Paulo, Brazil
| | | | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirao Preto - University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
72
|
Grewal JS, Catta-Preta CM, Brown E, Anand J, Mottram JC. Evaluation of clan CD C11 peptidase PNT1 and other Leishmania mexicana cysteine peptidases as potential drug targets. Biochimie 2019; 166:150-160. [DOI: 10.1016/j.biochi.2019.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
|
73
|
Bustamante C, Ochoa R, Asela C, Muskus C. Repurposing of known drugs for leishmaniasis treatment using bioinformatic predictions, in vitro validations and pharmacokinetic simulations. J Comput Aided Mol Des 2019; 33:845-854. [PMID: 31612362 DOI: 10.1007/s10822-019-00230-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/28/2019] [Indexed: 11/26/2022]
Abstract
Leishmaniasis is a neglected tropical disease caused by Leishmania parasites and is associated to more than 1.3 million cases annually. Some of the pharmacological options for treating the disease are pentavalent antimonials, pentamidine, miltefosine, and amphotericin B. However, all are associated with a wide range of adverse effects and contraindications, as well as resistance from the parasite. In the present study, we looked for pharmacological alternatives to treat leishmaniasis, with a focus on drug repurposing. This was done by detecting potential homologs between proteins targeted by approved drugs and proteins of the parasite. The proteins were analyzed using an interaction network, and the drugs were subjected to in vitro evaluations and pharmacokinetics simulations to compare probable plasma concentrations with the effective concentrations detected experimentally. This strategy yielded a list of 33 drugs with potential anti-Leishmania activity, and more than 80 possible protein targets in the parasite. From the drugs tested, two reported high in vitro activity (perphenazine EC50 = 1.2 µg/mL and rifabutin EC50 = 8.5 µg/mL). These results allowed us to propose these drugs as candidates for further in vivo studies and evaluations of the effectiveness on their topical forms.
Collapse
Affiliation(s)
- Christian Bustamante
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Rodrigo Ochoa
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Faculty of Medicine, University of Antioquia, Medellin, Colombia
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellin, Colombia
| | - Claudia Asela
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Faculty of Medicine, University of Antioquia, Medellin, Colombia.
| |
Collapse
|
74
|
Matadamas-Martínez F, Hernández-Campos A, Téllez-Valencia A, Vázquez-Raygoza A, Comparán-Alarcón S, Yépez-Mulia L, Castillo R. Leishmania mexicana Trypanothione Reductase Inhibitors: Computational and Biological Studies. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24183216. [PMID: 31487860 PMCID: PMC6767256 DOI: 10.3390/molecules24183216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/24/2019] [Accepted: 08/31/2019] [Indexed: 12/27/2022]
Abstract
Leishmanicidal drugs have many side effects, and drug resistance to all of them has been documented. Therefore, the development of new drugs and the identification of novel therapeutic targets are urgently needed. Leishmania mexicana trypanothione reductase (LmTR), a NADPH-dependent flavoprotein oxidoreductase important to thiol metabolism, is essential for parasite viability. Its absence in the mammalian host makes this enzyme an attractive target for the development of new anti-Leishmania drugs. Herein, a tridimensional model of LmTR was constructed and the molecular docking of 20 molecules from a ZINC database was performed. Five compounds (ZINC04684558, ZINC09642432, ZINC12151998, ZINC14970552, and ZINC11841871) were selected (docking scores -10.27 kcal/mol to -5.29 kcal/mol and structurally different) and evaluated against recombinant LmTR (rLmTR) and L. mexicana promastigote. Additionally, molecular dynamics simulation of LmTR-selected compound complexes was achieved. The five selected compounds inhibited rLmTR activity in the range of 32.9% to 40.1%. The binding of selected compounds to LmTR involving different hydrogen bonds with distinct residues of the molecule monomers A and B is described. Compound ZINC12151998 (docking score -10.27 kcal/mol) inhibited 32.9% the enzyme activity (100 µM) and showed the highest leishmanicidal activity (IC50 = 58 µM) of all the selected compounds. It was more active than glucantime, and although its half-maximal cytotoxicity concentration (CC50 = 53 µM) was higher than that of the other four compounds, it was less cytotoxic than amphotericin B. Therefore, compound ZINC12151998 provides a promising starting point for a hit-to-lead process in our search for new anti-Leishmania drugs that are more potent and less cytotoxic.
Collapse
Affiliation(s)
- Félix Matadamas-Martínez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Unidad Médica de Alta Especialidad-Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Alicia Hernández-Campos
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alfredo Téllez-Valencia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango Av. Universidad y Fanny Anitúa S/N, Durango 34000, Mexico
| | - Alejandra Vázquez-Raygoza
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango Av. Universidad y Fanny Anitúa S/N, Durango 34000, Mexico
| | - Sandra Comparán-Alarcón
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Unidad Médica de Alta Especialidad-Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Lilián Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Unidad Médica de Alta Especialidad-Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico.
