51
|
Liu M, Karjalainen EL, Barth A. Use of helper enzymes for ADP removal in infrared spectroscopic experiments: application to Ca2+-ATPase. Biophys J 2005; 88:3615-24. [PMID: 15731382 PMCID: PMC1305508 DOI: 10.1529/biophysj.104.055368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 02/08/2005] [Indexed: 11/18/2022] Open
Abstract
Adenylate kinase (AdK) and apyrase were employed as helper enzymes to remove ADP in infrared spectroscopic experiments that study the sarcoplasmic reticulum Ca(2+)-ATPase. The infrared absorbance changes of their enzymatic reactions were characterized and used to monitor enzyme activity. AdK transforms ADP to ATP and AMP, whereas apyrase consumes ATP and ADP to generate AMP and inorganic phosphate. The benefits of using them as helper enzymes are severalfold: i), both remove ADP generated after ATP hydrolysis by ATPase, which enables repeat of ATP-release experiments several times with the same sample without interference by ADP; ii), AdK helps maintain the presence of ATP for a longer time by regenerating 50% of the initial ATP; iii), apyrase generates free P(i), which can help stabilize the ADP-insensitive phosphoenzyme (E2P); and iv), apyrase can be used to monitor ADP dissociation from transient enzyme intermediates with relatively high affinity to ADP, as shown here for ADP dissociation from the ADP-sensitive phosphoenzyme intermediate (Ca(2)E1P). The respective infrared spectra indicate that ADP dissociation relaxes the closed conformation immediately after phosphorylation partially back toward the open conformation of Ca(2)E1 but does not trigger the transition to E2P. The helper enzyme approach can be extended to study other nucleotide-dependent proteins.
Collapse
Affiliation(s)
- Man Liu
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
52
|
Zhang L, Buchet R, Azzar G. Interactions of caged-ATP and photoreleased ATP with alkaline phosphatase. Biochem Biophys Res Commun 2005; 328:591-4. [PMID: 15694389 DOI: 10.1016/j.bbrc.2005.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Indexed: 11/20/2022]
Abstract
Photolytic release of ATP from inactive P(3)-[1-(2-nitrophenyl)]ethyl ester of ATP (NPE-caged ATP) provides a means to reveal molecular interactions between nucleotide and enzyme by using infrared spectroscopy. Reaction-induced infrared difference spectra of bovine intestinal alkaline phosphatase (BIAP) and of NPE-caged ATP revealed small structural alterations on the peptide backbone affecting one or two amino-acid residues. After photorelease of ATP, the substrate could be hydrolyzed sequentially by the enzyme producing three Pi, adenosine, and the photoproduct nitrosoacetophenone. It was concluded that NPE-caged ATP could bind to BIAP prior to the photolytic cleavage of ATP and that Pi could interact with BIAP after photolysis of NPE-caged ATP and hydrolysis, yielding infrared spectra with distinct structure changes of BIAP. This suggests that the molecular mechanism of ATP hydrolysis by BIAP involved small structural adjustments of the peptide backbone in the vicinity of the active site during ATP hydrolysis which continued during Pi binding.
Collapse
Affiliation(s)
- Le Zhang
- Université Claude Bernard Lyon 1, UFR Chimie-Biochimie UMR CNRS 5013, 69622 Villeurbanne Cedex, France
| | | | | |
Collapse
|
53
|
Zhang L, Buchet R, Azzar G. Phosphate binding in the active site of alkaline phosphatase and the interactions of 2-nitrosoacetophenone with alkaline phosphatase-induced small structural changes. Biophys J 2005; 86:3873-81. [PMID: 15189884 PMCID: PMC1304289 DOI: 10.1529/biophysj.103.034116] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To monitor structural changes during the binding of Pi to the active site of mammalian alkaline phosphatase in water medium, reaction-induced infrared spectroscopy was used. The interaction of Pi with alkaline phosphatase was triggered by a photorelease of ATP from the inactive P(3)-[1-(2-nitrophenyl)]ethyl ester of ATP. After photorelease, ATP was sequentially hydrolyzed by alkaline phosphatase giving rise to adenosine and three Pi. Although a phosphodiesterase activity was detected prior the photorelease of ATP, it was possible to monitor the structural effects induced by Pi binding to alkaline phosphatase. Interactions of Pi with alkaline phosphatase were evidenced by weak infrared changes around 1631 and at 1639 cm(-1), suggesting a small distortion of peptide carbonyl backbone. This result indicates that the motion required for the formation of the enzyme-phosphate complex is minimal on the part of alkaline phosphatase, consistent with alkaline phosphatase being an almost perfect enzyme. Photoproduct 2-nitrosoacetophenone may bind to alkaline phosphatase in a site other than the active site of bovine intestinal alkaline phosphatase and than the uncompetitive binding site of L-Phe in bovine intestinal alkaline phosphatase, affecting one-two amino acid residues.
