51
|
Arad G, Bar-Meir R, Kotler M. Ribosomal frameshifting at the Gag-Pol junction in avian leukemia sarcoma virus forms a novel cleavage site. FEBS Lett 1995; 364:1-4. [PMID: 7750533 DOI: 10.1016/0014-5793(95)00302-p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Gag and Gag-Pol precursors of avian sarcoma leukemia virus (ASLV) are translated from viral genomic-size mRNA at a molar ratio of about 20:1. Translation of Gag is terminated at the stop codon UAG located at the carboxyl-terminus of the viral protease (PR), whereas a ribosomal frameshift occurring at the carboxyl-terminus of Gag allows translation of the Gag-Pol precursor. To determine how PR is released from the Gag-Pol precursor, a single base (A or T) was inserted at the Gag-Pol junction in order to adjust the translation into a single reading frame. These mutations allow processing of the viral precursor when expressed in bacterial cells, but cause cessation of viral production after transfection of avian cells. The viral PR released from the large precursor is one amino acid longer than PR cleaved from the Gag polyprotein and is terminated by an Ile instead of a Leu residue.
Collapse
Affiliation(s)
- G Arad
- Department of Molecular Genetics, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
52
|
Natsoulis G, Seshaiah P, Federspiel MJ, Rein A, Hughes SH, Boeke JD. Targeting of a nuclease to murine leukemia virus capsids inhibits viral multiplication. Proc Natl Acad Sci U S A 1995; 92:364-8. [PMID: 7831291 PMCID: PMC42740 DOI: 10.1073/pnas.92.2.364] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Capsid-targeted viral inactivation is an antiviral strategy in which toxic fusion proteins are targeted to virions, where they inhibit viral multiplication by destroying viral components. These fusion proteins consist of a virion structural protein moiety and an enzymatic moiety such as a nuclease. Such fusion proteins can severely inhibit transposition of yeast retrotransposon Ty1, an element whose transposition mechanistically resembles retroviral multiplication. We demonstrate that expression of a murine retrovirus capsid-staphylococcal nuclease fusion protein inhibits multiplication of the corresponding murine leukemia virus by 30- to 100-fold. Staphylococcal nuclease is apparently inactive intracellularly and hence nontoxic to the host cell, but it is active extracellularly because of its requirement for high concentrations of Ca2+ ions. Virions assembled in and shed from cells expressing the fusion protein contain very small amounts of intact viral RNA, as would be predicted for nuclease-mediated inhibition of viral multiplication.
Collapse
Affiliation(s)
- G Natsoulis
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | | | |
Collapse
|
53
|
MESH Headings
- Animals
- Avian Sarcoma Viruses/genetics
- Avian Sarcoma Viruses/physiology
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Cells, Cultured
- Chick Embryo
- Cloning, Molecular/methods
- Endocytosis
- Fibroblasts
- Gene Transfer Techniques
- Genetic Vectors
- Humans
- Hyaluronan Receptors
- Mice
- Protein Processing, Post-Translational
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Lymphocyte Homing/biosynthesis
- Receptors, Lymphocyte Homing/genetics
- Receptors, Transferrin/biosynthesis
- Receptors, Transferrin/genetics
- Receptors, Transferrin/physiology
- Recombinant Fusion Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- G Odorizzi
- Department of Cancer Biology, Salk Institute, San Diego, California 92186
| | | |
Collapse
|
54
|
Gilbert JM, Hernandez LD, Chernov-Rogan T, White JM. Generation of a water-soluble oligomeric ectodomain of the Rous sarcoma virus envelope glycoprotein. J Virol 1993; 67:6889-92. [PMID: 7692089 PMCID: PMC238138 DOI: 10.1128/jvi.67.11.6889-6892.1993] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sequences encoding the transmembrane domain of the Rous sarcoma virus envelope (Env) glycoprotein were deleted and replaced with sequences that signal addition of a glycosyl phosphatidylinositol (GPI) membrane anchor. Stable NIH 3T3 cell lines expressing either the wild-type transmembrane-anchored Env or the Env chimera with a GPI tail were established. The GPI-anchored envelope glycoprotein is expressed, oligomerized, and transported to the cell surface in a manner identical to that of its wild-type transmembrane-anchored counterpart. The GPI-linked protein is quantitatively removed from the cell surface by treatment with phosphatidylinositol phospholipase C. The phosphatidylinositol phospholipase C-released, water-soluble Env glycoprotein ectodomain retains the wild-type oligomeric structure and provides a useful tool for studying the subgroup-specific binding and fusion activities of a prototypic retroviral Env glycoprotein.
Collapse
Affiliation(s)
- J M Gilbert
- Department of Biochemistry, School of Medicine, University of California, San Francisco 94143-0450
| | | | | | | |
Collapse
|
55
|
Replication-competent retroviral vectors encoding alkaline phosphatase reveal spatial restriction of viral gene expression/transduction in the chick embryo. Mol Cell Biol 1993. [PMID: 8455633 DOI: 10.1128/mcb.13.4.2604] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication-competent avian retroviruses, capable of transducing and expressing up to 2 kb of nonviral sequences, are now available to effect widespread gene transfer in chicken (chick) embryos (S. H. Hughes, J. J. Greenhouse, C. J. Petropoulos, and P. Sutrave, J. Virol. 61:3004-3012, 1987). We have constructed novel avian retroviral vectors that encode human placental alkaline phosphatase as a marker whose expression can be histochemically monitored. These vectors have been tested for expression by introducing them into the embryonic chick nervous system. They have revealed that the expression of retrovirally transduced genes can be spatially and temporally limited without the need for tissue-specific promoters. By varying the site and time of infection, targeted gene transfer can be confined to selected populations of neural cells over the course of several days, a time window that is sufficient for many key developmental processes. The capability of differentially infecting specific target populations may avoid confounding variables such as detrimental effects of a transduced gene on processes unrelated to the cells or tissue of interest. These vectors and methods thus should be useful in studies of the effect of transduced genes on the development of various organs and tissues during avian embryogenesis. In addition, the vectors will facilitate studies aimed at an understanding of viral infection and expression patterns.
Collapse
|
56
|
Fekete DM, Cepko CL. Replication-competent retroviral vectors encoding alkaline phosphatase reveal spatial restriction of viral gene expression/transduction in the chick embryo. Mol Cell Biol 1993; 13:2604-13. [PMID: 8455633 PMCID: PMC359596 DOI: 10.1128/mcb.13.4.2604-2613.1993] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Replication-competent avian retroviruses, capable of transducing and expressing up to 2 kb of nonviral sequences, are now available to effect widespread gene transfer in chicken (chick) embryos (S. H. Hughes, J. J. Greenhouse, C. J. Petropoulos, and P. Sutrave, J. Virol. 61:3004-3012, 1987). We have constructed novel avian retroviral vectors that encode human placental alkaline phosphatase as a marker whose expression can be histochemically monitored. These vectors have been tested for expression by introducing them into the embryonic chick nervous system. They have revealed that the expression of retrovirally transduced genes can be spatially and temporally limited without the need for tissue-specific promoters. By varying the site and time of infection, targeted gene transfer can be confined to selected populations of neural cells over the course of several days, a time window that is sufficient for many key developmental processes. The capability of differentially infecting specific target populations may avoid confounding variables such as detrimental effects of a transduced gene on processes unrelated to the cells or tissue of interest. These vectors and methods thus should be useful in studies of the effect of transduced genes on the development of various organs and tissues during avian embryogenesis. In addition, the vectors will facilitate studies aimed at an understanding of viral infection and expression patterns.
Collapse
Affiliation(s)
- D M Fekete
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
57
|
Fekete DM, Cepko CL. Retroviral infection coupled with tissue transplantation limits gene transfer in the chicken embryo. Proc Natl Acad Sci U S A 1993; 90:2350-4. [PMID: 8384720 PMCID: PMC46084 DOI: 10.1073/pnas.90.6.2350] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gene transfer into early embryos is a powerful methodology for unraveling the molecular bases of developmental processes. One can attempt to minimize widespread effects of an exogenous gene by using tissue- or region-specific promoters in the few instances where they are available. We have developed a method that bypasses the requirement for specific targeting sequences to achieve regionally restricted gene transfer. Intraspecific chimeras have been created by transplantation of restricted portions of a chicken embryo from a donor strain to a host strain. The donor cells are infectable with a recombinant retroviral vector that carries the exogenous gene, whereas the host cells are not. We have demonstrated the feasibility of this approach using a histochemically distinct reporter gene, human placental alkaline phosphatase. The expression of retrovirally transduced alkaline phosphatase was limited to a transplanted hemiprosencephalon (forebrain and eye) in embryonic chickens. This technique can be applied to many other organ systems during avian embryogenesis to test the function(s) of molecules that are normally controlled through spatial and/or temporal regulation, such as many of the growth factor receptors or homeobox-containing proteins.