| | - Rafael Castillo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| |
Collapse
|
75
|
In silico and in vitro comparative activity of green tea components against Leishmania infantum. J Glob Antimicrob Resist 2019; 18:187-194. [DOI: 10.1016/j.jgar.2019.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/17/2019] [Accepted: 02/12/2019] [Indexed: 01/07/2023] Open
|
76
|
Sosa EJ, Burguener G, Lanzarotti E, Defelipe L, Radusky L, Pardo AM, Marti M, Turjanski AG, Fernández Do Porto D. Target-Pathogen: a structural bioinformatic approach to prioritize drug targets in pathogens. Nucleic Acids Res 2019; 46:D413-D418. [PMID: 29106651 PMCID: PMC5753371 DOI: 10.1093/nar/gkx1015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022] Open
Abstract
Available genomic data for pathogens has created new opportunities for drug discovery and development to fight them, including new resistant and multiresistant strains. In particular structural data must be integrated with both, gene information and experimental results. In this sense, there is a lack of an online resource that allows genome wide-based data consolidation from diverse sources together with thorough bioinformatic analysis that allows easy filtering and scoring for fast target selection for drug discovery. Here, we present Target-Pathogen database (http://target.sbg.qb.fcen.uba.ar/patho), designed and developed as an online resource that allows the integration and weighting of protein information such as: function, metabolic role, off-targeting, structural properties including druggability, essentiality and omic experiments, to facilitate the identification and prioritization of candidate drug targets in pathogens. We include in the database 10 genomes of some of the most relevant microorganisms for human health (Mycobacterium tuberculosis, Mycobacterium leprae, Klebsiella pneumoniae, Plasmodium vivax, Toxoplasma gondii, Leishmania major, Wolbachia bancrofti, Trypanosoma brucei, Shigella dysenteriae and Schistosoma Smanosoni) and show its applicability. New genomes can be uploaded upon request.
Collapse
Affiliation(s)
- Ezequiel J Sosa
- IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina
| | - Germán Burguener
- IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina
| | - Esteban Lanzarotti
- IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina
| | - Lucas Defelipe
- IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina
| | - Leandro Radusky
- IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina
| | - Agustín M Pardo
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina
| | - Marcelo Marti
- IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina.,Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina
| | - Adrián G Turjanski
- IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina.,Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina
| | - Darío Fernández Do Porto
- IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Ciudad de Buenos Aires, Argentina
| |
Collapse
|
77
|
Targeting pteridine reductase 1 and dihydrofolate reductase: the old is a new trend for leishmaniasis drug discovery. Future Med Chem 2019; 11:2107-2130. [DOI: 10.4155/fmc-2018-0512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Leishmaniasis is one of the major neglected tropical diseases in the world and it is considered endemic in 88 countries. This disease is transmitted by a Leishmania spp. infected sandfly and it may lead to cutaneous or systemic manifestations. The preconized treatment has low efficacy and there are cases of resistance to some drugs. Therefore, the search for new efficient molecular targets that can lead to the preparation of new drugs must be pursued. This review aims to evaluate both Leishmania enzymes PTR1 and DHFR-TS as potential drug targets, highlight their inhibitors and to discuss critically the use of chemoinformatics to elucidate interactions and propose new molecules against these enzymes.
Collapse
|
78
|
Garg G, Ali V, Singh K, Gupta P, Ganguly A, Sahasrabuddhe AA, Das P. Quantitative secretome analysis unravels new secreted proteins in Amphotericin B resistant Leishmania donovani. J Proteomics 2019; 207:103464. [PMID: 31357030 DOI: 10.1016/j.jprot.2019.103464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022]
Abstract
Leishmaniasis is second most neglected disease after malaria and seems to be a worldwide concern because of increased drug resistance and non-availability of approved vaccine. The underlying molecular mechanism of drug resistance (Amp B) in Leishmania parasites still remains elusive. Herein, the present study investigated differentially expressed secreted proteins of Amphotericin B sensitive (S) and resistant (R) isolate of Leishmania donovani by using label free quantitative LC-MS/MS approach. A total of 406 differentially expressed secreted proteins were found between sensitive (S) and resistant (R) isolate. Among 406 proteins, 32 were significantly up regulated (>2.0 fold) while 22 were down regulated (<0.5 fold) in resistant isolate of L. donovani. Further, differentially expressed proteins were classified into 11 various biological processes. Interestingly, identified up regulated proteins in resistant parasites were dominated in carbohydrate metabolism, stress response, transporters and proteolysis. Western blot and enzymatic activity of identified proteins validate our proteomic findings. Finally, our study demonstrated some new secreted proteins associated with Amp B resistance which provides a basis for further investigations to understand the role of proteins in L. donovani. BIOLOGICAL SIGNIFICANCE: Although great advances have been achieved in the diagnosis and treatment of leishmaniasis, still drug resistance is major hurdle in control of disease. Present study will enhance the deeper understanding of altered metabolic pathways involved in Amp B resistance mechanism and provide possible new proteins which can be potential candidate either for exploring as new drug target or vaccine. Protein-protein interactions highlighted the up-regulated metabolic pathways in resistant parasites which further unravel the adaptive mechanism of parasites.
Collapse
Affiliation(s)
- Gaurav Garg
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur 844102, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur 844102, India.
| | - Kuljit Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur 844102, India
| | - Parool Gupta
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Ashish Ganguly
- CSIR- Institute of Microbial Technology, Chandigarh, India
| | - Amogh A Sahasrabuddhe
- Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Pradeep Das
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| |
Collapse
|
79
|
Stevanovic S, Sencanski M, Danel M, Menendez C, Belguedj R, Bouraiou A, Nikolic K, Cojean S, Loiseau PM, Glisic S, Baltas M, García-Sosa AT. Synthesis, In Silico, and In Vitro Evaluation of Anti-Leishmanial Activity of Oxadiazoles and Indolizine Containing Compounds Flagged against Anti-Targets. Molecules 2019; 24:molecules24071282. [PMID: 30986947 PMCID: PMC6480966 DOI: 10.3390/molecules24071282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 11/24/2022] Open
Abstract
Due to the lack of approved vaccines against human leishmaniasis and the limitations of the current chemotherapy inducing side effects and drug resistance, development of new, effective chemotherapeutic agents is essential. This study describes the synthesis of a series of novel oxadiazoles and indolizine-containing compounds. The compounds were screened in silico using an EIIP/AQVN filter followed by ligand-based virtual screening and molecular docking to parasite arginase. Top hits were further screened versus human arginase and finally against an anti-target battery to tag their possible interactions with proteins essential for the metabolism and clearance of many substances. Eight candidate compounds were selected for further experimental testing. The results show measurable in vitro anti-leishmanial activity for three compounds. One compound with an IC50 value of 2.18 µM on Leishmania donovani intramacrophage amastigotes is clearly better positioned than the others as an interesting molecular template for further development of new anti-leishmanial agents.