Collapse
Affiliation(s)
- Le Zhang
- Universite Claude Bernard Lyon I, UFR Chimie-Biochimie UMR CNRS 5013, 69622 Villeurbanne Cedex, France
| | | | | |
Collapse
|
54
|
Barth A, Bezlyepkina N. P–O Bond Destabilization Accelerates Phosphoenzyme Hydrolysis of Sarcoplasmic Reticulum Ca2+-ATPase. J Biol Chem 2004; 279:51888-96. [PMID: 15452115 DOI: 10.1074/jbc.m410867200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphate group of the ADP-insensitive phosphoenzyme (E2-P) of sarcoplasmic reticulum Ca2+ -ATPase (SERCA1a) was studied with infrared spectroscopy to understand the high hydrolysis rate of E2-P. By monitoring an autocatalyzed isotope exchange reaction, three stretching vibrations of the transiently bound phosphate group were selectively observed against a background of 50,000 protein vibrations. They were found at 1194, 1137, and 1115 cm(-1). This information was evaluated using the bond valence model and empirical correlations. Compared with the model compound acetyl phosphate, structure and charge distribution of the E2-P aspartyl phosphate resemble somewhat the transition state in a dissociative phosphate transfer reaction; the aspartyl phosphate of E2-P has 0.02 A shorter terminal P-O bonds and a 0.09 A longer bridging P-O bond that is approximately 20% weaker, the angle between the terminal P-O bonds is wider, and -0.2 formal charges are shifted from the phosphate group to the aspartyl moiety. The weaker bridging P-O bond of E2-P accounts for a 10(11)-10(15)-fold hydrolysis rate enhancement, implying that P-O bond destabilization facilitates phosphoenzyme hydrolysis. P-O bond destabilization is caused by a shift of noncovalent interactions from the phosphate oxygens to the aspartyl oxygens. We suggest that the relative positioning of Mg2+ and Lys684 between phosphate and aspartyl oxygens controls the hydrolysis rate of the ATPase phosphoenzymes and related phosphoproteins.
Collapse
Affiliation(s)
- Andreas Barth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden.
| | | |
Collapse
|
55
|
Liu M, Barth A. Phosphorylation of the sarcoplasmic reticulum Ca(2+)-ATPase from ATP and ATP analogs studied by infrared spectroscopy. J Biol Chem 2004; 279:49902-9. [PMID: 15381702 DOI: 10.1074/jbc.m408062200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) was studied with time-resolved Fourier transform infrared spectroscopy. ATP and ATP analogs (ITP, 2'- and 3'-dATP) were used to study the effect of the adenine ring and the ribose hydroxyl groups on ATPase phosphorylation. All modifications of ATP altered conformational changes and phosphorylation kinetics. The differences compared with ATP increased in the following order: 3'-dATP > ITP > 2'-dATP. Enzyme phosphorylation with ITP results in larger absorbance changes in the amide I region, indicating larger conformational changes of the Ca(2+)-ATPase. The respective absorbance changes obtained with 3'-dATP are significantly different from the others with different band positions and amplitudes in the amide I region, indicating different conformational changes of the protein backbone. ATPase phosphorylation with 3'-dATP is also much ( approximately 30 times) slower than with ATP. Our results indicate that modifications to functional groups of ATP (the ribose 2'- and 3'-OH and the amino group in the adenine ring) affect gamma-phosphate transfer to the phosphorylation site of the Ca(2+)-ATPase by changing the extent of conformational change and the phosphorylation rate. ADP binding to the ADP-sensitive phosphoenzyme (Ca(2)E1P) stabilizes the closed conformation of Ca(2)E1P.
Collapse
Affiliation(s)
- Man Liu
- Institut für Biophysik, Johann Wolfgang Goethe-Universität, 60596 Frankfurt am Main, Germany.
| | | |
Collapse
|
56
|
Masuch R, Moss DA. Stopped flow apparatus for time-resolved Fourier transform infrared difference spectroscopy of biological macromolecules in 1H2O. APPLIED SPECTROSCOPY 2003; 57:1407-1418. [PMID: 14658156 DOI: 10.1366/000370203322554581] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Stopped flow spectroscopy is an established technique for acquiring kinetic data on dynamic processes in chemical and biochemical reactions, and Fourier transform infrared (FT-IR) techniques can provide particularly rich structural information on biological macromolecules. However, it is a considerable challenge to design an FT-IR stopped flow system with an optical path length low enough for work with aqueous (1H2O) solutions. The system presented here is designed for minimal sample volumes (approximately 5 microL) and allows simultaneous FT-IR rapid-scan and VIS measurements. The system employs a micro-structured diffusional mixer to achieve effective mixing on the millisecond time scale under moderate flow and pressure conditions, allowing measurements in a cell path length of less than 10 microns. This makes it possible to record spectra in 1H2O solutions over a wide spectral range. The system layout is also designed for a combination of kinetic and static measurements, in particular to obtain detailed information on the faster spectral changes occurring during the system dead time. A detailed characterization of the FT-IR stopped flow system is presented, including a demonstration of the alkaline conformational transition of cytochrome c as an example.
