51
|
Betts MJ, Cardenas-Blanco A, Kanowski M, Jessen F, Düzel E. In vivo MRI assessment of the human locus coeruleus along its rostrocaudal extent in young and older adults. Neuroimage 2017; 163:150-159. [PMID: 28943414 DOI: 10.1016/j.neuroimage.2017.09.042] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022] Open
Abstract
The locus coeruleus (LC), a major origin of noradrenergic projections in the central nervous system (CNS), may serve a critical role in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). As such, there is considerable interest to develop magnetic resonance imaging (MRI) techniques to assess the integrity of the LC in vivo. The high neuromelanin content of the LC serves as an endogenous contrast for MRI but existing protocols suffer from low spatial resolution along the rostrocaudal axis of the LC rendering it difficult to differentiate its integrity in caudal and rostral portions. This study presents a novel approach to investigate the human LC in vivo using T1-weighted Fast Low Angle Shot (FLASH) MRI at 3 T (T). Using high-resolution isotropic imaging to minimise the effect of low spatial resolution in the slice direction, this study aimed to characterise the rostrocaudal distribution of LC signal intensity attributed to neuromelanin from 25 young (22-30) and 57 older (61-80) adults. We found a significant age-related increase in maximum but not median signal intensity, indicating age-related differences were not homogenous. Instead, they were confined to the rostral third of the LC with relative sparing of the caudal portion. The findings presented demonstrate in vivo T1-weighted FLASH imaging may be used to characterise signal intensity changes across the entire rostrocaudal length of the LC (a corresponding standardised LC map is available for download), which may help to identify how the human LC is differentially affected in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Matthew J Betts
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| | - Arturo Cardenas-Blanco
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martin Kanowski
- Department of Neurology, University Hospital of Magdeburg, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Psychiatry, University of Cologne, Cologne, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, UK
| |
Collapse
|
52
|
Theofilas P, Ehrenberg AJ, Nguy A, Thackrey JM, Dunlop S, Mejia MB, Alho AT, Paraizo Leite RE, Rodriguez RD, Suemoto CK, Nascimento CF, Chin M, Medina-Cleghorn D, Cuervo AM, Arkin M, Seeley WW, Miller BL, Nitrini R, Pasqualucci CA, Filho WJ, Rueb U, Neuhaus J, Heinsen H, Grinberg LT. Probing the correlation of neuronal loss, neurofibrillary tangles, and cell death markers across the Alzheimer's disease Braak stages: a quantitative study in humans. Neurobiol Aging 2017; 61:1-12. [PMID: 29031088 DOI: 10.1016/j.neurobiolaging.2017.09.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/30/2022]
Abstract
Clarifying the mechanisms connecting neurofibrillary tangle (NFT) neurotoxicity to neuronal dysfunction in humans is likely to be pivotal for developing effective treatments for Alzheimer's disease (AD). To model the temporal progression of AD in humans, we used a collection of brains with controls and individuals from each Braak stage to quantitatively investigate the correlation between intraneuronal caspase activation or macroautophagy markers, NFT burden, and neuronal loss, in the dorsal raphe nucleus and locus coeruleus, the earliest vulnerable areas to NFT accumulation. We fit linear regressions with each count as outcomes, with Braak score and age as the predictors. In progressive Braak stages, intraneuronal active caspase-6 positivity increases both alone and overlapping with NFTs. Likewise, the proportion of NFT-bearing neurons showing autophagosomes increases. Overall, caspases may be involved in upstream cascades in AD and are associated with higher NFTs. Macroautophagy changes correlate with increasing NFT burden from early AD stages.
Collapse
Affiliation(s)
- Panos Theofilas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander J Ehrenberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Austin Nguy
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Julia M Thackrey
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sara Dunlop
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria B Mejia
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ana T Alho
- Hospital Albert Einstein, São Paulo, Brazil; Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | - Claudia K Suemoto
- Division of Geriatrics, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Camila F Nascimento
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Marcus Chin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Medina-Cleghorn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Ana Maria Cuervo
- Departments of Developmental and Molecular Biology, Anatomy and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michelle Arkin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ricardo Nitrini
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Wilson Jacob Filho
- Division of Geriatrics, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Udo Rueb
- Dr. Senckenbergisches Chronomedizinisches Institut, Department of Anatomy, J. W. Goethe University Frankfurt am Main, Frankfurt, Germany
| | - John Neuhaus
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Helmut Heinsen
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil; Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil.
| |
Collapse
|
53
|
Giorgi FS, Ryskalin L, Ruffoli R, Biagioni F, Limanaqi F, Ferrucci M, Busceti CL, Bonuccelli U, Fornai F. The Neuroanatomy of the Reticular Nucleus Locus Coeruleus in Alzheimer's Disease. Front Neuroanat 2017; 11:80. [PMID: 28974926 PMCID: PMC5610679 DOI: 10.3389/fnana.2017.00080] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/05/2017] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s Disease (AD) features the accumulation of β-amyloid and Tau aggregates, which deposit as extracellular plaques and intracellular neurofibrillary tangles (NFTs), respectively. Neuronal Tau aggregates may appear early in life, in the absence of clinical symptoms. This occurs in the brainstem reticular formation and mostly within Locus Coeruleus (LC), which is consistently affected during AD. LC is the main source of forebrain norepinephrine (NE) and it modulates a variety of functions including sleep-waking cycle, alertness, synaptic plasticity, and memory. The iso-dendritic nature of LC neurons allows their axons to spread NE throughout the whole forebrain. Likewise, a prion-like hypothesis suggests that Tau aggregates may travel along LC axons to reach out cortical neurons. Despite this timing is compatible with cross-sectional studies, there is no actual evidence for a causal relationship between these events. In the present mini-review, we dedicate special emphasis to those various mechanisms that may link degeneration of LC neurons to the onset of AD pathology. This includes the hypothesis that a damage to LC neurons contributes to the onset of dementia due to a loss of neuroprotective effects or, even the chance that, LC degenerates independently from cortical pathology. At the same time, since LC neurons are lost in a variety of neuropsychiatric disorders we considered which molecular mechanism may render these brainstem neurons so vulnerable.
Collapse
Affiliation(s)
- Filippo S Giorgi
- Section of Neurology, Pisa University Hospital, Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Riccardo Ruffoli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | | | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | | | - Ubaldo Bonuccelli
- Section of Neurology, Pisa University Hospital, Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy.,I.R.C.C.S. I.N.M. NeuromedPozzilli, Italy
| |
Collapse
|
54
|
Chalermpalanupap T, Weinshenker D, Rorabaugh JM. Down but Not Out: The Consequences of Pretangle Tau in the Locus Coeruleus. Neural Plast 2017; 2017:7829507. [PMID: 29038736 PMCID: PMC5605916 DOI: 10.1155/2017/7829507] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/20/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022] Open
Abstract
Degeneration of locus coeruleus (LC) is an underappreciated hallmark of Alzheimer's disease (AD). The LC is the main source of norepinephrine (NE) in the forebrain, and its degeneration is highly correlated with cognitive impairment and amyloid-beta (Aβ) and tangle pathology. Hyperphosphorylated tau in the LC is among the first detectable AD-like neuropathology in the brain, and while the LC/NE system impacts multiple aspects of AD (e.g., cognition, neuropathology, and neuroinflammation), the functional consequences of hyperphosphorylated tau accrual on LC neurons are not known. Recent evidence suggests that LC neurons accumulate aberrant tau species for decades before frank LC cell body degeneration occurs in AD, suggesting that a therapeutic window exists. In this review, we combine the literature on how pathogenic tau affects forebrain neurons with the known properties and degeneration patterns of LC neurons to synthesize hypotheses on hyperphosphorylated tau-induced dysfunction of LC neurons and the prion-like spread of pretangle tau from the LC to the forebrain. We also propose novel experiments using both in vitro and in vivo models to address the many questions surrounding the impact of hyperphosphorylated tau on LC neurons in AD and its role in disease progression.
Collapse
Affiliation(s)
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jacki M. Rorabaugh
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
55
|
Abstract
It is possible that one of the essential functions of sleep is to take out the garbage, as it were, erasing and "forgetting" information built up throughout the day that would clutter the synaptic network that defines us. It may also be that this cleanup function of sleep is a general principle of neuroscience, applicable to every creature with a nervous system.
Collapse
|
56
|
Andrés-Benito P, Fernández-Dueñas V, Carmona M, Escobar LA, Torrejón-Escribano B, Aso E, Ciruela F, Ferrer I. Locus coeruleus at asymptomatic early and middle Braak stages of neurofibrillary tangle pathology. Neuropathol Appl Neurobiol 2017; 43:373-392. [PMID: 28117912 DOI: 10.1111/nan.12386] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 12/11/2022]
Abstract
AIMS The present study analyses molecular characteristics of the locus coeruleus (LC) and projections to the amygdala and hippocampus at asymptomatic early and middle Braak stages of neurofibrillary tangle (NFT) pathology. METHODS Immunohistochemistry, whole-transcriptome arrays and RT-qPCR in LC and western blotting in hippocampus and amygdala in a cohort of asymptomatic individuals at stages I-IV of NFT pathology were used. RESULTS NFTs in the LC increased in parallel with colocalized expression of tau kinases, increased neuroketal adducts and decreased superoxide dismutase 1 in neurons with hyperphosphorylated tau and decreased voltage-dependent anion channel in neurons containing truncated tau were found. These were accompanied by increased microglia and AIF1, CD68, PTGS2, IL1β, IL6 and TNF-α gene expression. Whole-transcriptome arrays revealed upregulation of genes coding for proteins associated with heat shock protein binding and genes associated with ATP metabolism and downregulation of genes coding for DNA-binding proteins and members of the small nucleolar RNAs family, at stage IV when compared with stage I. Tyrosine hydroxylase (TH) immunoreactivity was preserved in neurons of the LC, but decreased TH and increased α2A adrenergic receptor protein levels were found in the hippocampus and the amygdala. CONCLUSIONS Complex alteration of several metabolic pathways occurs in the LC accompanying NFT formation at early and middle asymptomatic stages of NFT pathology. Dopaminergic/noradrenergic denervation and increased expression of α2A adrenergic receptor in the hippocampus and amygdala occur at first stage of NFT pathology, suggesting compensatory activation in the face of decreased adrenergic input occurring before clinical evidence of cognitive impairment and depression.
