51
|
Ala-Kopsala M, Moilanen AM, Rysä J, Ruskoaho H, Vuolteenaho O. Characterization of Molecular Forms of N-Terminal B-Type Natriuretic Peptide In Vitro. Clin Chem 2010; 56:1822-9. [DOI: 10.1373/clinchem.2010.148775] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND
The heterogeneity of circulating peptides may influence the interpretation of results from N-terminal profragment of BNP (NT-proBNP) assays. Our objective was to characterize the heterogeneity for better usability of the assays.
METHODS
Endogenous proBNP was purified from patient samples and treated with trifluoromethanesulfonic acid (chemical deglycosylation). The human proBNP gene was introduced into rat hearts by adenoviral transfer. Cell lysates and plasma samples containing proBNP-derived peptides were analyzed by chromatography. The fate of exogenous recombinant NT-proBNP added to fresh whole blood samples was followed by immunoassays and chromatography. The main NT-proBNP components were isolated and identified by mass spectrometry.
RESULTS
Immunoreactive NT-proBNP in human plasma comprised several molecular forms, as did circulating immunoreactive human NT-proBNP after adenoviral transfer of human proBNP cDNA into rat ventricular myocardium. Incubation of recombinant NT-proBNP1–76 in human plasma or serum resulted in multiple components with the 2 major components identified as NT-proBNP1–36 and NT-proBNP1–62/64. Profiling by different antisera and chromatography indicated masking of the non–mid-region epitopes likely due to formation of oligomers. More than 75% of the original immunoreactivity in the mid-region epitope was retained after 3-week storage of plasma samples at room temperature.
CONCLUSIONS
There is marked heterogeneity in immunoreactive NT-proBNP in plasma not related to glycosylation. The mid-region epitope of NT-proBNP is stable even in harsh storage conditions. Careful choice of antibody epitopes can yield extraordinarily robust assays.
Collapse
Affiliation(s)
| | - Anne-Mari Moilanen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jaana Rysä
- Department of Pharmacology and Toxicology, Institute of Biomedicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Heikki Ruskoaho
- Department of Pharmacology and Toxicology, Institute of Biomedicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | | |
Collapse
|
52
|
Kallert DM, Ponader S, Adelt S, Kaese P, Geyer R, Haas W, El-Matbouli M. Analysis of rainbow trout Oncorhynchus mykiss epidermal mucus and evaluation of semiochemical activity for polar filament discharge in Myxobolus cerebralis actinospores. JOURNAL OF FISH BIOLOGY 2010; 77:1579-1598. [PMID: 21078020 DOI: 10.1111/j.1095-8649.2010.02785.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
As myxozoan actinospores are stimulated by fish epidermal mucus to attach to their hosts via extrusion of filaments from specialized organelles, the polar capsules, mucus components were tested for discharge triggering activity on Myxobolus cerebralis actinospores. Using various methodological approaches, a selective exclusion of candidate substances based on experimental outcome is provided and the physiochemical traits of the putative agents are explored to create a basis for the isolation of the host recognition chemostimuli. Activity was detected in compounds that can be characterized as small molecular, amphiphilic to slightly hydrophobic organic substances. They were separable by chromatographic methods using reversed phase C18 supports. An active fraction was isolated by solid phase extraction comprising at least nine UV-detectable constituents as shown by thin-layer chromatography. By means of biochemical fractionation and analysis of host fish mucus, non-volatile inorganic electrolytes, all volatiles, free L-amino acids, glycoproteins, bound and free hexoses, sialic acids, glycans, proteins, urea, amines and inositols were shown not to trigger polar filament discharge. The results contribute to the identification of the attachment host cues and enable a more focused laboratory activation of myxozoan actinospores.
Collapse
Affiliation(s)
- D M Kallert
- Fish Medicine and Livestock Management, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
53
|
Biochemical signatures of doppel protein in human astrocytomas to support prediction in tumor malignancy. J Biomed Biotechnol 2010; 2010:301067. [PMID: 20981146 PMCID: PMC2957138 DOI: 10.1155/2010/301067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 09/09/2010] [Accepted: 09/17/2010] [Indexed: 11/25/2022] Open
Abstract
Doppel (Dpl) is a membrane-bound glycoprotein mainly expressed in the testis of adult healthy people. It is generally absent in the central nervous system, but its coding gene sequence is ectopically expressed in astrocytoma specimens and in derived cell lines. In this paper, we investigated the expression and the biochemical features of Dpl in a panel of 49 astrocytoma specimens of different WHO malignancy grades. As a result, Dpl was expressed in the majority of the investigated specimens (86%), also including low grade samples. Importantly, Dpl exhibited different cellular localizations and altered glycan moieties composition, depending on the tumor grade. Most low-grade astrocytomas (83%) showed a membrane-bound Dpl, like human healthy testis tissue, whereas the majority of high-grade astrocytomas (75%) displayed a cytosolic Dpl. Deglycosylation studies with N-glycosidase F and/or neuraminidase highlighted defective glycan moieties and an unexpected loss of sialic acid. To find associations between glial tumor progression and Dpl biochemical features, predictive bioinformatics approaches were produced. In particular, Decision tree and Nomogram analysis showed well-defined Dpl-based criteria that separately clustered low-and high-grade astrocytomas. Taken together, these findings show that in astrocytomas, Dpl undergoes different molecular processes that might constitute additional helpful tools to characterize the glial tumor progression.
Collapse
|
54
|
Asakura H, Churin Y, Bauer B, Boettcher JP, Bartfeld S, Hashii N, Kawasaki N, Mollenkopf HJ, Jungblut PR, Brinkmann V, Meyer TF. Helicobacter pylori HP0518 affects flagellin glycosylation to alter bacterial motility. Mol Microbiol 2010; 78:1130-44. [PMID: 21091500 DOI: 10.1111/j.1365-2958.2010.07393.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori is a human gastric pathogen associated with gastric and duodenal ulcers as well as gastric cancer. Mounting evidence suggests this pathogen's motility is prerequisite for successful colonization of human gastric tissues. Here, we isolated an H. pylori G27 HP0518 mutant exhibiting altered motility in comparison to its parental strain. We show that the mutant's modulated motility is linked to increased levels of O-linked glycosylation on flagellin A (FlaA) protein. Recombinant HP0518 protein decreased glycosylation levels of H. pylori flagellin in vitro, indicating that HP0518 functions in deglycosylation of FlaA protein. Furthermore, mass spectrometric analysis revealed increased glycosylation of HP0518 FlaA was due to a change in pseudaminic acid (Pse) levels on FlaA; HP0518 mutant-derived flagellin contained approximately threefold more Pse than the parental strain. Further phenotypic and molecular characterization demonstrated that the hyper-motile HP0518 mutant exhibits superior colonization capabilities and subsequently triggers enhanced CagA phosphorylation and NF-κB activation in AGS cells. Our study shows that HP0518 is involved in the deglycosylation of flagellin, thereby regulating pathogen motility. These findings corroborate the prominent function of H. pylori flagella in pathogen-host cell interactions and modulation of host cell responses, likely influencing the pathogenesis process.
Collapse
Affiliation(s)
- Hiroshi Asakura
- Department of Molecular Biology and Core Facilities for Genomics, Max Planck Institute for Infection Biology, Cháriteplatz 1, Campus Chárite, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Heron BT, Sateriale A, Teixeira JE, Huston CD. Evidence for a novel Entamoeba histolytica lectin activity that recognises carbohydrates present on ovalbumin. Int J Parasitol 2010; 41:137-44. [PMID: 20807536 DOI: 10.1016/j.ijpara.2010.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 07/19/2010] [Indexed: 11/29/2022]
Abstract
Entamoeba histolytica, an intestinal amoeba that causes dysentery and liver abscesses, acquires nutrients by engulfing bacteria in the colonic lumen and phagocytoses apoptotic cells during tissue invasion. In preliminary studies to identify ligands that stimulate amoebic phagocytosis, we used ovalbumin immobilized on latex particles as a potential negative control protein. Surprisingly, ovalbumin strongly stimulated E. histolytica particle uptake. Experiments using highly purified ovalbumin confirmed the specificity of this finding. The mechanism of particle uptake was actin-dependent, and the Entamoeba phagosome marker amoebapore A localised to ovalbumin-bead containing vacuoles. The most well described amoebic receptor is a Gal/GalNAc-specific lectin, but d-galactose had no effect on ovalbumin-stimulated phagocytosis. Ovalbumin has a single N-glycosylation site (Asn(292)) and is modified with oligomannose and hybrid-type oligosaccharides. We used both trifluoromethanesulfonic acid and N-glycanase to deglycosylate ovalbumin and tested the effect. Both methods substantially reduced the stimulatory effect of ovalbumin. Biotinylated ovalbumin bound the surface of fixed E. histolytica trophozoites saturably; furthermore, denatured ovalbumin and native ovalbumin both specifically inhibited ovalbumin-biotin binding, but deglycosylated ovalbumin had no effect. Collectively, these data suggest that E. histolytica has a previously unrecognised surface lectin activity that binds to carbohydrates on ovalbumin and stimulates phagocytosis.