Collapse
Affiliation(s)
- Ralf Masuch
- Micro-biolytics GmbH, Georges Koehler Allee 102, D-79110 Freiburg, Germany
| | | |
Collapse
|
57
|
Schmechel A, Zentgraf H, Scheuermann S, Fritz G, Pipkorn R, Reed J, Beyreuther K, Bayer TA, Multhaup G. Alzheimer beta-amyloid homodimers facilitate A beta fibrillization and the generation of conformational antibodies. J Biol Chem 2003; 278:35317-24. [PMID: 12840025 DOI: 10.1074/jbc.m303547200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported previously that stabilized beta-amyloid peptide dimers were derived from mutant amyloid precursor protein with a single cysteine in the ectodomain juxtamembrane position. In vivo studies revealed that two forms of SDS-stable A beta homodimers exist, species ending at A beta 40 and A beta 42. The phenomenon of the transformation of the initially deposited 42-residue beta-amyloid peptide into the amyloid fibrils of Alzheimer's disease plaques remains to be explained in physical terms, i.e. energetically and structurally. We therefore performed spectroscopic analyses revealing that engineered dimeric peptides ending at residue 42 displayed a much more pronounced beta-structural transition than corresponding monomers. Specifically, the single chemically induced dimerization of A beta peptides significantly increased the beta-sheet content by a factor of 2. The C-terminal residues Ile-41 and Ala-42 of dimeric forms further increased the beta-sheet content by roughly one-third. In contrast to A beta 42, the beta-sheet content of the alpha- and gamma-secretase-generated p3 fragments did not necessarily correlate with the tendency to form fibrils, although p3/17-42 had a pronounced thread forming character with fibril lengths of up to 2.5 microM. Electron microscopic images show that forms of p3/17-42 generated smaller granular particles than forms ending at residue 40. We discuss these findings in terms of A beta 1-42 dimers representing paranuclei, which self-aggregate into ribbon-like ordered fibrils by elongation. Based on A beta 42 dimer-specific titers of a polyclonal antiserum we propose that the A beta homodimer represents a nidus for plaque formation and a well defined novel therapeutic target.
Collapse
Affiliation(s)
- Ariane Schmechel
- Freie Universitaet Berlin, Institut fuer Chemie/Biochemie, Thielallee 63, Berlin D-14195, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
|
59
|
Kimura T, Takahashi S, Akiyama S, Uzawa T, Ishimori K, Morishima I. Direct observation of the multistep helix formation of poly-L-glutamic acids. J Am Chem Soc 2002; 124:11596-7. [PMID: 12296715 DOI: 10.1021/ja026639f] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The helix formation dynamics of poly-L-glutamic acids (PGAs) were observed by the microsecond-resolved Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopies. The helix formation of 34-residue PGA from random coil at pH (or pD for FTIR) 8.0 was initiated by a pH jump to 4.9 using the rapid solution mixer whose mixing dead time is 50 micros. The amide I' line in the time-resolved FTIR spectra exhibited the fast (<100 micros) increase of the total helical content. The time-resolved CD spectra of the same process also showed the fast (<150 micros) formation of short helical segments (5 +/- 1 residues), which was followed by the slower (<1 ms) elongation of the short helices to longer helices (>10 residues). Similar dynamics were observed for the same pH jump of approximately 190-residue PGA, although there were additional steps that made the helix formation of approximately 190-residue PGA more complex. The observed multistep helix formation is likely caused by the strong hydrogen-bonding interactions between the protonated side chains of PGAs.
Collapse
Affiliation(s)
- Tetsunari Kimura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
60
|
Federman S, Miller LM, Sagi I. Following matrix metalloproteinases activity near the cell boundary by infrared micro-spectroscopy. Matrix Biol 2002; 21:567-77. [PMID: 12475641 DOI: 10.1016/s0945-053x(02)00089-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Matrix Metalloproteinases (MMPs) are cell-secreted soluble and membrane-tethered enzymes that degrade extracellular matrix (ECM) proteins. These proteases play a key role in diverse physiological and pathological processes, including embryonic development, wound repair, inflammatory diseases and cancer. Yet, there is insufficient knowledge on the mode by which cell-produced MMPs conduct their action on the ECM. Specifically, the localization and the mode of the degradation within the pericellular space are of great interest. To provide new insights to these questions we utilized Fourier transform infrared (FTIR) micro-spectroscopy to follow proteolytic processes, induced by invasive cancer cells, on insoluble collagen-based matrices. Here we show that FTIR micro-spectroscopy have a great potential for monitoring degradation events near cells. Using this tool we demonstrate that the net proteolysis is unevenly distributed around the cell boundary. The degradation patterns show different levels of proteolytic activity by MMPs within the pericellular space. In addition, our spectral analysis suggests that the enzymatic proteolysis of the collagen-based matrices induces unwinding of the triple helical structures of the macromolecules within the collagen network.
Collapse
Affiliation(s)
- Silvina Federman
- Department of Structural Biology, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | | | | |
Collapse
|
61
|
Thoenges D, Zscherp C, Grell E, Barth A. Preparation of active enzyme samples for IR studies of Na+/K+-ATPase. Biopolymers 2002; 67:271-4. [PMID: 12012445 DOI: 10.1002/bip.10108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the case of the integral membrane protein Na+/K+-ATPase, preparation of highly concentrated samples for IR difference spectroscopy often leads to inactivation of the enzyme. Therefore, we compared the activity of Na+/K+-ATPase using different techniques of sample preparation. The loss of activity can be minimized by cooling the sample to 10 degrees C and by the addition of glycerol and dithiothreitol. The activity of Na+/K+-ATPase isolated from pig kidney is independent of the protein concentration whereas the enzyme from shark rectal gland is inactivated at concentrations above 1 microg/microL and is thus unsuitable for IR experiments.