Collapse
Affiliation(s)
- D M Fekete
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
58
|
Dong J, Roth MG, Hunter E. A chimeric avian retrovirus containing the influenza virus hemagglutinin gene has an expanded host range. J Virol 1992; 66:7374-82. [PMID: 1331528 PMCID: PMC240443 DOI: 10.1128/jvi.66.12.7374-7382.1992] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have investigated what protein sequences are necessary for glycoprotein incorporation into Rous sarcoma virus (RSV) virions by utilizing the hemagglutinin (HA) protein of influenza virus. Two chimeric HA genes were constructed. In the first the coding sequence for the signal peptide of the RSV env gene product was fused in frame to the entire HA structural gene, and in the second the hydrophobic anchor and cytoplasmic domain sequences of the HA gene were also replaced with those from the RSV env gene. Both chimeric genes, expressed from a simian virus 40 expression vector in CV-1 cells, yielded functional HA proteins that were transported to the cell surface and were able to bind to erythrocytes. When the genes were expressed in combination with the RSV gag-pol gene region in QT6 cells by using a vaccinia virus-T7 expression/complementation system, virions that efficiently incorporated either chimeric protein were assembled. This result indicated that the presence of the RSV env membrane anchor and cytoplasmic sequences did not facilitate HA glycoprotein incorporation into virions. The presence of the RSV env signal sequence allowed the chimeric HA genes to be substituted into the RSV-derived BH-RCAN.HiSV viral genome in place of the RSV env gene. Both chimeric genomes yielded infectious virus that could infect human and avian cells with equal efficiency. These experiments demonstrate that a foreign glycoprotein, efficiently incorporated into virions lacking a native glycoprotein, can confer a broadened host range on the virus. Moreover, because the HA of influenza virus requires the acidic pH of the endosome in order to be activated, these results imply that foreign proteins can modify the normal route of entry of this avian retrovirus.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Avian Sarcoma Viruses/genetics
- Cell Line
- Cells, Cultured
- Chimera
- Cloning, Molecular
- Embryo, Nonmammalian
- Gene Products, env/genetics
- Gene Products, env/isolation & purification
- Gene Products, env/metabolism
- Genes, env
- Hemagglutinin Glycoproteins, Influenza Virus
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/isolation & purification
- Hemagglutinins, Viral/metabolism
- Kinetics
- Molecular Sequence Data
- Plasmids
- Protein Sorting Signals/genetics
- Protein Sorting Signals/metabolism
- Recombinant Fusion Proteins/isolation & purification
- Recombinant Fusion Proteins/metabolism
- Restriction Mapping
- Turkeys
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/isolation & purification
- Viral Envelope Proteins/metabolism
- Virion/genetics
Collapse
Affiliation(s)
- J Dong
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | | | |
Collapse
|
59
|
Dunn MM, Olsen JC, Swanstrom R. Characterization of unintegrated retroviral DNA with long terminal repeat-associated cell-derived inserts. J Virol 1992; 66:5735-43. [PMID: 1382140 PMCID: PMC241448 DOI: 10.1128/jvi.66.10.5735-5743.1992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have used a replication-competent shuttle vector based on the genome of Rous sarcoma virus to characterize genomic rearrangements that occur during retrovirus replication. The strategy involved cloning circular DNA that was generated during an acute infection. While analyzing a class of retroviral DNA clones that are greater than full length, we found several clones which had acquired nonviral inserts in positions adjacent to the long terminal repeats (LTRs). There appear to be two distinct mechanisms leading to the incorporation of cellular sequences into these clones. Three of the molecules contain a cell-derived insert at the circle junction site between two LTR units. Two of these molecules appear to be the results of abortive integration attempts, because of which, in each case, one of the LTRs is missing 2 bases at its junction with the cell-derived insert. In the third clone, pNO220, the cellular sequences are flanked by an inappropriately placed copy of the tRNA primer-binding site on one side and a partial copy of the U3 sequence as part of the LTR on the other side. A fourth molecule we characterized, pMD96, has a single LTR with a U5-bounded deletion of viral sequences spanning gag and pol, with cell-derived sequences inserted at the site of the deletion; its origin may be related mechanistically to pNO220. Sequence analysis indicates that all of the cellular inserts were derived from the cell line used for the acute infection rather than from sequences carried into the cell as part of the virus particle. Northern (RNA) analysis of cellular RNA demonstrated that the cell-derived sequences of two clones, pNO220 and pMD96, were expressed as polyadenylated RNA in uninfected cells. One mechanism for the joining of viral and cellular sequences suggested by the structures of pNO220 and pMD96 is recombination occurring during viral DNA synthesis, with cellular RNA serving as the template for the acquisition of cellular sequences.
Collapse
Affiliation(s)
- M M Dunn
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill 27599-7295
| | | | | |
Collapse
|
60
|
Wang C, Raghu G, Morrison T, Peeples ME. Intracellular processing of the paramyxovirus F protein: critical role of the predicted amphipathic alpha helix adjacent to the fusion domain. J Virol 1992; 66:4161-9. [PMID: 1602539 PMCID: PMC241219 DOI: 10.1128/jvi.66.7.4161-4169.1992] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
At a nonpermissive temperature, the group D temperature-sensitive mutants of Newcastle disease virus strain Australia-Victoria (AV) are defective in plaque formation, in inducing infected cells to fuse, and in incorporating the cleaved fusion glycoprotein, F1 + F2, into virus particles. In this study, the F protein of AV, expressed in chicken embryo cells, was able to complement these mutants in a plaque assay, identifying the F gene as the gene containing the group D temperature-sensitive lesions. The F genes of mutants D1, D2, and D3 were found to contain single mutations relative to the AV sequence, clustered within a predicted amphipathic alpha helix (AAH) adjacent to the hydrophobic amino terminus of F1. These mutant F proteins were inefficiently processed at the permissive temperature, a problem that was exacerbated at the nonpermissive temperature. Surprisingly, the AV F protein was also found to be partially temperature sensitive in processing. Its AAH is predicted to contain a break in the helix close to the D mutation sites, which are themselves predicted to further weaken the helix at this point. Interestingly, six revertants of the group D mutants were found to have an additional lesion in the AAH, repairing both the AV and mutant helices, resulting in a predicted perfect helix. The F protein of these revertants had overcome both the processing defects of the mutants and the temperature sensitivity of AV, indicating that the AAH region is critical for F protein processing. The lesions of a second group of revertants were localized within F2, suggesting an interaction with the F1 AAH region containing the original lesion.
Collapse
Affiliation(s)
- C Wang
- Department of Immunology/Microbiology, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612
| | | | | | | |
Collapse
|
61
|
Dong JY, Dubay JW, Perez LG, Hunter E. Mutations within the proteolytic cleavage site of the Rous sarcoma virus glycoprotein define a requirement for dibasic residues for intracellular cleavage. J Virol 1992; 66:865-74. [PMID: 1370559 PMCID: PMC240787 DOI: 10.1128/jvi.66.2.865-874.1992] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the amino acid sequence requirements for intracellular cleavage of the Rous sarcoma virus glycoprotein precursor by introducing mutations into the region encoding the cleavage recognition site (Arg-Arg-Lys-Arg). In addition to mutants G1 (Arg-Arg-Glu-Arg) and Dr1 (deletion of all four codons) that we have reported on previously (L. G. Perez and E. Hunter, J. Virol. 61:1609-1614, 1987), we constructed two additional mutants, AR1 (Arg-Arg-Arg-Arg), in which the highly conserved lysine is replaced by an arginine, and S19 (Ser-Arg-Glu-Arg), in which no dibasic pairs remain. The results of these studies demonstrate that when the cleavage sequence is deleted (Dr1) or modified to contain unpaired basic residues (S19), intracellular cleavage of the glycoprotein precursor is completely blocked. This demonstrates that the cellular endopeptidase responsible for cleavage has a stringent requirement for the presence of a pair of basic residues (Arg-Arg or Lys-Arg). Furthermore, it implies that the cleavage enzyme is not trypsinlike, since it is unable to recognize arginine residues that are sensitive to trypsin action. Substitution of the mutated genes into a replication-competent avian retrovirus genome showed that cleavage of the glycoprotein precursor was not required for incorporation into virions but was necessary for infectivity. Treatment of BH-RCAN-S19-transfected turkey cells with low levels of trypsin resulted in the release of infectious virus, demonstrating that exogenous cleavage could generate a biologically active glycoprotein molecule.
