51
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
52
|
Guerra-Almeida D, Tschoeke DA, da-Fonseca RN. Understanding small ORF diversity through a comprehensive transcription feature classification. DNA Res 2021; 28:6317669. [PMID: 34240112 PMCID: PMC8435553 DOI: 10.1093/dnares/dsab007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Small open reading frames (small ORFs/sORFs/smORFs) are potentially coding sequences smaller than 100 codons that have historically been considered junk DNA by gene prediction software and in annotation screening; however, the advent of next-generation sequencing has contributed to the deeper investigation of junk DNA regions and their transcription products, resulting in the emergence of smORFs as a new focus of interest in systems biology. Several smORF peptides were recently reported in noncanonical mRNAs as new players in numerous biological contexts; however, their relevance is still overlooked in coding potential analysis. Hence, this review proposes a smORF classification based on transcriptional features, discussing the most promising approaches to investigate smORFs based on their different characteristics. First, smORFs were divided into nonexpressed (intergenic) and expressed (genic) smORFs. Second, genic smORFs were classified as smORFs located in noncoding RNAs (ncRNAs) or canonical mRNAs. Finally, smORFs in ncRNAs were further subdivided into sequences located in small or long RNAs, whereas smORFs located in canonical mRNAs were subdivided into several specific classes depending on their localization along the gene. We hope that this review provides new insights into large-scale annotations and reinforces the role of smORFs as essential components of a hidden coding DNA world.
Collapse
Affiliation(s)
- Diego Guerra-Almeida
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo Antonio Tschoeke
- Alberto Luiz Coimbra Institute of Graduate Studies and Engineering Research (COPPE), Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Nunes- da-Fonseca
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil
| |
Collapse
|
53
|
Timmerman DM, Remmers TL, Hillenius S, Looijenga LHJ. Mechanisms of TP53 Pathway Inactivation in Embryonic and Somatic Cells-Relevance for Understanding (Germ Cell) Tumorigenesis. Int J Mol Sci 2021; 22:ijms22105377. [PMID: 34065345 PMCID: PMC8161298 DOI: 10.3390/ijms22105377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 01/10/2023] Open
Abstract
The P53 pathway is the most important cellular pathway to maintain genomic and cellular integrity, both in embryonic and non-embryonic cells. Stress signals induce its activation, initiating autophagy or cell cycle arrest to enable DNA repair. The persistence of these signals causes either senescence or apoptosis. Over 50% of all solid tumors harbor mutations in TP53 that inactivate the pathway. The remaining cancers are suggested to harbor mutations in genes that regulate the P53 pathway such as its inhibitors Mouse Double Minute 2 and 4 (MDM2 and MDM4, respectively). Many reviews have already been dedicated to P53, MDM2, and MDM4, while this review additionally focuses on the other factors that can deregulate P53 signaling. We discuss that P14ARF (ARF) functions as a negative regulator of MDM2, explaining the frequent loss of ARF detected in cancers. The long non-coding RNA Antisense Non-coding RNA in the INK4 Locus (ANRIL) is encoded on the same locus as ARF, inhibiting ARF expression, thus contributing to the process of tumorigenesis. Mutations in tripartite motif (TRIM) proteins deregulate P53 signaling through their ubiquitin ligase activity. Several microRNAs (miRNAs) inactivate the P53 pathway through inhibition of translation. CCCTC-binding factor (CTCF) maintains an open chromatin structure at the TP53 locus, explaining its inactivation of CTCF during tumorigenesis. P21, a downstream effector of P53, has been found to be deregulated in different tumor types. This review provides a comprehensive overview of these factors that are known to deregulate the P53 pathway in both somatic and embryonic cells, as well as their malignant counterparts (i.e., somatic and germ cell tumors). It provides insights into which aspects still need to be unraveled to grasp their contribution to tumorigenesis, putatively leading to novel targets for effective cancer therapies.