Collapse
Affiliation(s)
- Bradley T Heron
- Cell and Molecular Biology Program, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
56
|
Harris EN, Parry S, Sutton-Smith M, Pandey MS, Panico M, Morris HR, Haslam SM, Dell A, Weigel PH. N-Glycans on the link domain of human HARE/Stabilin-2 are needed for hyaluronan binding to purified ecto-domain, but not for cellular endocytosis of hyaluronan. Glycobiology 2010; 20:991-1001. [PMID: 20466649 PMCID: PMC2895729 DOI: 10.1093/glycob/cwq057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/01/2010] [Accepted: 04/07/2010] [Indexed: 01/08/2023] Open
Abstract
The hyaluronic acid receptor for endocytosis (HARE)/Stabilin-2 is the primary systemic scavenger receptor for 13 ligands including hyaluronan (HA), heparin and chondroitin sulfates. Most ligand-binding sites are within the 190 kDa isoform, which contains approximately 25 kDa of N-glycans and is the C-terminal half of the full-length 315 kDa HARE. Glycoproteomic analyses of purified recombinant human 190-HARE ecto-domain identified a diverse population of glycans at 10 of 17 consensus sites. The most diversity (and the only sialylated structures) occurred at N(2280), within the HA-binding Link domain. To determine if these N-glycans are required for HA binding, we created human Flp-In 293 cell lines expressing membrane-bound or soluble ecto-domain variants of 190-HARE(N2280A). Membrane-bound HARE lacking Link domain N-glycans mediated rapid HA endocytosis, but purified 190-HARE(N2280A) ecto-domain showed little or no HA binding in ELISA-like, HA-HARE pull-down assays or by surface plasmon resonance analysis (which detected very high apparent affinity for 190-HARE ecto-domain binding to HA; K(d) = 5.2 nM). The results indicate that Link domain N-glycans stabilize interactions that facilitate HA binding to HARE.
Collapse
Affiliation(s)
- Edward N Harris
- Department of Biochemistry & Molecular Biology and The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Simon Parry
- Division of Molecular Biosciences, Imperial College, SW7 2AZ, London, UK
| | - Mark Sutton-Smith
- Division of Molecular Biosciences, Imperial College, SW7 2AZ, London, UK
| | - Madhu S Pandey
- Department of Biochemistry & Molecular Biology and The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Maria Panico
- Division of Molecular Biosciences, Imperial College, SW7 2AZ, London, UK
| | - Howard R Morris
- Division of Molecular Biosciences, Imperial College, SW7 2AZ, London, UK
- M-SCAN Ltd., Wokingham, Berks, RG41 2TZ, UK
| | - Stuart M Haslam
- Division of Molecular Biosciences, Imperial College, SW7 2AZ, London, UK
| | - Anne Dell
- Division of Molecular Biosciences, Imperial College, SW7 2AZ, London, UK
| | - Paul H Weigel
- Department of Biochemistry & Molecular Biology and The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| |
Collapse
|
57
|
Lisova ZA, Lisov AV, Leontievsky AA. Two laccase isoforms of the basidiomycete Cerrena unicolor VKMF-3196. Induction, isolation and properties. J Basic Microbiol 2010; 50:72-82. [PMID: 20175123 DOI: 10.1002/jobm.200900382] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The laccase induction in submerged culture of basidiomycete Cerrena unicolor VKM F-3196 was investigated. Cu(2+) at concentration 0.1 mM was an optimum inducer of C. unicolor laccase. Two isoforms of laccase, namely LacC1 and LacC2, were isolated and characterized. The isoforms were shown to have different physical-chemical and catalytic properties. On the basis of the MALDI TOF MS analysis of tryptic cleavage products of both the proteins and N-terminal amino-acid sequences analysis two isoforms of laccase (LacC1 and LacC2) were classified as products of two different genes.
Collapse
Affiliation(s)
- Zoya Alexandrovna Lisova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Russian Federation, Pushchino, Moscow region, Prospekt Nauki.
| | | | | |
Collapse
|
58
|
LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Appl Environ Microbiol 2009; 76:733-43. [PMID: 19966030 DOI: 10.1128/aem.01757-09] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laccases couple the oxidation of phenolic compounds to the reduction of molecular oxygen and thus span a wide variety of applications. While laccases of eukaryotes and bacteria are well characterized, these enzymes have not been described in archaea. Here, we report the purification and characterization of a laccase (LccA) from the halophilic archaeon Haloferax volcanii. LccA was secreted at high levels into the culture supernatant of a recombinant H. volcanii strain, with peak activity (170 +/- 10 mU.ml(-)(1)) at stationary phase (72 to 80 h). LccA was purified 13-fold to an overall yield of 72% and a specific activity of 29.4 U.mg(-)(1) with an absorbance spectrum typical of blue multicopper oxidases. The mature LccA was processed to expose an N-terminal Ala after the removal of 31 amino acid residues and was glycosylated to 6.9% carbohydrate content. Purified LccA oxidized a variety of organic substrates, including bilirubin, syringaldazine (SGZ), 2,2,-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and dimethoxyphenol (DMP), with DMP oxidation requiring the addition of CuSO(4). Optimal oxidation of ABTS and SGZ was at 45 degrees C and pH 6 and pH 8.4, respectively. The apparent K(m) values for SGZ, bilirubin, and ABTS were 35, 236, and 670 muM, with corresponding k(cat) values of 22, 29, and 10 s(-)(1), respectively. The purified LccA was tolerant of high salt, mixed organosolvents, and high temperatures, with a half-life of inactivation at 50 degrees C of 31.5 h.
Collapse
|
59
|
Dwevedi A, Kayastha AM. A beta-galactosidase from pea seeds (PsBGAL): purification, stabilization, catalytic energetics, conformational heterogeneity, and its significance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:7086-96. [PMID: 19552429 DOI: 10.1021/jf900874p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A basic glycosylated beta-galactosidase (PsBGAL) has been purified from pea seeds by 910-fold with a specific activity of 77.33 mumoL min(-1) mg(-1) protein. The purified enzyme is an electrophoretically homogeneous protein consisting of a single protein band with an apparent M(r) of 55 kDa, while the deglycosylated enzyme has a M(r) of 54.2 kDa on SDS-PAGE under reducing conditions. According to MALDI-TOF measurements of the 55 kDa band, the enzyme showed a homology with BGAL from other sources present in the SWISS-PROT database, while it showed no resemblance to any lectin. The N-terminal sequence of PsBGAL was determined as TIECK and showed a resemblance to BGAL from Arabidopsis thaliana (Q93Z24). The enzyme showed an unique property of multiple banding patterns on SDS-PAGE at 20 mA current, with tryptic digests of all bands having similar m/z values (using MALDI-TOF) while it showed only a single band at 10 mA current. PsBGAL is effectively compartmentalized during seed maturation inside vacuoles (pH approximately 5). The enzyme is capable of hydrolyzing pea seed xyloglucan, and it may be involved in modifying the cell wall architecture during seedling growth and development. The enzyme has a protonated carboxyl group at its active site as observed by ionization constant, thermodynamics, and chemical modification studies.
Collapse
Affiliation(s)
- Alka Dwevedi
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, UP-221005, India
| | | |
Collapse
|
60
|
Characterization of a 52 kDa Exoantigen of Penicillium chrysogenum and Monoclonal Antibodies Suitable for its Detection. Mycopathologia 2009; 169:15-26. [DOI: 10.1007/s11046-009-9226-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
|
61
|
Calreticulin enhances B2 bradykinin receptor maturation and heterodimerization. Biochem Biophys Res Commun 2009; 387:186-90. [PMID: 19580784 DOI: 10.1016/j.bbrc.2009.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 07/01/2009] [Indexed: 11/22/2022]
Abstract
In different native tissues and cells the receptor for the vasodepressor bradykinin, B(2), forms dimers with the receptor for the vasopressor angiotensin II, AT(1). Because AT(1)/B(2) heterodimers may contribute to enhanced angiotensin II-stimulated signaling under pathophysiological conditions, we analyzed mechanisms of AT(1)/B(2) heterodimerization. We found that efficient B(2) receptor maturation was a prerequisite for heterodimerization because only the fully mature B(2) receptor was capable to interact with AT(1). To identify chaperones involved in B(2) receptor maturation and heterodimerization we performed microarray gene expression profiling of human embryonic kidney (HEK293) cells. The expression of the chaperone calreticulin was up-regulated in cells with efficient B(2) receptor maturation. Vice versa, upon down regulation of calreticulin expression by RNA interference, B(2) receptor maturation and AT(1)/B(2) receptor heterodimerization were significantly impaired. Concomitantly, the B(2) receptor-mediated enhancement of AT(1)-stimulated signaling was reduced. Thus, calreticulin enhances B(2) receptor maturation and heterodimerization with AT(1).