Collapse
Affiliation(s)
- J Y Dong
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | | | | | |
Collapse
|
62
|
Håvarstein LS, Morgan IM, Wong WY, Vogt PK. Mutations in the Jun delta region suggest an inverse correlation between transformation and transcriptional activation. Proc Natl Acad Sci U S A 1992; 89:618-22. [PMID: 1309952 PMCID: PMC48290 DOI: 10.1073/pnas.89.2.618] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The viral Jun protein (v-Jun) transforms chicken embryo fibroblasts (CEF) more effectively than its cellular counterpart (c-Jun). In certain cell types v-Jun is also a stronger transcriptional activator than c-Jun. These functional differences between v-Jun and c-Jun result from a deletion in v-Jun (referred to as "delta deletion") that seems to weaken the interaction of Jun with a negative cellular regulator molecule. These observations suggested that the oncogenicity of v-Jun may be due to an enhanced ability to activate transcription of target genes. To test this hypothesis, we constructed several deletions in the delta domain of chicken c-Jun and determined their transforming and transactivating properties. Surprisingly, we found an inverse correlation between the ability of the mutants to transform CEF and to transactivate the collagenase and transin promoters in CEF. In contrast, there was no significant effect of the delta mutations in c-Jun on transactivation in F9 murine embryonal carcinoma cells. The function of the delta region is therefore cell-type specific. The inverse correlation between transformation and transactivation in CEF suggests that the strong growth-promoting effect of v-Jun may be related to a failure to activate the transcription of growth attenuating genes.
Collapse
Affiliation(s)
- L S Håvarstein
- Department of Microbiology, University of Southern California School of Medicine, Los Angeles
| | | | | | | |
Collapse
|
63
|
Abstract
Biologically active replication-competent (subgroups A, B, and C) and replication-defective Rous sarcoma virus-derived vectors containing the cDNA encoding firefly luciferase as a reporter gene were constructed. In these retroviral vectors, luciferase is expressed from a spliced subgenomic mRNA. A biologically active replication-defective UR2 virus-derived vector expressing the reporter gene as a gag-luciferase fusion protein from an unspliced genomic mRNA was also constructed. The luciferase reporter gene was used because it lacks homology with chicken genomic sequences and because a rapid and sensitive direct enzymatic assay is available to monitor luciferase expression in retrovirus-infected cells. The levels of luciferase expression in luciferase recombinant retrovirus-infected chicken embryo fibroblasts are greater than 10(3) higher than that detected in uninfected cells or in cells infected with retroviral vectors carrying other genes. Endpoint dilution titration experiments demonstrated that one infected cell can be detected in a background of 10(3) uninfected cells. The vectors are stable in tissue culture and high level expression of the unselected luciferase reporter gene is maintained. The vectors were used to express luciferase in chicken embryos, demonstrating the potential utility of luciferase as a reporter in vivo.
Collapse
Affiliation(s)
- E A Garber
- Department of Animal Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Rahway, New Jersey 07065
| | | | | | | | | |
Collapse
|
64
|
Expression of v-src in embryonic neural retina alters cell adhesion, inhibits histogenesis, and prevents induction of glutamine synthetase. Mol Cell Biol 1991. [PMID: 1681425 DOI: 10.1128/mcb.11.10.5275] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using Rous sarcoma virus as the vector, v-src or c-src genes were introduced into 6-day chicken embryo retina tissue in organ culture and their effects on retina development were investigated. Overexpression of c-src in many of the cells had no noticeable effect on retina development. In contrast, infection with v-src resulted in abnormal histogenesis and inhibition of differentiation. Although only a portion of the cells in infected tissue expressed the oncogene and displayed the transformation phenotype, the other cells were also hindered from becoming normally positioned and organized. Therefore, presence of oncogene-transformed cells within the tissue hindered organization and development of adjacent nontransformed cells. Failure of normal cell relationships impeded induction by cortisol of glutamine synthetase in Muller glia, which requires contact associations of the glia cells with neurons. The transformed cells tended to assemble into chaotic clusters, suggesting that their adhesiveness and contact affinities had become altered. This was confirmed by aggregation experiments with dissociated cells which showed that adhesiveness of transformed cells was greatly reduced and that they had lost the ability to cohere with nontransformed cells. In binary mixtures of transformed and nontransformed cells, the two sorted out into separate aggregates. Transformed cells formed loose clusters devoid of tissue architecture; aggregates of nontransformed cells became organized into retinotypic structures, and glutamine synthetase was inducible. Our findings suggest that the mechanisms of cell adhesion and cell affinities are a key target of v-src activity in infected cells and that modification of the cell surface may be a leading factor in other cellular changes characteristic of the v-src transformation phenotype.
Collapse
|
65
|
Vardimon L, Fox LE, Cohen-Kupiec R, Degenstein L, Moscona AA. Expression of v-src in embryonic neural retina alters cell adhesion, inhibits histogenesis, and prevents induction of glutamine synthetase. Mol Cell Biol 1991; 11:5275-84. [PMID: 1681425 PMCID: PMC361581 DOI: 10.1128/mcb.11.10.5275-5284.1991] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Using Rous sarcoma virus as the vector, v-src or c-src genes were introduced into 6-day chicken embryo retina tissue in organ culture and their effects on retina development were investigated. Overexpression of c-src in many of the cells had no noticeable effect on retina development. In contrast, infection with v-src resulted in abnormal histogenesis and inhibition of differentiation. Although only a portion of the cells in infected tissue expressed the oncogene and displayed the transformation phenotype, the other cells were also hindered from becoming normally positioned and organized. Therefore, presence of oncogene-transformed cells within the tissue hindered organization and development of adjacent nontransformed cells. Failure of normal cell relationships impeded induction by cortisol of glutamine synthetase in Muller glia, which requires contact associations of the glia cells with neurons. The transformed cells tended to assemble into chaotic clusters, suggesting that their adhesiveness and contact affinities had become altered. This was confirmed by aggregation experiments with dissociated cells which showed that adhesiveness of transformed cells was greatly reduced and that they had lost the ability to cohere with nontransformed cells. In binary mixtures of transformed and nontransformed cells, the two sorted out into separate aggregates. Transformed cells formed loose clusters devoid of tissue architecture; aggregates of nontransformed cells became organized into retinotypic structures, and glutamine synthetase was inducible. Our findings suggest that the mechanisms of cell adhesion and cell affinities are a key target of v-src activity in infected cells and that modification of the cell surface may be a leading factor in other cellular changes characteristic of the v-src transformation phenotype.
Collapse
Affiliation(s)
- L Vardimon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | | | | | | | |
Collapse
|
66
|
Abstract
The avian embryo presents a tremendous challenge for those interested in accessing and manipulating the avian germ line. By far the most successful method of gene transfer is by retrovirus vector. The efficacy of retrovirus vectors has been demonstrated by germ line insertion of replication-competent retroviruses as well as the insertion of replication-defective retrovirus vectors carrying bacterial marker genes. Retroviral vectors have also been shown to be useful for the transfer and expression of genes in somatic cells. Further, germ line transgenesis has been reported in both the chicken and the Japanese quail. In addition, several alternative gene transfer methods are under development. These include transfection of avian sperm, development of germ line chimeras using primordial germ cells and blastodermal cells, and the development of embryonic stem cell lines. Potentially, basic research and the poultry industry will derive substantial benefit from this revolutionary technology.
Collapse
Affiliation(s)
- R M Shuman
- Gentra Systems, Inc., Minneapolis, Minnesota 55447
| |
Collapse
|
67
|
Petropoulos CJ, Hughes SH. Replication-competent retrovirus vectors for the transfer and expression of gene cassettes in avian cells. J Virol 1991; 65:3728-37. [PMID: 2041092 PMCID: PMC241397 DOI: 10.1128/jvi.65.7.3728-3737.1991] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have constructed a series of replication-competent retrovirus vectors to introduce and express gene cassettes in avian cells. To characterize these vectors, we inserted the coding sequences for the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the chicken beta-actin gene promoter or the mouse metallothionein 1 gene promoter. In all cases, we found the structure of integrated proviruses to be stable during serial cell passage in vitro. Chloramphenicol acetyltransferase activity was detected biochemically and immunocytochemically in infected cells. Cassettes were inserted in the vectors in the same or in the opposite orientation with respect to viral transcription. Although both orientations were functional, the cassettes inserted in the forward orientation were usually expressed at higher levels than the corresponding backward constructions. The level of expression was strongly influenced by surrounding proviral sequences, particularly by the transcriptional enhancer elements within the retrovirus long terminal repeat sequences. Expression was higher with vectors that contained the polymerase (pol) region of the Bryan high-titer strain of Rous sarcoma virus. Inclusion of the Bryan pol region also improved vector replication in the chemically transformed quail fibroblast line QT6.