Collapse
|
54
|
Amani J, Gorjizadeh N, Younesi S, Najafi M, Ashrafi AM, Irian S, Gorjizadeh N, Azizian K. Cyclin-dependent kinase inhibitors (CDKIs) and the DNA damage response: The link between signaling pathways and cancer. DNA Repair (Amst) 2021; 102:103103. [PMID: 33812232 DOI: 10.1016/j.dnarep.2021.103103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
At the cellular level, DNA repair mechanisms are crucial in maintaining both genomic integrity and stability. DNA damage appears to be a central culprit in tumor onset and progression. Cyclin-dependent kinases (CDKs) and their regulatory partners coordinate the cell cycle progression. Aberrant CDK activity has been linked to a variety of cancers through deregulation of cell-cycle control. Besides DNA damaging agents and chromosome instability (CIN), disruptions in the levels of cell cycle regulators including cyclin-dependent kinase inhibitors (CDKIs) would result in unscheduled proliferation and cell division. The INK4 and Cip/Kip (CDK interacting protein/kinase inhibitor protein) family of CDKI proteins are involved in cell cycle regulation, transcription regulation, apoptosis, and cell migration. A thorough understanding of how these CDKIs regulate the DNA damage response through multiple signaling pathways may provide an opportunity to design efficient treatment strategies to inhibit carcinogenesis.
Collapse
Affiliation(s)
- Jafar Amani
- Applied Microbiology Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nassim Gorjizadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Simin Younesi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Mojtaba Najafi
- Department of Genetics, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran
| | - Arash M Ashrafi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Saeed Irian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Negar Gorjizadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Khalil Azizian
- Department of Clinical Microbiology, Sirjan School of Medical Sciences, Sirjan, Iran.
| |
Collapse
|
55
|
The Role of Polycomb Group Protein BMI1 in DNA Repair and Genomic Stability. Int J Mol Sci 2021; 22:ijms22062976. [PMID: 33804165 PMCID: PMC7998361 DOI: 10.3390/ijms22062976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022] Open
Abstract
The polycomb group (PcG) proteins are a class of transcriptional repressors that mediate gene silencing through histone post-translational modifications. They are involved in the maintenance of stem cell self-renewal and proliferation, processes that are often dysregulated in cancer. Apart from their canonical functions in epigenetic gene silencing, several studies have uncovered a function for PcG proteins in DNA damage signaling and repair. In particular, members of the poly-comb group complexes (PRC) 1 and 2 have been shown to recruit to sites of DNA damage and mediate DNA double-strand break repair. Here, we review current understanding of the PRCs and their roles in cancer development. We then focus on the PRC1 member BMI1, discussing the current state of knowledge of its role in DNA repair and genome integrity, and outline how it can be targeted pharmacologically.
Collapse
|
56
|
Zhao Z, Fowle H, Valentine H, Liu Z, Tan Y, Pei J, Badal S, Testa JR, Graña X. Immortalization of human primary prostate epithelial cells via CRISPR inactivation of the CDKN2A locus and expression of telomerase. Prostate Cancer Prostatic Dis 2021; 24:233-243. [PMID: 32873916 PMCID: PMC7917161 DOI: 10.1038/s41391-020-00274-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Immortalization of primary prostate epithelial cells (PrEC) with just hTERT expression is particularly inefficient in the absence of DNA tumor viral proteins or p16INK4A knockdown. MATERIALS AND METHODS Here, we describe the establishment of immortalized normal prostate epithelial cell line models using CRISPR technology to inactivate the CDKN2A locus concomitantly with ectopic expression of an hTERT transgene. RESULTS Using this approach, we have obtained immortal cell clones that exhibit fundamental characteristics of normal cells, including diploid genomes, near normal karyotypes, normal p53 and pRB cell responses, the ability to form non-invasive spheroids, and a non-transformed phenotype. Based on marker expression, these clones are of basal cell origin. CONCLUSIONS Use of this approach resulted in the immortalization of independent clones of PrEC that retained normal characteristics, were stable, and non-transformed. Thus, this approach could be used for the immortalization of normal primary prostate cells. This technique could also be useful for establishing cell lines from prostate tumor tissues of different tumor grades and/or from patients of diverse ethnicities to generate cell line models that facilitate the study of the molecular basis of disease disparity.