Collapse
Affiliation(s)
- Strahinja Stevanovic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.
| | - Milan Sencanski
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.
| | - Mathieu Danel
- ITAV, Université de Toulouse, CNRS, 31062 Toulouse, France.
| | - Christophe Menendez
- Department of Chemistry, Université de Toulouse, UPS, CNRS UMR 5068, LSPCMIB, 118 Route de Narbonne, 31062 Toulouse, France.
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, LSPCMIB, UMR-5068, 118 Route de Narbonne, 31062 Toulouse, France.
| | - Roumaissa Belguedj
- Department of Chemistry, Université de Toulouse, UPS, CNRS UMR 5068, LSPCMIB, 118 Route de Narbonne, 31062 Toulouse, France.
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, LSPCMIB, UMR-5068, 118 Route de Narbonne, 31062 Toulouse, France.
- Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Université Frères Mentouri, Route de Ain El Bey, 25000 Constantine, Algeria.
| | - Abdelmalek Bouraiou
- Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Université Frères Mentouri, Route de Ain El Bey, 25000 Constantine, Algeria.
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Sandrine Cojean
- Antiparasitic Chemotherapy, UMR 8076 CNRS BioCIS, Faculty of Pharmacy Université Paris-Sud, Rue Jean-Baptiste Clément, F 92290 Chatenay-Malabry, France.
| | - Philippe M Loiseau
- Antiparasitic Chemotherapy, UMR 8076 CNRS BioCIS, Faculty of Pharmacy Université Paris-Sud, Rue Jean-Baptiste Clément, F 92290 Chatenay-Malabry, France.
| | - Sanja Glisic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.
| | - Michel Baltas
- Department of Chemistry, Université de Toulouse, UPS, CNRS UMR 5068, LSPCMIB, 118 Route de Narbonne, 31062 Toulouse, France.
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, LSPCMIB, UMR-5068, 118 Route de Narbonne, 31062 Toulouse, France.
| | | |
Collapse
|
80
|
Oyama J, Lera-Nonose DSSL, Ramos-Milaré ÁCFH, Padilha Ferreira FB, de Freitas CF, Caetano W, Hioka N, Silveira TGV, Lonardoni MVC. Potential of Pluronics ® P-123 and F-127 as nanocarriers of anti-Leishmania chemotherapy. Acta Trop 2019; 192:11-21. [PMID: 30659806 DOI: 10.1016/j.actatropica.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 12/19/2022]
Abstract
Leishmaniasis is a neglected disease and drugs approved for its treatment often lead to abandonment, failure of therapy and even death. Photodynamic therapy (PDT) has been shown to be a promising, non-invasive and selective for a target region without requiring high-cost technology. Usually, it is employed a photosensitizing agent (PS) incorporated into nanoparticles (NP). Pluronics® P-123 and F-127 micelles are very interesting aqueous NP promoting efficient and selective delivery and less adverse effects. This study aimed to detect the activity of Pluronics® P-123 and F-127 themselves since there is a scarcity of data on these NP activities without drugs incorporation. This study evaluated, in vitro, the activity of Pluronics® against promastigotes and amastigotes of Leishmania amazonensis and also their cytotoxicities. Additionally, the determination of the mitochondria membrane potential in promastigotes, internalization of these Pluronics® in the parasite membrane and macrophages and its stability in the culture medium was evaluated. Results showed that Pluronics® did not cause significant damage to human red cells and promastigotes. The P-123 and F-127 inhibited the survival rate of L. amazonensis amastigotes, and also presented loss of mitochondrial membrane potential on promastigotes. The Pluronics® showed low cytotoxic activity on J774A.1 macrophages, while only P-123 showed moderate cytotoxicity for BALB/c macrophages. The stability of P-123 and F-127 in culture medium was maintained for ten days. In conclusion, the NP studied can be used for incorporating potent leishmanicidal chemotherapy, due to their selectivity towards macrophages, being a promising system for the treatment of cutaneous leishmaniasis.
Collapse
|
81
|
Bora N, Nath Jha A. An integrative approach using systems biology, mutational analysis with molecular dynamics simulation to challenge the functionality of a target protein. Chem Biol Drug Des 2019; 93:1050-1060. [PMID: 30891955 DOI: 10.1111/cbdd.13502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/08/2019] [Accepted: 01/31/2019] [Indexed: 01/05/2023]
Abstract
Visceral leishmaniasis affects millions of people worldwide in areas where Leishmania donovani is endemic. The protozoan species serves a greater threat as it has gradually evolved drug resistance whereby requiring newer approaches to treat the infection. State-of-art techniques are mostly directed toward finding better targets extracted from the available proteome data. In light of recent computational advancements, we ascertain and validate one such target, adenylosuccinate lyase (ADSL) by implementation of in-silico methods which led to the identification of critical amino acid residues that affects its functional attributes. Our target selection was based on comprehensive topological analysis of a knowledge-based protein-protein interaction network. Subsequently, mutations were incorporated and the dynamic behavior of mutated and native proteins was traced using MD simulations for a total time span of 600 ns. Comparative analysis of the native and mutated structures exhibited perceptible changes in the ligand-bound catalytic region with respect to time. The unfavorable changes in the orientations of specific catalytic residues, His118 and His196, induced by generated mutations reduce the enzyme specificity. In summary, this integrative approach is able to select a target against pathogen, identify crucial residues, and challenge its functionality through the selected mutations.