Collapse
Affiliation(s)
- C J Petropoulos
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Maryland 21702-1201
| | | |
Collapse
|
68
|
Bova-Hill C, Olsen JC, Swanstrom R. Genetic analysis of the Rous sarcoma virus subgroup D env gene: mammal tropism correlates with temperature sensitivity of gp85. J Virol 1991; 65:2073-80. [PMID: 1848317 PMCID: PMC240063 DOI: 10.1128/jvi.65.4.2073-2080.1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Subgroup D avian sarcoma and leukosis viruses can penetrate a variety of mammalian cells in addition to cells from their natural host, chickens. Sequences derived from the gp85-coding domain within the env gene of a mammal-tropic subgroup D virus (Schmidt-Ruppin D strain of Rous sarcoma virus [SR-D RSV]) and a non-mammal-tropic subgroup B virus (Rous-associated virus type 2) were recombined to map genetic determinants that allow penetration of mammalian cells. The following conclusions were based on host range analysis of the recombinant viruses. (i) The determinants of gp85 that result in the mammal tropism phenotype of SR-D RSV are encoded within the 160 codons that lie 3' of codon 121 from the corresponding amino terminus of the gp85 protein. (ii) Small linear domains of the SR-D RSV gp85-coding domain placed in the subgroup B background did not yield viruses with titers equal to that of the subgroup D virus in a human cell line. (iii) Recombinant viruses that contained subgroup D sequences within the hr1 variable domain of gp85 showed modest-to-significant increases in infectivity on human cells relative to chicken cells. A recombinant virus that contained three fortuitous amino acid substitutions in the gp85-coding domain was found to penetrate the human cell line and give a titer similar to that of the subgroup D virus. In addition, we found that the subgroup D virus, the mutant virus, and recombinant viruses with an increased mammal tropism phenotype were unstable at 42 degrees C. These results suggest that the mammal tropism of the SR-D strain is not related to altered receptor specificity but rather to an unstable and fusogenic viral glycoprotein. A temperature sensitivity phenotype for infectivity of mammalian cells was also observed for another mammal-tropic avian retrovirus, the Bratislava 77 strain of RSV, a subgroup C virus, but was not seen for any other avian retrovirus tested, strengthening the correlation between mammal tropism and temperature sensitivity.
Collapse
Affiliation(s)
- C Bova-Hill
- Department of Biochemistry, University of North Carolina, Chapel Hill 27599-7295
| | | | | |
Collapse
|
69
|
Transformation-defective v-ski induces MyoD and myogenin expression but not myotube formation. Mol Cell Biol 1991. [PMID: 1846665 DOI: 10.1128/mcb.11.2.1167] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ski oncogene induces muscle differentiation in otherwise nonmyogenic quail embryo cells (C. Colmenares and E. Stavnezer, Cell 59:293-303, 1989). Here we report that v-ski induces both MyoD and myogenin expression, suggesting that activation of these muscle regulatory genes may be a critical step in ski-induced myogenesis. We also describe a transformation-defective mutant of v-ski (tdM5i) that fails to induce myotube formation, although it induces the expression of many muscle-specific genes, including the MyoD and myogenin genes. Therefore, if activation of MyoD and myogenin expression is a necessary component of the myogenic program triggered by ski, it is clearly insufficient to account for complete muscle differentiation.
Collapse
|
70
|
Colmenares C, Teumer JK, Stavnezer E. Transformation-defective v-ski induces MyoD and myogenin expression but not myotube formation. Mol Cell Biol 1991; 11:1167-70. [PMID: 1846665 PMCID: PMC359802 DOI: 10.1128/mcb.11.2.1167-1170.1991] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The ski oncogene induces muscle differentiation in otherwise nonmyogenic quail embryo cells (C. Colmenares and E. Stavnezer, Cell 59:293-303, 1989). Here we report that v-ski induces both MyoD and myogenin expression, suggesting that activation of these muscle regulatory genes may be a critical step in ski-induced myogenesis. We also describe a transformation-defective mutant of v-ski (tdM5i) that fails to induce myotube formation, although it induces the expression of many muscle-specific genes, including the MyoD and myogenin genes. Therefore, if activation of MyoD and myogenin expression is a necessary component of the myogenic program triggered by ski, it is clearly insufficient to account for complete muscle differentiation.
Collapse
Affiliation(s)
- C Colmenares
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati Medical Center, Ohio 45267-0524
| | | | | |
Collapse
|
71
|
Complementation between avirulent Newcastle disease virus and a fusion protein gene expressed from a retrovirus vector: requirements for membrane fusion. J Virol 1991; 65:813-22. [PMID: 1987376 PMCID: PMC239821 DOI: 10.1128/jvi.65.2.813-822.1991] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cDNA derived from the fusion gene of the virulent AV strain of Newcastle disease virus (NDV) was expressed in chicken embryo cells by using a retrovirus vector. The fusion protein expressed in this system was transported to the cell surface and was efficiently cleaved into the disulfide-linked F1-F2 form found in infectious virions. The cells expressing the fusion gene grew normally and could be passaged many times. Monolayers of these cells would plaque, in the absence of trypsin, avirulent NDV strains (strains which encode a fusion protein which is not cleaved in tissue culture). Fusion protein-expressing cells would not fuse if mixed with uninfected cells or uninfected cells expressing the hemagglutinin-neuraminidase (HN) protein. However, the fusion protein-expressing cells, if infected with avirulent strains of NDV, would fuse with uninfected cells, suggesting that fusion requires both the fusion protein and another viral protein expressed in the same cell. Fusion was also seen after transfection of the HN protein gene into fusion protein-expressing cells. Thus, the expressed fusion protein gene is capable of complementing the virus infection, providing an active cleaved fusion protein required for the spread of infection. However, the fusion protein does not mediate cell fusion unless the cell also expresses the HN protein. Fusion protein-expressing cells would not plaque influenza virus in the absence of trypsin, nor would influenza virus-infected fusion protein-expressing cells fuse with uninfected cells. Thus, the influenza virus HA protein will not substitute for the NDV HN protein in cell-to-cell fusion.
Collapse
|
72
|
Garber EA, Chute HT, Condra JH, Gotlib L, Colonno RJ, Smith RG. Avian cells expressing the murine Mx1 protein are resistant to influenza virus infection. Virology 1991; 180:754-62. [PMID: 1989389 DOI: 10.1016/0042-6822(91)90088-s] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cDNA encoding the murine Mx1 protein, a mediator of resistance to influenza virus, was inserted into a replication-competent avian retroviral vector in either the sense (referred to as Mx+) or the antisense (referred to as Mx-) orientation relative to the viral structural genes. Both vectors produced virus retaining the Mx insert (Mx recombinant viruses referred to as Mx+ and Mx-) following transfection into chicken embryo fibroblasts (CEF). Mx protein of the appropriate size and nuclear localization was expressed only in CEF cells infected with the Mx+ virus. Mx expression was observed in all Mx(+)-infected cells and was stable during long-term culture. Cells infected with the Mx+ virus were resistant to infection by human influenza A/WSN/33 (H1N1) and avian influenza viruses A/Turkey/Wisconsin/68 (H5N9) and A/Turkey/Massachusetts/65 (H6N2), but were susceptible to infection by the enveloped RNA viruses Sindbis and vesicular stomatitis virus (VSV). Normal CEF and cells infected with the Mx virus were susceptible to influenza A, Sindbis, and VSV. The synthesis of influenza proteins, especially the larger polymerase and hemagglutinin proteins, was reduced in Mx+ retrovirus-infected cells superinfected by influenza A.