Collapse
Affiliation(s)
- Ziran Zhao
- Fels Institute for Cancer Research and Molecular Biology, Philadelphia, PA, USA
| | - Holly Fowle
- Fels Institute for Cancer Research and Molecular Biology, Philadelphia, PA, USA
| | - Henkel Valentine
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Jamaica
| | - Zemin Liu
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Yinfei Tan
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Jianming Pei
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Simone Badal
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Jamaica
| | - Joseph R Testa
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Xavier Graña
- Fels Institute for Cancer Research and Molecular Biology, Philadelphia, PA, USA.
| |
Collapse
|
57
|
Zhang S, Chen H, Yue D, Blackwell TS, Lv C, Song X. Long non-coding RNAs: Promising new targets in pulmonary fibrosis. J Gene Med 2021; 23:e3318. [PMID: 33533071 PMCID: PMC7988597 DOI: 10.1002/jgm.3318] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary fibrosis is characterized by progressive and irreversible scarring in the lungs with poor prognosis and treatment. It is caused by various factors, including environmental and occupational exposures, and some rheumatic immune diseases. Even the rapid global spread of the COVID‐19 pandemic can also cause pulmonary fibrosis with a high probability. Functions attributed to long non‐coding RNAs (lncRNAs) make them highly attractive diagnostic and therapeutic targets in fibroproliferative diseases. Therefore, an understanding of the specific mechanisms by which lncRNAs regulate pulmonary fibrotic pathogenesis is urgently needed to identify new possibilities for therapy. In this review, we focus on the molecular mechanisms and implications of lncRNAs targeted protein‐coding and non‐coding genes during pulmonary fibrogenesis, and systematically analyze the communication of lncRNAs with various types of RNAs, including microRNA, circular RNA and mRNA. Finally, we propose the potential approach of lncRNA‐based diagnosis and therapy for pulmonary fibrosis. We hope that understanding these interactions between protein‐coding and non‐coding genes will contribute to the development of lncRNA‐based clinical applications for pulmonary fibrosis.
Collapse
Affiliation(s)
- Songzi Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou Medical University, Binzhou, China
| | - Hongbin Chen
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Dayong Yue
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | | | - Changjun Lv
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou Medical University, Binzhou, China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou Medical University, Binzhou, China
| |
Collapse
|
58
|
Zhang W, Li L, Cai L, Liang Y, Xu J, Liu Y, Zhou L, Ding C, Zhang Y, Zhao H, Qin J, Shao Z, Wei W, Jia L. Tumor-associated antigen Prame targets tumor suppressor p14/ARF for degradation as the receptor protein of CRL2 Prame complex. Cell Death Differ 2021; 28:1926-1940. [PMID: 33504946 PMCID: PMC8184998 DOI: 10.1038/s41418-020-00724-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 11/30/2020] [Accepted: 12/27/2020] [Indexed: 01/08/2023] Open
Abstract
Protein Preferentially Expressed Antigen in Melanoma (Prame), a tumor-associated antigen, has been found to frequently overexpress in various cancers, which indicates advanced cancer stages and poor clinical prognosis. Moreover, previous reports noted that Prame functions as a substrate recognizing receptor protein of Cullin RING E3 ligases (CRLs) to mediate potential substrates degradation through Ubiquitin Proteasome System (UPS). However, none of the Prame specific substrate has been identified so far. In this study, proteomic analysis of RBX1-interacting proteins revealed p14/ARF, a well-known tumor suppressor, as a novel ubiquitin target of RBX1. Subsequently, immunoprecipitation and in vivo ubiquitination assay determined Cullin2-RBX1-Transcription Elongation Factor B Subunit 2 (EloB) assembled CRL2 E3 ligase complex to regulate the ubiquitination and subsequent degradation of p14/ARF. Finally, through siRNA screening, Prame was identified as the specific receptor protein responsible for recognizing p14/ARF to be degraded. Additionally, via bioinformatics analysis of TCGA database and clinical samples, Prame was determined to overexpress in tumor tissues vs. paired adjacent tissues and associated with poor prognosis of cancer patients. As such, downregulation of Prame expression significantly restrained cancer cell growth by inducing G2/M phase cell cycle arrest, which could be rescued by simultaneously knocking down of p14/ARF. Altogether, targeting overexpressed Prame in cancer cells inactivated RBX1-Cullin2-EloB-Prame E3 ligase (CRL2Prame) and halted p14/ARF degradation to restrain tumor growth by inducing G2/M phase cell cycle arrest.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yupei Liang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Junfeng Xu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yue Liu
- Department of Clinical Laboratory, Huadong Hospital, Fudan University, Shanghai, 200040, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, 2000402, China