Collapse
Affiliation(s)
- Nikita Bora
- Computational Biophysics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Anupam Nath Jha
- Computational Biophysics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
82
|
Arora K, Rai AK. Dependence of Leishmania parasite on host derived ATP: an overview of extracellular nucleotide metabolism in parasite. J Parasit Dis 2019; 43:1-13. [PMID: 30956439 PMCID: PMC6423245 DOI: 10.1007/s12639-018-1061-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/24/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Kashika Arora
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Allahabad, 211004 U.P. India
- Present Address: Biomedical Research Center, Ghent University Global Campus, Incheon, 21985 South Korea
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Allahabad, 211004 U.P. India
| |
Collapse
|
83
|
Mandal H, Vijayakumar S, Yadav S, Kumar Singh S, Das P. Validation of NAD synthase inhibitors for inhibiting the cell viability of Leishmania donovani: In silico and in vitro approach. J Biomol Struct Dyn 2019; 37:4481-4493. [PMID: 30526395 DOI: 10.1080/07391102.2018.1552199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NAD (nicotinamide adenine dinucleotide) synthase catalyses the biochemical synthesis of NAD, from nicotinic acid adenine dinucleotide (NAAD). NAD may be synthesized through the de novo pathways and/or the salvage pathways in cells. However, in Leishmania parasite, the synthesis of NAD solely depends on the salvage pathways. NAD synthetase is widely explored as a drug target in various microorganisms. In Bacillus anthracis, a group of sulphonamides 5599, 5617 and 5824 and complex amide 5833 were reported to have activity at micromolar range against NAD synthetase. Hence, in the present study, the same group of sulphonamides and complex amide were validated through in silico and in vitro studies for its efficiency towards Leishmania donovani NAD synthase. In silico study revealed the ligands 5824 and 5833 to have better docking score. Molecular dynamics simulation for a duration of 50 ns of all the ligand-protein complexes suggested that the complexes with the ligands 5824 and 5833 were stable and interacting. In vitro and ex vivo studies have shown that 5824 and 5833 inhibit the cell viability of the organism at a lower concentration than 5599 and 5617. Hence, with further in vivo validation, 5824 (or its synthetic analogues) and 5833 could be the choice that may work synergistically with other potential drugs in treating drug-resistant cases of leishmaniasis. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Haraprasad Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) , Hajipur , Bihar , India.,Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences , Patna , Bihar , India
| | - Saravanan Vijayakumar
- Bioinformatics Centre , ICMR, Bioinformatics Centre, Rajendra Memorial Research Institute of Medical Sciences , Patna , Bihar , India
| | - Shalini Yadav
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences , Patna , Bihar , India
| | - Shubhankar Kumar Singh
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences , Patna , Bihar , India
| | - Pradeep Das
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research , Patna , Bihar , India
| |
Collapse
|
84
|
Pandey SC, Jha A, Kumar A, Samant M. Evaluation of antileishmanial potential of computationally screened compounds targeting DEAD-box RNA helicase of Leishmania donovani. Int J Biol Macromol 2019; 121:480-487. [DOI: 10.1016/j.ijbiomac.2018.10.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/03/2018] [Accepted: 10/12/2018] [Indexed: 12/28/2022]
|
85
|
Tonelli M, Gabriele E, Piazza F, Basilico N, Parapini S, Tasso B, Loddo R, Sparatore F, Sparatore A. Benzimidazole derivatives endowed with potent antileishmanial activity. J Enzyme Inhib Med Chem 2018; 33:210-226. [PMID: 29233048 PMCID: PMC7011974 DOI: 10.1080/14756366.2017.1410480] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
Two sets of benzimidazole derivatives were synthesised and tested in vitro for activity against promastigotes of Leishmania tropica and L. infantum. Most of the tested compounds resulted active against both Leishmania species, with IC50 values in the low micromolar/sub-micromolar range. Among the set of 2-(long chain)alkyl benzimidazoles, whose heterocyclic head was quaternised, compound 8 resulted about 100-/200-fold more potent than miltefosine, even if the selectivity index (SI) versus HMEC-1 cells was only moderately improved. In the set of 2-benzyl and 2-phenyl benzimidazoles, bearing a basic side chain in position 1, compound 28 (2-(4-chlorobenzyl)-1-lupinyl-5-trifluoromethylbenzimidazole) was 12-/7-fold more potent than miltefosine, but exhibited a further improved SI. Therefore, compounds 8 and 28 represent interesting hit compounds, susceptible of structural modification to improve their safety profiles.
Collapse
Affiliation(s)
- Michele Tonelli
- Dipartimento di Farmacia, Università di Genova, Genova, Italy
| | - Elena Gabriele
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Francesca Piazza
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| | - Silvia Parapini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Bruno Tasso
- Dipartimento di Farmacia, Università di Genova, Genova, Italy
| | - Roberta Loddo
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Fabio Sparatore
- Dipartimento di Scienze Biomediche Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| | - Anna Sparatore
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
86
|
Leishmania treatment and prevention: Natural and synthesized drugs. Eur J Med Chem 2018; 160:229-244. [DOI: 10.1016/j.ejmech.2018.10.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022]
|
87
|
Chávez-Fumagalli MA, Lage DP, Tavares GSV, Mendonça DVC, Dias DS, Ribeiro PAF, Ludolf F, Costa LE, Coelho VTS, Coelho EAF. In silico Leishmania proteome mining applied to identify drug target potential to be used to treat against visceral and tegumentary leishmaniasis. J Mol Graph Model 2018; 87:89-97. [PMID: 30522092 DOI: 10.1016/j.jmgm.2018.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/12/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022]
Abstract
New therapeutic strategies against leishmaniasis are desirable, since the treatment against disease presents problems, such as the toxicity, high cost and/or parasite resistance. As consequence, new antileishmanial compounds are necessary to be identified, as presenting high activity against Leishmania, but low toxicity in mammalian hosts. In the present study, a Leishmania proteome mining strategy was developed, in order to select new drug targets with low homology to human proteins, but that are considered relevant for the parasite' survival. Results showed a hypothetical protein, which was functionally annotated as a glucosidase-like protein, as presenting such characteristics. This protein was associated with the metabolic network of the N-Glycan biosynthesis pathway in Leishmania, and two specific inhibitors - acarbose and miglitol - were predicted to be potential targets against it. In this context, miglitol [1-(2-Hydroxyethyl)-2-(hydroxymethyl)piperidine-3,4,5-triol] was tested against stationary promastigotes and axenic amastigotes of the Leishmania amazonensis and L. infantum species, and results showed high values of antileishmanial inhibition against both parasite species. Miglitol showed also efficacy in the treatment of Leishmania-infected macrophages; thus denoting its potential use as an antileishmanial candidate. In conclusion, this work presents a new drug target identified by a proteome mining strategy associated with bioinformatics tools, and suggested its use as a possible candidate to be applied in the treatment against disease.