Collapse
Affiliation(s)
- Detlef Thoenges
- Institut für Biophysik, Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7/Haus 74, 60590 Frankfurt/Main, Germany
| | | | | | | |
Collapse
|
62
|
Barth A. The infrared absorption of amino acid side chains. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 74:141-73. [PMID: 11226511 DOI: 10.1016/s0079-6107(00)00021-3] [Citation(s) in RCA: 900] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Amino acid side chains play fundamental roles in stabilising protein structures and in catalysing enzymatic reactions. These fields are increasingly investigated by infrared spectroscopy at the molecular level. To help the interpretation of the spectra, a review of the infrared absorption of amino acid side chains in H(2)O and 2H(2)O is given. The spectral region of 2600-900cm(-1) is covered.
Collapse
Affiliation(s)
- A Barth
- Institut für Biophysik, Johann Wolfgang Goethe-Universität, Theodor Stern-Kai 7, Haus 74, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
63
|
Abstract
Internal water molecules are considered to play a crucial role in the functional processes of proton pump proteins. They may participate in hydrogen-bonding networks inside proteins that constitute proton pathways. In addition, they could participate in the switch reaction by mediating an essential proton transfer at the active site. Nevertheless, little has been known about the structure and function of internal water molecules in such proteins. Recent progress in infrared spectroscopy and X-ray crystallography provided new information on water molecules inside bacteriorhodopsin, the light-driven proton pump. The accumulated knowledge on bacteriorhodopsin in the last decade of the 20th century will lead to a realistic picture of internal water molecules at work in the 21st century. In this review, I describe how the role of water molecules has been studied in bacteriorhodopsin, and what should be known about the role of water molecules in the future.
Collapse
Affiliation(s)
- H Kandori
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, 606-8502, Kyoto, Japan.
| |
Collapse
|
64
|
Abstract
Protein conformational changes triggered by molecule binding are increasingly investigated by infrared spectroscopy often using caged compounds. Several examples of molecule-protein recognition studies are given, which focus on nucleotide binding to proteins. The investigation of enzyme mechanisms is illustrated in detail using the Ca(2+)-ATPase of the sarcoplasmic reticulum membrane as an example. It is shown that infrared spectroscopy provides valuable information on general aspects of enzyme function as well as on molecular details of molecule-protein interactions and the mechanism of catalysis.
Collapse
Affiliation(s)
- A Barth
- Institut für Biophysik, Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, Haus 74, D-60590, Frankfurt am Main, Germany.
| | | |
Collapse
|
65
|
Abstract
The photon-driven proton translocator bacteriorhodopsin is considered to be the best understood membrane protein so far. It is nowadays regarded as a model system for photosynthesis, ion pumps and seven transmembrane receptors. The profound knowledge came from the applicability of a variety of modern biophysical techniques which have often been further developed with research on bacteriorhodopsin and have delivered major contributions also to other areas. Most prominent examples are electron crystallography, solid-state NMR spectroscopy and time-resolved vibrational spectroscopy. The recently introduced method of crystallising a membrane protein in the lipidic cubic phase led to high-resolution structures of ground state bacteriorhodopsin and some of the photocycle intermediates. This achievement in combination with spectroscopic results will strongly advance our understanding of the functional mechanism of bacteriorhodopsin on the atomic level. We present here the current knowledge on specific aspects of the structural and functional dynamics of the photoreaction of bacteriorhodopsin with a focus on techniques established in our institute.
Collapse
|
66
|
Kneipp J, Lasch P, Baldauf E, Beekes M, Naumann D. Detection of pathological molecular alterations in scrapie-infected hamster brain by Fourier transform infrared (FT-IR) spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1501:189-99. [PMID: 10838192 DOI: 10.1016/s0925-4439(00)00021-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this report a new approach for the identification of pathological changes in scrapie-infected Syrian hamster brains using Fourier transform infrared microspectroscopy is discussed. Using computer-based pattern recognition techniques and imaging, infrared maps with high structural contrast were obtained. This strategy permitted comparison of spectroscopic data from identical anatomical structures in scrapie-infected and control brains. Consistent alterations in membrane state-of-order, protein composition, carbohydrate and nucleic acid constituents were detected in scrapie-infected tissues. Cluster analysis performed on spectra of homogenized medulla oblongata and pons samples also reliably separated uninfected from infected specimens. This method provides a useful tool not only for the exploration of the disease process but also for the development of rapid diagnostic and screening techniques of transmissible spongiform encephalopathies.