Collapse
|
62
|
Semenov AG, Postnikov AB, Tamm NN, Seferian KR, Karpova NS, Bloshchitsyna MN, Koshkina EV, Krasnoselsky MI, Serebryanaya DV, Katrukha AG. Processing of Pro–Brain Natriuretic Peptide Is Suppressed by O-Glycosylation in the Region Close to the Cleavage Site. Clin Chem 2009; 55:489-98. [DOI: 10.1373/clinchem.2008.113373] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Processing of the brain natriuretic peptide (BNP) precursor, proBNP, is a convertase-dependent reaction that produces 2 molecules—the active BNP hormone and the N-terminal part of proBNP (NT-proBNP). Although proBNP was first described more than 15 years ago, very little is known about the cellular mechanism of its processing. The study of proBNP processing mechanisms is important, because processing impairments could be associated with the development of heart failure (HF).
Methods: The biochemical properties of recombinant proBNP and NT-proBNP and the same molecules derived from the blood of HF patients were analyzed by gel-filtration chromatography, site-directed mutagenesis, and different immunochemical methods with a panel of monoclonal antibodies (MAbs).
Results: Part of the proBNP molecule (amino acid residues 61–76) located near the cleavage site was inaccessible to specific MAbs because of the presence of O-glycans, whereas the same region in NT-proBNP was completely accessible. We demonstrated that a convertase (furin) could effectively cleave deglycosylated (but not intact) proBNP. Of several mutant proBNP forms produced in a HEK 293 cell line, only the T71A variant was effectively processed in the cell.
Conclusions: Only proBNP that was not glycosylated in the region of the cleavage site could effectively be processed into BNP and NT-proBNP. Site-directed mutagenesis enabled us to ascertain the unique suppressing role of T71-bound O-glycan in proBNP processing.
Collapse
|
63
|
de Morais KB, Vieira CO, Hirata IY, Tanaka-Azevedo AM. Bothrops jararaca antithrombin: Isolation, characterization and comparison with other animal antithrombins. Comp Biochem Physiol B Biochem Mol Biol 2009; 152:171-6. [DOI: 10.1016/j.cbpb.2008.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 11/04/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
|
64
|
Hashimoto M, Takahashi M. Effective Friedel-Crafts Acylations of O- and C-Arylglycosides with Triflic Acid. HETEROCYCLES 2009. [DOI: 10.3987/com-08-s(f)39] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
65
|
Core glycosylation of collagen is initiated by two beta(1-O)galactosyltransferases. Mol Cell Biol 2008; 29:943-52. [PMID: 19075007 DOI: 10.1128/mcb.02085-07] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Collagen is a trimer of three left-handed alpha chains representing repeats of the motif Gly-X-Y, where (hydroxy)proline and (hydroxy)lysine residues are often found at positions X and Y. Selected hydroxylysines are further modified by the addition of galactose and glucose-galactose units. Collagen glycosylation takes place in the endoplasmic reticulum before triple-helix formation and is mediated by beta(1-O)galactosyl- and alpha(1-2)glucosyltransferase enzymes. We have identified two collagen galactosyltransferases using affinity chromatography and tandem mass spectrometry protein sequencing. The two collagen beta(1-O)galactosyltransferases corresponded to the GLT25D1 and GLT25D2 proteins. Recombinant GLT25D1 and GLT25D2 enzymes showed a strong galactosyltransferase activity toward various types of collagen and toward the serum mannose-binding lectin MBL, which contains a collagen domain. Amino acid analysis of the products of GLT25D1 and GLT25D2 reactions confirmed the transfer of galactose to hydroxylysine residues. The GLT25D1 gene is constitutively expressed in human tissues, whereas the GLT25D2 gene is expressed only at low levels in the nervous system. The GLT25D1 and GLT25D2 enzymes are similar to CEECAM1, to which we could not attribute any collagen galactosyltransferase activity. The GLT25D1 and GLT25D2 genes now allow addressing of the biological significance of collagen glycosylation and the importance of this posttranslational modification in the etiology of connective tissue disorders.
Collapse
|
66
|
Marie B, Luquet G, Bédouet L, Milet C, Guichard N, Medakovic D, Marin F. Nacre Calcification in the Freshwater MusselUnio pictorum: Carbonic Anhydrase Activity and Purification of a 95 kDa Calcium-Binding Glycoprotein. Chembiochem 2008; 9:2515-23. [DOI: 10.1002/cbic.200800159] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
67
|
Besler M, Steinhart H, Paschke A. Allergenicity of hen's egg‐white proteins: IgE binding of native and deglycosylated ovomucoid. FOOD AGR IMMUNOL 2008. [DOI: 10.1080/09540109709354958] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
68
|
Li M, Lin N, Huang Z, Du L, Altier C, Fang H, Wang B. Selecting aptamers for a glycoprotein through the incorporation of the boronic acid moiety. J Am Chem Soc 2008; 130:12636-8. [PMID: 18763762 DOI: 10.1021/ja801510d] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first general method for the selection of boronic acid-based aptamers (boronolectins) that allows for glycan substructure focusing is described. Using fibrinogen as a model glycoprotein, we have selected boronic acid-modified DNA aptamers that have high affinities (low nM Kd) and the ability to recognize changes in the glycosylation site. The method developed should also be applicable to the development of aptamers for other glycoproducts, such as glycolipids and glycopeptides.
Collapse
Affiliation(s)
- Minyong Li
- Department of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Yamazaki H, Tanaka A, Kaneko JI, Ohta A, Horiuchi H. Aspergillus nidulans ChiA is a glycosylphosphatidylinositol (GPI)-anchored chitinase specifically localized at polarized growth sites. Fungal Genet Biol 2008; 45:963-72. [PMID: 18420434 DOI: 10.1016/j.fgb.2008.02.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 02/25/2008] [Accepted: 02/25/2008] [Indexed: 11/26/2022]
Abstract
It is believed that chitinases play important physiological roles in filamentous fungi since chitin is one of the major cell wall components in these organisms. In this paper we investigated a chitinase gene, chiA, of Aspergillus nidulans and found that the gene product of chiA consists of a signal sequence, a region including chitinase consensus motifs, a Ser/Thr/Pro-rich region and a glycosylphosphatidylinositol (GPI)-anchor attachment motif. Phosphatidylinositol-specific phospholipase C treatment of the fusion protein of ChiA and enhanced green fluorescent protein (EGFP)-ChiA-EGFP-caused a change in its hydrophobicity, indicating that ChiA is a GPI-anchored protein. ChiA-EGFP localized at the germ tubes of conidia, at hyphal branching sites and hyphal tips. chiA expression was specifically high during conidia germination and in the marginal growth regions of colonies. These results suggest that ChiA functions as a GPI-anchored chitinase at the sites where cell wall remodeling and/or cell wall maturation actively take place.
Collapse
Affiliation(s)
- Harutake Yamazaki
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
70
|
Abstract
Filamentous fungi have been recognized as extraordinary producers of secreted proteins and are known to produce novel proteins and enzymes through dispensable metabolic pathways. Here, methods are described for the isolation and enrichment of samples of secreted proteins from cultures of filamentous fungi for analysis by gel electrophoresis and mass spectrometry techniques. These methods can be readily applied to the study of differential protein expression and secretion and metabolic pathways in filamentous fungi by proteomic approaches.
Collapse
|
71
|
|
72
|
|
73
|
Marie B, Luquet G, Pais De Barros JP, Guichard N, Morel S, Alcaraz G, Bollache L, Marin F. The shell matrix of the freshwater mussel Unio pictorum (Paleoheterodonta, Unionoida). Involvement of acidic polysaccharides from glycoproteins in nacre mineralization. FEBS J 2007; 274:2933-45. [PMID: 17488282 DOI: 10.1111/j.1742-4658.2007.05825.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Among molluscs, the shell biomineralization process is controlled by a set of extracellular macromolecular components secreted by the calcifying mantle. In spite of several studies, these components are mainly known in bivalves from only few members of pteriomorph groups. In the present case, we investigated the biochemical properties of the aragonitic shell of the freshwater bivalve Unio pictorum (Paleoheterodonta, Unionoida). Analysis of the amino acid composition reveals a high amount of glycine, aspartate and alanine in the acid-soluble extract, whereas the acid-insoluble one is rich in alanine and glycine. Monosaccharidic analysis indicates that the insoluble matrix comprises a high amount of glucosamine. Furthermore, a high ratio of the carbohydrates of the soluble matrix is sulfated. Electrophoretic analysis of the acid-soluble matrix revealed discrete bands. Stains-All, Alcian Blue, periodic acid/Schiff and autoradiography with (45)Ca after electrophoretic separation revealed three major polyanionic calcium-binding glycoproteins, which exhibit an apparent molecular mass of 95, 50 and 29 kDa, respectively. Two-dimensional gel electrophoresis shows that these bands, provisionally named P95, P50 and P29, are composed of numerous isoforms, the majority of which have acidic isoelectric points. Chemical deglycosylation of the matrix with trifluoromethanesulfonic acid induces a drastic shift of both the apparent molecular mass and the isoelectric point of these matrix components. This treatment induces also a modification of the shape of CaCO(3) crystals grown in vitro and a loss of the calcium-binding ability of two of the main matrix proteins (P95 and P50). Our findings strongly suggest that post-translational modifications display important functions in mollusc shell calcification.