Collapse
Affiliation(s)
- E A Garber
- Department of Animal Biochemistry and Molecular Biology, Merck, Sharp, and Dohme Research Laboratories, Rahway, New Jersey 07065
| | | | | | | | | | | |
Collapse
|
73
|
Abstract
Encapsidation of retroviral RNA has been shown to be dependent on specific cis-acting signals, in particular, the packaging region (psi) located near the 5' end of the retroviral genome. In this report, we show that a 683-base avian extended packaging sequence (psi+) derived from Rous sarcoma virus will direct packaging of heterologous hygromycin mRNA into avian virions when present at the 3' end of the transcript in the sense orientation. However, this packaging is not as efficient as the packaging of RNA encoded by a standard avian retroviral vector. A quail cell line containing a Rous sarcoma virus mutant, SE21Q1b, produces virions which will package endogenous cellular mRNAs randomly, roughly in proportion to their intracellular concentrations. We found that viral particles from SE21Q1b retain the capacity to specifically encapsidate hygromycin mRNAs containing the avian psi+. To determine whether packaging of cellular mRNA would occur in other retroviral packaging lines, we assayed virion RNA isolated from the retroviral particles produced by avian and murine packaging lines for the presence of endogenous cellular mRNAs. Endogenous cellular mRNAs were not found randomly packaged into virions produced by any of the packaging lines examined except SE21Q1b. Some specific sequences, however, were found packaged into avian virions. Endogenous retrovirus-related mink cell focus-inducing murine leukemia virus RNAs and 30S viruslike RNAs were found to be efficiently packaged into murine virions even in the presence of RNAs containing all cis-acting retroviral sequences.
Collapse
|
74
|
Fuerstenberg S, Beug H, Introna M, Khazaie K, Muñoz A, Ness S, Nordström K, Sap J, Stanley I, Zenke M. Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector. J Virol 1990; 64:5891-902. [PMID: 2173771 PMCID: PMC248754 DOI: 10.1128/jvi.64.12.5891-5902.1990] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A retrovirus vector was constructed from the genome of avian erythroblastosis virus ES4. The v-erbA sequences of avian erythroblastosis virus were replaced by those coding for neomycin phosphotransferase, creating a gag-neo fusion protein which provides G418 resistance as a selectable marker. The v-erbB sequences following the splice acceptor were replaced by a cloning linker allowing insertion of foreign genes. The vector has been tested in conjunction with several helper viruses for the transmission of G418 resistance, titer, stability, transcription, and the transduction and expression of foreign genes in both chicken embryo fibroblasts and the QT6 quail cell line. The results show that the vector is capable of producing high titers of Neor virus from stably integrated proviruses. These proviruses express a balanced ratio of genome length to spliced transcripts which are efficiently translated into protein. Using the Escherichia coli beta-galactosidase gene cloned into the vector as a test construct, expression of enzyme activity could be detected in 90 to 95% of transfected target cells and in 80 to 85% of subsequently infected cells. In addition, a cDNA encoding the avian erythrocyte band 3 anion exchange protein has been expressed from the vector in both chicken embryo fibroblasts and QT6 cells and appears to function as an active, plasma membrane-based anion transporter. The ectopic expression of band 3 protein provides a visual marker for vector function in these cells.
Collapse
Affiliation(s)
- S Fuerstenberg
- Department of Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Morrison T, Hinshaw VS, Sheerar M, Cooley AJ, Brown D, McQuain C, McGinnes L. Retroviral expressed hemagglutinin-neuraminidase protein protects chickens from Newcastle disease virus induced disease. Microb Pathog 1990; 9:387-96. [PMID: 1965848 DOI: 10.1016/0882-4010(90)90057-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hemagglutinin-neuraminidase (HN) gene and the phosphoprotein (P) gene of Newcastle disease virus (NDV) were inserted into a replication competent avian leukosis virus vector. The expression of the HN gene from this vector in chick embryo cells has been previously reported. The P gene is also expressed from this vector in chick embryo cells. The retroviruses were used to immunize 4-week-old chickens. Birds receiving the virus containing the HN gene developed low levels of serum HI titers and NDV neutralization titers. Upon challenge, all birds vaccinated with the HN gene containing virus were protected from disease but not viral infection and replication. In contrast, birds immunized with the P gene containing retrovirus developed more severe clinical signs of disease earlier than birds receiving no immunization or retrovirus alone. The results obtained with the HN gene may have potential application to reducing disease due to NDV genetically engineered vaccines.
Collapse
Affiliation(s)
- T Morrison
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | | | | | | | |
Collapse
|
76
|
Olsen JC, Bova-Hill C, Grandgenett DP, Quinn TP, Manfredi JP, Swanstrom R. Rearrangements in unintegrated retroviral DNA are complex and are the result of multiple genetic determinants. J Virol 1990; 64:5475-84. [PMID: 2170682 PMCID: PMC248599 DOI: 10.1128/jvi.64.11.5475-5484.1990] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We used a replication-competent retrovirus shuttle vector based on a DNA clone of the Schmidt-Ruppin A strain of Rous sarcoma virus to characterize rearrangements in circular viral DNA. In this system, circular molecules of viral DNA present after acute infection of cultured cells were cloned as plasmids directly into bacteria. The use of a replication-competent shuttle vector permitted convenient isolation of a large number of viral DNA clones; in this study, over 1,000 clones were analyzed. The circular DNA molecules could be placed into a limited number of categories. Approximately one-third of the rescued molecules had deletions in which one boundary was very near the edge of a long terminal repeat (LTR) unit. Subtle differences in the patterns of deletions in circular DNAs with one versus two copies of the LTR sequence were observed, and differences between deletions emanating from the right and left boundaries of the LTR were seen. A virus with a missense mutation in the region of the pol gene responsible for integration and exhibiting a temperature sensitivity phenotype for replication had a marked decrease in the number of rescued molecules with LTR-associated deletions when infection was performed at the nonpermissive temperature. This result suggests that determinants in the pol gene, possibly in the integration protein, play a role in the generation of LTR-associated deletions. Sequences in a second region of the genome, probably within the viral gag gene, were also found to affect the types of circular viral DNA molecules present after infection. Sequences in this region from different strains of avian sarcoma-leukosis viruses influenced the fraction of circular molecules with LTR-associated deletions, as well as the relative proportion of circular molecules with either one or two copies of the LTR. Thus, the profile of rearrangements in unintegrated viral DNA is complex and dependent upon the nature of sequences in the gag and pol regions.
Collapse
Affiliation(s)
- J C Olsen
- Department of Biochemistry, University of North Carolina, Chapel Hill 27599
| | | | | | | | | | | |
Collapse
|
77
|
Bos TJ, Monteclaro FS, Mitsunobu F, Ball AR, Chang CH, Nishimura T, Vogt PK. Efficient transformation of chicken embryo fibroblasts by c-Jun requires structural modification in coding and noncoding sequences. Genes Dev 1990; 4:1677-87. [PMID: 2123464 DOI: 10.1101/gad.4.10.1677] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To assess the transforming capability of the c-Jun protein, we introduced the chicken c-jun proto-oncogene into a replication competent avian retroviral expression vector (RCAS). Viral Jun efficiently transformed chicken embryo fibroblasts (CEFs) when expressed from this vector. Overexpression of c-Jun leads to transformation of CEFs with an efficiency that is 15- to 25-fold less than that seen for v-Jun, suggesting that v-Jun contains structural features that increase its oncogenic potential relative to c-Jun. There are four structural differences between v-Jun and c-Jun. To determine the relative contribution that each of these structural differences between v-Jun and c-Jun has on oncogenic activity, several deletion and substitution mutants were constructed. Each of these mutants was expressed in CEF and assayed for transformation by focus formation. Analysis of the results reveals that deletion of a region of 27 amino acids near the amino terminus of c-Jun and deletion of 3'-untranslated sequences are critical in activating the full oncogenic potential of Jun.
Collapse
Affiliation(s)
- T J Bos
- Department of Microbiology, University of Southern California, School of Medicine, Los Angeles 90033
| | | | | | | | | | | | | |
Collapse
|
78
|
Gilbert JM, Mason D, White JM. Fusion of Rous sarcoma virus with host cells does not require exposure to low pH. J Virol 1990; 64:5106-13. [PMID: 2168989 PMCID: PMC248002 DOI: 10.1128/jvi.64.10.5106-5113.1990] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We investigated whether Rous sarcoma virus (RSV) infects cells through a pH-independent or a low-pH-dependent pathway. To do this, the effects of lysosomotropic agents and acid pretreatment on RSV infectivity of, and fusion with, chicken embryo fibroblasts (CEFs) were studied. High concentrations of lysosomotropic agents (ammonium chloride and monensin) did not inhibit virus infectivity: equal titers of RSV were produced in the presence and absence of these agents. Similarly, low-pH pretreatment did not inhibit RSV infectivity. In parallel experiments, lysosomotropic agents and acid pretreatment completely abolished the ability of influenza virus to infect CEFs. To monitor the fusion activity of RSV directly, the viral membrane was labeled with the fluorescent lipid probe octadecyl rhodamine at a self-quenching concentration. Upon fusion with a host cell, the probe is diluted in the cell membrane, resulting in fluorescence dequenching (D. Hoekstra, T. de Boer, K. Klappe, and J. Wilschut, Biochemistry 23:5675-5681, 1984). In this assay, fusion of RSV with CEFs was found to occur in both a time-dependent and a strictly temperature-dependent fashion. No fusion occurred unless cells with prebound virus were warmed to temperatures greater than 20 degrees C. Fusion, but not binding, was abolished if virus was pretreated with low concentrations of glutaraldehyde. High concentrations of ammonium chloride had no effect on fusion of RSV with CEFs but greatly diminished the ability of influenza virus and Semliki Forest virus to fuse with CEFs. Similarly, acid pretreatment of RSV had no effect on fusion with CEFs while markedly inhibiting fusion of both influenza and Semliki Forest viruses. Collectively, our results show that RSV fusion with and hence infection of CEFs does not require exposure of the virus to low pH. In this respect, RSV resembles another retrovirus, human immunodeficiency virus.