Collapse
Affiliation(s)
- Miguel A Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora V C Mendonça
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel S Dias
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia A F Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lourena E Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vinicio T S Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
88
|
Kumar V, Sharma M, Rakesh BR, Malik CK, Neelagiri S, Neerupudi KB, Garg P, Singh S. Pyridoxal kinase: A vitamin B6 salvage pathway enzyme from Leishmania donovani. Int J Biol Macromol 2018; 119:320-334. [DOI: 10.1016/j.ijbiomac.2018.07.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/21/2022]
|
89
|
Prakash J, Yadav S, Saha G, Chiranjivi AK, Kumar S, Sasidharan S, Saudagar P, Dubey VK. Episomal expression of human glutathione reductase (HuGR) in Leishmania sheds light on evolutionary pressure for unique redox metabolism pathway: Impaired stress tolerance ability of Leishmania donovani. Int J Biol Macromol 2018; 121:498-507. [PMID: 30316767 DOI: 10.1016/j.ijbiomac.2018.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 11/26/2022]
Abstract
Trypanothione based redox metabolism is unique to the Trypanosomatida family. Despite extensive studies on redox metabolism of Leishmania parasites, a prominent question of why Leishmania adopt this unique redox pathway remains elusive. We have episomally expressed human glutathione reductase (HuGR) in Leishmania donovani (LdGR+) and investigated its effect. LdGR+ strain has slower growth compared to the wild type (Ld) indicating decreased survival ability of the strain. Further, LdGR+ strain showed enhanced accumulation of intracellular reactive oxygen species (ROS) and more sensitivity to the anti-leishmanial drug, Miltefosine, inferring increased stress level. In contrast, the expression analyses of genes specific to redox metabolism were increased significantly in LdGR+ strain compared to wild type. Lower infectivity index of the LdGR+ strain substantiated the above findings and indicated that the expression of HuGR reduces the stress tolerance ability of the parasite. From molecular docking studies with HuGR, it was observed that oxidized trypanothione (TS2) binds much better than oxidized glutathione (GS2). These results also give us hints that the parasite is losing infectivity potential due to an overall increase in intracellular stress caused with the expression of HuGR, showcasing a possible role of evolutionary pressure on the Leishmania parasites posed by HuGR.
Collapse
Affiliation(s)
- Jay Prakash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sunita Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, India
| | - Gundappa Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Adarsh Kumar Chiranjivi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Suresh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal 506004, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal 506004, India.
| | - Vikash Kumar Dubey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, India.
| |
Collapse
|
90
|
Kapil S, Singh PK, Silakari O. An update on small molecule strategies targeting leishmaniasis. Eur J Med Chem 2018; 157:339-367. [DOI: 10.1016/j.ejmech.2018.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 02/08/2023]
|
91
|
Rebello KM, Andrade-Neto VV, Zuma AA, Motta MCM, Gomes CRB, de Souza MVN, Atella GC, Branquinha MH, Santos ALS, Torres-Santos EC, d'Avila-Levy CM. Lopinavir, an HIV-1 peptidase inhibitor, induces alteration on the lipid metabolism of Leishmania amazonensis promastigotes. Parasitology 2018; 145:1304-1310. [PMID: 29806577 PMCID: PMC6137378 DOI: 10.1017/s0031182018000823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
The anti-leishmania effects of HIV peptidase inhibitors (PIs) have been widely reported; however, the biochemical target and mode of action are still a matter of controversy in Leishmania parasites. Considering the possibility that HIV-PIs induce lipid accumulation in Leishmania amazonensis, we analysed the effects of lopinavir on the lipid metabolism of L. amazonensis promastigotes. To this end, parasites were treated with lopinavir at different concentrations and analysed by fluorescence microscopy and spectrofluorimetry, using a fluorescent lipophilic marker. Then, the cellular ultrastructure of treated and control parasites was analysed by transmission electron microscopy (TEM), and the lipid composition was investigated by thin-layer chromatography (TLC). Finally, the sterol content was assayed by gas chromatography-mass spectrometry (GC/MS). TEM analysis revealed an increased number of lipid inclusions in lopinavir-treated cells, which was accompanied by an increase in the lipophilic content, in a dose-dependent manner. TLC and GC-MS analysis revealed a marked increase of cholesterol-esters and cholesterol. In conclusion, lopinavir-induced lipid accumulation and affected lipid composition in L. amazonensis in a concentration-response manner. These data contribute to a better understanding of the possible mechanisms of action of this HIV-PI in L. amazonensis promastigotes. The concerted action of lopinavir on this and other cellular processes, such as the direct inhibition of an aspartyl peptidase, may be responsible for the arrested development of the parasite.