Collapse
Affiliation(s)
- Benjamin Marie
- UMR CNRS 5561, Biogéosciences, Université de Bourgogne, 6 boulevard Gabriel, F-21000 Dijon, France.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Zhang R, Kim TK, Qiao ZH, Cai J, Pierce WM, Song ZH. Biochemical and mass spectrometric characterization of the human CB2 cannabinoid receptor expressed in Pichia pastoris--importance of correct processing of the N-terminus. Protein Expr Purif 2007; 55:225-35. [PMID: 17500008 DOI: 10.1016/j.pep.2007.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 03/13/2007] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
This study was conducted to optimize the expression of human CB2 cannabinoid receptors in methylotrophic yeast Pichia pastoris (P. pastoris). Two major species of expressed CB2 proteins were seen on Western blot, i.e., a 42 kDa band which matches the calculated molecular weight for tagged CB2, and a 52/55 kDa doublet. Treatment of membranes with N-glycosidase F or inclusion of tunicamycin in the culture medium during induction resulted in the disappearance of the 55 kDa, but not the 52 kDa band, suggesting that the 3 kDa extra in the 55 kDa band is due to N-glycosylation, but the 10 kDa extra in the 52 kDa band is not due to N-glycosylation. Anti-FLAG M1 antibody had a much higher preference for the 42 kDa band over the 52/55 kDa doublet, and a 10 kDa fragment recognized by anti-FLAG M2 antibody was generated by CNBr digestion of the 52/55 doublet. These data strongly support the hypothesis that the 10 kDa increase in molecular weight was due to unprocessed alpha-factor sequence. This conclusion was further validated by finding several peptide sequences for alpha-factor fragments at the N-terminal of the CB2 receptor using pepsin/chymotrypsin digestion and LC/MS/MS approaches. Importantly, unprocessed alpha-factor was found to be associated with poor ligand binding. In addition, controlling the level of CB2 protein expression was found to be critical for minimizing the presence of unprocessed alpha-factor sequence. The information gained from this study should aid the proper expression of not only CB2 receptor but also other members of the GPCR family in P. pastoris.
Collapse
Affiliation(s)
- Rundong Zhang
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
75
|
Sa EH, Jin UH, Kim DS, Kang BS, Ha KT, Kim JK, Park WH, Kim CH. Herbal medicine Gamgungtang down-regulates autoimmunity through induction of TH2 cytokine production by lymphocytes in experimental thyroiditis model. JOURNAL OF ETHNOPHARMACOLOGY 2007; 109:472-9. [PMID: 17049774 DOI: 10.1016/j.jep.2006.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 07/31/2006] [Accepted: 08/22/2006] [Indexed: 05/12/2023]
Abstract
The crude herbal formulation, Gamgungtang (GGT), has been shown to protect animals against a wide range of spontaneously developing or induced autoimmune diseases. We have previously reported that GGT shows marked down-regulation of several experimental autoimmune diseases. Although very effective at preventing thyroid infiltrates in mice immunized with mouse deglycosylated thyroglobulin and complete Freund's adjuvant and in spontaneous models of thyroiditis, it completely failed to modify experimental autoimmune thyroiditis (EAT) induced in mice immunized with mouse thyroglobulin and lipopolysaccharide. In this study, in an effort to elucidate the mechanisms by which GGT suppresses EAT, and autoimmunity in general, we investigated the in vivo effects of this drug on the Th1/Th2 lymphocyte balance, which is important for the induction or inhibition of autoreactivity. Naive SJL/J mice were treated orally for 5 days with GGT (80 mg/(kg day)). Spleen cells were obtained at various time points during the treatment period and were stimulated in vitro with concanavalin A. Interleukins IL-4, IL-10 and IL-12, transforming growth factor-beta (TGF-beta) and interferon-gamma (IFN-gamma) cytokine production was evaluated at the protein levels of the cytokines in the medium and mRNA expressions. A significant upregulation of IL-4, IL-10 and TGF-beta was observed following treatment with GGT, which peaked at day 5 (IL-10) or day 10 (IL-4). On the other hand, IL-12 and IFN-gamma production were either unchanged or decreased. It seems therefore that GGT induces in vivo a shift towards Th2 lymphocytes which may be one of the mechanisms of down-regulation of the autoimmune reactivity in EAT. Our observations indicate that down-regulation of TH1 cytokines (especially IL-12) and enhancement of Th2 cytokine production may play an important role in the control of T-cell-mediated autoimmunity. These data may contribute to the design of new immunomodulating treatments for a group of autoimmune diseases.
Collapse
Affiliation(s)
- Eun-Ho Sa
- Department of Biological Science, Sungkyunkwan University, Suwon City, Kyunggi-Do 440-746, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Deepak S, Shailasree S, Sujeeth N, Kini RK, Shetty SH, Mithöfer A. Purification and characterization of proline/hydroxyproline-rich glycoprotein from pearl millet coleoptiles infected with downy mildew pathogen Sclerospora graminicola. PHYTOCHEMISTRY 2007; 68:298-305. [PMID: 17166528 DOI: 10.1016/j.phytochem.2006.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/16/2006] [Accepted: 10/21/2006] [Indexed: 05/13/2023]
Abstract
Hydroxyproline-rich glycoproteins (HRGPs) are important plant cell wall structural components, which are also involved in response to pathogen attack. In pearl millet, deposition and cross-linking of HRGPs in plant cell walls was shown to contribute to the formation of resistance barriers against the phytopathogenic oomycete Sclerospora graminicola. In the present study, the purification and characterization of HRGPs that accumulated in coleoptiles of pearl millet seedlings in response to S. graminicola inoculation has been carried out. Periodic acid Schiff's staining revealed that the purified protein was a glycoprotein. The protein to carbohydrate ratio was determined to be 95.5%:4.5% (w/w). Proline amounted for 20 mol% of the total amino acids as indicated by amino acid composition analysis. The isolated protein had a pI of 9.8 and was shown to be composed of subunits of 27, 17, and 14 kDa. Cross reactivity with the monoclonal antibody MAC 265 and the presence of the signature amino acid sequence, PVYK, strongly suggested to classify the purified glycoprotein as a member of the P/HRGPs class. In the presence of horseradish peroxidase and H2O2 the purified glycoprotein served as a substrate for oxidative cross-linking processes.
Collapse
Affiliation(s)
- Shantharaj Deepak
- Department of Studies in Applied Botany and Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
| | | | | | | | | | | |
Collapse
|
77
|
Chromium(V) complexes generated in Arthrobacter oxydans by simulation analysis of EPR spectra. J Inorg Biochem 2006; 100:1827-33. [DOI: 10.1016/j.jinorgbio.2006.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 07/13/2006] [Accepted: 07/13/2006] [Indexed: 11/23/2022]
|
78
|
Ishmael SS, Ishmael FT, Jones AD, Bond JS. Protease domain glycans affect oligomerization, disulfide bond formation, and stability of the meprin A metalloprotease homo-oligomer. J Biol Chem 2006; 281:37404-15. [PMID: 17040911 DOI: 10.1074/jbc.m602769200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The meprin A homo-oligomer is a highly glycosylated, secreted zinc metalloprotease of the astacin family and metzincin superfamily. This isoform of meprin is composed of disulfide-bonded dimers of alpha subunits that further associate to form large, secreted megadalton complexes of 10 or more subunits. The aim of this study was to determine the sites of glycan attachment and to assess their ability to affect the formation and stability of the homo-oligomer. Nine of the ten potential N-linked glycosylation sites (Asn-41, Asn-152, Asn-234, Asn-270, Asn-330, Asn-426, Asn-452, Asn-546, and Asn-553) were found to be glycosylated in recombinant mouse meprin A using chemical and enzymatic deglycosylation methods and electrospray ionization mass spectrometry. Chemical cross-linking demonstrated that carbohydrates are at or near the noncovalent subunit interface. The removal of two glycans in the protease domain at Asn-234 and Asn-270, as well as one in the tumor necrosis factor receptor-associated factor domain at Asn-452, by a deglycosidase under nondenaturing conditions decreased the chemical and thermal stability of the homo-oligomer without affecting quaternary structure. Site-directed mutagenesis demonstrated that no single glycan was essential for oligomer formation; however, the combined absence of the glycans at Asn-152 and Asn-270 in the protease domain hindered intersubunit disulfide bond formation, prevented noncovalent associations, and abolished enzymatic activity. These studies provide insights into the role of glycans in the biosynthesis, activity, and stability of this extracellular protease.