Collapse
Affiliation(s)
- P Andrés-Benito
- Institut de Neuropatologia, Servei d'Anatomia Patològica, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - V Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - M Carmona
- Institut de Neuropatologia, Servei d'Anatomia Patològica, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - L A Escobar
- Institut de Neuropatologia, Servei d'Anatomia Patològica, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - B Torrejón-Escribano
- Unitat de Biologia (BT-E), Serveis Cientifics I Tecnics, Universitat de Barcelona, Madrid, Spain
| | - E Aso
- Institut de Neuropatologia, Servei d'Anatomia Patològica, Hospital Universitari de Bellvitge, Barcelona, Spain.,Departament de Patologia i Terapèutica Experimental, Universitat de Barcelona, L'Hospitalet de Llobregat, Madrid, Spain
| | - F Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - I Ferrer
- Institut de Neuropatologia, Servei d'Anatomia Patològica, Hospital Universitari de Bellvitge, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Departament de Patologia i Terapèutica Experimental, Universitat de Barcelona, L'Hospitalet de Llobregat, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
57
|
Mather M, Joo Yoo H, Clewett DV, Lee TH, Greening SG, Ponzio A, Min J, Thayer JF. Higher locus coeruleus MRI contrast is associated with lower parasympathetic influence over heart rate variability. Neuroimage 2017; 150:329-335. [PMID: 28215623 DOI: 10.1016/j.neuroimage.2017.02.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/19/2017] [Accepted: 02/10/2017] [Indexed: 12/17/2022] Open
Abstract
The locus coeruleus (LC) is a key node of the sympathetic nervous system and suppresses parasympathetic activity that would otherwise increase heart rate variability. In the current study, we examined whether LC-MRI contrast reflecting neuromelanin accumulation in the LC was associated with high-frequency heart rate variability (HF-HRV), a measure reflecting parasympathetic influences on the heart. Recent evidence indicates that neuromelanin, a byproduct of catecholamine metabolism, accumulates in the LC through young and mid adulthood, suggesting that LC-MRI contrast may be a useful biomarker of individual differences in habitual LC activation. We found that, across younger and older adults, greater LC-MRI contrast was negatively associated with HF-HRV during fear conditioning and spatial detection tasks. This correlation was not accounted for by individual differences in age or anxiety. These findings indicate that individual differences in LC structure relate to key cardiovascular parameters.
Collapse
Affiliation(s)
- Mara Mather
- Emotion and Cognition Lab, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90089, USA.
| | - Hyun Joo Yoo
- Emotion and Cognition Lab, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90089, USA
| | - David V Clewett
- Emotion and Cognition Lab, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90089, USA
| | - Tae-Ho Lee
- Emotion and Cognition Lab, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90089, USA
| | - Steven G Greening
- Emotion and Cognition Lab, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90089, USA
| | - Allison Ponzio
- Emotion and Cognition Lab, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90089, USA
| | - Jungwon Min
- Emotion and Cognition Lab, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90089, USA
| | - Julian F Thayer
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
58
|
Iatrou A, Kenis G, Rutten BPF, Lunnon K, van den Hove DLA. Epigenetic dysregulation of brainstem nuclei in the pathogenesis of Alzheimer's disease: looking in the correct place at the right time? Cell Mol Life Sci 2017; 74:509-523. [PMID: 27628303 PMCID: PMC5241349 DOI: 10.1007/s00018-016-2361-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/15/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022]
Abstract
Even though the etiology of Alzheimer's disease (AD) remains unknown, it is suggested that an interplay among genetic, epigenetic and environmental factors is involved. An increasing body of evidence pinpoints that dysregulation in the epigenetic machinery plays a role in AD. Recent developments in genomic technologies have allowed for high throughput interrogation of the epigenome, and epigenome-wide association studies have already identified unique epigenetic signatures for AD in the cortex. Considerable evidence suggests that early dysregulation in the brainstem, more specifically in the raphe nuclei and the locus coeruleus, accounts for the most incipient, non-cognitive symptomatology, indicating a potential causal relationship with the pathogenesis of AD. Here we review the advancements in epigenomic technologies and their application to the AD research field, particularly with relevance to the brainstem. In this respect, we propose the assessment of epigenetic signatures in the brainstem as the cornerstone of interrogating causality in AD. Understanding how epigenetic dysregulation in the brainstem contributes to AD susceptibility could be of pivotal importance for understanding the etiology of the disease and for the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- A Iatrou
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - G Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - B P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - K Lunnon
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK
| | - D L A van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands.
- Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080, Würzburg, Germany.
| |
Collapse
|
59
|
Ibáñez CF, Andressoo JO. Biology of GDNF and its receptors — Relevance for disorders of the central nervous system. Neurobiol Dis 2017; 97:80-89. [DOI: 10.1016/j.nbd.2016.01.021] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 01/15/2023] Open
|
60
|
Theofilas P, Ehrenberg AJ, Dunlop S, Di Lorenzo Alho AT, Nguy A, Leite REP, Rodriguez RD, Mejia MB, Suemoto CK, Ferretti-Rebustini REDL, Polichiso L, Nascimento CF, Seeley WW, Nitrini R, Pasqualucci CA, Jacob Filho W, Rueb U, Neuhaus J, Heinsen H, Grinberg LT. Locus coeruleus volume and cell population changes during Alzheimer's disease progression: A stereological study in human postmortem brains with potential implication for early-stage biomarker discovery. Alzheimers Dement 2016; 13:236-246. [PMID: 27513978 DOI: 10.1016/j.jalz.2016.06.2362] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 06/01/2016] [Accepted: 06/22/2016] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) progression follows a specific spreading pattern, emphasizing the need to characterize those brain areas that degenerate first. The brainstem's locus coeruleus (LC) is the first area to develop neurofibrillary changes (neurofibrillary tangles [NFTs]). METHODS The methods include unbiased stereological analyses in human brainstems to estimate LC volume and neuronal population in controls and individuals across all AD stages. RESULTS As the Braak stage increases by 1 unit, the LC volume decreases by 8.4%. Neuronal loss started only midway through AD progression. Age-related changes spare the LC. DISCUSSION The long gap between NFT accumulation and neuronal loss suggests that a second trigger may be necessary to induce neuronal death in AD. Imaging studies should determine whether LC volumetry can replicate the stage-wise atrophy observed here and how these changes are specific to AD. LC volumetry may develop into a screening biomarker for selecting high-yield candidates to undergo expensive and less accessible positron emission tomography scans and to monitor AD progression from presymptomatic stages.
Collapse
Affiliation(s)
- Panos Theofilas
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander J Ehrenberg
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sara Dunlop
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ana T Di Lorenzo Alho
- Hospital Albert Einstein, São Paulo, Brazil; Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Austin Nguy
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Maria B Mejia
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Claudia K Suemoto
- Division of Geriatrics, University of Sao Paulo Medical School, São Paulo, Brazil
| | | | - Livia Polichiso
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Camila F Nascimento
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - William W Seeley
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ricardo Nitrini
- Department of Neurology, University of Sao Paulo Medical School, São Paulo, Brazil
| | | | - Wilson Jacob Filho
- Division of Geriatrics, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Udo Rueb
- University of Frankfurt, Frankfurt, Germany
| | - John Neuhaus
- Department of Biostatistics, University of California, San Francisco, CA, USA
| | - Helmut Heinsen
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil; University of Wuerzburg, Wuerzburg, Germany
| | - Lea T Grinberg
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil.
| |
Collapse
|
61
|
Theofilas P, Dunlop S, Heinsen H, Grinberg LT. Turning on the Light Within: Subcortical Nuclei of the Isodentritic Core and their Role in Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2016; 46:17-34. [PMID: 25720408 DOI: 10.3233/jad-142682] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pharmacological interventions in Alzheimer's disease (AD) are likely to be more efficacious if administered early in the course of the disease, foregoing the spread of irreversible changes in the brain. Research findings underline an early vulnerability of the isodendritic core (IC) network to AD neurofibrillary lesions. The IC constitutes a phylogenetically conserved subcortical system including the locus coeruleus in pons, dorsal raphe nucleus, and substantia nigra in the midbrain, and nucleus basalis of Meynert in basal forebrain. Through their ascending projections to the cortex, the IC neurons regulate homeostasis and behavior by synthesizing aminergic and cholinergic neurotransmitters. Here we reviewed the evidence demonstrating that neurons of the IC system show neurofibrillary tangles in the earliest stages of AD, prior to cortical pathology, and how this involvement may explain pre-amnestic symptoms, including depression, agitation, and sleep disturbances in AD patients. In fact, clinical and animal studies show a significant reduction of AD cognitive and behavioral symptoms following replenishment of neurotransmitters associated with the IC network. Therefore, the IC network represents a unique candidate for viable therapeutic intervention and should become a high priority for research in AD.
Collapse
Affiliation(s)
- Panos Theofilas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sara Dunlop
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Helmut Heinsen
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Department of Psychiatrics, University of Wuerzburg, Germany
| | - Lea Tenenholz Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.,Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
62
|
Abstract
Pathological neural activity could be treated by directing specific plasticity to renormalize circuits and restore function. Rehabilitative therapies aim to promote adaptive circuit changes after neurological disease or injury, but insufficient or maladaptive plasticity often prevents a full recovery. The development of adjunctive strategies that broadly support plasticity to facilitate the benefits of rehabilitative interventions has the potential to improve treatment of a wide range of neurological disorders. Recently, stimulation of the vagus nerve in conjunction with rehabilitation has emerged as one such potential targeted plasticity therapy. Vagus nerve stimulation (VNS) drives activation of neuromodulatory nuclei that are associated with plasticity, including the cholinergic basal forebrain and the noradrenergic locus coeruleus. Repeatedly pairing brief bursts of VNS sensory or motor events drives robust, event-specific plasticity in neural circuits. Animal models of chronic tinnitus, ischemic stroke, intracerebral hemorrhage, traumatic brain injury, and post-traumatic stress disorder benefit from delivery of VNS paired with successful trials during rehabilitative training. Moreover, mounting evidence from pilot clinical trials provides an initial indication that VNS-based targeted plasticity therapies may be effective in patients with neurological diseases and injuries. Here, I provide a discussion of the current uses and potential future applications of VNS-based targeted plasticity therapies in animal models and patients, and outline challenges for clinical implementation.
Collapse
Affiliation(s)
- Seth A Hays
- Texas Biomedical Device Center, Richardson, TX, USA.
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA.