| | - Lisha Zhou
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chen Ding
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China.,National Center for Protein Sciences, The PHOENIX Center, Beijing, 102206, China
| | - Yanmei Zhang
- Department of Clinical Laboratory, Huadong Hospital, Fudan University, Shanghai, 200040, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, 2000402, China
| | - Hu Zhao
- Department of Clinical Laboratory, Huadong Hospital, Fudan University, Shanghai, 200040, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, 2000402, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China.,National Center for Protein Sciences, The PHOENIX Center, Beijing, 102206, China
| | - Zhimin Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02115, MA, USA
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
59
|
Gagnon M, Savard M, Jacques JF, Bkaily G, Geha S, Roucou X, Gobeil F. Potentiation of B2 receptor signaling by AltB2R, a newly identified alternative protein encoded in the human bradykinin B2 receptor gene. J Biol Chem 2021; 296:100329. [PMID: 33497625 PMCID: PMC7949122 DOI: 10.1016/j.jbc.2021.100329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/27/2022] Open
Abstract
Recent functional and proteomic studies in eukaryotes (www.openprot.org) predict the translation of alternative open reading frames (AltORFs) in mature G-protein-coupled receptor (GPCR) mRNAs, including that of bradykinin B2 receptor (B2R). Our main objective was to determine the implication of a newly discovered AltORF resulting protein, termed AltB2R, in the known signaling properties of B2R using complementary methodological approaches. When ectopically expressed in HeLa cells, AltB2R presented predominant punctate cytoplasmic/perinuclear distribution and apparent cointeraction with B2R at plasma and endosomal/vesicular membranes. The presence of AltB2R increases intracellular [Ca2+] and ERK1/2-MAPK activation (via phosphorylation) following B2R stimulation. Moreover, HEK293A cells expressing mutant B2R lacking concomitant expression of AltB2R displayed significantly decreased maximal responses in agonist-stimulated Gαq-Gαi2/3-protein coupling, IP3 generation, and ERK1/2-MAPK activation as compared with wild-type controls. Conversely, there was no difference in cell-surface density as well as ligand-binding properties of B2R and in efficiencies of cognate agonists at promoting B2R internalization and β-arrestin 2 recruitment. Importantly, both AltB2R and B2R proteins were overexpressed in prostate and breast cancers, compared with their normal counterparts suggesting new associative roles of AltB2R in these diseases. Our study shows that BDKRB2 is a dual-coding gene and identifies AltB2R as a novel positive modulator of some B2R signaling pathways. More broadly, it also supports a new, unexpected alternative proteome for GPCRs, which opens new frontiers in fields of GPCR biology, diseases, and drug discovery.
Collapse
Affiliation(s)
- Maxime Gagnon
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Martin Savard
- Department of Pharmacology & Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Jacques
- Department of Pharmacology & Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ghassan Bkaily
- Department of Immunology & Cellular Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sameh Geha
- Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Xavier Roucou
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Fernand Gobeil
- Department of Pharmacology & Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
60
|
Non-Canonical Functions of the ARF Tumor Suppressor in Development and Tumorigenesis. Biomolecules 2021; 11:biom11010086. [PMID: 33445626 PMCID: PMC7827855 DOI: 10.3390/biom11010086] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
P14ARF (ARF; Alternative Reading Frame) is an extensively characterized tumor suppressor which, in response to oncogenic stimuli, mediates cell cycle arrest and apoptosis via p53-dependent and independent routes. ARF has been shown to be frequently lost through CpG island promoter methylation in a wide spectrum of human malignancies, such as colorectal, prostate, breast, and gastric cancers, while point mutations and deletions in the p14ARF locus have been linked with various forms of melanomas and glioblastomas. Although ARF has been mostly studied in the context of tumorigenesis, it has been also implicated in purely developmental processes, such as spermatogenesis, and mammary gland and ocular development, while it has been additionally involved in the regulation of angiogenesis. Moreover, ARF has been found to hold important roles in stem cell self-renewal and differentiation. As is often the case with tumor suppressors, ARF functions as a pleiotropic protein regulating a number of different mechanisms at the crossroad of development and tumorigenesis. Here, we provide an overview of the non-canonical functions of ARF in cancer and developmental biology, by dissecting the crosstalk of ARF signaling with key oncogenic and developmental pathways.