Collapse
Affiliation(s)
- J Kneipp
- PG3, Robert Koch-Institut, Nordufer 20, D-13353, Berlin, Germany.
| | | | | | | | | |
Collapse
|
67
|
Heberle J. Proton transfer reactions across bacteriorhodopsin and along the membrane. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:135-47. [PMID: 10812029 DOI: 10.1016/s0005-2728(00)00064-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteriorhodopsin is probably the best understood proton pump so far and is considered to be a model system for proton translocating membrane proteins. The basis of a molecular description of proton translocation is set by having the luxury of six highly resolved structural models at hand. Details of the mechanism and reaction dynamics were elucidated by a whole variety of biophysical techniques. The current molecular picture of catalysis by BR will be presented with examples from time-resolved spectroscopy. FT-IR spectroscopy monitors single proton transfer events within bacteriorhodopsin and judiciously positioned pH indicators detect proton migration at the membrane surface. Emerging properties are briefly outlined that underlie the efficient proton transfer across and along biological membranes.
Collapse
Affiliation(s)
- J Heberle
- Research Centre Jülich, IBI-2: Structural Biology, D-52425, Jülich, Germany.
| |
Collapse
|
68
|
Chua-anusorn W, Webb J. Infrared spectroscopic studies of nanoscale iron oxide deposits isolated from human thalassemic tissues. J Inorg Biochem 2000; 79:303-9. [PMID: 10830881 DOI: 10.1016/s0162-0134(99)00233-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ferritin and hemosiderin isolated from human thalassemic tissues have been characterized by infrared spectroscopy. Spectral features due to both the organic components and the inorganic iron oxyhydroxide have been identified. In particular, spectral evidence for the presence of the goethite (alpha-FeOOH) form of hemosiderin has been obtained in the < 800 cm(-1) range. Various treatments of the hemosiderin isolates result in only small changes in the infrared spectrum indicating the close association of the organic components with the nanoscale iron particles present.
Collapse
Affiliation(s)
- W Chua-anusorn
- Division of Science and Engineering, Murdoch University, WA, Australia
| | | |
Collapse
|
69
|
Arrondo JL, Goñi FM. Structure and dynamics of membrane proteins as studied by infrared spectroscopy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 72:367-405. [PMID: 10605294 DOI: 10.1016/s0079-6107(99)00007-3] [Citation(s) in RCA: 322] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Infrared (IR) spectroscopy is a useful technique in the study of protein conformation and dynamics. The possibilities of the technique become apparent specially when applied to large proteins in turbid suspensions, as is often the case with membrane proteins. The present review describes the applications of IR spectroscopy to the study of membrane proteins, with an emphasis on recent work and on spectra recorded in the transmission mode, rather than using reflectance techniques. Data treatment procedures are discussed, including band analysis and difference spectroscopy methods. A technique for the analysis of protein secondary and tertiary structures that combines band analysis by curve-fitting of original spectra with protein thermal denaturation is described in detail. The assignment of IR protein bands in H2O and in D2O, one of the more difficult points in protein IR spectroscopy, is also reviewed, including some cases of unclear assignments such as loops, beta-hairpins, or 3(10)-helices. The review includes monographic studies of some membrane proteins whose structure and function have been analysed in detail by IR spectroscopy. Special emphasis has been made on the role of subunit III in cytochrome c oxidase structure, and the proton pathways across this molecule, on the topology and functional cycle of sarcoplasmic reticulum Ca(2+)-ATPase, and on the role of lipids in determining the structure of the nicotinic acetylcholine receptor. In addition, shorter descriptions of retinal proteins and references to other membrane proteins that have been studied less extensively are also included.
Collapse
Affiliation(s)
- J L Arrondo
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), Bilbao, Spain.
| | | |
Collapse
|
70
|
Tishgarten T, Yin FF, Faucher KM, Dluhy RA, Grant TR, Fischer von Mollard G, Stevens TH, Lipscomb LA. Structures of yeast vesicle trafficking proteins. Protein Sci 1999; 8:2465-73. [PMID: 10595551 PMCID: PMC2144180 DOI: 10.1110/ps.8.11.2465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In protein transport between organelles, interactions of v- and t-SNARE proteins are required for fusion of protein-containing vesicles with appropriate target compartments. Mammalian SNARE proteins have been observed to interact with NSF and SNAP, and yeast SNAREs with yeast homologues of NSF and SNAP proteins. This observation led to the hypothesis that, despite low sequence homology, SNARE proteins are structurally similar among eukaryotes. SNARE proteins can be classified into two groups depending on whether they interact with SNARE binding partners via conserved glutamine (Q-SNAREs) or arginine (R-SNAREs). Much of the published structural data available is for SNAREs involved in exocytosis (either in yeast or synaptic vesicles). This paper describes circular dichroism, Fourier transform infrared spectroscopy, and dynamic light scattering data for a set of yeast v- and t-SNARE proteins, Vti1p and Pep12p, that are Q-SNAREs involved in intracellular trafficking. Our results suggest that the secondary structure of Vti1p is highly alpha-helical and that Vti1p forms multimers under a variety of solution conditions. In these respects, Vti1p appears to be distinct from R-SNARE proteins characterized previously. The alpha-helicity of Vti1p is similar to that of Q-SNARE proteins characterized previously. Pep12p, a Q-SNARE, is highly alpha-helical. It is distinct from other Q-SNAREs in that it forms dimers under many of the solution conditions tested in our experiments. The results presented in this paper are among the first to suggest heterogeneity in the functioning of SNARE complexes.