- School of Behavioral Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
63
|
Feinstein DL, Kalinin S, Braun D. Causes, consequences, and cures for neuroinflammation mediated via the locus coeruleus: noradrenergic signaling system. J Neurochem 2016; 139 Suppl 2:154-178. [PMID: 26968403 DOI: 10.1111/jnc.13447] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/31/2022]
Abstract
Aside from its roles in as a classical neurotransmitter involved in regulation of behavior, noradrenaline (NA) has other functions in the CNS. This includes restricting the development of neuroinflammatory activation, providing neurotrophic support to neurons, and providing neuroprotection against oxidative stress. In recent years, it has become evident that disruption of physiological NA levels or signaling is a contributing factor to a variety of neurological diseases and conditions including Alzheimer's disease (AD) and Multiple Sclerosis. The basis for dysregulation in these diseases is, in many cases, due to damage occurring to noradrenergic neurons present in the locus coeruleus (LC), the major source of NA in the CNS. LC damage is present in AD, multiple sclerosis, and a large number of other diseases and conditions. Studies using animal models have shown that experimentally induced lesion of LC neurons exacerbates neuropathology while treatments to compensate for NA depletion, or to reduce LC neuronal damage, provide benefit. In this review, we will summarize the anti-inflammatory and neuroprotective actions of NA, summarize examples of how LC damage worsens disease, and discuss several approaches taken to treat or prevent reductions in NA levels and LC neuronal damage. Further understanding of these events will be of value for the development of treatments for AD, multiple sclerosis, and other diseases and conditions having a neuroinflammatory component. The classical neurotransmitter noradrenaline (NA) has critical roles in modulating behaviors including those involved in sleep, anxiety, and depression. However, NA can also elicit anti-inflammatory responses in glial cells, can increase neuronal viability by inducing neurotrophic factor expression, and can reduce neuronal damage due to oxidative stress by scavenging free radicals. NA is primarily produced by tyrosine hydroxylase (TH) expressing neurons in the locus coeruleus (LC), a relatively small brainstem nucleus near the IVth ventricle which sends projections throughout the brain and spinal cord. It has been known for close to 50 years that LC neurons are lost during normal aging, and that loss is exacerbated in neurological diseases including Parkinson's disease and Alzheimer's disease. LC neuronal damage and glial activation has now been documented in a variety of other neurological conditions and diseases, however, the causes of LC damage and cell loss remain largely unknown. A number of approaches have been developed to address the loss of NA and increased inflammation associated with LC damage, and several methods are being explored to directly minimize the extent of LC neuronal cell loss or function. In this review, we will summarize some of the consequences of LC loss, consider several factors that likely contribute to that loss, and discuss various ways that have been used to increase NA or to reduce LC damage. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA. .,Jesse Brown VA Medical Center, Chicago, IL, USA.
| | - Sergey Kalinin
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - David Braun
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
64
|
Mather M, Harley CW. The Locus Coeruleus: Essential for Maintaining Cognitive Function and the Aging Brain. Trends Cogn Sci 2016; 20:214-226. [PMID: 26895736 PMCID: PMC4761411 DOI: 10.1016/j.tics.2016.01.001] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/15/2022]
Abstract
Research on cognitive aging has focused on how decline in various cortical and hippocampal regions influence cognition. However, brainstem regions play essential modulatory roles, and new evidence suggests that, among these, the integrity of the locus coeruleus (LC)-norepinephrine (NE) system plays a key role in determining late-life cognitive abilities. The LC is especially vulnerable to toxins and infection and is often the first place Alzheimer's-related pathology appears, with most people showing at least some tau pathology by their mid-20s. On the other hand, NE released from the LC during arousing, mentally challenging, or novel situations helps to protect neurons from damage, which may help to explain how education and engaging careers prevent cognitive decline in later years.
Collapse
Affiliation(s)
- Mara Mather
- Davis School of Gerontology and Department of Psychology, University of Southern California, Los Angeles, CA, USA.
| | - Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
65
|
Szot P, Franklin A, Miguelez C, Wang Y, Vidaurrazaga I, Ugedo L, Sikkema C, Wilkinson CW, Raskind MA. Depressive-like behavior observed with a minimal loss of locus coeruleus (LC) neurons following administration of 6-hydroxydopamine is associated with electrophysiological changes and reversed with precursors of norepinephrine. Neuropharmacology 2015; 101:76-86. [PMID: 26362360 DOI: 10.1016/j.neuropharm.2015.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/01/2015] [Accepted: 09/03/2015] [Indexed: 01/23/2023]
Abstract
Depression is a common co-morbid condition most often observed in subjects with mild cognitive impairment (MCI) and during the early stages of Alzheimer's disease (AD). Dysfunction of the central noradrenergic nervous system is an important component in depression. In AD, locus coeruleus (LC) noradrenergic neurons are significantly reduced pathologically and the reduction of LC neurons is hypothesized to begin very early in the progression of the disorder; however, it is not known if dysfunction of the noradrenergic system due to early LC neuronal loss is involved in mediating depression in early AD. Therefore, the purpose of this study was to determine in an animal model if a loss of noradrenergic LC neurons results in depressive-like behavior. The LC noradrenergic neuronal population was reduced by the bilateral administration of the neurotoxin 6-hydroxydopamine (6-OHDA) directly into the LC. Forced swim test (FST) was performed three weeks after the administration of 6-OHDA (5, 10 and 14 μg/μl), animals administered the 5 μg/μl of 6-OHDA demonstrated a significant increase in immobility, indicating depressive-like behavior. This increase in immobility at the 5 μg/μl dose was observed with a minimal loss of LC noradrenergic neurons as compared to LC neuronal loss observed at 10 and 14 μg/μl dose. A significant positive correlation between the number of surviving LC neurons after 6-OHDA and FST immobile time was observed, suggesting that in animals with a minimal loss of LC neurons (or a greater number of surviving LC neurons) following 6-OHDA demonstrated depressive-like behavior. As the 6-OHDA-induced loss of LC neurons is increased, the time spent immobile is reduced. Depressive-like behavior was also observed with the 5 μg/μl dose of 6-OHDA with a second behavior test, sucrose consumption. FST increased immobility following 6-OHDA (5 μg/μl) was reversed by the administration of a single dose of L-1-3-4-dihydroxyphenylalanine (DOPA) or l-threo-3,4-dihydroxyphenylserine (DOPS) prior to behavioral assessment. Surviving LC neurons 3 weeks after 6-OHDA (5 μg/μl) demonstrated compensatory changes of increased firing frequency, a more irregular firing pattern, and a higher percentage of cells firing in bursts. These results indicate that depressive-like behavior in mice is observed following the administration of 6-OHDA and the loss of LC noradrenergic neurons; however, the depressive-like behavior correlates positively with the number of surviving LC neurons with 6-OHDA administration. This data suggests the depression observed in MCI subjects and in the early stages of AD may due to the hypothesized early, minimal loss of LC neurons with remaining LC neurons being more active than normal.
Collapse
Affiliation(s)
- Patricia Szot
- Mental Illness Research, Education and Clinical Center, Veterans Administration Puget Sound Health Care System, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| | - Allyn Franklin
- Mental Illness Research, Education and Clinical Center, Veterans Administration Puget Sound Health Care System, Seattle, WA, USA
| | - Cristina Miguelez
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain; Department of Pharmacology, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
| | - Yangqing Wang
- Mental Illness Research, Education and Clinical Center, Veterans Administration Puget Sound Health Care System, Seattle, WA, USA
| | - Igor Vidaurrazaga
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Luisa Ugedo
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Carl Sikkema
- Geriatric Research, Education and Clinical Center, Veterans Administration Puget Sound Health Care System, Seattle, WA, USA
| | - Charles W Wilkinson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA; Geriatric Research, Education and Clinical Center, Veterans Administration Puget Sound Health Care System, Seattle, WA, USA
| | - Murray A Raskind
- Mental Illness Research, Education and Clinical Center, Veterans Administration Puget Sound Health Care System, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
66
|
Braak H, Del Tredici K. The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain 2015; 138:2814-33. [DOI: 10.1093/brain/awv236] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/21/2015] [Indexed: 12/13/2022] Open
|
67
|
Ádori C, Glück L, Barde S, Yoshitake T, Kovacs GG, Mulder J, Maglóczky Z, Havas L, Bölcskei K, Mitsios N, Uhlén M, Szolcsányi J, Kehr J, Rönnbäck A, Schwartz T, Rehfeld JF, Harkany T, Palkovits M, Schulz S, Hökfelt T. Critical role of somatostatin receptor 2 in the vulnerability of the central noradrenergic system: new aspects on Alzheimer's disease. Acta Neuropathol 2015; 129:541-63. [PMID: 25676386 DOI: 10.1007/s00401-015-1394-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease and other age-related neurodegenerative disorders are associated with deterioration of the noradrenergic locus coeruleus (LC), a probable trigger for mood and memory dysfunction. LC noradrenergic neurons exhibit particularly high levels of somatostatin binding sites. This is noteworthy since cortical and hypothalamic somatostatin content is reduced in neurodegenerative pathologies. Yet a possible role of a somatostatin signal deficit in the maintenance of noradrenergic projections remains unknown. Here, we deployed tissue microarrays, immunohistochemistry, quantitative morphometry and mRNA profiling in a cohort of Alzheimer's and age-matched control brains in combination with genetic models of somatostatin receptor deficiency to establish causality between defunct somatostatin signalling and noradrenergic neurodegeneration. In Alzheimer's disease, we found significantly reduced somatostatin protein expression in the temporal cortex, with aberrant clustering and bulging of tyrosine hydroxylase-immunoreactive afferents. As such, somatostatin receptor 2 (SSTR2) mRNA was highly expressed in the human LC, with its levels significantly decreasing from Braak stages III/IV and onwards, i.e., a process preceding advanced Alzheimer's pathology. The loss of SSTR2 transcripts in the LC neurons appeared selective, since tyrosine hydroxylase, dopamine β-hydroxylase, galanin or galanin receptor 3 mRNAs remained unchanged. We modeled these pathogenic changes in Sstr2(-/-) mice and, unlike in Sstr1(-/-) or Sstr4(-/-) genotypes, they showed selective, global and progressive degeneration of their central noradrenergic projections. However, neuronal perikarya in the LC were found intact until late adulthood (<8 months) in Sstr2(-/-) mice. In contrast, the noradrenergic neurons in the superior cervical ganglion lacked SSTR2 and, as expected, the sympathetic innervation of the head region did not show any signs of degeneration. Our results indicate that SSTR2-mediated signaling is integral to the maintenance of central noradrenergic projections at the system level, and that early loss of somatostatin receptor 2 function may be associated with the selective vulnerability of the noradrenergic system in Alzheimer's disease.
Collapse
Affiliation(s)
- Csaba Ádori
- Department of Neuroscience, Retzius Laboratory, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Hopp SC, Royer SE, D’Angelo HM, Kaercher RM, Fisher DA, Wenk GL. Differential neuroprotective and anti-inflammatory effects of L-type voltage dependent calcium channel and ryanodine receptor antagonists in the substantia nigra and locus coeruleus. J Neuroimmune Pharmacol 2015; 10:35-44. [PMID: 25318607 PMCID: PMC4336597 DOI: 10.1007/s11481-014-9568-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/07/2014] [Indexed: 01/01/2023]
Abstract
Neuroinflammation and degeneration of catecholaminergic brainstem nuclei occur early in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Neuroinflammation increases levels of pro-inflammatory cytokines and reactive oxygen species which can alter neuronal calcium (Ca(+2)) homoeostasis via L-type voltage dependent calcium channels (L-VDCCs) and ryanodine receptors (RyRs). Alterations in Ca(+2) channel activity in the SN and LC can lead to disruption of normal pacemaking activity in these areas, contributing to behavioral deficits. Here, we utilized an in vivo model of chronic neuroinflammation: rats were infused intraventricularly with a continuous small dose (0.25 μg/h) of lipopolysaccharide (LPS) or artificial cerebrospinal fluid (aCSF) for 28 days. Rats were treated with either the L-VDCC antagonist nimodipine or the RyR antagonist dantrolene. LPS-infused rats had significant motor deficits in the accelerating rotarod task as well as abnormal behavioral agitation in the forced swim task and open field. Corresponding with these behavioral deficits, LPS-infused rats also had significant increases in microglia activation and loss of tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra pars compacta (SNpc) and locus coeruleus (LC). Treatment with nimodipine or dantrolene normalized LPS-induced abnormalities in the rotarod and forced swim, restored the number of TH-immunoreactive cells in the LC, and significantly reduced microglia activation in the SNpc. Only nimodipine significantly reduced microglia activation in the LC, and neither drug increased TH immunoreactivity in the SNpc. These findings demonstrate that the Ca(+2) dysregulation in the LC and SN brainstem nuclei is differentially altered by chronic neuroinflammation. Overall, targeting Ca + 2 dysregulation may be an important target for ameliorating neurodegeneration in the SNpc and LC.