Collapse
Affiliation(s)
- Susan S Ishmael
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
79
|
Rumszauer J, Schwarzenlander C, Averhoff B. Identification, subcellular localization and functional interactions of PilMNOWQ and PilA4 involved in transformation competency and pilus biogenesis in the thermophilic bacterium Thermus thermophilus HB27. FEBS J 2006; 273:3261-72. [PMID: 16857013 DOI: 10.1111/j.1742-4658.2006.05335.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The natural transformation system of the thermophilic bacterium Thermus thermophilus HB27 comprises at least 16 distinct competence proteins encoded by seven distinct loci. In this article, we present for the first time biochemical analyses of the Thermus thermophilus competence proteins PilMNOWQ and PilA4, and demonstrate that the pilMNOWQ genes are each essential for natural transformation. We identified three different forms of PilA4, one with an apparent molecular mass of 14 kDa, which correlates with that of the deduced protein, an 18-kDa form and a 23-kDa form; the last was found to be glycosylated. We demonstrate that PilM, PilN and PilO are located in the inner membrane, whereas PilW, PilQ and PilA4 are located in the inner and outer membranes. These data show that PilMNOWQ and PilA4 are components of a DNA translocator structure that spans the inner and outer membranes. We further show that PilA4 and PilQ both copurify with pilus structures. Possible functions of PilQ and PilA4 in DNA translocation and in pilus biogenesis are discussed. Comparative mutant studies revealed that mutations in either pilW or pilQ significantly affect the location of the other protein in the outer membrane. Furthermore, no PilA4 was present in the outer membranes of these mutants. From these findings, we conclude that the abilities of PilW, PilQ and PilA4 to stably localize or accumulate in the outer membrane fraction are strongly dependent on one another, which is in accord with an outer membrane DNA translocator complex comprising PilW, PilQ, and PilA4.
Collapse
Affiliation(s)
- Judit Rumszauer
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Germany
| | | | | |
Collapse
|
80
|
Kang BS, Han JY, Kang SK, Kim DI, Kim JK, Kim CH. Effect of the traditional Korean immunomodulating formulation, Gamguntang (GGT), on experimental thyroiditis model. Immunopharmacol Immunotoxicol 2006; 28:51-66. [PMID: 16684667 DOI: 10.1080/08923970600625694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The crude herbal formulation, Gamgungtang (GGT), is an immunomodulator showing marked down-regulation of several experimental autoimmune diseases. In this study, its effect on different experimental models of thyroid disease was investigated. Although very effective at preventing thyroid infiltrates in mice immunized with mouse deglycosylated thyroglobulin and complete Freund's adjuvant and in spontaneous models of thyroiditis, it completely failed to modify experimental autoimmune thyroiditis (EAT) induced in mice immunized with mouse thyroglobulin and lipopolysaccharide. There was no significant shift in the observed isotypes of anti-mouse thyroglobulin antibodies and only anti-mouse thyroglobulin antibodies in the spontaneous model were completely down-modulated by the GGT. One surprising fact to emerge was that GGT-treated donor mice, although protected from thyroid lesions themselves, were still able to transfer EAT showing that they must have been effectively primed while being treated with GGT. It is possible that the drug down modulated EAT by interfering with the trafficking of primed effector cells.
Collapse
Affiliation(s)
- Bong-Seok Kang
- Department of Biological Sciences, Sungkyungkwan University, Suwon City, Kyunggi-Do, Korea
| | | | | | | | | | | |
Collapse
|
81
|
|
82
|
Dicko MH, Gruppen H, Hilhorst R, Voragen AGJ, van Berkel WJH. Biochemical characterization of the major sorghum grain peroxidase. FEBS J 2006; 273:2293-307. [PMID: 16650004 DOI: 10.1111/j.1742-4658.2006.05243.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The major cationic peroxidase in sorghum grain (SPC4) , which is ubiquitously present in all sorghum varieties was purified to apparent homogeneity, and found to be a highly basic protein (pI approximately 11). MS analysis showed that SPC4 consists of two glycoforms with molecular masses of 34,227 and 35,629 Da and it contains a type-b heme. Chemical deglycosylation allowed to estimate sugar contents of 3.0% and 6.7% (w/w) in glycoform I and II, respectively, and a mass of the apoprotein of 33,246 Da. High performance anion exchange chromatography allowed to determine the carbohydrate constituents of the polysaccharide chains. The N-terminal sequence of SPC4 is not blocked by pyroglutamate. MS analysis showed that six peptides, including the N-terminal sequence of SPC4 matched with the predicted tryptic peptides of gene indice TC102191 of sorghum chromosome 1, indicating that TC102191 codes for the N-terminal part of the sequence of SPC4, including a signal peptide of 31 amino acids. The N-terminal fragment of SPC4 (213 amino acids) has a high sequence identity with barley BP1 (85%), rice Prx23 (90%), wheat WSP1 (82%) and maize peroxidase (58%), indicative for a common ancestor. SPC4 is activated by calcium ions. Ca2+ binding increased the protein conformational stability by raising the melting temperature (Tm) from 67 to 82 degrees C. SPC4 catalyzed the oxidation of a wide range of aromatic substrates, being catalytically more efficient with hydroxycinnamates than with tyrosine derivatives. In spite of the conserved active sites, SPC4 differs from BP1 in being active with aromatic compounds above pH 5.
Collapse
Affiliation(s)
- Mamoudou H Dicko
- Laboratory of Biochemistry, Department of Agrotechnology and Food Sciences, Wageningen University, The Netherlands.
| | | | | | | | | |
Collapse
|
83
|
Sales MP, Andrade LBS, Ary MB, Miranda MRA, Teixeira FM, Oliveira AS, Fernandes KVS, Xavier-Filho J. Performance of bean bruchids Callosobruchus maculatus and Zabrotes subfasciatus (Coleoptera: Bruchidae) reared on resistant (IT81D-1045) and susceptible (Epace 10) Vigna unguiculata seeds: Relationship with trypsin inhibitor and vicilin excretion. Comp Biochem Physiol A Mol Integr Physiol 2005; 142:422-6. [PMID: 16246611 DOI: 10.1016/j.cbpa.2005.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Revised: 09/02/2005] [Accepted: 09/10/2005] [Indexed: 11/25/2022]
Abstract
Callosobruchus maculatus (Cm) and Zabrotes subfasciatus (Zs) were reared on resistant (IT81D-1045) and on susceptible (Epace 10) cowpea seeds. The emergence of adult insects, total developmental period (TDP) and excretion of trypsin inhibitor and vicilin were determined for both bruchid populations. Parameter evaluation showed that the Zs populations emerged from both seeds had no significant differences in emergence and TDP. The Cm population raised from resistant seeds had lower emergence (5.6+/-1.3%) and delayed TDP (46+/-1.25 days) than those emerged from susceptible seeds. The excretion of defense proteins showed that Zs reared in resistant seeds excreted 1.7 times more trypsin inhibitor, but this did not affect emergence or TDP. Furthermore, Cm population emerged from resistant seeds excreted 7 times higher vicilin and 0.4 times less trypsin inhibitor than that emerged from susceptible seeds. These results indicate that vicilins from resistant seeds are involved to significantly longer TDP (46 days) and also drastic reduction of insect emergence ( approximately 5%) of C. maculatus.
Collapse
Affiliation(s)
- M P Sales
- Laboratório de Química e Função de Proteínas Bioativas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59072-970, RN, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Marin F, Amons R, Guichard N, Stigter M, Hecker A, Luquet G, Layrolle P, Alcaraz G, Riondet C, Westbroek P. Caspartin and Calprismin, Two Proteins of the Shell Calcitic Prisms of the Mediterranean Fan Mussel Pinna nobilis. J Biol Chem 2005; 280:33895-908. [PMID: 15994301 DOI: 10.1074/jbc.m506526200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used the combination of preparative electrophoresis and immunological detection to isolate two new proteins from the shell calcitic prisms of Pinna nobilis, the Mediterranean fan mussel. The amino acid composition of these proteins was determined. Both proteins are soluble, intracrystalline, and acidic. The 38-kDa protein is glycosylated; the 17-kDa one is not. Ala, Asx, Thr, and Pro represent the dominant residues of the 38-kDa protein, named calprismin. An N-terminal sequence was obtained from calprismin. This sequence, which comprises a pattern of 4 cysteine residues, is not related to any known protein. The second protein, named caspartin, exhibits an unusual amino acid composition, since Asx constitutes by far the main amino acid residue. Preliminary sequencing surprisingly suggests that the first 75 N-terminal residues are all Asp. Caspartin self-aggregates spontaneously into multimers. In vitro tests show that it inhibits the precipitation of calcium carbonate. Furthermore, it strongly interferes with the growth of calcite crystals. A polyclonal antiserum raised against caspartin was used to localize this protein in the shell by immunogold. The immunolocalization demonstrates that caspartin is distributed within the prisms and makes a continuous film at the interface between the prisms and the surrounding insoluble sheets. Our finding emphasizes the prominent role of aspartic acid-rich proteins for the building of calcitic prisms among molluscs.