Collapse
Affiliation(s)
- J M Gilbert
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0450
| | | | | |
Collapse
|
79
|
Mutational activation of c-raf-1 and definition of the minimal transforming sequence. Mol Cell Biol 1990. [PMID: 2188091 DOI: 10.1128/mcb.10.6.2503] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of wild-type and mutant raf genes was transfected into NIH 3T3 cells and analyzed for transforming activity. Full-length wild-type c-raf did not show transforming activity. Two types of mutations resulted in oncogenic activity similar to that of v-raf: truncation of the amino-terminal half of the protein and fusion of the full-length molecule to gag sequences. A lower level of activation was observed for a mutant with a tetrapeptide insertion mapping to conserved region 2 (CR2), a serine- and threonine-rich domain located 100 residues amino-terminal of the kinase domain. To determine essential structural features of the transforming region of raf, we analyzed point and deletion mutants of v-raf. Substitutions of Lys-56 modulated the transforming activity, whereas mutation of Lys-53, a putative ATP binding residue, abolished it. Deletion analysis established that the minimal transforming sequence coincided precisely with CR3, the conserved Raf kinase domain. Thus, oncogenic activation of the Raf kinase can be achieved by removal of CR1 and CR2 or by steric distortion and requires retention of an active kinase domain. These findings are consistent with a protein structure model for the nonstimulated enzyme in which the active site is buried within the protein.
Collapse
|
80
|
Heidecker G, Huleihel M, Cleveland JL, Kolch W, Beck TW, Lloyd P, Pawson T, Rapp UR. Mutational activation of c-raf-1 and definition of the minimal transforming sequence. Mol Cell Biol 1990; 10:2503-12. [PMID: 2188091 PMCID: PMC360607 DOI: 10.1128/mcb.10.6.2503-2512.1990] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A series of wild-type and mutant raf genes was transfected into NIH 3T3 cells and analyzed for transforming activity. Full-length wild-type c-raf did not show transforming activity. Two types of mutations resulted in oncogenic activity similar to that of v-raf: truncation of the amino-terminal half of the protein and fusion of the full-length molecule to gag sequences. A lower level of activation was observed for a mutant with a tetrapeptide insertion mapping to conserved region 2 (CR2), a serine- and threonine-rich domain located 100 residues amino-terminal of the kinase domain. To determine essential structural features of the transforming region of raf, we analyzed point and deletion mutants of v-raf. Substitutions of Lys-56 modulated the transforming activity, whereas mutation of Lys-53, a putative ATP binding residue, abolished it. Deletion analysis established that the minimal transforming sequence coincided precisely with CR3, the conserved Raf kinase domain. Thus, oncogenic activation of the Raf kinase can be achieved by removal of CR1 and CR2 or by steric distortion and requires retention of an active kinase domain. These findings are consistent with a protein structure model for the nonstimulated enzyme in which the active site is buried within the protein.
Collapse
Affiliation(s)
- G Heidecker
- Section of Viral Pathology, National Cancer Institute-Frederick Cancer Research Facility, Maryland 21701
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Dhawale S, Beisel CE, Nazerian K. Transient expression assay for qualitative assessment of gene expression by fowlpox virus. Virus Genes 1990; 3:213-20. [PMID: 2161157 DOI: 10.1007/bf00393181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A transient expression assay for fowlpox virus (FPV) was developed to assess the feasibility of using heterologous promoters in FPV and to qualitatively determine relative promoter strength. A transient expression system for FPV has not been reported, and various methods used for transient expression in vaccinia-virus-infected cells produced negative results when used with FPV. Here a successful method for transient expression of E. coli beta-galactosidase in FPV-infected chick embryo fibroblasts is reported. This transient expression assay has been developed to qualitatively assess promoter recognition and gene expression by FPV. It should also prove useful in the identification of promoters from the FPV genomic library and in testing the accuracy of chimeric promoter-gene constructs.
Collapse
Affiliation(s)
- S Dhawale
- USDA, Agricultural Research Service, Regional Poultry Research Laboratory, East Lansing, MI 48823
| | | | | |
Collapse
|
82
|
Morrison TG, McQuain C, O'Connell KF, McGinnes LW. Mature, cell-associated HN protein of Newcastle disease virus exists in two forms differentiated by posttranslational modifications. Virus Res 1990; 15:113-33. [PMID: 2321417 DOI: 10.1016/0168-1702(90)90003-t] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Characterization of the posttranslational modifications of the mature, cell-associated hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) revealed that the HN protein exists in two forms differentiated by disulfide bonds and glycosylation. One form, HNa, contains intermolecular disulfide bonds and is endoglycosidase H partially resistant. The other form, HNb, is not linked by disulfide bonds and is endoglycosidase H sensitive. Both forms of the protein are modified with fucose indicating transport to the Golgi membranes. Both forms are detected at the cell surface by monoclonal antibody. Furthermore, both forms are transported to the cell surface with identical kinetics. HNa is incorporated into virions. HNb is not incorporated into virions and is presumably degraded. The cDNA derived from the HN gene was expressed from a retrovirus vector. The majority of the protein expressed was in the nonvirion-associated form b. Evidence is presented that the level of gene expression determines the ratio of the two forms of HN protein. At high levels of expression, the virion-associated form is favored while at low levels of expression the nonvirion-associated form is favored. The results presented have implications for persistent infections as well as expression of viral genes from different vectors.
Collapse
Affiliation(s)
- T G Morrison
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | |
Collapse
|
83
|
Affiliation(s)
- P K Vogt
- Norris Cancer Center, University of Southern California School of Medicine, Los Angeles 90033
| | | |
Collapse
|
84
|
Morrison TG, McGinnes LW. Avian cells expressing the Newcastle disease virus hemagglutinin-neuraminidase protein are resistant to Newcastle disease virus infection. Virology 1989; 171:10-7. [PMID: 2545025 DOI: 10.1016/0042-6822(89)90505-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cDNA derived from the Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) gene was inserted into a replication-competent Schmidt-Ruppin Rous sarcoma virus-derived vector. Chick embryo cells transfected with this vector expressed HN-sized protein which could be precipitated with anti-HN antibody. These cells adsorbed avian red blood cells and the cell surfaces exhibited neuraminidase activity while cells transfected with an antisense version of the gene were negative for hemadsorption and neuraminidase. The cells transfected with the retroviral vector containing the HN gene were resistant to infection by NDV and influenza virus, viruses which bind to sialic acid containing receptors, but sensitive to vesicular stomatitis virus (VSV). Cells transfected with the antisense version of the HN gene were sensitive to NDV, influenza virus, and VSV infection. Thus the HN protein-expressing cells are likely resistant to NDV and influenza virus due to the destruction of the cellular receptors by the neuraminidase of the HN protein. The expression of the influenza virus HA protein using the same retrovirus vector has been reported previously (L. A. Hunt, D. W. Brown, H. L. Robinson, C. W. Naeve, and R. G. Webster, 1988, J. Virol. 62, 3014-3019). Cells infected with this vector were sensitive to infection with influenza virus, NDV, and VSV. Thus expression of a viral surface protein does not necessarily confer resistance of the cell to the homologous virus.