Collapse
Affiliation(s)
- Sarah C. Hopp
- Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA
| | - Sarah E. Royer
- Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | - Gary L. Wenk
- Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA
- Department of Psychology, Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
69
|
Arendt T, Brückner MK, Morawski M, Jäger C, Gertz HJ. Early neurone loss in Alzheimer's disease: cortical or subcortical? Acta Neuropathol Commun 2015; 3:10. [PMID: 25853173 PMCID: PMC4359478 DOI: 10.1186/s40478-015-0187-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/16/2015] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a degenerative disorder where the distribution of pathology throughout the brain is not random but follows a predictive pattern used for pathological staging. While the involvement of defined functional systems is fairly well established for more advanced stages, the initial sites of degeneration are still ill defined. The prevailing concept suggests an origin within the transentorhinal and entorhinal cortex (EC) from where pathology spreads to other areas. Still, this concept has been challenged recently suggesting a potential origin of degeneration in nonthalamic subcortical nuclei giving rise to cortical innervation such as locus coeruleus (LC) and nucleus basalis of Meynert (NbM). To contribute to the identification of the early site of degeneration, here, we address the question whether cortical or subcortical degeneration occurs more early and develops more quickly during progression of AD. To this end, we stereologically assessed neurone counts in the NbM, LC and EC layer-II in the same AD patients ranging from preclinical stages to severe dementia. In all three areas, neurone loss becomes detectable already at preclinical stages and is clearly manifest at prodromal AD/MCI. At more advanced AD, cell loss is most pronounced in the NbM > LC > layer-II EC. During early AD, however, the extent of cell loss is fairly balanced between all three areas without clear indications for a preference of one area. We can thus not rule out that there is more than one way of spreading from its site of origin or that degeneration even occurs independently at several sites in parallel.
Collapse
|
70
|
Braun D, Madrigal JLM, Feinstein DL. Noradrenergic regulation of glial activation: molecular mechanisms and therapeutic implications. Curr Neuropharmacol 2014; 12:342-52. [PMID: 25342942 PMCID: PMC4207074 DOI: 10.2174/1570159x12666140828220938] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/12/2014] [Accepted: 07/16/2014] [Indexed: 01/07/2023] Open
Abstract
It has been known for many years that the endogenous neurotransmitter noradrenaline (NA) exerts anti-inflammatory and neuroprotective effects both in vitro and in vivo. In many cases the site of action of NA are beta-adrenergic receptors (βARs), causing an increase in intracellular levels of cAMP which initiates a broad cascade of events including suppression of inflammatory transcription factor activities, alterations in nuclear localization of proteins, and induction of patterns of gene expression mediated through activity of the CREB transcription factor. These changes lead not only to reduced inflammatory events, but also contribute to neuroprotective actions of NA by increasing expression of neurotrophic substances including BDNF, GDNF, and NGF. These properties have prompted studies to determine if treatments with drugs to raise CNS NA levels could provide benefit in various neurological conditions and diseases having an inflammatory component. Moreover, increasing evidence shows that disruptions in endogenous NA levels occurs in several diseases and conditions including Alzheimer's disease (AD), Parkinson's disease (PD), Down's syndrome, posttraumatic stress disorder (PTSD), and multiple sclerosis (MS), suggesting that damage to NA producing neurons is a common factor that contributes to the initiation or progression of neuropathology. Methods to increase NA levels, or to reduce damage to noradrenergic neurons, therefore represent potential preventative as well as therapeutic approaches to disease.
Collapse
Affiliation(s)
- David Braun
- Department of Anesthesiology, University of Illinois at Chicago, Chicago IL, USA, 60612
| | - Jose L M Madrigal
- Departamento de Farmacología, Universidad Complutense de Madrid, Spain
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois at Chicago, Chicago IL, USA, 60612 ; Jesse Brown VA Medical Center, Chicago IL, USA, 60612
| |
Collapse
|
71
|
Mong J, Panman L, Alekseenko Z, Kee N, Stanton LW, Ericson J, Perlmann T. Transcription factor-induced lineage programming of noradrenaline and motor neurons from embryonic stem cells. Stem Cells 2014; 32:609-22. [PMID: 24549637 DOI: 10.1002/stem.1585] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/20/2013] [Indexed: 11/08/2022]
Abstract
An important goal in stem cell biology is to develop methods for efficient generation of clinically interesting cell types from relevant stem cell populations. This is particularly challenging for different types of neurons of the central nervous system where hundreds of distinct neuronal cell types are generated during embryonic development. We previously used a strategy based on forced transcription factor expression in embryonic stem cell-derived neural progenitors to generate specific types of neurons, including dopamine and serotonin neurons. Here, we extend these studies and show that noradrenergic neurons can also be generated from pluripotent embryonic stem cells by forced expression of the homeobox transcription factor Phox2b under the signaling influence of fibroblast growth factor 8 (FGF8) and bone morphogenetic proteins. In neural progenitors exposed to FGF8 and sonic hedgehog both Phox2b and the related Phox2a instead promoted the generation of neurons with the characteristics of mid- and hindbrain motor neurons. The efficient generation of these neuron types enabled a comprehensive genome-wide gene expression analysis that provided further validation of the identity of generated cells. Moreover, we also demonstrate that the generated cell types are amenable to drug testing in vitro and we show that variants of the differentiation protocols can be applied to cultures of human pluripotent stem cells for the generation of human noradrenergic and visceral motor neurons. Thus, these studies provide a basis for characterization of yet an additional highly clinically relevant neuronal cell type.
Collapse
Affiliation(s)
- Jamie Mong
- Ludwig Institute for Cancer Research, Ltd., Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
72
|
Matveychuk D, Nunes E, Ullah N, Aldawsari FS, Velázquez-Martínez CA, Baker GB. Elevation of rat brain tyrosine levels by phenelzine is mediated by its active metabolite β-phenylethylidenehydrazine. Prog Neuropsychopharmacol Biol Psychiatry 2014; 53:67-73. [PMID: 24607770 DOI: 10.1016/j.pnpbp.2014.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 11/26/2022]
Abstract
Phenelzine, a non-selective irreversible inhibitor of monoamine oxidase (MAO), has been used in the treatment of depression and anxiety disorders for several decades. It is a unique inhibitor of MAO as it is also a substrate for MAO, with one of the metabolites being β-phenylethylidenehydrazine (PEH), and it also inhibits several transaminases (e.g. GABA transaminase) in the brain when administered i.p. to rats. Administration of either phenelzine or PEH to rats has been reported to produce dramatic increases in rat brain levels of GABA and alanine while reducing levels of glutamine; these effects are abolished for phenelzine, but not for PEH, when the animals are pre-treated with another MAO inhibitor, suggesting that they are mediated by the MAO-catalyzed formation of PEH from phenelzine. In the present report, we have found that phenelzine and E- and Z-geometric isomers of PEH significantly increased rat whole brain concentrations of L-tyrosine. In a time-response study, acute administration of phenelzine, E-PEH and Z-PEH (30 mg/kg i.p.) elevated rat whole brain L-tyrosine levels at 3 and 6h following injection, reaching approximately 265-305% of vehicle-treated controls at 3h. To determine whether the effect on L-tyrosine is MAO-dependent, animals were pre-treated with the non-selective MAO inhibitor tranylcypromine (1mg/kg i.p.) prior to administration of phenelzine, racemic PEH or vehicle controls. This pre-treatment reversed the effects of phenelzine, but not of PEH, on brain L-tyrosine levels, suggesting that the tyrosine-elevating property of phenelzine is largely the result of its active metabolite PEH. These results are discussed in relation to possible therapeutic applications of these drugs.
Collapse
Affiliation(s)
- Dmitriy Matveychuk
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Canada.
| | - Emerson Nunes
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Canada.
| | - Nasir Ullah
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
| | - Fahad S Aldawsari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
| | | | - Glen B Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
73
|
Raskind MA, Wang LY. Antipsychotic drugs for psychosis and agitation in dementia: efficacy, safety, and a possible noradrenergic mechanism of action. Int Psychogeriatr 2014; 26:879-83. [PMID: 24703502 DOI: 10.1017/s1041610214000477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Murray A Raskind
- Veterans Affairs Northwest Network (VISN 20) Mental Illness Research, Education and Clinical Center, Mental Health Service, VA Puget Sound Health Care System, and Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Lucy Y Wang
- Veterans Affairs Northwest Network (VISN 20) Mental Illness Research, Education and Clinical Center, Mental Health Service, VA Puget Sound Health Care System, and Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
74
|
Bilkei-Gorzo A. Genetic mouse models of brain ageing and Alzheimer's disease. Pharmacol Ther 2014; 142:244-57. [DOI: 10.1016/j.pharmthera.2013.12.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
|
75
|
Coutellier L, Ardestani PM, Shamloo M. β1-adrenergic receptor activation enhances memory in Alzheimer's disease model. Ann Clin Transl Neurol 2014; 1:348-360. [PMID: 24883337 PMCID: PMC4036739 DOI: 10.1002/acn3.57] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Objective Deficits in social recognition and learning of social cues are major symptoms of neurodegenerative disorders such as Alzheimer's disease (AD). Here, we studied the role of β1-noradrenergic signaling in cognitive function to determine whether it could be used as a potential therapeutic target for AD. Methods Using pharmacological, biochemical, and behavioral tools, we assessed social recognition and the β1-adrenergic receptor (ADR) and its downstream protein kinase A (PKA)/phospho-cAMP response element-binding protein (pCREB) signaling cascade in the medial amygdala (MeA) in Thy1-hAPPLond/Swe+(APP) mouse model of AD. Results Our results demonstrated that APP mice display a significant social recognition deficit which is dependent on the β1-adrenergic system. Moreover, betaxolol, a selective β1-ADR antagonist, impaired social but not object/odor learning in C57Bl/6 mice. Our results identifies activation of the PKA/pCREB downstream of β1-ADR in MeA as responsible signaling cascade for learning of social cues in MeA. Finally, we found that xamoterol, a selective β1-ADR partial agonist, rescued the social recognition deficit of APP mice by increasing nuclear pCREB. Interpretation Our data indicate that activation of β1-ADR in MeA is essential for learning of social cues, and that an impairment of this cascade in AD may contribute to pathogenesis and cognitive deficits. Therefore, selective activation of β1-ADR may be used as a therapeutic approach to rescue memory deficits in AD. Further safety and translational studies will be needed to ensure the safety of this approach.