Collapse
Affiliation(s)
- Frédéric Marin
- UMR CNRS 5561 "Biogéosciences," Université de Bourgogne, 6 Boulevard Gabriel, Dijon F-21000, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Ahram M, Adkins JN, Auberry DL, Wunschel DS, Springer DL. A proteomic approach to characterize protein shedding. Proteomics 2005; 5:123-31. [PMID: 15672459 DOI: 10.1002/pmic.200400912] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Shedding (i.e. proteolysis of ectodomains of membrane proteins) plays an important pathophysiological role. In order to study the feasibility of identifying shed proteins, we analyzed serum-free media of human mammary epithelial cells by mass spectrometry following induction of shedding by the phorbol ester, 4 beta-phorbol 12-myristate 13-acetate (PMA). Different means of sample preparation, including biotinylation of cell surface proteins, isolation of glycosylated proteins, and preparation of crude protein fractions, were carried out to develop the optimal method of sample processing. The collected proteins were digested with trypsin and analyzed by reversed-phase capillary liquid chromatography interfaced to an ion-trap mass spectrometer. The resulting peptide spectra were interpreted using the program SEQUEST. Analyzing the sample containing the crude protein mixture without chemical modification or separation resulted in the greatest number of identifications, including putatively shed proteins. Overall, 45 membrane-associated proteins were identified including 22 that contain at least one transmembrane domain and 23 that indirectly associate with the extracellular surface of the plasma membrane. Of the 22 transmembrane proteins, 18 were identified by extracellular peptides providing strong evidence they originate from regulated proteolysis or shedding processes. We combined results from the different experiments and used a peptide count method to estimate changes in protein abundance. Using this approach, we identified two proteins, syndecan-4 and hepatoma-derived growth factor, whose abundances increased in media of cells treated with PMA. We also detected proteins whose abundances decreased after PMA treatment such as 78 kDa glucose-regulated protein and lactate dehydrogenase A. Further analysis using immunoblotting validated the abundance changes for syndecan-4 and 78 kDa glucose-regulated protein as a result of PMA treatment. These results demonstrate that tandem mass spectrometry can be used to identify shed proteins and to estimate changes in protein abundance.
Collapse
Affiliation(s)
- Mamoun Ahram
- Biological Sciences Division, Battelle, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | |
Collapse
|
86
|
Kählig H, Kolarich D, Zayni S, Scheberl A, Kosma P, Schäffer C, Messner P. N-acetylmuramic acid as capping element of alpha-D-fucose-containing S-layer glycoprotein glycans from Geobacillus tepidamans GS5-97T. J Biol Chem 2005; 280:20292-9. [PMID: 15781455 DOI: 10.1074/jbc.m501724200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Geobacillus tepidamans GS5-97(T) is a novel Gram-positive, moderately thermophilic bacterial species that is covered by a glycosylated surface layer (S-layer) protein. The isolated and purified S-layer glycoprotein SgtA was ultrastructurally and chemically investigated and showed several novel properties. By SDS-PAGE, SgtA was separated into four distinct bands in an apparent molecular mass range of 106-166 kDa. The three high molecular mass bands gave a positive periodic acid-Schiff staining reaction, whereas the 106-kDa band was nonglycosylated. Glycosylation of SgtA was investigated by means of chemical analyses, 600-MHz nuclear magnetic resonance spectroscopy, and electrospray ionization quadrupole time-of-fight mass spectrometry. Glycopeptides obtained after Pronase digestion revealed the glycan structure [-->2)-alpha-L-Rhap-(1-->3)-alpha-D-Fucp-(1-->](n=approximately 20), with D-fucopyranose having never been identified before as a constituent of S-layer glycans. The rhamnose residue at the nonreducing end of the terminal repeating unit of the glycan chain was di-substituted. For the first time, (R)-N-acetylmuramic acid, the key component of prokaryotic peptidoglycan, was found in an alpha-linkage to carbon 3 of the terminal rhamnose residue, serving as capping motif of an S-layer glycan. In addition, that rhamnose was substituted at position 2 with a beta-N-acetylglucosamine residue. The S-layer glycan chains were bound via the trisaccharide core -->2)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1--> to carbon 3 of beta-D-galactose, which was attached in O-glycosidic linkage to serine and threonine residues of SgtA of G. tepidamans GS5-97(T).
Collapse
|
87
|
Ueda H, Fukushima H, Hatanaka Y, Ogawa H. Solubility-insolubility interconversion of sophoragrin, a mannose/glucose-specific lectin in Sophora japonica (Japanese pagoda tree) bark, regulated by the sugar-specific interaction. Biochem J 2005; 382:821-9. [PMID: 15222880 PMCID: PMC1133957 DOI: 10.1042/bj20040584] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 06/24/2004] [Accepted: 06/28/2004] [Indexed: 01/29/2023]
Abstract
Sophoragrin, a mannose/glucose-specific lectin in Sophora japonica (Japanese pagoda tree) bark, was the first lectin found to show self-aggregation that is dependent on the sugar concentration accompanying the interconversion between solubility and insolubility [Ueno, Ogawa, Matsumoto and Seno (1991) J. Biol. Chem. 266, 3146-3153]. The interconversion is regulated by the concentrations of Ca(2+) and specific sugars: mannose, glucose or sucrose. The specific glycotopes for sophoragrin were found in the sophoragrin subunit and an endogenous galactose-specific lectin, B-SJA-I (bark S. japonica agglutinin I), and the lectin subunit that binds to the glycotope was identified by photoaffinity glycan probes. Remarkably, the insoluble polymer of sophoragrin is dissociated by interaction with B-SJA-I into various soluble complexes. Based on these results, self-aggregation of sophoragrin was shown to be a unique homopolymerization due to the sugar-specific interaction. An immunostaining study indicated that sophoragrin localizes mainly in vacuoles of parenchymal cells coincidently with B-SJA-I. These results indicate that sophoragrin can sequester endogenous glycoprotein ligands via sugar-specific interactions, thus providing new insights into the occurrence and significance of the intravacuolar interaction shown by a legume lectin.
Collapse
Affiliation(s)
- Haruko Ueda
- *Department of Advanced Biosciences, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Hisako Fukushima
- *Department of Advanced Biosciences, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Yasumaru Hatanaka
- †Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani 2630, Toyama, 930-0194, Japan
| | - Haruko Ogawa
- *Department of Advanced Biosciences, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
88
|
Shang C, Sassa H, Hirano H. The role of glycosylation in the function of a 48-kDa glycoprotein from carrot. Biochem Biophys Res Commun 2005; 328:144-9. [PMID: 15670762 DOI: 10.1016/j.bbrc.2004.12.166] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Indexed: 10/26/2022]
Abstract
Carrot extracellular dermal glycoprotein (EDGP) may play an important role in plant defense systems and in signal transduction. Our experiments show that differences in pI values of EDGP isoforms are caused by differences in amino acid sequence and not by heterogeneity in phosphorylation. The binding affinity of native EDGP for a 4-kDa hormone-like peptide from soybean was approximately one-third that of deglycosylated EDGP, and deglycosylation of EDGP caused complete loss of its ability to inhibit xyloglucan-specific endo-beta-1,4-glucanase. Experiments using tunicamycin-treated carrot cell cultures showed that glycosylation is essential for correct EDGP folding and secretion, and that tunicamycin does not affect EDGP gene transcription.
Collapse
Affiliation(s)
- Chengwei Shang
- Kihara Institute for Biological Research, Graduate School of Integrated Science, Yokohama City University, Japan
| | | | | |
Collapse
|
89
|
Hamada A, Yamaguchi KI, Ohnishi N, Harada M, Nikumaru S, Honda H. High-level production of yeast (Schwanniomyces occidentalis) phytase in transgenic rice plants by a combination of signal sequence and codon modification of the phytase gene. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:43-55. [PMID: 17168898 DOI: 10.1111/j.1467-7652.2004.00098.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This study was designed to produce yeast (Schwanniomyces occidentalis) phytase in rice with a view to future applications in the animal feed industry. To achieve high-level production, chimeric genes with the secretory signal sequence of the rice chitinase-3 gene were constructed using either the original full-length or N-truncated yeast phytase gene, or a modified gene whose codon usage was changed to be more similar to that of rice, and then introduced into rice (Oryza sativa L.). When the original phytase genes were used, the phytase activity in the leaves of transgenic rice was of the same level as in wild-type plants, whose mean value was 0.039 U/g fresh weight (g-FW) (1 U of activity was defined as 1 micromol P released per min at 37 degrees C). In contrast, the enzyme activity was increased markedly when codon-modified phytase genes were introduced: up to 4.6 U/g-FW of leaves for full-length codon-modified phytase, and 10.6 U/g-FW for truncated codon-modified phytase. A decrease in the optimum temperature and thermal stability was observed in the truncated heterologous enzyme, suggesting that the N-terminal region plays an important role in enzymatic properties. In contrast, the optimum temperature and pH of full-length heterologous phytase were indistinguishable from those of the benchmark yeast phytase, although the heterologous enzyme was less glycosylated. Full-length heterologous phytase in leaf extract showed extreme stability. These results indicate that codon modification, combined with the use of a secretory signal sequence, can be used to produce substantial amounts of yeast phytase, and possibly any phytases from various organisms, in an active and stable form.