Collapse
|
61
|
González-Gil C, Ribera J, Ribera JM, Genescà E. The Yin and Yang-Like Clinical Implications of the CDKN2A/ARF/CDKN2B Gene Cluster in Acute Lymphoblastic Leukemia. Genes (Basel) 2021; 12:genes12010079. [PMID: 33435487 PMCID: PMC7827355 DOI: 10.3390/genes12010079] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant clonal expansion of lymphoid hematopoietic precursors that exhibit developmental arrest at varying stages of differentiation. Similar to what occurs in solid cancers, transformation of normal hematopoietic precursors is governed by a multistep oncogenic process that drives initiation, clonal expansion and metastasis. In this process, alterations in genes encoding proteins that govern processes such as cell proliferation, differentiation, and growth provide us with some of the clearest mechanistic insights into how and why cancer arises. In such a scenario, deletions in the 9p21.3 cluster involving CDKN2A/ARF/CDKN2B genes arise as one of the oncogenic hallmarks of ALL. Deletions in this region are the most frequent structural alteration in T-cell acute lymphoblastic leukemia (T-ALL) and account for roughly 30% of copy number alterations found in B-cell-precursor acute lymphoblastic leukemia (BCP-ALL). Here, we review the literature concerning the involvement of the CDKN2A/B genes as a prognosis marker of good or bad response in the two ALL subtypes (BCP-ALL and T-ALL). We compare frequencies observed in studies performed on several ALL cohorts (adult and child), which mainly consider genetic data produced by genomic techniques. We also summarize what we have learned from mouse models designed to evaluate the functional involvement of the gene cluster in ALL development and in relapse/resistance to treatment. Finally, we examine the range of possibilities for targeting the abnormal function of the protein-coding genes of this cluster and their potential to act as anti-leukemic agents in patients.
Collapse
Affiliation(s)
- Celia González-Gil
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
| | - Jordi Ribera
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
| | - Josep Maria Ribera
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
- Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Eulàlia Genescà
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (C.G.-G.); (J.R.); (J.M.R.)
- Correspondence: ; Tel.: +34-93-557-28-08
| |
Collapse
|
62
|
The ARF tumor suppressor targets PPM1G/PP2Cγ to counteract NF-κB transcription tuning cell survival and the inflammatory response. Proc Natl Acad Sci U S A 2020; 117:32594-32605. [PMID: 33288725 DOI: 10.1073/pnas.2004470117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inducible transcriptional programs mediate the regulation of key biological processes and organismal functions. Despite their complexity, cells have evolved mechanisms to precisely control gene programs in response to environmental cues to regulate cell fate and maintain normal homeostasis. Upon stimulation with proinflammatory cytokines such as tumor necrosis factor-α (TNF), the master transcriptional regulator nuclear factor (NF)-κB utilizes the PPM1G/PP2Cγ phosphatase as a coactivator to normally induce inflammatory and cell survival programs. However, how PPM1G activity is precisely regulated to control NF-κB transcription magnitude and kinetics remains unknown. Here, we describe a mechanism by which the ARF tumor suppressor binds PPM1G to negatively regulate its coactivator function in the NF-κB circuit thereby promoting insult resolution. ARF becomes stabilized upon binding to PPM1G and forms a ternary protein complex with PPM1G and NF-κB at target gene promoters in a stimuli-dependent manner to provide tunable control of the NF-κB transcriptional program. Consistently, loss of ARF in colon epithelial cells leads to up-regulation of NF-κB antiapoptotic genes upon TNF stimulation and renders cells partially resistant to TNF-induced apoptosis in the presence of agents blocking the antiapoptotic program. Notably, patient tumor data analysis validates these findings by revealing that loss of ARF strongly correlates with sustained expression of inflammatory and cell survival programs. Collectively, we propose that PPM1G emerges as a therapeutic target in a variety of cancers arising from ARF epigenetic silencing, to loss of ARF function, as well as tumors bearing oncogenic NF-κB activation.
Collapse
|
63
|
Generation of a p16 Reporter Mouse and Its Use to Characterize and Target p16 high Cells In Vivo. Cell Metab 2020; 32:814-828.e6. [PMID: 32949498 DOI: 10.1016/j.cmet.2020.09.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
Cell senescence plays a key role in age-associated organ dysfunction, but the in vivo pathogenesis is largely unclear. Here, we generated a p16-CreERT2-tdTomato mouse model to analyze the in vivo characteristics of p16high cells at a single-cell level. We found tdTomato-positive p16high cells detectable in all organs, which were enriched with age. We also found that these cells failed to proliferate and had half-lives ranging from 2.6 to 4.2 months, depending on the tissue examined. Single-cell transcriptomics in the liver and kidneys revealed that p16high cells were present in various cell types, though most dominant in hepatic endothelium and in renal proximal and distal tubule epithelia, and that these cells exhibited heterogeneous senescence-associated phenotypes. Further, elimination of p16high cells ameliorated nonalcoholic steatohepatitis-related hepatic lipidosis and immune cell infiltration. Our new mouse model and single-cell analysis provide a powerful resource to enable the discovery of previously unidentified senescence functions in vivo.