Collapse
Affiliation(s)
- T Tishgarten
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Zscherp C, Schlesinger R, Tittor J, Oesterhelt D, Heberle J. In situ determination of transient pKa changes of internal amino acids of bacteriorhodopsin by using time-resolved attenuated total reflection Fourier-transform infrared spectroscopy. Proc Natl Acad Sci U S A 1999; 96:5498-503. [PMID: 10318912 PMCID: PMC21888 DOI: 10.1073/pnas.96.10.5498] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Active proton transfer through membrane proteins is accomplished by shifts in the acidity of internal amino acids, prosthetic groups, and water molecules. The recently introduced step-scan attenuated total reflection Fourier-transform infrared (ATR/FT-IR) spectroscopy was employed to determine transient pKa changes of single amino acid side chains of the proton pump bacteriorhodopsin. The high pKa of D96 (>12 in the ground state) drops to 7.1 +/- 0.2 (in 1 M KCl) during the lifetime of the N intermediate, quantitating the role of D96 as the internal proton donor of the retinal Schiff base. We conclude from experiments on the pH dependence of the proton release reaction and on point mutants where each of the glutamates on the extracellular surface has been exchanged that besides D85 no other carboxylic group changes its protonation state during proton release. However, E194 and E204 interact with D85, the primary proton acceptor of the Schiff base proton. The C==O stretching vibration of D85 undergoes a characteristic pH-dependent shift in frequency during the M state of wild-type bacteriorhodopsin with a pKa of 5.2 (+/-0.3) which is abolished in the single-site mutants E194Q and E204Q and the quadruple mutant E9Q/E74Q/E194Q/E204Q. The double mutation E9Q/E74Q does not affect the lifetime of the intermediates, ruling out any participation of these residues in the proton transfer chain of bacteriorhodopsin. This study demonstrates that transient changes in acidity of single amino acid residues can be quantified in situ with infrared spectroscopy.
Collapse
Affiliation(s)
- C Zscherp
- Forschungszentrum Jülich GmbH, IBI-2: Structural Biology, 52425 Jülich, Germany
| | | | | | | | | |
Collapse
|
72
|
Heberle J, Büldt G, Koglin E, Rosenbusch JP, Landau EM. Assessing the functionality of a membrane protein in a three-dimensional crystal. J Mol Biol 1998; 281:587-92. [PMID: 9710532 DOI: 10.1006/jmbi.1998.1970] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hexagonal microcrystals of bacteriorhodopsin embedded in a lipidic cubic phase have been investigated by time-resolved FT-IR and resonance Raman spectroscopy. Retinal isomerization, conformational changes in the protein backbone and proton translocation are virtually indistinguishable from those in the native membrane. The protein is thus fully active in three-dimensional crystals.
Collapse
Affiliation(s)
- J Heberle
- Institut für Biologische Informationsverarbeitung IBI-2: Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany.
| | | | | | | | | |
Collapse
|
73
|
Jamin N, Dumas P, Moncuit J, Fridman WH, Teillaud JL, Carr GL, Williams GP. Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry. Proc Natl Acad Sci U S A 1998; 95:4837-40. [PMID: 9560189 PMCID: PMC20174 DOI: 10.1073/pnas.95.9.4837] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Using synchrotron radiation as an ultra-bright infrared source, we have been able to map the distributions of functional groups such as proteins, lipids, and nucleic acids inside a single living cell with a spatial resolution of a few microns. In particular, we have mapped the changes in the lipid and protein distributions in both the final stages of cell division and also during necrosis.
Collapse
Affiliation(s)
- N Jamin
- Commissariat à l'Energie Atomique-Institut National des Sciences et Techniques Nucléaires, F91191 Gif Sur Yvette Cedex, France
| | | | | | | | | | | | | |
Collapse
|
74
|
Raimbault C, Perraut C, Marcillat O, Buchet R, Vial C. Nucleotide binding sites in wild-type creatine kinase and in W227Y mutant probed by photochemical release of nucleotides and infrared difference spectroscopy. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:773-82. [PMID: 9461301 DOI: 10.1111/j.1432-1033.1997.00773.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Structural changes induced by nucleotide binding to the wild-type rabbit muscle creatine kinase (CK) and to its W227Y mutant were compared and probed by reaction-induced difference spectroscopy (RIDS). The reaction was induced by the photorelease of nucleotide from the caged nucleotides ADP[Et(PhNO2)] or ATP[Et(PhNO2)], producing the RIDS of CK. The concomitant addition of a saturated concentration of nucleotide and caged nucleotide modified the RIDS of CK, permitting structural changes caused by nucleotide binding in the wild-type creatine kinase to be identified. The W227Y mutant was inactive and its nucleotide binding site was partially impaired as shown by the disappearance or decrease of several nucleotide-sensitive bands in the RIDS of W227Y mutant. The magnitude of the decrease was not the same for each band, suggesting that distinct groups of W227Y mutant were affected differently during nucleotide binding. More precisely, the binding sites for gamma-phosphate and beta-phosphate of the nucleotide were not accessible in W227Y mutant as shown by the absence of the phosphate-sensitive 1666-1667-cm(-1) and 1625-cm(-1) bands in the RIDS of W227Y mutant. However the binding site of other parts of the nucleotide was partially accessible, since the 1638-1639-cm(-1) phosphate-insensitive band did not completely vanish in the RIDS of W227Y mutant. The RIDS of W227Y mutant with ADP[Et(PhNO2)] and creatine lacked the 1613-cm(-1) and 1581-cm(-1) bands, associated with vibrational modes of creatine, suggesting that coupling between the binding sites of the nucleotide and of creatine was altered in W227Y mutant. These results are in accordance with the earlier suggestions that residue W227 in CK is essential for preventing water molecules from penetrating into the active site and for orienting nucleotide in the binding site, by forming stacking interactions between its indole group and purine of the nucleotide and its indole group.