Collapse
Affiliation(s)
- Karina M Rebello
- Laboratório de Estudos Integrados em Protozoologia,Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ),Rio de Janeiro,Brazil
| | - Valter V Andrade-Neto
- Laboratório de Bioquímica de Tripanosomatídeos,Instituto Oswaldo Cruz, FIOCRUZ,Rio de Janeiro,Brazil
| | - Aline A Zuma
- Laboratório de Ultraestrutura Celular Hertha Meyer,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ),Rio de Janeiro,Brazil
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ),Rio de Janeiro,Brazil
| | | | | | | | - Marta H Branquinha
- Laboratório de Investigação de Peptidases,Instituto de Microbiologia Paulo de Góes, UFRJ,Rio de Janeiro,Brazil
| | - André L S Santos
- Laboratório de Investigação de Peptidases,Instituto de Microbiologia Paulo de Góes, UFRJ,Rio de Janeiro,Brazil
| | | | - Claudia M d'Avila-Levy
- Laboratório de Estudos Integrados em Protozoologia,Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ),Rio de Janeiro,Brazil
| |
Collapse
|
92
|
Zhang Y, Xhaard H, Ghemtio L. Predictive classification models and targets identification for betulin derivatives as Leishmania donovani inhibitors. J Cheminform 2018; 10:40. [PMID: 30120601 PMCID: PMC6097978 DOI: 10.1186/s13321-018-0291-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/21/2018] [Indexed: 01/24/2023] Open
Abstract
Betulin derivatives have been proven effective in vitro against Leishmania donovani amastigotes, which cause visceral leishmaniasis. Identifying the molecular targets and molecular mechanisms underlying their action is a currently an unmet challenge. In the present study, we tackle this problem using computational methods to establish properties essential for activity as well as to screen betulin derivatives against potential targets. Recursive partitioning classification methods were explored to develop predictive models for 58 diverse betulin derivatives inhibitors of L. donovani amastigotes. The established models were validated on a testing set, showing excellent performance. Molecular fingerprints FCFP_6 and ALogP were extracted as the physicochemical properties most extensively involved in separating inhibitors from non-inhibitors. The potential targets of betulin derivatives inhibitors were predicted by in silico target fishing using structure-based pharmacophore searching and compound-pharmacophore-target-pathway network analysis, first on PDB and then among L. donovani homologs using a PSI-BLAST search. The essential identified proteins are all related to protein kinase family. Previous research already suggested members of the cyclin-dependent kinase family and MAP kinases as Leishmania potential drug targets. The PSI-BLAST search suggests two L. donovani proteins to be especially attractive as putative betulin target, heat shock protein 83 and membrane transporter D1.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00790, Helsinki, Finland.,Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00790, Helsinki, Finland
| | - Henri Xhaard
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00790, Helsinki, Finland.,Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00790, Helsinki, Finland
| | - Leo Ghemtio
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00790, Helsinki, Finland.
| |
Collapse
|
93
|
K R J, M R, M D, R S, Gad A, K J, P MI, Manuel AT, U C AJ. Feature optimization in high dimensional chemical space: statistical and data mining solutions. BMC Res Notes 2018; 11:463. [PMID: 30001749 PMCID: PMC6044099 DOI: 10.1186/s13104-018-3535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/26/2018] [Indexed: 11/27/2022] Open
Abstract
Objectives The primary goal of this experiment is to prioritize molecular descriptors that control the activity of active molecules that could reduce the dimensionality produced during the virtual screening process. It also aims to: (1) develop a methodology for sampling large datasets and the statistical verification of the sampling process, (2) apply screening filter to detect molecules with polypharmacological or promiscuous activity. Results Sampling from large a dataset and its verification were done by applying Z-test. Molecular descriptors were prioritized using principal component analysis (PCA) by eliminating the least influencing ones. The original dimensions were reduced to one-twelfth by the application of PCA. There was a significant improvement in statistical parameter values of virtual screening model which in turn resulted in better screening results. Further improvement of screened results was done by applying Eli Lilly MedChem rules filter that removed molecules with polypharmacological or promiscuous activity. It was also shown that similarities in the activity of compounds were due to the molecular descriptors which were not apparent in prima facie structural studies. Electronic supplementary material The online version of this article (10.1186/s13104-018-3535-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinuraj K R
- Research and Development Centre, Bharathiar University, Marudhamalai Rd, Coimbatore, TamilNadu, 641046, India
| | - Rakhila M
- Research and Development Centre, Bharathiar University, Marudhamalai Rd, Coimbatore, TamilNadu, 641046, India
| | - Dhanalakshmi M
- Research and Development Centre, Bharathiar University, Marudhamalai Rd, Coimbatore, TamilNadu, 641046, India
| | - Sajeev R
- Department of Chemistry, Malabar Christian College, Calicut, Kerala, 673001, India
| | - Akshata Gad
- OSPF-NIAS Drug Discovery Lab, NIAS, Indian Institute of Science Campus, Bengaluru, Karnataka, 560012, India
| | - Jayan K
- Department of Chemistry, Malabar Christian College, Calicut, Kerala, 673001, India
| | - Muhammed Iqbal P
- Department of Chemistry, University of Calicut, Malappuram, Kerala, 673635, India
| | - Andrew Titus Manuel
- OSPF-NIAS Drug Discovery Lab, NIAS, Indian Institute of Science Campus, Bengaluru, Karnataka, 560012, India
| | - Abdul Jaleel U C
- Principal Scientist , Cheminformatics, OSPF-NIAS Drug Discovery Lab, NIAS, Indian Institute of Science Campus, Bengaluru, Karnataka, 560012, India.