Collapse
|
64
|
Jab1 promotes gastric cancer tumorigenesis via non-ubiquitin proteasomal degradation of p14ARF. Gastric Cancer 2020; 23:1003-1017. [PMID: 32458234 DOI: 10.1007/s10120-020-01087-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Jab1 has been reported to regulate various proteins in signal transduction pathways and be implicated in carcinogenesis or tumor progression. However, the precise role and molecular mechanism of Jab1 in gastric tumorigenesis have not yet been fully elucidated. METHODS Jab1 staining in gastric cancer tissues and paired non-cancerous tissues was measured using tissue microarray (TMA) technology. The impact of Jab1 on tumor growth in vivo was analyzed using xenotransplantation experiments in Balb/c mice. The expression of Jab1 and p14ARF in gastric cancer cells was analyzed by western blot and confocal immunofluorescence. CCK-8 and cell cycle experiment were used to evaluate the cell proliferation. Ubiquitination assay was performed to validate whether ubiquitination is involved in Jab1-mediated p14ARF degradation. RESULTS The expression level of protein p14ARF was inversely correlated with the protein level of Jab1. Then, we investigated the mechanism that how Jab1 induced p14ARF depletion. Mechanistic studies showed that Jab1 induced ubiquitin-independent proteasomal p14ARF degradation in gastric cancer cells. Our data demonstrated that Jab1 protein was a vital upstream negative modulation factor of p14ARF, and Jab1 could promote cell proliferation and tumor growth via inhibiting the expression of p14ARF in vivo and in vitro. Moreover, silencing Jab1 protein expression declined tumor growth and further increased the apoptosis rate of gastric cancer cells. In further studies of gastric cancer specimens, we found the increased level of Jab1 protein shortened the overall survival. CONCLUSION Jab1 is upstream of p14ARF and promote gastric cancer cell proliferation in vitro and in vivo. Furthermore, Jab1 decreased the expression of p14ARF though ubiquitination independent proteasomal degradation. Therefore, the connection of Jab1 and p14ARF may provide new methods for the treatment of gastric cancer.
Collapse
|
65
|
Fry EA, Niehans GE, Kratzke RA, Kai F, Inoue K. Survival of Lung Cancer Patients Dependent on the LOH Status for DMP1, ARF, and p53. Int J Mol Sci 2020; 21:E7971. [PMID: 33120969 PMCID: PMC7662351 DOI: 10.3390/ijms21217971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths in the world, and accounts for more solid tumor deaths than any other carcinomas. The prognostic values of DMP1, ARF, and p53-loss are unknown in lung cancer. We have conducted survival analyses of non-small cell lung cancer (NSCLC) patients from the University of Minnesota VA hospital and those from the Wake Forest University Hospital. Loss of Heterozygosity (LOH) for hDMP1 was found in 26 of 70 cases (37.1%), that of the ARF/INK4a locus was found in 33 of 70 (47.1%), and that of the p53 locus in 43 cases (61.4%) in the University of Minnesota samples. LOH for hDMP1 was associated with favorable prognosis while that of p53 predicted worse prognosis. The survival was much shorter for ARF-loss than INK4a-loss, emphasizing the importance of ARF in human NSCLC. The adverse effect of p53 LOH on NSCLC patients' survival was neutralized by simultaneous loss of the hDMP1 locus in NSCLC and breast cancer, suggesting the possible therapy of epithelial cancers with metastatic ability.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA; (E.A.F.); (F.K.)
| | | | - Robert A. Kratzke
- Dept. of Medicine, University of Minnesota Medical Center, Masonic Cancer Institute, Minneapolis, MN 55455, USA;
| | - Fumitake Kai
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA; (E.A.F.); (F.K.)
| | - Kazushi Inoue
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA; (E.A.F.); (F.K.)