Collapse
Affiliation(s)
- T G Morrison
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | |
Collapse
|
85
|
Benchaibi M, Mallet F, Thoraval P, Savatier P, Xiao JH, Verdier G, Samarut J, Nigon V. Avian retroviral vectors derived from avian defective leukemia virus: role of the translational context of the inserted gene on efficiency of the vectors. Virology 1989; 169:15-26. [PMID: 2564222 DOI: 10.1016/0042-6822(89)90036-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have constructed retroviral vectors derived from the genome of avian erythroblastosis virus ES4 (AEV ES4). The neo selectable gene was substituted for the original v-erbA or v-erbB oncogenes of AEV, either in the same or in a different reading frames. Recombinant retrovirus were rescued and used to infect chicken embryo fibroblasts or quail QT6 cells. When the neo gene was inserted in the same reading frame as the original oncogene, we obtained (1) a high level of expression of the neo gene, (2) a balanced ration of both genomic and subgenomic RNAs, and (3) high titer recombinant viruses. Conversely, when the neo gene was inserted in a reading frame different from that of the original oncogene, we observed (1) a very low level of expression of the neo protein, (2) a predominance of the viral transcript used as translational template for the neo protein synthesis, and (3) low titer recombinant viruses. One of the vectors was used to transfer a human delta-globin gene into avian cells in culture without detectable rearrangement of this gene, but exhibited a deletion within the conserved noncoding region located between the two original oncogenes. Our data provide information for further construction of double expression vectors. Furthermore, three of the vectors would provide helpful tools to identify genetic elements of the virus genome involved in splicing regulation.
Collapse
Affiliation(s)
- M Benchaibi
- Laboratoire de Biologie, Ecole Normale Supérieure de Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
86
|
DeClue JE, Martin GS. Linker insertion-deletion mutagenesis of the v-src gene: isolation of host- and temperature-dependent mutants. J Virol 1989; 63:542-54. [PMID: 2536090 PMCID: PMC247722 DOI: 10.1128/jvi.63.2.542-554.1989] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The host cell regulators and substrates of the Rous sarcoma virus transforming protein pp60v-src remain largely unknown. Viral mutants which induce a host-dependent phenotype may result from mutations which affect the interaction of pp60v-src with host cell components. To isolate such mutants and to examine the role of different regions of src in regulating pp60v-src function, we generated 46 linker insertion and 5 deletion mutations within src. The mutant src genes were expressed in chicken embryo fibroblasts and in rat-2 cells by using retrovirus expression vectors. Most linker insertions within the kinase domain (residues 260 to 512) inactivated kinase activity and transforming capacity, while most insertions in the N-terminal domain and at the extreme C terminus were tolerated. A number of mutations generated a host-dependent phenotype. Insertions after residues 225 and 227, within the N-terminal regulatory domain (SH2), produced a fusiform transformation in chicken embryo fibroblasts and abolished transformation in rat-2 cells; a similar phenotype also resulted from two deletions affecting SH2 (residues 149 to 174 and residues 77 to 225). Insertions immediately C terminal to Lys-295, which is involved in ATP binding, also produced a conditional phenotype. Insertions after residues 299 and 300 produced a temperature-sensitive phenotype, while insertions after residues 304 and 306 produced a host cell-dependent phenotype. An insertion which removed the major tyrosine autophosphorylation site (Tyr-416) greatly reduced transformation of rat-2 cells, a property not previously observed with other mutations at this site. We conclude that mutations at certain sites within src result in conditional phenotypes. These sites may represent regions important in interactions with host cell components.
Collapse
Affiliation(s)
- J E DeClue
- Department of Zoology, University of California, Berkeley 94720
| | | |
Collapse
|
87
|
Greenhouse JJ, Petropoulos CJ, Crittenden LB, Hughes SH. Helper-independent retrovirus vectors with Rous-associated virus type O long terminal repeats. J Virol 1988; 62:4809-12. [PMID: 2460645 PMCID: PMC253605 DOI: 10.1128/jvi.62.12.4809-4812.1988] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have constructed nonpermuted replication-competent avian retrovirus vectors that derive from Rous sarcoma virus (S. H. Hughes, J. J. Greenhouse, C. J. Petropoulos, and P. Sutrave, J. Virol. 61:3004-3012, 1987). We describe here the construction and properties of corresponding vectors in which the long terminal repeats (LTRs) of the parental virus have been replaced by the LTRs of the endogenous chicken virus Rous-associated virus type O. The Rous-associated virus type O LTR vectors replicated approximately 1/10 as well as the parental vectors and expressed a test gene, chloramphenicol acetyltransferase, approximately 1/30 to 1/50 as well.
Collapse
Affiliation(s)
- J J Greenhouse
- National Cancer Institute-Frederick Cancer Research Facility, Maryland 21701-1013
| | | | | | | |
Collapse
|
88
|
Hippenmeyer PJ, Krivi GG, Highkin MK. Transfer and expression of the bacterial NPT-II gene in chick embryos using a Schmidt-Ruppin retrovirus vector. Nucleic Acids Res 1988; 16:7619-32. [PMID: 2842731 PMCID: PMC338430 DOI: 10.1093/nar/16.15.7619] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In an effort to introduce foreign genes into chickens, the bacterial neomycin phosphotransferase (NPT-II) gene was cloned into an infectious avian retroviral vector derived from the Schmidt-Ruppin A strain of RSV. The NPT-II gene was stable in the vector during passage in vitro and infected cells were resistant to G418. Fertilized chicken embryos were inoculated with the recombinant virus on day 0 and screened on day 20 for the NPT-II gene in blood cell DNA. Approximately 12% of the embryos were positive for the NPT-II gene. Screening of DNA from the brain, muscle, liver and foot of the positive embryos indicated that the NPT-II gene copy number could vary in a single embryo. However, some embryos had nearly equal NPT-II copy number in each tissue examined. To determine the expression of the bacterial gene, tissue extracts from the positive embryos were assayed for NPT-II activity. The results indicated that NPT-II activity varied depending on the tissue, with activity being highest in muscle and foot regardless of NPT-II gene copy number.
Collapse
|
89
|
Hunt LA, Brown DW, Robinson HL, Naeve CW, Webster RG. Retrovirus-expressed hemagglutinin protects against lethal influenza virus infections. J Virol 1988; 62:3014-9. [PMID: 2839718 PMCID: PMC253740 DOI: 10.1128/jvi.62.8.3014-3019.1988] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An influenza virus hemagglutinin gene, H7, has been expressed in a replication-competent Schmidt-Ruppin Rous sarcoma virus-derived vector. This virus, P1/H7, expressed a glycosylated precursor of the H7 protein which was processed to a mature form and transported to the cell surface. The expressed H7 glycoprotein could not be detected in P1/H7 virus particles. A P1/H7 stock which expressed 5 to 10% of the level of H7 observed in influenza virus-infected chicken embryo fibroblasts was used to immunize 1-month-old chickens. This immunization resulted in low or undetectable levels of hemagglutination-inhibiting and neutralizing antibody. Despite the low serum response, challenge with a highly pathogenic H7N7 virus revealed complete protection against lethal infection.
Collapse
Affiliation(s)
- L A Hunt
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Kentucky 40292
| | | | | | | | | |
Collapse
|
90
|
Abstract
We compared the sequence and properties of the chicken mos homolog with the previously characterized mouse and human c-mos genes. Sequence analysis revealed one major open reading frame of 1,047 base pairs encoding a protein of 349 amino acids. Both the nucleotide sequence and the deduced amino acid sequence showed 62% overall homology to mouse and human c-mos, but regions of higher conservation (approximately 70%) occurred in the putative ATP-binding and kinase domains. We detected mos transcripts by Northern (RNA) analyses in RNA prepared from chicken and quail ovaries and testes. Evidence for low levels of mos RNA expression in adult chicken heart, kidney, and spleen and in the entire embryo was obtained by S1 nuclease protection experiments. In contrast to the low transforming efficiency of human c-mos when linked to a mouse retroviral long terminal repeat element, chicken c-mos transformed NIH 3T3 cells as efficiently as mouse c-mos did. We also show that chicken primary embryo fibroblasts were morphologically altered when infected with an avian retroviral vector containing the chicken c-mos coding region.
Collapse
|
91
|
The structurally distinct form of pp60c-src detected in neuronal cells is encoded by a unique c-src mRNA. Mol Cell Biol 1988. [PMID: 2448604 DOI: 10.1128/mcb.7.11.4142] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cellular src (c-src) cDNA clone was isolated from a chicken embryonic brain cDNA library and characterized by DNA sequence analysis. Comparison with the published sequence of a chicken genomic c-src clone indicated that the brain cDNA clone contained an 18-base-pair insertion located between exons 3 and 4 of the c-src gene. The six amino acids encoded by the insertion caused an alteration in the electrophoretic mobility of the c-src gene product similar to that of the structurally distinct form of the src protein detected in neuronal cultures.