| |
Collapse
|
94
|
Teixeira de Macedo Silva S, Visbal G, Lima Prado Godinho J, Urbina JA, de Souza W, Cola Fernandes Rodrigues J. In vitro antileishmanial activity of ravuconazole, a triazole antifungal drug, as a potential treatment for leishmaniasis. J Antimicrob Chemother 2018; 73:2360-2373. [DOI: 10.1093/jac/dky229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/21/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sara Teixeira de Macedo Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Gonzalo Visbal
- Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, Brazil
| | - Joseane Lima Prado Godinho
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Julio A Urbina
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Juliany Cola Fernandes Rodrigues
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
- Núcleo Multidisciplinar de Pesquisa UFRJ-Xerém, Divisão Biologia, Universidade Federal do Rio de Janeiro, Campus Duque de Caxias, Rio de Janeiro, Brazil
| |
Collapse
|
95
|
da Silva RA, Pereira LDM, Silveira MC, Jardim R, de Miranda AB. Mining of potential drug targets through the identification of essential and analogous enzymes in the genomes of pathogens of Glycine max, Zea mays and Solanum lycopersicum. PLoS One 2018; 13:e0197511. [PMID: 29799863 PMCID: PMC5969768 DOI: 10.1371/journal.pone.0197511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/03/2018] [Indexed: 01/19/2023] Open
Abstract
Pesticides are one of the most widely used pest and disease control measures in plant crops and their indiscriminate use poses a direct risk to the health of populations and environment around the world. As a result, there is a great need for the development of new, less toxic molecules to be employed against plant pathogens. In this work, we employed an in silico approach to study the genes coding for enzymes of the genomes of three commercially important plants, soybean (Glycine max), tomato (Solanum lycopersicum) and corn (Zea mays), as well as 15 plant pathogens (4 bacteria and 11 fungi), focusing on revealing a set of essential and non-homologous isofunctional enzymes (NISEs) that could be prioritized as drug targets. By combining sequence and structural data, we obtained an initial set of 568 cases of analogy, of which 97 were validated and further refined, revealing a subset of 29 essential enzymatic activities with a total of 119 different structural forms, most belonging to central metabolic routes, including the carbohydrate metabolism, the metabolism of amino acids, among others. Further, another subset of 26 enzymatic activities possess a tertiary structure specific for the pathogen, not present in plants, men and Apis mellifera, which may be of importance for the development of specific enzymatic inhibitors against plant diseases that are less harmful to humans and the environment.
Collapse
Affiliation(s)
| | | | | | - Rodrigo Jardim
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
96
|
Vadloori B, Sharath AK, Prabhu NP, Maurya R. Homology modelling, molecular docking, and molecular dynamics simulations reveal the inhibition of Leishmania donovani dihydrofolate reductase-thymidylate synthase enzyme by Withaferin-A. BMC Res Notes 2018; 11:246. [PMID: 29661206 PMCID: PMC5902840 DOI: 10.1186/s13104-018-3354-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/11/2018] [Indexed: 01/21/2023] Open
Abstract
Objective Present in silico study was carried out to explore the mode of inhibition of Leishmania donovani dihydrofolate reductase-thymidylate synthase (Ld DHFR-TS) enzyme by Withaferin-A, a withanolide isolated from Withania somnifera. Withaferin-A (WA) is known for its profound multifaceted properties, but its antileishmanial activity is not well understood. The parasite’s DHFR-TS enzyme is diverse from its mammalian host and could be a potential drug target in parasites. Results A 3D model of Ld DHFR-TS enzyme was built and verified using Ramachandran plot and SAVES tools. The protein was docked with WA-the ligand, methotrexate (MTX)-competitive inhibitor of DHFR, and dihydrofolic acid (DHFA)-substrate for DHFR-TS. Molecular docking studies reveal that WA competes for active sites of both Hu DHFR and TS enzymes whereas it binds to a site other than active site in Ld DHFR-TS. Moreover, Lys 173 residue of DHFR-TS forms a H-bond with WA and has higher binding affinity to Ld DHFR-TS than Hu DHFR and Hu TS. The MD simulations confirmed the H-bonding interactions were stable. The binding energies of WA with Ld DHFR-TS were calculated using MM-PBSA. Homology modelling, molecular docking and MD simulations of Ld DHFR-TS revealed that WA could be a potential anti-leishmanial drug. Electronic supplementary material The online version of this article (10.1186/s13104-018-3354-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bharadwaja Vadloori
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad, 500046, India
| | - A K Sharath
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - N Prakash Prabhu
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Radheshyam Maurya
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
97
|
Abstract
AbstractThe protozoan parasiteLeishmaniais endemic in large parts of the world which causes leishmaniasis. Its visceral form is fatal if not treated and is caused mostly byLeishmania donovani,Leishmania infantumandLeishmania chagasi. Given the difficulties linked to vector (sandfly) control and the lack of an effective vaccine, the control of leishmaniasis relies mostly on chemotherapy. Unfortunately, the prevalence of parasites becoming resistant to the first-line drug pentavalent antimony (SbV) is increasing worldwide. Few alternative drugs are available that includes amphotericin B, pentamidine and miltefosine (oral). Already, decreases in efficacy, resistance and toxicity have been noted against these drugs. Dry antileishmanial pipeline further indicates the slow pace of drug discovery in this field where resistance as a major barrier. Full understanding of the genetic and molecular basis of the parasite is lagging. Since leishmaniasis is a neglected disease and occurs predominantly in the developing world largely, therefore, it is unaddressed. The pharma industry argues that development of the new drug is too costly and risky to invest in low return neglected diseases is very high. Research is also needed to identify new and effective drug targets. The lack of drug research and development for neglected diseases will require some new strategies. We have discussed the various cause of slow pace of antileishmanial drug discovery in this review to pay attention of researchers and also take the public and private initiative to make the process fast for new antileishmanial drug development.