| |
Collapse
|
66
|
Mühleder S, Fernández-Chacón M, Garcia-Gonzalez I, Benedito R. Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cell Mol Life Sci 2020; 78:1329-1354. [PMID: 33078209 PMCID: PMC7904752 DOI: 10.1007/s00018-020-03664-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Therapeutic modulation of vascular cell proliferation and migration is essential for the effective inhibition of angiogenesis in cancer or its induction in cardiovascular disease. The general view is that an increase in vascular growth factor levels or mitogenic stimulation is beneficial for angiogenesis, since it leads to an increase in both endothelial proliferation and sprouting. However, several recent studies showed that an increase in mitogenic stimuli can also lead to the arrest of angiogenesis. This is due to the existence of intrinsic signaling feedback loops and cell cycle checkpoints that work in synchrony to maintain a balance between endothelial proliferation and sprouting. This balance is tightly and effectively regulated during tissue growth and is often deregulated or impaired in disease. Most therapeutic strategies used so far to promote vascular growth simply increase mitogenic stimuli, without taking into account its deleterious effects on this balance and on vascular cells. Here, we review the main findings on the mechanisms controlling physiological vascular sprouting, proliferation, and senescence and how those mechanisms are often deregulated in acquired or congenital cardiovascular disease leading to a diverse range of pathologies. We also discuss alternative approaches to increase the effectiveness of pro-angiogenic therapies in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Severin Mühleder
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Macarena Fernández-Chacón
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Irene Garcia-Gonzalez
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
67
|
Pellarin I, Belletti B, Baldassarre G. RNA splicing alteration in the response to platinum chemotherapy in ovarian cancer: A possible biomarker and therapeutic target. Med Res Rev 2020; 41:586-615. [PMID: 33058230 DOI: 10.1002/med.21741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/09/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022]
Abstract
Since its discovery, alternative splicing has been recognized as a powerful way for a cell to amplify the genetic information and for a living organism to adapt, evolve, and survive. We now know that a very high number of genes are regulated by alternative splicing and that alterations of splicing have been observed in different types of human diseases, including cancer. Here, we review the accumulating knowledge that links the regulation of alternative splicing to the response to chemotherapy, focusing our attention on ovarian cancer and platinum-based treatments. Moreover, we discuss how expanding information could be exploited to identify new possible biomarkers of platinum response, to better select patients, and/or to design new therapies able to overcome platinum resistance.
Collapse
Affiliation(s)
- Ilenia Pellarin
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Gustavo Baldassarre
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| |
Collapse
|
68
|
Li Y, Zhang T, Zhang H, Wang X, Liu X, Huang Q, Li L. Clinical Significance of P16 Gene Methylation in Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:133-142. [PMID: 32949396 DOI: 10.1007/978-981-15-4494-1_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lung cancer is the leading cause of death from cancer in China. The lack of early screening technologies makes most patients to be diagnosed at advanced stages with a poor prognosis which often miss the best treatment opportunities. Thus, identifying biomarkers for minimally invasive detection and prognosis of early stage disease is urgently needed. Genetic and epigenetic alterations that promote tumorigenesis and metastasis exist in multiple cancers. These aberrant alterations usually represent early events in cancer progression suggesting their potential applications as a biomarker for cancer prediction. Studies have shown that DNA methylation is one of the key factors in progression of lung cancer. P16 promoter methylation is one of the most common epigenetic change plays a key role in lung cancer. In this review, we highlight the p16 gene methylation and its clinical significance in lung cancer.