Collapse
Affiliation(s)
- C Raimbault
- Université Claude Bernard Lyon I, UFR de Chimie-Biochimie, CNRS UPRESA 5013, Villeurbanne, France
| | | | | | | | | |
Collapse
|
75
|
de La Fournière-Bessueille L, Grange D, Buchet R. Purification and spectroscopic characterization of beta-amyloid precursor protein from porcine brains. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:705-11. [PMID: 9461293 DOI: 10.1111/j.1432-1033.1997.00705.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soluble and membrane-bound isoforms of beta-amyloid protein precursor (APP) of Alzheimer's disease were extracted and purified from porcine brains. At least three types of soluble APP and membrane-bound APP with different molecular masses, ranging from 86 kDa to 116 kDa, were obtained. CD and infrared spectroscopies were used to determine the overall secondary-structure content of APP. The infrared spectra of soluble and membrane-bound APP (in dry and hydrated states) were similar in the amide-I and amide-II regions, suggesting that the overall secondary structures of the soluble and membrane isoforms were roughly identical. The amide-I band is composed of at least five component bands, located at 1694, 1674, 1652, 1637 and 1618 cm(-1) for soluble APP, and located at 1687, 1674, 1651, 1637 and 1614-1606 cm(-1) for membrane-bound APP, as evidenced by their respective second-derivative infrared spectra. The 1651-1652-cm(-1) band was associated with alpha-helix structures, while two types of beta-sheet structures are evidenced by two characteristic pairs of component bands. The 1674-cm(-1) and 1637-cm(-1) bands for soluble APP and membrane-bound APP were tentatively associated to beta-sheet structures. The second pair of bands, located at 1694 cm(-1) and at 1618 cm(-1) for soluble APP and at 1687 cm(-1) and 1614-1606 cm(-1) for membrane-bound APP, were associated with intermolecular beta-sheet structures or aggregated strands, as confirmed by heat denaturation. CD spectra indicated the presence of alpha-helix structures in soluble and membrane-bound APP. The secondary-structure content, estimated from CD spectra, was about 40-45% alpha-helix and 15-20% beta-sheet structures for soluble and membrane-bound APP.
Collapse
Affiliation(s)
- L de La Fournière-Bessueille
- Université Claude Bernard Lyon I, CNRS UPRESA 5013, Laboratoire de Physico-Chimie Biologique, Villeurbanne, France
| | | | | |
Collapse
|
76
|
Raimbault C, Clottes E, Leydier C, Vial C, Buchet R. ADP-binding and ATP-binding sites in native and proteinase-K-digested creatine kinase, probed by reaction-induced difference infrared spectroscopy. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:1197-208. [PMID: 9288948 DOI: 10.1111/j.1432-1033.1997.01197.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Conformational changes induced by nucleotide binding to native creatine kinase (CK) from rabbit muscle and to proteinase-K-digested (nicked) CK, were investigated by infrared spectroscopy. Photochemical release of ATP from ATP[Et(PhNO2)] in the presence of creatine and native CK produced reaction-induced difference infrared spectra (RIDS) of CK related to structural changes of the enzyme that paralleled the reversible phosphoryl transfer from ATP to creatine. Similarly the photochemical release of ADP from ADP[Et(PhNO2)] in the presence of phosphocreatine and native CK allowed us to follow the backward reaction and its corresponding RIDS. Infrared spectra of native CK indicated that carboxylate groups of Asp or Glu, and some carbonyl groups of the peptide backbone are involved in the enzymatic reaction. Native and proteinase nicked CK have similar Stokes' radii, tryptophan fluorescence, fluorescence fraction accessible to iodide, and far-ultraviolet CD spectra, indicating that native and modified enzymes have the same quaternary structures. However, infrared data showed that the binding site of the gamma-phosphate group of the nucleotide was affected in nicked CK compared with that of the native CK. Furthermore, the infrared absorptions associated with ionized carboxylate groups of Asp or Glu amino acid residues were different in nicked CK and in native CK.