Collapse
Affiliation(s)
- Laurence Coutellier
- Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA, USA
| | - Pooneh Memar Ardestani
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA ; Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA ; Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
76
|
Abstract
The central noradrenergic neurone, like the peripheral sympathetic neurone, is characterized by a diffusely arborizing terminal axonal network. The central neurones aggregate in distinct brainstem nuclei, of which the locus coeruleus (LC) is the most prominent. LC neurones project widely to most areas of the neuraxis, where they mediate dual effects: neuronal excitation by α₁-adrenoceptors and inhibition by α₂-adrenoceptors. The LC plays an important role in physiological regulatory networks. In the sleep/arousal network the LC promotes wakefulness, via excitatory projections to the cerebral cortex and other wakefulness-promoting nuclei, and inhibitory projections to sleep-promoting nuclei. The LC, together with other pontine noradrenergic nuclei, modulates autonomic functions by excitatory projections to preganglionic sympathetic, and inhibitory projections to preganglionic parasympathetic neurones. The LC also modulates the acute effects of light on physiological functions ('photomodulation'): stimulation of arousal and sympathetic activity by light via the LC opposes the inhibitory effects of light mediated by the ventrolateral preoptic nucleus on arousal and by the paraventricular nucleus on sympathetic activity. Photostimulation of arousal by light via the LC may enable diurnal animals to function during daytime. LC neurones degenerate early and progressively in Parkinson's disease and Alzheimer's disease, leading to cognitive impairment, depression and sleep disturbance.
Collapse
Affiliation(s)
- Elemer Szabadi
- Division of Psychiatry, University of Nottingham, Nottingham, UK.
| |
Collapse
|
77
|
Kuljiš RO, Colom LV, Rojo LE. Biological basis for cerebral dysfunction in schizophrenia in contrast with Alzheimer's disease. Front Psychiatry 2013; 4:119. [PMID: 24550846 PMCID: PMC3909944 DOI: 10.3389/fpsyt.2013.00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022] Open
Abstract
Schizophrenia and Alzheimer's disease are two disorders that, while conceptualized as pathophysiologically and clinically distinct, cause substantial cognitive and behavioral impairment worldwide, and target apparently similar - or nearby - circuitry in regions such as the temporal and frontal lobes. We review the salient differences and similarities from selected historical, nosological, and putative mechanistic viewpoints, as a means to help both clinicians and researchers gain a better insight into these intriguing disorders, for which over a century of research and decades of translational development was needed to begin yielding treatments that are objectively effective, but still very far from entirely satisfactory. Ongoing comparison and "cross-pollination" among these approaches to disorders that produce similar deficits is likely to continue improving both our insight into the mechanisms at play, and the development of biotechnological approaches to tackle both conditions - and related disorders - more rapidly and efficaciously.
Collapse
Affiliation(s)
- Rodrigo O Kuljiš
- Brain-Mind Project, Inc. , Galveston, TX , USA ; Institute of Ethnopharmacology, Universidad Arturo Prat , Iquique , Chile ; The University of Texas Medical Branch at Galveston , Galveston, TX , USA ; Instituto Neurogeriátrico , Santiago , Chile ; Zdrav Mozak Limitada , Santiago , Chile ; Clínica Las Condes, University of Chile , Santiago , Chile ; Encephalogistics, Inc. , Miami, FL , USA
| | - Luis V Colom
- Brain-Mind Project, Inc. , Galveston, TX , USA ; The University of Texas at Brownsville , Brownsville, TX , USA
| | - Leonel E Rojo
- Brain-Mind Project, Inc. , Galveston, TX , USA ; Institute of Ethnopharmacology, Universidad Arturo Prat , Iquique , Chile ; Instituto Neurogeriátrico , Santiago , Chile ; Encephalogistics, Inc. , Miami, FL , USA
| |
Collapse
|
78
|
Hardy J, Adolfsson R, Alafuzoff I, Bucht G, Marcusson J, Nyberg P, Perdahl E, Wester P, Winblad B. Transmitter deficits in Alzheimer's disease. Neurochem Int 2012; 7:545-63. [PMID: 20492959 DOI: 10.1016/0197-0186(85)90050-6] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pattern of neurotransmitter pathway losses in Alzheimer's disease are reviewed. Deficits of the cholinergic pathway from the nucleus basalis, the noradrenergic pathway from the locus coeruleus and the serotoninergic pathway from the raphe nuclei are established. Cortical somatostatin interneurons are affected and dopaminergic neurons may be affected although these may be late or secondary phenomena in the disease process. Other neuronal systems, particularly in the hippocampus and temporal cortex, are also damaged. However, the disease is not one of generalised neuronal atrophy since some neurons are selectively spared. The established pathway-specific losses are discussed in relation to the clinical symptomatology and the pathology of the disorder. The biochemical and histological findings are compared with similar measurements made on tissues from other dementing disorders in an attempt to trace features common to dementias. Finally, as an addendum, a hypothesis is briefly outlined which attempts to explain the common features of the affected neurons and the pathogenesis of the disorder.
Collapse
Affiliation(s)
- J Hardy
- Umeå Dementia Research Group, Departments of Pathology, Psychiatry and Geriatric Medicine, University of Umeå, Umeå Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Robertson IH. A noradrenergic theory of cognitive reserve: implications for Alzheimer's disease. Neurobiol Aging 2012; 34:298-308. [PMID: 22743090 DOI: 10.1016/j.neurobiolaging.2012.05.019] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/24/2012] [Accepted: 05/27/2012] [Indexed: 01/25/2023]
Abstract
The gap between symptoms and pathology in Alzheimer's disease has been explained by the hypothetical construct of "cognitive reserve"--a set of variables including education, intelligence, and mental stimulation which putatively allow the brain to adapt to-and hence mask--underlying pathologies by maintaining cognitive function despite underlying neural changes. This review proposes a hypothesis that a biological mechanism may mediate between these social/psychological processes on the one hand, and apparently reduced risk of Alzheimer's disease on the other, namely repeated activation of the noradrenergic system over a lifetime by the processes implicated in cognitive reserve. Noradrenaline's neuroprotective effects both in vivo and in vitro, and its key role in mediating the neuroprotective effects of environmental enrichment on the brain, make noradrenaline's key role in mediating cognitive reserve--by disease compensation, disease modification, or a combination of both--a viable hypothesis.
Collapse
Affiliation(s)
- Ian H Robertson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College, Dublin, Ireland.
| |
Collapse
|
80
|
Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer's disease. PLoS One 2012; 7:e36893. [PMID: 22615835 PMCID: PMC3353981 DOI: 10.1371/journal.pone.0036893] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/12/2012] [Indexed: 01/01/2023] Open
Abstract
Key pathological hallmarks of Alzheimer's disease (AD), including amyloid plaques, cerebral amyloid angiopathy (CAA) and neurofibrillary tangles do not completely account for cognitive impairment, therefore other factors such as cardiovascular and cerebrovascular pathologies, may contribute to AD. In order to elucidate the microvascular changes that contribute to aging and disease, direct neuropathological staining and immunohistochemistry, were used to quantify the structural integrity of the microvasculature and its innervation in three oldest-old cohorts: 1) nonagenarians with AD and a high amyloid plaque load; 2) nonagenarians with no dementia and a high amyloid plaque load; 3) nonagenarians without dementia or amyloid plaques. In addition, a non-demented (ND) group (average age 71 years) with no amyloid plaques was included for comparison. While gray matter thickness and overall brain mass were reduced in AD compared to ND control groups, overall capillary density was not different. However, degenerated string capillaries were elevated in AD, potentially suggesting greater microvascular "dysfunction" compared to ND groups. Intriguingly, apolipoprotein ε4 carriers had significantly higher string vessel counts relative to non-ε4 carriers. Taken together, these data suggest a concomitant loss of functional capillaries and brain volume in AD subjects. We also demonstrated a trend of decreasing vesicular acetylcholine transporter staining, a marker of cortical cholinergic afferents that contribute to arteriolar vasoregulation, in AD compared to ND control groups, suggesting impaired control of vasodilation in AD subjects. In addition, tyrosine hydroxylase, a marker of noradrenergic vascular innervation, was reduced which may also contribute to a loss of control of vasoconstriction. The data highlight the importance of the brain microcirculation in the pathogenesis and evolution of AD.
Collapse
|
81
|
Szot P, Knight L, Franklin A, Sikkema C, Foster S, Wilkinson CW, White SS, Raskind MA. Lesioning noradrenergic neurons of the locus coeruleus in C57Bl/6 mice with unilateral 6-hydroxydopamine injection, to assess molecular, electrophysiological and biochemical changes in noradrenergic signaling. Neuroscience 2012; 216:143-57. [PMID: 22542679 DOI: 10.1016/j.neuroscience.2012.04.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
Abstract
The locus coeruleus (LC) is the major loci of noradrenergic innervation to the forebrain. Due to the extensive central nervous system innervation of the LC noradrenergic system, a reduction in the number of LC neurons could result in significant changes in noradrenergic function in many forebrain regions. LC noradrenergic neurons were lesioned in adult male C57Bl/6 mice with the unilateral administration of 6-hydroxydopamine (6OHDA) (vehicle on the alternate side). Noradrenergic markers were measured 3 weeks later to determine the consequence of LC loss in the forebrain. Direct administration of 6OHDA into the LC results in the specific reduction of noradrenergic neurons in the LC (as measured by electrophysiology, immunoreactivity and in situ hybridization), the lateral tegmental neurons and dopaminergic neurons in the substantia nigra (SN) and ventral tegmental region were unaffected. The loss of LC noradrenergic neurons did not result in compensatory changes in the expression of mRNA for norepinephrine (NE)-synthesizing enzymes. The loss of LC noradrenergic neurons is associated with reduced NE tissue concentration and NE transporter (NET) binding sites in the frontal cortex and hippocampus, as well as other forebrain regions such as the amygdala and SN. Adrenoreceptor (AR) binding sites (α(1)- and α(2)-AR) were not significantly affected on the 6OHDA-treated side compared to the vehicle-treated side, although there is a reduction of AR binding sites on both the vehicle- and 6OHDA-treated side in specific forebrain regions. These studies indicate that unilateral stereotaxic injection of 6OHDA into mice reduces noradrenergic LC neurons and reduces noradrenergic innervation to many forebrain regions, including the contralateral side.