Collapse
Affiliation(s)
- Akira Hamada
- Functional Chemicals Laboratory, Mitsui Chemicals, Inc., Togo 1144, Mobara 297-0017 Japan
| | | | | | | | | | | |
Collapse
|
90
|
Sangadala S, Swain JB, McNear A, Mendicino J. Cloning, expression and properties of porcine trachea UDP-galnac: polypeptide N-acetylgalactosaminyl transferase. Mol Cell Biochem 2004; 266:117-26. [PMID: 15646032 DOI: 10.1023/b:mcbi.0000049148.73497.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A UDP-GalNAc:polypeptide N-acetyl-galactosaminyl transferase which catalyses the transfer of GalNAc from UDP-GalNAc to serine and threonine residues in mucin polypeptide chains was purified to homogeneity from swine trachea epithelium (Mendicino J, Sangadala S: Mol Cell Biochem 185: 135-145, 1998). Peptides obtained by proteolysis of the purified enzyme were isolated, sequenced and used to prepare degenerate oligonucleotide primers. Amplified segments of a gene encoding GalNAc transferase were synthesised using the primers and a swine trachea epithelial cDNA library. Selected cDNA fragments were then used to screen the cDNA library, and a clone containing an open reading frame encoding 559 amino acids was isolated. The predicted amino acid sequence contains type II transmembrane region, three potential N-glycosylation sites as well as all of the isolated peptide sequences. The nucleotide sequence and predicted primary protein structure of the transferase were very similar to those of type T-1 GalNAc transferases. The isolated clone was transiently expressed in COS 7 cells and the recombinant enzyme, which contained an N-terminal hexa-histidine tag, was purified to homogeneity and its enzymatic properties were examined. The Vmax of the recombinant enzyme, 2.08 micromol/(min mg), was nearly the same as the native enzyme, 2.12 micromol/(min mg), when assayed with partially deglycosylated mucins as glycosyl acceptors. Both enzymes showed much higher activities when assayed with peptides prepared by limited acid hydrolysis of incompletely deglycosylated Cowper's gland, swine, and human respiratory mucins and tryptic peptides isolated from deglycosylated mucin polypeptide chains. However, as noted earlier (Mendicino J, Sangadala S: Mol Cell Biochem 185: 135-145, 1998), these enzymes showed very little activity with completely deglycosylated mucin polypeptide chains. When completely deglycosylated polypeptide chains were partially glycosylated by incubation with microsome preparations they were again good glycosyl acceptors for the T1-GalNAc transferases isolated from swine trachea. These results show for the first time that multiple isoforms of GalNAc transferases acting in sequence may be required for the complete O-glycosylation of mucin polypeptide chains, and those acting on the nacent polypeptide chain synthesize intermediates which can serve as glycosyl acceptors for other isoforms of the enzyme.
Collapse
Affiliation(s)
- Sreedhara Sangadala
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
91
|
Bora NS, Sohn JH, Kang SG, Cruz JMC, Nishihori H, Suk HJ, Wang Y, Kaplan HJ, Bora PS. Type I collagen is the autoantigen in experimental autoimmune anterior uveitis. THE JOURNAL OF IMMUNOLOGY 2004; 172:7086-94. [PMID: 15153531 DOI: 10.4049/jimmunol.172.11.7086] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study was undertaken to identify and characterize the Ag responsible for the induction of experimental autoimmune anterior uveitis (EAAU). Melanin-associated Ag isolated from bovine iris and ciliary body was digested with the proteolytic enzyme V8 protease to solubilize the proteins and the pathogenic protein was purified to homogeneity. Lewis rats were sensitized to various fractions and investigated for the development of anterior uveitis and an immune response to the purified Ag. The uveitogenic Ag had a mass of 22 kDa (SDS-PAGE) and an isoelectric point of 6.75. The N-terminal amino acid sequence of this protein demonstrated 100% homology with the bovine type I collagen alpha-2 chain starting from amino acid 385 and will be referred to as CI-alpha2 (22 kDa). Animals immunized with bovine CI-alpha2 (22 kDa) developed both cellular and humoral immunity to the Ag. They developed anterior uveitis only if the CI-alpha2 chain underwent proteolysis and if the bound carbohydrates were intact. EAAU induced by CI-alpha2 (22 kDa) can be adoptively transferred to naive syngenic rats by primed CD4(+) T cells. EAAU could not be induced by the adoptive transfer of sera obtained from animals immunized with CI-alpha2 (22 kDa). The alpha-1 and alpha-2 chains (intact or proteolytically cleaved) of type I collagen from calfskin were not pathogenic. Although human anterior uveitis has been historically characterized as a collagen disease, this is first time collagen has been directly identified as the target autoantigen in uveitis.
Collapse
Affiliation(s)
- Nalini S Bora
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Masuoka J. Surface glycans of Candida albicans and other pathogenic fungi: physiological roles, clinical uses, and experimental challenges. Clin Microbiol Rev 2004; 17:281-310. [PMID: 15084502 PMCID: PMC387410 DOI: 10.1128/cmr.17.2.281-310.2004] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although fungi have always been with us as commensals and pathogens, fungal infections have been increasing in frequency over the past few decades. There is a growing body of literature describing the involvement of carbohydrate groups in various aspects of fungal disease. Carbohydrates comprising the cell wall or capsule, or as a component of glycoproteins, are the fungal cell surface entities most likely to be exposed to the surrounding environment. Thus, the fungus-host interaction is likely to involve carbohydrates before DNA, RNA, or even protein. The interaction between fungal and host cells is also complex, and early studies using whole cells or crude cell fractions often produced seemingly conflicting results. What was needed, and what has been developing, is the ability to identify specific glycan structures and determine how they interact with immune system components. Carbohydrate analysis is complicated by the complexity of glycan structures and by the challenges of separating and detecting carbohydrates experimentally. Advances in carbohydrate chemistry have enabled us to move from the foundation of composition analysis to more rapid characterization of specific structures. This, in turn, will lead to a greater understanding of how fungi coexist with their hosts as commensals or exist in conflict as pathogens.
Collapse
Affiliation(s)
- James Masuoka
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908-0904, USA.
| |
Collapse
|
93
|
Edge ASB. Deglycosylation of glycoproteins with trifluoromethanesulphonic acid: elucidation of molecular structure and function. Biochem J 2003; 376:339-50. [PMID: 12974674 PMCID: PMC1223790 DOI: 10.1042/bj20030673] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Revised: 07/29/2003] [Accepted: 09/15/2003] [Indexed: 11/17/2022]
Abstract
The alteration of proteins by post-translational modifications, including phosphorylation, sulphation, processing by proteolysis, lipid attachment and glycosylation, gives rise to a broad range of molecules that can have an identical underlying protein core. An understanding of glycosylation of proteins is important in clarifying the nature of the numerous variants observed and in determining the biological roles of these modifications. Deglycosylation with TFMS (trifluoromethanesulphonic acid) [Edge, Faltynek, Hof, Reichert, and Weber, (1981) Anal. Biochem. 118, 131-137] has been used extensively to remove carbohydrate from glycoproteins, while leaving the protein backbone intact. Glycosylated proteins from animals, plants, fungi and bacteria have been deglycosylated with TFMS, and the most extensively studied types of carbohydrate chains in mammals, the N-linked, O-linked and glycosaminoglycan chains, are all removed by this procedure. The method is based on the finding that linkages between sugars are sensitive to cleavage by TFMS, whereas the peptide bond is stable and is not broken, even with prolonged deglycosylation. The relative susceptibility of individual sugars in glycosidic linkage varies with the substituents at C-2 and the occurrence of amido and acetyl groups, but even the most stable sugars are removed under conditions that are sufficiently mild to prevent scission of peptide bonds. The post-translational modifications of proteins have been shown to be required for diverse biological functions, and selective procedures to remove these modifications play an important role in the elucidation of protein structure and function.