Collapse
|
92
|
Schmidt M, Oskarsson MK, Dunn JK, Blair DG, Hughes S, Propst F, Vande Woude GF. Chicken homolog of the mos proto-oncogene. Mol Cell Biol 1988; 8:923-9. [PMID: 2832744 PMCID: PMC363224 DOI: 10.1128/mcb.8.2.923-929.1988] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We compared the sequence and properties of the chicken mos homolog with the previously characterized mouse and human c-mos genes. Sequence analysis revealed one major open reading frame of 1,047 base pairs encoding a protein of 349 amino acids. Both the nucleotide sequence and the deduced amino acid sequence showed 62% overall homology to mouse and human c-mos, but regions of higher conservation (approximately 70%) occurred in the putative ATP-binding and kinase domains. We detected mos transcripts by Northern (RNA) analyses in RNA prepared from chicken and quail ovaries and testes. Evidence for low levels of mos RNA expression in adult chicken heart, kidney, and spleen and in the entire embryo was obtained by S1 nuclease protection experiments. In contrast to the low transforming efficiency of human c-mos when linked to a mouse retroviral long terminal repeat element, chicken c-mos transformed NIH 3T3 cells as efficiently as mouse c-mos did. We also show that chicken primary embryo fibroblasts were morphologically altered when infected with an avian retroviral vector containing the chicken c-mos coding region.
Collapse
Affiliation(s)
- M Schmidt
- Bionetics Research, Inc., National Cancer Institute-Frederick Cancer Research Facility, Maryland 21701
| | | | | | | | | | | | | |
Collapse
|
93
|
Bova CA, Olsen JC, Swanstrom R. The avian retrovirus env gene family: molecular analysis of host range and antigenic variants. J Virol 1988; 62:75-83. [PMID: 2824857 PMCID: PMC250503 DOI: 10.1128/jvi.62.1.75-83.1988] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The nucleotide sequence of the env gp85-coding domain from two avian sarcoma and leukosis retrovirus isolates was determined to identify host range and antigenic determinants. The predicted amino acid sequence of gp85 from a subgroup D virus isolate of the Schmidt-Ruppin strain of Rous sarcoma virus was compared with the previously reported sequences of subgroup A, B, C, and E avian sarcoma and leukosis retroviruses. Subgroup D viruses are closely related to the subgroup B viruses but have an extended host range that includes the ability to penetrate certain mammalian cells. There are 27 amino acid differences shared between the subgroup D sequence and three subgroup B sequences. At 16 of these sites, the subgroup D sequence is identical to the sequence of one or more of the other subgroup viruses (A, C, and E). The remaining 11 sites are specific to subgroup D and show some clustering in the two large variable regions that are thought to be major determinants of host range. Biological analysis of recombinant viruses containing a dominant selectable marker confirmed the role of the gp85-coding domain in determining the host range of the subgroup D virus in the infection of mammalian cells. We also compared the sequence of the gp85-coding domain from two subgroup A viruses, Rous-associated virus type 1 and a subgroup A virus of the Schmidt-Ruppin strain of Rous sarcoma virus. The comparison revealed 24 nonconservative amino acid changes, of which 6 result in changes in potential glycosylation sites. The positions of 10 amino acid differences are coincident with the positions of 10 differences found between two subgroup B virus env gene sequences. These 10 sites identify seven domains in the sequence which may constitute determinants of type-specific antigenicity. Using a molecular recombinant, we demonstrated that type-specific neutralization of two subgroup A viruses was associated with the gp85-coding domain of the virus.
Collapse
Affiliation(s)
- C A Bova
- Department of Biochemistry, University of North Carolina, Chapel Hill 27599
| | | | | |
Collapse
|
94
|
Brown DW, Robinson HL. Role of RAV-0 genes in the permissive replication of subgroup E avian leukosis viruses on line 15Bev1 CEF. Virology 1988; 162:239-42. [PMID: 2827382 DOI: 10.1016/0042-6822(88)90414-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Rous associated virus type-0 (RAV-0) is a replication-competent endogenous virus of chickens which grows more efficiently on chick embryo fibroblasts (CEFs) from line 15B chickens than on CEFs from line K28. Differences in viral growth on these two sources of cells have been attributed to an early event in the retrovirus life-cycle, at or before viral DNA synthesis. Five in vitro constructed avian leukosis viruses (ALVs) as well as RAV-0 (a subgroup E ALV), RAV-1 (subgroup A), and RAV-2 (subgroup B) have been assessed for their relative growth on 15Bev1 and K28 CEFs. More efficient replication on 15Bev1 CEFs than on K28 CEFs was determined by subgroup E-encoding sequences in env. Subgroup A and B envelope sequences as well as viral LTR, gag, and pol sequences did not obviously bias relative rates of viral replication on the two cell types. We suggest that the unusually permissive replication of subgroup E viruses on 15B CEFs is a receptor-mediated phenomenon and that the line 15B receptor for subgroup E ALVs is more efficient than that of line K28.
Collapse
Affiliation(s)
- D W Brown
- Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | |
Collapse
|
95
|
Levy JB, Dorai T, Wang LH, Brugge JS. The structurally distinct form of pp60c-src detected in neuronal cells is encoded by a unique c-src mRNA. Mol Cell Biol 1987; 7:4142-5. [PMID: 2448604 PMCID: PMC368089 DOI: 10.1128/mcb.7.11.4142-4145.1987] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A cellular src (c-src) cDNA clone was isolated from a chicken embryonic brain cDNA library and characterized by DNA sequence analysis. Comparison with the published sequence of a chicken genomic c-src clone indicated that the brain cDNA clone contained an 18-base-pair insertion located between exons 3 and 4 of the c-src gene. The six amino acids encoded by the insertion caused an alteration in the electrophoretic mobility of the c-src gene product similar to that of the structurally distinct form of the src protein detected in neuronal cultures.
Collapse
Affiliation(s)
- J B Levy
- Department of Microbiology, State University of New York, Stony Brook 11794
| | | | | | | |
Collapse
|
96
|
Olsen JC, Furman P, Fyfe JA, Swanstrom R. 3'-Azido-3'-deoxythymidine inhibits the replication of avian leukosis virus. J Virol 1987; 61:2800-6. [PMID: 2441079 PMCID: PMC255789 DOI: 10.1128/jvi.61.9.2800-2806.1987] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We tested the ability of the thymidine analog 3'-azido-3'-deoxythymidine (BWA509U) to inhibit the replication of the retrovirus avian leukosis virus. Inhibition was measured with two different assays: inhibition of a single round of virus replication and inhibition of virus spread through a cell culture. With both assays, we detected inhibition of virus growth, although inhibition of a single round of virus replication required a 40-fold higher drug concentration than did inhibition of virus spread. We also detected variations in the concentrations of drug needed to inhibit virus replication in different cell types. Higher concentrations of drug were needed to inhibit virus replication in chicken embryo fibroblasts than in the continuous quail cell line QT6. Viral DNA synthesis in infected cells was shown to be inhibited in the presence of the drug. The triphosphate form of the analog acted as a competitive inhibitor of purified viral reverse transcriptase, with a Ki of 0.09 +/- 0.003 microM, and was incorporated as a chain terminator during reverse transcription of the natural viral RNA substrate in vitro.
Collapse
|
97
|
Abstract
Retrovirus vectors were constructed with large (0.85- to 1.3-kilobase-pair) direct repeats in their genomes. Deletions involving the direct repeats occurred at a high frequency. Deletions occurred both when the direct repeats were in tandem and when they were separated by additional sequences. These deletions occurred during virus replication.
Collapse
|
98
|
Abstract
We tested the effect of anti-sense RNA on the replication of avian retroviruses in cultured cells. The replication of a recombinant retrovirus carrying a neomycin resistance gene (neor) in the anti-sense orientation was blocked when the cells expressed high steady-state levels of RNA molecules with neor in sequence in the sense was blocked when the cells expressed high steady-state levels of RNA molecules with neor sequences in the sense orientation, i.e., complementary to the viral sequence. Viral DNA bearing neor sequences was not detected specifically in host cells where this anti-sense RNA inhibition of viral replication occurred. These observations suggest that anti-sense RNA inhibition may be a useful strategy for the inhibition of retroviral infections.
Collapse
|
99
|
Viral Sequences. Viruses 1987. [DOI: 10.1016/b978-0-12-512516-1.50005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
100
|
Sap J, Muñoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A, Beug H, Vennström B. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 1986; 324:635-40. [PMID: 2879242 DOI: 10.1038/324635a0] [Citation(s) in RCA: 1042] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hormone binding and localization of the c-erb-A protein suggest that it is a receptor for thyroid hormone, a nuclear protein that binds to DNA and activates transcription. In contrast, the product of the viral oncogene v-erb-A is defective in binding the hormone but is still located in the nucleus.
Collapse
|