Collapse
Affiliation(s)
- P Szot
- Northwest Network for Mental Illness Research, Education, and Clinical Center, Veterans Administration Puget Sound Health Care System, Seattle, WA 98108, USA. szot@u. washington. edu
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Polak PE, Kalinin S, Braun D, Sharp A, Lin SX, Feinstein DL. The vincamine derivative vindeburnol provides benefit in a mouse model of multiple sclerosis: effects on the Locus coeruleus. J Neurochem 2012; 121:206-16. [PMID: 22288774 DOI: 10.1111/j.1471-4159.2012.07673.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The endogenous neurotransmitter noradrenaline (NA) plays several roles in maintaining brain homeostasis, including exerting anti-inflammatory and neuroprotective effects. The primary source of NA in the CNS are tyrosine hydroxylase (TH)-positive neurons located in the Locus coeruleus (LC) which send projections throughout the brain and spinal cord. We recently demonstrated that dysregulation of the LC:Noradrenergic system occurs in experimental autoimmune encephalomyelitis as well as in MS patients, associated with damage occurring to LC neurons. Vindeburnol, a structural analog of the cerebral vasodilator vincamine, was previously reported to increase TH expression and activity in LC neurons. Female C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein (MOG)(35-55) peptide, and treated with vindeburnol at the first appearance of clinical signs. Clinical signs continued to increase for about 1 week, at which point mice in the vehicle group continued to worsen while vindeburnol-treated mice showed improvement. Pro-inflammatory cytokine production from splenic T cells was not reduced by vindeburnol suggesting primarily central actions of treatment. In the cerebellum, vindeburnol decreased astrocyte activation and reduced the number of demyelinated regions. Vindeburnol reduced astrocyte activation in the LC, reduced TH+ neuronal hypertrophy, increased expression of several genes involved in LC survival and maturation, and increased NA levels in the spinal cord. These results suggest that treatments with drugs such as vindeburnol which target LC survival or function could be of benefit in MS patients.
Collapse
Affiliation(s)
- Paul E Polak
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
83
|
Non-steroidal anti-inflammatory drugs and cognitive function: are prostaglandins at the heart of cognitive impairment in dementia and delirium? J Neuroimmune Pharmacol 2011; 7:60-73. [PMID: 21932048 PMCID: PMC3280386 DOI: 10.1007/s11481-011-9312-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/29/2011] [Indexed: 12/11/2022]
Abstract
Studies of non-steroidal anti-inflammatory drugs (NSAIDs) in rheumatoid arthritis imply that inflammation is important in the development of Alzheimer’s disease (AD). However, these drugs have not alleviated the symptoms of AD in those who have already developed dementia. This suggests that the primary mediator targeted by these drugs, PGE2, is not actively suppressing memory function in AD. Amyloid-β oligomers appear to be important for the mild cognitive changes seen in AD transgenic mice, yet amyloid immunotherapy has also proven unsuccessful in clinical trials. Collectively, these findings indicate that NSAIDs may target a prodromal process in mice that has already passed in those diagnosed with AD, and that synaptic and neuronal loss are key determinants of cognitive dysfunction in AD. While the role of inflammation has not yet become clear, inflammatory processes definitely have a negative impact on cognitive function during episodes of delirium during dementia. Delirium is an acute and profound impairment of cognitive function frequently occurring in aged and demented patients exposed to systemic inflammatory insults, which is now recognised to contribute to long-term cognitive decline. Recent work in animal models is beginning to shed light on the interactions between systemic inflammation and CNS pathology in these acute exacerbations of dementia. This review will assess the role of prostaglandin synthesis in the memory impairments observed in dementia and delirium and will examine the relative contribution of amyloid, synaptic and neuronal loss. We will also discuss how understanding the role of inflammatory mediators in delirious episodes will have major implications for ameliorating the rate of decline in the demented population.
Collapse
|
84
|
Abstract
The ability of the brain to locally augment glucose delivery and blood flow during neuronal activation, termed neurometabolic and neurovascular coupling, respectively, is compromised in Alzheimer's disease (AD). Since perfusion deficits may hasten clinical deterioration and have been correlated with negative treatment outcome, strategies to improve the cerebral circulation should form an integral element of AD therapeutic efforts. These efforts have yielded several experimental models, some of which constitute AD models proper, others which specifically recapture the AD cerebrovascular pathology, characterized by anatomical alterations in brain vessel structure, as well as molecular changes within vascular smooth muscle cells and endothelial cells forming the blood-brain barrier. The following paper will present the elements of AD neurovascular dysfunction and review the in vitro and in vivo model systems that have served to deepen our understanding of it. It will also critically evaluate selected groups of compounds, the FDA-approved cholinesterase inhibitors and thiazolidinediones, for their ability to correct neurovascular dysfunction in AD patients and models. These and several others are emerging as compounds with pleiotropic actions that may positively impact dysfunctional cerebrovascular, glial, and neuronal networks in AD.
Collapse
|
85
|
McMillan PJ, White SS, Franklin A, Greenup JL, Leverenz JB, Raskind MA, Szot P. Differential response of the central noradrenergic nervous system to the loss of locus coeruleus neurons in Parkinson's disease and Alzheimer's disease. Brain Res 2010; 1373:240-52. [PMID: 21147074 DOI: 10.1016/j.brainres.2010.12.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/03/2010] [Accepted: 12/04/2010] [Indexed: 11/17/2022]
Abstract
In Parkinson's disease (PD), there is a significant loss of noradrenergic neurons in the locus coeruleus (LC) in addition to the loss of dopaminergic neurons in the substantia nigra (SN). The goal of this study was to determine if the surviving LC noradrenergic neurons in PD demonstrate compensatory changes in response to the neuronal loss, as observed in Alzheimer's disease (AD). Tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DBH) mRNA expression in postmortem LC tissue of control and age-matched PD subjects demonstrated a significant reduction in the number of noradrenergic neurons in the LC of PD subjects. TH mRNA expression/neuron did not differ between control and PD subjects, but DBH mRNA expression/neuron was significantly elevated in PD subjects compared to control. This increase in DBH mRNA expression in PD subjects is not a response to neuronal loss because the amount of DBH mRNA expression/neuron in AD subjects was not significantly different from control. Norepinephrine transporter (NET) binding site concentration in the LC of PD subjects was significantly reduced over the cell body region as well as the peri-LC dendritic zone. In PD subjects, the loss of dendrites from surviving noradrenergic neurons was also apparent with TH-immunoreactivity (IR). This loss of LC dendritic innervation in PD subjects as measured by TH-IR was not due to LC neuronal loss because TH-IR in AD subjects was robust, despite a similar loss of LC neurons. These data suggest that there is a differential response of the noradrenergic nervous system in PD compared to AD in response to the loss of LC neurons.
Collapse
Affiliation(s)
- Pamela J McMillan
- Northwest Network for Mental Illness, Veterans Administration Puget Sound Health Care System, Seattle, Washington 98108, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
The dopamine β-hydroxylase -1021C/T polymorphism is associated with the risk of Alzheimer's disease in the Epistasis Project. BMC MEDICAL GENETICS 2010; 11:162. [PMID: 21070631 PMCID: PMC2994840 DOI: 10.1186/1471-2350-11-162] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 11/11/2010] [Indexed: 02/06/2023]
Abstract
Background The loss of noradrenergic neurones of the locus coeruleus is a major feature of Alzheimer's disease (AD). Dopamine β-hydroxylase (DBH) catalyses the conversion of dopamine to noradrenaline. Interactions have been reported between the low-activity -1021T allele (rs1611115) of DBH and polymorphisms of the pro-inflammatory cytokine genes, IL1A and IL6, contributing to the risk of AD. We therefore examined the associations with AD of the DBH -1021T allele and of the above interactions in the Epistasis Project, with 1757 cases of AD and 6294 elderly controls. Methods We genotyped eight single nucleotide polymorphisms (SNPs) in the three genes, DBH, IL1A and IL6. We used logistic regression models and synergy factor analysis to examine potential interactions and associations with AD. Results We found that the presence of the -1021T allele was associated with AD: odds ratio = 1.2 (95% confidence interval: 1.06-1.4, p = 0.005). This association was nearly restricted to men < 75 years old: odds ratio = 2.2 (1.4-3.3, 0.0004). We also found an interaction between the presence of DBH -1021T and the -889TT genotype (rs1800587) of IL1A: synergy factor = 1.9 (1.2-3.1, 0.005). All these results were consistent between North Europe and North Spain. Conclusions Extensive, previous evidence (reviewed here) indicates an important role for noradrenaline in the control of inflammation in the brain. Thus, the -1021T allele with presumed low activity may be associated with misregulation of inflammation, which could contribute to the onset of AD. We suggest that such misregulation is the predominant mechanism of the association we report here.
Collapse
|
87
|
Hurko O, Boudonck K, Gonzales C, Hughes ZA, Jacobsen JS, Reinhart PH, Crowther D. Ablation of the locus coeruleus increases oxidative stress in tg-2576 transgenic but not wild-type mice. Int J Alzheimers Dis 2010; 2010:864625. [PMID: 20981353 PMCID: PMC2958341 DOI: 10.4061/2010/864625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 08/23/2010] [Accepted: 09/03/2010] [Indexed: 11/20/2022] Open
Abstract
Mice transgenic for production of excessive or mutant forms of beta-amyloid differ from patients with Alzheimer's disease in the degree of inflammation, oxidative damage, and alteration of intermediary metabolism, as well as the paucity or absence of neuronal atrophy and cognitive impairment. Previous observers have suggested that differences in inflammatory response reflect a discrepancy in the state of the locus coeruleus (LC), loss of which is an early change in Alzheimer's disease but which is preserved in the transgenic mice. In this paper, we extend these observations by examining the effects of the LC on markers of oxidative stress and intermediary metabolism. We compare four groups: wild-type or Tg2576 Aβ transgenic mice injected with DSP4 or vehicle. Of greatest interest were metabolites different between ablated and intact transgenics, but not between ablated and intact wild-type animals. The Tg2576_DSP4 mice were distinguished from the other three groups by oxidative stress and altered energy metabolism. These observations provide further support for the hypothesis that Tg2576 Aβ transgenic mice with this ablation may be a more congruent model of Alzheimer's disease than are transgenics with an intact LC.
Collapse
Affiliation(s)
- Orest Hurko
- Biologics Consulting Group, Inc., 400 N. Washington Street, Suite 100, Alexandria, VA 22314, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Szot P, Miguelez C, White SS, Franklin A, Sikkema C, Wilkinson CW, Ugedo L, Raskind MA. A comprehensive analysis of the effect of DSP4 on the locus coeruleus noradrenergic system in the rat. Neuroscience 2010; 166:279-91. [PMID: 20045445 DOI: 10.1016/j.neuroscience.2009.12.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/30/2009] [Accepted: 12/10/2009] [Indexed: 11/19/2022]
Abstract
Degeneration of the noradrenergic neurons in the locus coeruleus (LC) is a major component of Alzheimer's (AD) and Parkinson's disease (PD), but the consequence of noradrenergic neuronal loss has different effects on the surviving neurons in the two disorders. Therefore, understanding the consequence of noradrenergic neuronal loss is important in determining the role of this neurotransmitter in these neurodegenerative disorders. The goal of the study was to determine if the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) could be used as a model for either (or both) AD or PD. Rats were administered DSP4 and sacrificed 3 days 2 weeks and 3 months later. DSP4-treatment resulted in a rapid, though transient reduction in norepinephrine (NE) and NE transporter (NET) in many brain regions receiving variable innervation from the LC. Alpha(1)-adrenoreceptors binding site concentrations were unchanged in all brain regions at all three time points. However, an increase in alpha(2)-AR was observed in many different brain regions 2 weeks and 3 months after DSP4. These changes observed in forebrain regions occurred without a loss in LC noradrenergic neurons. Expression of synthesizing enzymes or NET did not change in amount of expression/neuron despite the reduction in NE tissue content and NET binding site concentrations at early time points, suggesting no compensatory response. In addition, DSP4 did not affect basal activity of LC at any time point in anesthetized animals, but 2 weeks after DSP4 there is a significant increase in irregular firing of noradrenergic neurons. These data indicate that DSP4 is not a selective LC noradrenergic neurotoxin, but does affect noradrenergic neuron terminals locally, as evident by the changes in transmitter and markers at terminal regions. However, since DSP4 did not result in a loss of noradrenergic neurons, it is not considered an adequate model for noradrenergic neuronal loss observed in AD and PD.