Collapse
Affiliation(s)
- Albert S B Edge
- Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.
| |
Collapse
|
94
|
van Huystee RB, Sun Y, Lige B. A retrospective look at the cationic peanut peroxidase structure. Crit Rev Biotechnol 2003; 22:335-54. [PMID: 12487424 DOI: 10.1080/07388550290789540] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cationic peanut peroxidase has been studied in detail, not only with regard to its peptide structure, but also to the sites and role of the three moieties linked to it. Peanut peroxidase lends itself well to a close examination as a potential example for other plant peroxidase studies. It was the first plant peroxidase for which a 3-D structure was derived from crystals, with the glycans intact. Subsequent analysis of peroxidases structures from other plants have not shown great differences to that of the peanut peroxidase. As the period of proteomics follows on the era of genomics, the study of glycans has been brought back into focus. With the potential use of peroxidase as a polymerization agent for industry, there are some aspects of the overall structure that should be kept in mind for successful use of this enzyme. A variety of techniques are now available to assay for these structures/moieties and their roles. Peanut peroxidase data are reviewed in that light, as well as defining some true terms for isozymes. Because a high return of the enzyme in a pure form has been obtained from cultured cells in suspension culture, a brief review of this is also offered.
Collapse
Affiliation(s)
- Robert B van Huystee
- Department of Plant Sciences, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| | | | | |
Collapse
|
95
|
Messner P, Schäffer C. Prokaryotic glycoproteins. FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE = PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS. PROGRES DANS LA CHIMIE DES SUBSTANCES ORGANIQUES NATURELLES 2003; 85:51-124. [PMID: 12602037 DOI: 10.1007/978-3-7091-6051-0_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- P Messner
- Zentrum für Ultrastrukturforschung, Ludwig-Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, Austria
| | | |
Collapse
|
96
|
Steichen C, Chen P, Kearney JF, Turnbough CL. Identification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium. J Bacteriol 2003; 185:1903-10. [PMID: 12618454 PMCID: PMC150129 DOI: 10.1128/jb.185.6.1903-1910.2003] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spores of Bacillus anthracis, the causative agent of anthrax, are enclosed by a prominent loose-fitting, balloon-like layer called the exosporium. Although the exosporium serves as the source of surface antigens and a primary permeability barrier of the spore, its molecular structure and function are not well characterized. In this study, we identified five major proteins in purified B. anthracis (Sterne strain) exosporia. One protein was the recently identified collagen-like glycoprotein BclA, which appears to be a structural component of the exosporium hair-like nap. Using a large panel of unique antispore monoclonal antibodies, we demonstrated that BclA is the immunodominant antigen on the B. anthracis spore surface. We also showed that the BclA protein and not a carbohydrate constituent directs the dominant immune response. In addition, the length of the central (GXX)(n) repeat region of BclA appears to be strain specific. Two other unique proteins, BxpA and BxpB, were identified. BxpA is unusually rich in Gln and Pro residues and contains several different tandem repeats, which also exhibit strain-specific variation. In addition, BxpA was found to be cleaved approximately in half. BxpB appears to be glycosylated or associated with glycosylated material and is encoded by a gene that (along with bclA) may be part of an exosporium genomic island. The other two proteins identified were alanine racemase and superoxide dismutase, both of which were reported to be associated with the surface of other Bacillus spores. Possible functions of the newly identified proteins are discussed.
Collapse
Affiliation(s)
- Christopher Steichen
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
97
|
Azevedo AM, Martins VC, Prazeres DM, Vojinović V, Cabral JM, Fonseca LP. Horseradish peroxidase: a valuable tool in biotechnology. BIOTECHNOLOGY ANNUAL REVIEW 2003; 9:199-247. [PMID: 14650928 DOI: 10.1016/s1387-2656(03)09003-3] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Peroxidases have conquered a prominent position in biotechnology and associated research areas (enzymology, biochemistry, medicine, genetics, physiology, histo- and cytochemistry). They are one of the most extensively studied groups of enzymes and the literature is rich in research papers dating back from the 19th century. Nevertheless, peroxidases continue to be widely studied, with more than 2000 articles already published in 2002 (according to the Institute for Scientific Information). The importance of peroxidases is emphasised by their wide distribution among living organisms and by their multiple physiological roles. They have been divided into three superfamilies according to their source and mode of action: plant peroxidases, animal peroxidases and catalases. Among all peroxidases, horseradish peroxidase (HRP) has received a special attention and will be the focus of this review. A brief description of the three super-families is included in the first section of this review. In the second section, a comprehensive description of the present state of knowledge of the structure and catalytic action of HRP is presented. The physiological role of peroxidases in higher plants is described in the third section. And finally, the fourth section addresses the applications of peroxidases, especially HRP, in the environmental and health care sectors, and in the pharmaceutical, chemical and biotechnological industries.
Collapse
Affiliation(s)
- Ana M Azevedo
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
98
|
Duarte-Vázquez MA, García-Almendárez BE, Rojo-Domínguez A, Whitaker JR, Arroyave-Hernández C, Regalado C. Monosaccharide composition and properties of a deglycosylated turnip peroxidase isozyme. PHYTOCHEMISTRY 2003; 62:5-11. [PMID: 12475613 DOI: 10.1016/s0031-9422(02)00456-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A neutral peroxidase isozyme (TP) purified from turnip (Brassica napus L. var. purple top white globe) was partially deglycosylated, using chemical and enzymatic treatment. A 32% carbohydrate removal was achieved by exposing TP to a mixture of PNGase F, O-glycosidase, NANase, GALase III and HEXase I, while m-periodate treatment removed about 88% of TP carbohydrate moiety. The glycoprotein fraction of the TP contained a relatively high mannose and fucose content (37 and 31%, w/w, respectively), 16% (w/w) galactose, and 15% (w/w) GlcNAc. Thus, the carbohydrate moiety was classified as a hybrid type. Partially deglycosylated TP had reduced activity (by 50-85%), was more susceptible to proteolysis, and showed a slight decrease in thermostability compared to the native enzyme. Circular dichroism studies strongly suggested that although the carbohydrate moiety of TP did not influence the conformation of the polypeptide backbone, its presence considerably enhanced protein conformational stability toward heat. Removal of oligosaccharide chains from TP caused a decrease in K(m) and V(max) for hydrogen peroxide. Native and chemically deglycosylated TP were similarly immunodetected by rabbit polyclonal antibodies raised against TP. The results suggest that the carbohydrate moiety of TP is important for peroxidase activity and stability.
Collapse
Affiliation(s)
- Miguel A Duarte-Vázquez
- Departamento de Investigación y Posgrado en Alimentos, PROPAC, Facultad de Química, Universidad Autónoma de Querétaro, C. U. Cerro de Las Campanas S/N, Querétaro, Qro. 76010, Mexico
| | | | | | | | | | | |
Collapse
|
99
|
Sylvestre P, Couture-Tosi E, Mock M. A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol Microbiol 2002; 45:169-78. [PMID: 12100557 DOI: 10.1046/j.1365-2958.2000.03000.x] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacillus anthracis, the aetiological agent of anthrax, is a Gram-positive spore-forming bacterium. The exosporium is the outermost integument surrounding the mature spore. Here, we describe the purification and the characterization of an immunodominant protein of the spore surface. This protein was abundant, glycosylated and part of the exosporium. The amino-terminal sequence was determined and the corresponding gene was identified. It encodes a protein of 382 amino acid residues, the central part of which contains a region of GXX motifs presenting similarity to mammalian collagen proteins. Thus, this collagen-like surface protein was named BclA (for Bacillus collagen-like protein of anthracis). BclA was absent from vegetative cells; it was detected only in spores and sporulating cells. A potential promoter, dependent on the sigma factor sigma(K), which is required for a variety of events late in sporulation, was found upstream from the bclA gene. A bclA deletion mutant was constructed and analysed. Electron microscopy studies showed that BclA is a structural component of the filaments covering the outer layer of the exosporium.
Collapse
Affiliation(s)
- Patricia Sylvestre
- Unité Toxines et Pathogénie Bactériennes (URA 2172, CNRS), Institut Pasteur, Paris, France
| | | | | |
Collapse
|
100
|
Lower BH, Kennelly PJ. The membrane-associated protein-serine/threonine kinase from Sulfolobus solfataricus is a glycoprotein. J Bacteriol 2002; 184:2614-9. [PMID: 11976289 PMCID: PMC135027 DOI: 10.1128/jb.184.10.2614-2619.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of a sodium dodecyl sulfate-polyacrylamide gel with periodic acid-Schiff (PAS) stain or blotting with Galanthus nivalis agglutinin revealed the presence of several glycosylated polypeptides in a partially purified detergent extract of the membrane fraction of Sulfolobus solfataricus. One of the glycoproteins comigrated with the membrane-associated protein-serine/threonine kinase from S. solfataricus, which had been radiolabeled by autophosphorylation with [(32)P]ATP in vitro. Treatment with a chemical deglycosylating agent, trifluoromethanesulfonic acid, abolished PAS staining and reduced the M(r) of the protein kinase from approximately 67,000 to approximately 62,000. Protein kinase activity also adhered to, and could be eluted from, agarose beads containing bound G. nivalis agglutinin. Glycosylation of the protein kinase implies that at least a portion of this integral membrane protein resides on the external surface of the cell membrane.
Collapse
Affiliation(s)
- Brian H Lower
- Department of Biochemistry-0308, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | |
Collapse
|