Collapse
Affiliation(s)
- C Raimbault
- Laboratoire de Physico-Chimie Biologique, Université Claude Bernard-Lyon I, UFR de Chimie-Biochimie, Villeurbanne, France
| | | | | | | | | |
Collapse
|
77
|
Raimbault C, Besson F, Buchet R. Conformational changes of arginine kinase induced by photochemical release of nucleotides from caged nucleotides--an infrared difference-spectroscopy investigation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:343-51. [PMID: 9118999 DOI: 10.1111/j.1432-1033.1997.00343.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The conformations of arginine kinase (AK) in AK x Mg x ADP, AK x Mg x ATP, AK x Mg x ADP x NO3-, AK x Mg x ADP x Arg and AK x Mg x ADP x NO3- x Arg complexes were investigated by measuring their reaction-induced infrared difference spectra (RIDS). The photochemical release of ATP from ATP[Et(PhNO2)] and of ADP from ADP[Et(PhNO2)] produced distinct RIDS of AK complexes, suggesting that binding of ADP and ATP promoted different structural alterations of the enzyme active-site. Small infrared changes in the amide-I region were observed, indicating that about 5-10 amino acid residues were involved in the nucleotide-binding site. These infrared changes were due to the structural alteration of the peptide backbone caused by the nucleotide-binding and to the coupling effects between the nucleotide-binding site and the other substrate (Arg or NO3-)-binding site. ATP binding to AK (as well as ADP-binding to AK in the presence of NO3-) induced protonation of a carboxylate group of Asp or Glu, as evidenced by the appearance of the 1733-cm(-1) band, which was not observed with the AK x Mg x ADP, AK x Mg x ADP x Arg and AK x Mg x ADP x NO3- x Arg complexes. The RIDS of the AK x Mg x ADP x NO3- x Arg complex showed new infrared bands at 1622 cm(-1) (negative) and at 1613 cm(-1) (positive), which were not seen in the RIDS of other complexes (without NO3- or/and Arg). In the transition-state-analog complex of AK, no protonation of the carboxylate residue (Asp or Glu) was observed, and the binding site of NO3- or the gamma-phosphate group of nucleotide was altered.
Collapse
Affiliation(s)
- C Raimbault
- Université Claude Bernard Lyon I, CNRS UPRESA 5013 Laboratoire de Physico Chimie Biologique, France
| | | | | |
Collapse
|
78
|
Chen E, Goldbeck RA, Kliger DS. Nanosecond time-resolved spectroscopy of biomolecular processes. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1997; 26:327-55. [PMID: 9241422 DOI: 10.1146/annurev.biophys.26.1.327] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Over the past two decades, nanosecond absorption and vibrational spectroscopies have developed into powerful tools for monitoring the secondary, tertiary, and quaternary structural relaxations of biological macromolecules under near-physiological conditions of solvent and temperature. Observed through such methods, the dynamic response of a biomolecule to photoinitiated excursions from equilibrium can reveal valuable information about the structure-function relationship, information beyond that obtained from the static structures provided by X-ray crystallography, nuclear magnetic resonance spectroscopy, and other steady-state methods. Most recently, the development of ultra-sensitive polarization techniques for absorption spectroscopy has greatly enhanced the amount of time-resolved structural information that can be obtained from the broadened electronic spectra of biomolecules. This review examines nanosecond absorption, vibrational, and polarized absorption methods, and their applications to protein function and folding, emphasizing the complementary nature of information obtained from electronic and vibrational spectra measured on the nanosecond time scale.
Collapse
Affiliation(s)
- E Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064, USA
| | | | | |
Collapse
|
79
|
Raimbault C, Buchet R, Vial C. Changes of creatine kinase secondary structure induced by the release of nucleotides from caged compounds. An infrared difference-spectroscopy study. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:134-42. [PMID: 8797846 DOI: 10.1111/j.1432-1033.1996.0134h.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Light-induced release of ADP and ATP from their respective caged nucleotides produced small distinct difference infrared spectra of creatine kinase (CK), indicating that ADP and ATP binding to CK promoted different structural alteration. The positive band at 1638-1640 cm-1 and the negative band at about 1650-1652 cm-1 on the reaction-induced infrared difference spectra in the amide I region were insensitive to the deuteration effects. They were assigned to the peptide backbone of the ADP/ATP-binding site. In addition Pi or ATP binding produced another positive band at 1657-1659 cm-1 corresponding to the C = O (amide I band) associated with the gamma-phosphate of ATP. This site was also affected when ADP was added, indicating coupling interactions between both sites. No additional structural changes were observed when creatine and ADP were added, suggesting that the creatine-binding site was uncoupled from the ADP-binding site. The infrared difference spectra of a transition-state-analog complex formed by the addition of ADP, creatine and NO3- (a planar-phosphate-mimicking group) lacked the 1657-1659-cm-1 band indicating that the binding site of gamma-phosphate within CK, was not affected. Infrared changes in the 1560-1590-cm-1 region suggested that carboxylate groups of Asp or Glu were involved in the binding of Pi, ADP and ATP.
Collapse
Affiliation(s)
- C Raimbault
- Laboratoire de Physico-Chimie Biologique, Université Claude Bernard, Lyon 1, CNRS URA 1535, France
| | | | | |
Collapse
|