Collapse
Affiliation(s)
- P Szot
- Northwest Network for Mental Illness Research, Education, and Clinical Center, Veterans Administration Puget Sound Health Care System, Seattle, WA 98108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Oikawa N, Ogino K, Masumoto T, Yamaguchi H, Yanagisawa K. Gender effect on the accumulation of hyperphosphorylated tau in the brain of locus-ceruleus-injured APP-transgenic mouse. Neurosci Lett 2009; 468:243-7. [PMID: 19900506 DOI: 10.1016/j.neulet.2009.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 11/02/2009] [Accepted: 11/02/2009] [Indexed: 01/01/2023]
Abstract
Locus ceruleus (LC) neurons are preferentially and initially affected in Alzheimer disease (AD); however, the impact of the loss of LC neurons on the pathological sequence of AD, including amyloid beta-protein (Abeta) deposition and neurofibrillary tangle formation, has not been elucidated. In this study, we chemically injured LC neurons of the brains of familial AD-related amyloid precursor protein (APP)-transgenic mice using the LC-noradrenergic neuron-selective neurotoxin, N-(2-chloroethyl)-N-ethyl-bromo-benzylamine (DSP4). The levels of noradrenaline significantly decreased in the cerebral cortices of DSP4-treated mice. The deposition of amyloid fibrils was biochemically observed in the APP-transgenic mouse brains; however, those levels were not significantly altered following DSP4 treatment. In contrast, the levels of accumulated hyperphosphorylated tau markedly increased in the cerebral cortices of DSP4-treated female but not male APP-transgenic mice. Our results suggest that innervation from LC neurons and testosterone secretion are potent and mutually independent suppressors of amyloid-related accumulation of hyperphosphorylated tau in the brain.
Collapse
Affiliation(s)
- Naoto Oikawa
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3, Gengo, Morioka, Obu 474-8522, Japan
| | | | | | | | | |
Collapse
|
90
|
Szot P, Van Dam D, White SS, Franklin A, Staufenbiel M, De Deyn PP. Age-dependent changes in noradrenergic locus coeruleus system in wild-type and APP23 transgenic mice. Neurosci Lett 2009; 463:93-7. [DOI: 10.1016/j.neulet.2009.07.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/17/2009] [Accepted: 07/17/2009] [Indexed: 11/28/2022]
|
91
|
Bernedo V, Insua D, Suárez ML, Santamarina G, Sarasa M, Pesini P. Beta-amyloid cortical deposits are accompanied by the loss of serotonergic neurons in the dog. J Comp Neurol 2009; 513:417-29. [PMID: 19180552 DOI: 10.1002/cne.21985] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dogs may naturally suffer an age-related cognitive impairment that has aroused a great deal of interest, even beyond the field of the veterinary clinic. This canine senile dementia reproduces several key aspects of Alzheimer's disease (AD), including the presence of beta-amyloid (A beta) deposits in the cerebral cortex, neurodegeneration, and learning and memory impairments. In the present study, we have used unbiased stereological procedures to estimate the number of the dorsal and median raphe nuclei (DRN and MRN, respectively) serotonergic neurons immunolabeled with an anti-tryptophan hydroxylase (TrH) monoclonal antibody in young and aged dogs without A beta cortical deposits and in aged dogs with A beta cortical deposits. The estimated total number of TrH-labeled neurons (mean +/- SD) was 94,790 +/- 26,341 for the DRN and 40,404 +/- 8,692 for the MRN. The statistical analyses revealed that aged dogs with A beta cortical pathology had 33% fewer serotonergic neurons in the DRN and MRN than aged dogs without A beta cortical deposits (108,043 +/- 18,800 vs. 162,242 +/- 39,942, respectively; P = 0.01). In contrast, no significant variations were found between young and aged dogs without A beta cortical deposits. These results suggest that degeneration of the serotonergic neurons could be involved in the cognitive damage that accompanies A beta cortical pathology in the dog and reinforce the use of the canine model for exploring the potential mechanisms linking the cortical A beta pathology and serotonergic neurodegeneration that occurs during the course of AD.
Collapse
Affiliation(s)
- Vanessa Bernedo
- Departamento de Ciencias Clínicas Veterinarias, Universidad de Santiago de Compostela, Facultad de Veterinaria de Lugo, 27002 Lugo, Spain
| | | | | | | | | | | |
Collapse
|
92
|
Insua D, Suárez ML, Santamarina G, Sarasa M, Pesini P. Dogs with canine counterpart of Alzheimer's disease lose noradrenergic neurons. Neurobiol Aging 2008; 31:625-35. [PMID: 18573571 DOI: 10.1016/j.neurobiolaging.2008.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/25/2008] [Accepted: 05/18/2008] [Indexed: 01/10/2023]
Abstract
Degeneration of noradrenergic neurons in the locus ceruleus is a well-described feature of Alzheimer's disease (AD). In spite of extensive utilization of the dog as a model for human degenerative diseases, there is no data on the response to aging of the noradrenergic system in dogs. We have used modern unbiased stereology to estimate the total number of A6-A7 noradrenergic neurons in normal, aged dogs and dogs with the canine counterpart of AD. In small-breed dogs with no cognitive impairments, the total mean number of tyrosine hydroxylase immunolabeled A6-A7 neurons was 17,228+/-1655, with no differences between young and aged dogs. In contrast, aged dogs with cognitive impairments exhibited a significant reduction in the total number of A6-A7 neurons (13,487+/-1374; P=0.001). Additionally, we found a negative correlation between the number of A6-A7 neurons and the extent of beta-amyloid deposits in the prefrontal cortex. These results suggest that the canine model could be useful in exploring the potential benefits of noradrenergic drugs for the treatment of AD.
Collapse
Affiliation(s)
- Daniel Insua
- Departamento de Ciencias Clínicas Veterinarias, Facultad de Veterinaria de Lugo, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | | | | | | | | |
Collapse
|
93
|
Coactivation of M(1) muscarinic and alpha1 adrenergic receptors stimulates extracellular signal-regulated protein kinase and induces long-term depression at CA3-CA1 synapses in rat hippocampus. J Neurosci 2008; 28:5350-8. [PMID: 18480291 DOI: 10.1523/jneurosci.5058-06.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intact cholinergic innervation from the medial septum and noradrenergic innervation from the locus ceruleus are required for hippocampal-dependent learning and memory. However, much remains unclear about the precise roles of acetylcholine (ACh) and norepinephrine (NE) in hippocampal function, particularly in terms of how interactions between these two transmitter systems might play an important role in synaptic plasticity. Previously, we reported that activation of either muscarinic M(1) or adrenergic alpha1 receptors induces activity- and NMDA receptor-dependent long-term depression (LTD) at CA3-CA1 synapses in acute hippocampal slices, referred to as muscarinic LTD (mLTD) and norepinephrine LTD (NE LTD), respectively. In this study, we tested the hypothesis that mLTD and NE LTD are independent forms of LTD, yet require activation of a common Galphaq-coupled signaling pathway for their induction, and investigated the net effect of coactivation of M(1) and alpha1 receptors on the magnitude of LTD induced. We find that neither mLTD nor NE LTD requires phospholipase C activation, but both plasticities are prevented by inhibiting the Src kinase family and extracellular signal-regulated protein kinase (ERK) activation. Interestingly, LTD can be induced when M(1) and alpha1 agonists are coapplied at concentrations too low to induce LTD when applied separately, via a summed increase in ERK activation. Thus, because ACh and NE levels in vivo covary, especially during periods of memory encoding and consolidation, cooperative signaling through M(1) and alpha1 receptors could function to induce long-term changes in synaptic function important for cognition.
Collapse
|
94
|
Price DL, Cork LC, Struble RG, Kitt CA, Walker LC, Powers RE, Whitehouse PJ, Griffin JW. Dysfunction and death of neurons in human degenerative neurological diseases and in animal models. CIBA FOUNDATION SYMPOSIUM 2007; 126:30-48. [PMID: 3556088 DOI: 10.1002/9780470513422.ch3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The human neurological disorders--amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD)--share certain features: they occur in later stages of adult life; are slowly progressive; and involve specific groups of nerve cells. Different clinical syndromes result from dysfunction and death of these specific groups of neurons. In ALS, patients are weak due to disease of motor neurons in the spinal cord. The clinical features of PD, e.g. slow movements, tremor and rigidity, are attributed, in part, to degeneration of dopaminergic neurons of the substantia nigra. Impairments of cognition and memory in AD result from disease of neurons in a number of regions, including brainstem, basal forebrain, amygdala, hippocampus, and neocortex. In each of these diseases, affected neurons exhibit abnormalities of the neuronal cytoskeleton: in ALS, neurofilaments accumulate and distend proximal motor axons; in PD, nigral perikarya show Lewy bodies-intracytoplasmic inclusions containing neurofilament antigens; in AD, neurons develop neurofibrillary tangles, Hirano bodies, granulovacuolar degeneration and filament-filled neurites in plaques. Certain features of ALS, PD and AD are recapitulated in animal models, three of which are described in this review. Hereditary canine spinal muscular atrophy (HCSMA), a dominantly inherited motor neuron disease, shows many clinical and pathological features in common with ALS, including weakness, muscle atrophy, neurofilamentous swellings of proximal axons, impaired transport of neurofilament proteins, and degeneration of motor neurons. In primates, intoxication with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) produces a parkinsonian syndrome due to injury of nigral dopaminergic neurons and associated denervation of the striatum. Finally, aged macaques exhibit memory deficits, and their cerebral cortices show senile plaques and filament-filled neurites derived from a variety of transmitter-specific populations of nerve cells. In human diseases, the causes and mechanisms leading to dysfunction and death of nerve cells are unknown. Investigators have begun using a variety of techniques derived from neurobiology to study animal models in an effort to clarify the mechanisms, evolutions, and consequences of structural-chemical abnormalities occurring in different neuronal systems implicated in human disease. Understanding such processes in these models should provide important new insights into the pathogeneses of similar processes occurring in ALS, PD and AD.