Collapse
|
98
|
Harigua-Souiai E, Abdelkrim YZ, Bassoumi-Jamoussi I, Zakraoui O, Bouvier G, Essafi-Benkhadir K, Banroques J, Desdouits N, Munier-Lehmann H, Barhoumi M, Tanner NK, Nilges M, Blondel A, Guizani I. Identification of novel leishmanicidal molecules by virtual and biochemical screenings targeting Leishmania eukaryotic translation initiation factor 4A. PLoS Negl Trop Dis 2018; 12:e0006160. [PMID: 29346371 PMCID: PMC5790279 DOI: 10.1371/journal.pntd.0006160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/30/2018] [Accepted: 12/11/2017] [Indexed: 01/25/2023] Open
Abstract
Leishmaniases are neglected parasitic diseases in spite of the major burden they inflict on public health. The identification of novel drugs and targets constitutes a research priority. For that purpose we used Leishmania infantum initiation factor 4A (LieIF), an essential translation initiation factor that belongs to the DEAD-box proteins family, as a potential drug target. We modeled its structure and identified two potential binding sites. A virtual screening of a diverse chemical library was performed for both sites. The results were analyzed with an in-house version of the Self-Organizing Maps algorithm combined with multiple filters, which led to the selection of 305 molecules. Effects of these molecules on the ATPase activity of LieIF permitted the identification of a promising hit (208) having a half maximal inhibitory concentration (IC50) of 150 ± 15 μM for 1 μM of protein. Ten chemical analogues of compound 208 were identified and two additional inhibitors were selected (20 and 48). These compounds inhibited the mammalian eIF4I with IC50 values within the same range. All three hits affected the viability of the extra-cellular form of L. infantum parasites with IC50 values at low micromolar concentrations. These molecules showed non-significant toxicity toward THP-1 macrophages. Furthermore, their anti-leishmanial activity was validated with experimental assays on L. infantum intramacrophage amastigotes showing IC50 values lower than 4.2 μM. Selected compounds exhibited selectivity indexes between 19 to 38, which reflects their potential as promising anti-Leishmania molecules.
Collapse
Affiliation(s)
- Emna Harigua-Souiai
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Yosser Zina Abdelkrim
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
- Laboratory of Microbial Gene Expression (EGM), CNRS UMR8261/Université Paris Diderot P7, Sorbonne Paris Cité & PSL, Institut de Biologie Physico-Chimique, Paris, France
- Faculté des Sciences de Bizerte, Université de Carthage, Tunis, Tunisia
| | - Imen Bassoumi-Jamoussi
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
| | - Ons Zakraoui
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
| | - Guillaume Bouvier
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Khadija Essafi-Benkhadir
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
| | - Josette Banroques
- Laboratory of Microbial Gene Expression (EGM), CNRS UMR8261/Université Paris Diderot P7, Sorbonne Paris Cité & PSL, Institut de Biologie Physico-Chimique, Paris, France
| | - Nathan Desdouits
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Hélène Munier-Lehmann
- Institut Pasteur, Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Paris, France
- Unité Mixte de Recherche 3523, Centre National de la Recherche Scientifique, Paris, France
| | - Mourad Barhoumi
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
| | - N. Kyle Tanner
- Laboratory of Microbial Gene Expression (EGM), CNRS UMR8261/Université Paris Diderot P7, Sorbonne Paris Cité & PSL, Institut de Biologie Physico-Chimique, Paris, France
| | - Michael Nilges
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Arnaud Blondel
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
| |
Collapse
|
99
|
Borsari C, Quotadamo A, Ferrari S, Venturelli A, Cordeiro-da-Silva A, Santarem N, Costi MP. Scaffolds and Biological Targets Avenue to Fight Against Drug Resistance in Leishmaniasis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018. [DOI: 10.1016/bs.armc.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
100
|
Abid H, Harigua-Souiai E, Mejri T, Barhoumi M, Guizani I. Leishmania infantum 5'-Methylthioadenosine Phosphorylase presents relevant structural divergence to constitute a potential drug target. BMC STRUCTURAL BIOLOGY 2017; 17:9. [PMID: 29258562 PMCID: PMC5738077 DOI: 10.1186/s12900-017-0079-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/21/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND The 5'-methylthioadenosine phosphorylase (MTAP), an enzyme involved in purine and polyamine metabolism and in the methionine salvage pathway, is considered as a potential drug target against cancer and trypanosomiasis. In fact, Trypanosoma and Leishmania parasites lack de novo purine pathways and rely on purine salvage pathways to meet their requirements. Herein, we propose the first comprehensive bioinformatic and structural characterization of the putative Leishmania infantum MTAP (LiMTAP), using a comparative computational approach. RESULTS Sequence analysis showed that LiMTAP shared higher identity rates with the Trypanosoma brucei (TbMTAP) and the human (huMTAP) homologs as compared to the human purine nucleoside phosphorylase (huPNP). Motifs search using MEME identified more common patterns and higher relatedness of the parasite proteins to the huMTAP than to the huPNP. The 3D structures of LiMTAP and TbMTAP were predicted by homology modeling and compared to the crystal structure of the huMTAP. These models presented conserved secondary structures compared to the huMTAP, with a similar topology corresponding to the Rossmann fold. This confirmed that both LiMTAP and TbMTAP are members of the NP-I family. In comparison to the huMTAP, the 3D model of LiMTAP showed an additional α-helix, at the C terminal extremity. One peptide located in this specific region was used to generate a specific antibody to LiMTAP. In comparison with the active site (AS) of huMTAP, the parasite ASs presented significant differences in the shape and the electrostatic potentials (EPs). Molecular docking of 5'-methylthioadenosine (MTA) and 5'-hydroxyethylthio-adenosine (HETA) on the ASs on the three proteins predicted differential binding modes and interactions when comparing the parasite proteins to the human orthologue. CONCLUSIONS This study highlighted significant structural peculiarities, corresponding to functionally relevant sequence divergence in LiMTAP, making of it a potential drug target against Leishmania.
Collapse
Affiliation(s)
- Hela Abid
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/ LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia.,Faculté des Sciences de Bizerte, Université de Carthage, Tunis, Tunisie
| | - Emna Harigua-Souiai
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/ LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Thouraya Mejri
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/ LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Mourad Barhoumi
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/ LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/ LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|