Collapse
|
95
|
Szot P, White SS, Greenup JL, Leverenz JB, Peskind ER, Raskind MA. Changes in adrenoreceptors in the prefrontal cortex of subjects with dementia: evidence of compensatory changes. Neuroscience 2007; 146:471-80. [PMID: 17324522 PMCID: PMC3399726 DOI: 10.1016/j.neuroscience.2007.01.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 01/18/2007] [Accepted: 01/20/2007] [Indexed: 01/02/2023]
Abstract
In Alzheimer's disease (AD) there is a significant loss of locus coeruleus (LC) noradrenergic neurons. However, recent work has shown the surviving noradrenergic neurons to display many compensatory changes, including axonal sprouting to the hippocampus. The prefrontal cortex (PFC) is a forebrain region that is affected in dementia, and receives innervation from the LC noradrenergic neurons. Reduced PFC function can reduce cognition and disrupt behavior. Because the PFC is an important area in AD, we determined if noradrenergic innervation from the LC noradrenergic neurons is maintained and if adrenoreceptors are altered postsynaptically. Presynaptic PFC alpha2-adrenoreceptor (AR) binding site density, as determined by 3H-RX821002, suggests that axons from surviving noradrenergic neurons in the LC are sprouting to the PFC of subjects with dementia. Changes in postsynaptic alpha1-AR in the PFC of subjects with dementia indicate normal to elevated levels of binding sites. Expression of alpha1-AR subtypes (alpha1A- and alpha1D-AR) and alpha2C-AR subtype mRNA in the PFC of subjects with dementia is similar to what was observed in the hippocampus with one exception, the expression of alpha1A-AR mRNA. The expression of the alpha1A-AR mRNA subtype is significantly reduced in specific layers of the PFC in subjects with dementia. The loss of alpha1A-, alpha1D- and alpha2C-AR mRNA subtype expression in the PFC may be attributed to neuronal loss observed in dementia. These changes in postsynaptic AR would suggest a reduced function of the PFC. Consequence of this reduced function of the PFC in dementia is still unknown but it may affect memory and behavior.
Collapse
Affiliation(s)
- P Szot
- Northwest Network for Mental Illness Research, Education, and Clinical Center, Veterans Administration Puget Sound Health Care System, and Department of Psychiatry and Behavioral Science, University of Washington, Seattle 98195, USA.
| | | | | | | | | | | |
Collapse
|
96
|
Shimohama S, Taniguchi T, Fujiwara M, Kameyama M. Biochemical Characterization of α-Adrenergic Receptors in Human Brain and Changes in Alzheimer-Type Dementia. J Neurochem 2006. [DOI: 10.1111/j.1471-4159.1986.tb00753.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
97
|
Baloyannis SJ, Costa V, Baloyannis IS. Morphological alterations of the synapses in the locus coeruleus in Parkinson's disease. J Neurol Sci 2006; 248:35-41. [PMID: 16753180 DOI: 10.1016/j.jns.2006.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Parkinson's disease is the most common movement disorder in the broad spectrum of neurodegenerative diseases, associated frequently with gradual decline of the higher mental faculties. From the morphological point of view it is characterized by the degeneration of a substantial number of dopaminergic neurons of the substantia nigra and a considerable degeneration of neuronal networks in locus coeruleus, putamen, globus pallidus, thalamus and some areas of the cortex of the brain hemispheres. Filamentous inclusions, in the form of Lewy bodies and Lewy neuritis, composed mainly of alpha synuclein, been the hallmark of diffuse Lewy body dementia, have been described in the neurons of the substantia nigra in many cases of Parkinson's disease associated with dementia. In previous studies we have described the morphological alterations in the synapses in the caudate nucleus and the globus pallidus in cases of Parkinson's disease. In the present study we attempted to describe the morphological and morphometric alterations of the locus coeruleus in patients who suffered from Parkinson's disease with normal cognitive function and in patients who suffered from Parkinson's disease associated with dementia, comparing them with normal controls. The morphological alterations of the neurons, the dendrites, the retrograde axonic collaterals and the synapses were more impressive in cases of Parkinson's disease associated with dementia than in Parkinson's disease with normal cognitive function. The majority of the synapses demonstrated changes in size and shape of the pre- and postsynaptic components, polymorphism of the synaptic vesicles and marked morphological alterations of the mitochondria. The morphological alterations of the synapses in cases of Parkinson's disease associated with dementia, plead in favor of the importance of the neuronal circuits of locus coeruleus in cognitive functions.
Collapse
|
98
|
Szot P, White SS, Greenup JL, Leverenz JB, Peskind ER, Raskind MA. Compensatory changes in the noradrenergic nervous system in the locus ceruleus and hippocampus of postmortem subjects with Alzheimer's disease and dementia with Lewy bodies. J Neurosci 2006; 26:467-78. [PMID: 16407544 PMCID: PMC6674412 DOI: 10.1523/jneurosci.4265-05.2006] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In Alzheimer's disease (AD), there is a significant loss of locus ceruleus (LC) noradrenergic neurons. However, functional and anatomical evidence indicates that the remaining noradrenergic neurons may be compensating for the loss. Because the noradrenergic system plays an important role in learning and memory, it is important to determine whether compensation occurs in noradrenergic neurons in the LC and hippocampus of subjects with AD or a related dementing disorder, dementia with Lewy bodies (DLB). We observed profound neuronal loss in the LC in AD and DLB subjects with three major changes in the noradrenergic system consistent with compensation: (1) an increase in tyrosine hydroxylase (TH) mRNA expression in the remaining neurons; (2) sprouting of dendrites into peri-LC dendritic zone, as determined by alpha2-adrenoreceptors (ARs) and norepinephrine transporter binding sites; and (3) sprouting of axonal projections to the hippocampus as determined by alpha2-ARs. In AD and DLB subjects, the postsynaptic alpha1-ARs were normal to elevated. Expression of alpha1A- and alpha2A-AR mRNA in the hippocampus of AD and DLB subjects were not altered, but expression of alpha1D- and alpha2C-AR mRNA was significantly reduced in the hippocampus of AD and DLB subjects. Therefore, in AD and DLB subjects, there is compensation occurring in the remaining noradrenergic neurons, but there does appear to be a loss of specific AR in the hippocampus. Because changes in these noradrenergic markers in AD versus DLB subjects were similar (except neuronal loss and the increase in TH mRNA were somewhat greater in DLB subjects), the presence of Lewy bodies in addition to plaques and tangles in DLB subjects does not appear to further affect the noradrenergic compensatory changes.
Collapse
MESH Headings
- Adrenergic alpha-Antagonists/metabolism
- Adult
- Aged
- Aged, 80 and over
- Alzheimer Disease/metabolism
- Alzheimer Disease/pathology
- Dendrites/ultrastructure
- Female
- Fluoxetine/analogs & derivatives
- Fluoxetine/metabolism
- Hippocampus/chemistry
- Hippocampus/pathology
- Humans
- Idazoxan/analogs & derivatives
- Idazoxan/metabolism
- In Situ Hybridization
- Lewy Body Disease/metabolism
- Lewy Body Disease/pathology
- Locus Coeruleus/chemistry
- Locus Coeruleus/pathology
- Male
- Middle Aged
- Nerve Tissue Proteins/analysis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Norepinephrine/chemistry
- Norepinephrine/physiology
- Norepinephrine Plasma Membrane Transport Proteins/analysis
- Norepinephrine Plasma Membrane Transport Proteins/metabolism
- Prazosin/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Receptors, Adrenergic, alpha-1/analysis
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-2/analysis
- Receptors, Adrenergic, alpha-2/genetics
- Receptors, Adrenergic, alpha-2/metabolism
- Tetralones/metabolism
- Tyrosine 3-Monooxygenase/analysis
- Tyrosine 3-Monooxygenase/biosynthesis
- Tyrosine 3-Monooxygenase/genetics
Collapse
Affiliation(s)
- Patricia Szot
- Northwest Network for Mental Illness Research, Education, and Clinical Center, Veterans Administration Puget Sound Health Care System, Seattle, Washington 98108, USA.
| | | | | | | | | | | |
Collapse
|
99
|
Postmortem locus coeruleus neuron count in three American veterans with probable or possible war-related PTSD. J Neuropsychiatry Clin Neurosci 2006. [PMID: 16387990 DOI: 10.1176/appi.neuropsych.17.4.503] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The authors investigated whether war-related posttraumatic stress disorder (WR-PTSD) is associated with a postmortem change in neuronal counts in the locus coeruleus (LC) since enhanced central nervous system (CNS) noradrenergic postsynaptic responsiveness has been previously shown to contribute to PTSD pathophysiology. Using postmortem neuromorphometry, the number of neurons in the right LC in seven deceased elderly male veterans was counted. Three veterans were classified as cases of probable or possible WR-PTSD. All three veterans with probable or possible WR-PTSD were found to have substantially lower LC neuronal counts compared to four comparison subjects (three nonpsychiatric veterans and one veteran with alcohol dependence and delirium tremens). To the authors' knowledge, this case series is the first report of LC neuronal counts in patients with PTSD or any other DSM-IV-TR anxiety disorder. Previous postmortem brain tissue studies of Alzheimer's Disease (AD) demonstrated an upregulation of NE biosynthetic capacity in surviving LC neurons. The finding reported is consistent with the similar upregulation of NE biosynthetic capacity of surviving LC neurons in veterans who developed WR-PTSD. Especially if replicated, this finding in WR-PTSD may provide further explanation of the dramatic effectiveness of propranolol and prazosin for the secondary prevention and treatment of PTSD, respectively. The LC neurons examined in this study are probably the origin of the first or second "leg" of what might be termed the PTSD candidate circuit. Larger neuromorphometric studies of the LC in veterans with WR-PTSD and in other development-stress-induced and fear-circuitry disorders are warranted, especially using VA registries.
Collapse
|
100
|
German DC, Nelson O, Liang F, Liang CL, Games D. The PDAPP mouse model of Alzheimer's disease: locus coeruleus neuronal shrinkage. J Comp Neurol 2006; 492:469-76. [PMID: 16228992 DOI: 10.1002/cne.20744] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease is characterized by neuronal degeneration in the cerebral cortex and hippocampus and subcortical neuronal degeneration in such nuclei as the locus coeruleus (LC). Transgenic mice overexpressing mutant human amyloid precursor protein V717F, PDAPP mice, develop several Alzheimer's disease-like lesions. The present study sought to determine whether there is also loss of LC noradrenergic neurons or evidence of degenerative changes in these animals. PDAPP hemizygous and wild-type littermate control mice were examined at 23 months of age, at a time when there are numerous amyloid-beta (Abeta) plaques in the neocortex and hippocampus. Tissue sections were stained immunohistochemically with an antibody against tyrosine hydroxylase (TH) to identify LC neurons. Computer imaging procedures were used to count the TH-immunoreactive somata in sections through the rostral-caudal extent of the nucleus. There was no loss of LC neurons in the hemizygous mice. In a second experiment, homozygous PDAPP and wild-type mice were examined, at 2 months and 24 months of age. Again there was no age-related loss of neurons in the homozygous animals. In the portion of the LC where neurons reside that project to the cortex and hippocampus, however, the neurons were decreased in size selectively in the 24-month-old transgenic animals. These data indicate that overt LC cell loss does not occur following abundant overexpression of Abeta peptide. However, the selective size reduction of the LC neuronal population projecting to cortical and hippocampal regions containing Abeta-related neuropathology implies that these cells may be subjected to a retrograde-mediated stress.
Collapse
Affiliation(s)
- Dwight C German
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, 75390-9070, USA.
| | | | | | | | | |
Collapse
|