Collapse
Affiliation(s)
- Yanjun Li
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Zhengzhou University People's Hospital, Zhengzhou, Henan, China.,Henan University People's Hospital, Zhengzhou, Henan, China
| | - Tingting Zhang
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Zhengzhou University People's Hospital, Zhengzhou, Henan, China.,Henan University People's Hospital, Zhengzhou, Henan, China
| | - Hui Zhang
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Zhengzhou University People's Hospital, Zhengzhou, Henan, China.,Henan University People's Hospital, Zhengzhou, Henan, China
| | - Xiangdong Wang
- Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
| | - Xiaozhuan Liu
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Zhengzhou University People's Hospital, Zhengzhou, Henan, China.,Henan University People's Hospital, Zhengzhou, Henan, China
| | - Qihong Huang
- Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
| | - Li Li
- Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China. .,Zhengzhou University People's Hospital, Zhengzhou, Henan, China. .,Henan University People's Hospital, Zhengzhou, Henan, China. .,Department of Scientific Research and Discipline Construction, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| |
Collapse
|
69
|
Patel S, Wilkinson CJ, Sviderskaya EV. Loss of Both CDKN2A and CDKN2B Allows for Centrosome Overduplication in Melanoma. J Invest Dermatol 2020; 140:1837-1846.e1. [PMID: 32067956 PMCID: PMC7435684 DOI: 10.1016/j.jid.2020.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Centrosomes duplicate only once in coordination with the DNA replication cycle and have an important role in segregating genetic material. In contrast, most cancer cells have centrosome aberrations, including supernumerary centrosomes, and this correlates with aneuploidy and genetic instability. The tumor suppressors p16 (CDKN2A) and p15 (CDKN2B) (encoded by the familial melanoma CDKN2 locus) inhibit CDK4/6 activity and have important roles in cellular senescence. p16 is also associated with suppressing centrosomal aberrations in breast cancer; however, the role of p15 in centrosome amplification is unknown. Here, we investigated the relationship between p15 and p16 expression, centrosome number abnormalities, and melanoma progression in cell lines derived from various stages of melanoma progression. We found that normal human melanocyte lines did not exhibit centrosome number abnormalities, whereas those from later stages of melanoma did. Additionally, under conditions of S-phase block, p15 and p16 status determined whether centrosome overduplication would occur. Indeed, removal of p15 from p16-negative cell lines derived from various stages of melanoma progression changed cells that previously would not overduplicate their centrosomes into cells that did. Although this study used cell lines in vitro, it suggests that, during clinical melanoma progression, sequential loss of p15 and p16 provides conditions for centrosome duplication to become deregulated with consequences for genome instability.
Collapse
Affiliation(s)
- Shyamal Patel
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, United Kingdom
| | - Christopher J Wilkinson
- Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, United Kingdom
| | - Elena V Sviderskaya
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, United Kingdom.
| |
Collapse
|
70
|
You J, Dong R, Ying M, He Q, Cao J, Yang B. Cellular Senescence and Anti-Cancer Therapy. Curr Drug Targets 2020; 20:705-715. [PMID: 30556499 DOI: 10.2174/1389450120666181217100833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cellular senescence is generally understood as a permanent cell cycle arrest stemming from different causes. The mechanism of cellular senescence-induced cell cycle arrest is complex, involving interactions between telomere shortening, inflammations and cellular stresses. In recent years, a growing number of studies have revealed that cellular senescence could mediate the cancer progression of neighboring cells, but this idea is controversial and contradictory evidence argues that cellular senescence also contributes to tumor suppression. OBJECTIVE Given that the complicated role of senescence in various physiological and pathological scenarios, we try to clarify the precise contribution role of cellular senescence to tumor progression. METHODS Search for the information in a large array of relevant articles to support our opinion. RESULTS We discuss the relatively widespread occurrence of cellular senescence in cancer treatment and identify the positive and negative side of senescence contributed to tumor progression. CONCLUSION We argue that the availability of pro-senescence therapy could represent as a promising regimen for managing cancer disease, particularly with regard to the poor clinical outcome obtained with other anticancer therapies.
Collapse
Affiliation(s)
- Jieqiong You
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rong Dong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
71
|
Wu L, Yu Y, Zhou J, Wang X, Li J, Wang Y. Mechanism of acquired resistance to nivolumab in lung squamous cell carcinoma: case report and review of the literature. Immunotherapy 2020; 12:957-964. [PMID: 32686549 DOI: 10.2217/imt-2020-0038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: Immune checkpoint inhibitors targeting PD-1 and PD-L1 have noticeably improved the treatment landscape of advanced non-small-cell lung cancer, including lung squamous cell carcinoma (SCC). Although patients with immune checkpoint therapy can achieve long-term survival, acquired resistance has been recognized more frequently, while the underlying mechanisms are currently poorly understood. Materials and methods: Here, we report a patient with metastatic lung SCC treated with nivolumab as a first-line treatment for 28 months. Conclusion: The analysis of specimens prenivolumab and postnivolumab treatment suggests that genetic alterations in SOX2 and CDKN2A/CDKN2B and changes in the tumor microenvironment could be reasons for the acquired resistance to nivolumab observed in the lung SCC patient.
Collapse
Affiliation(s)
- Linying Wu
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yuman Yu
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jianying Zhou
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaoling Wang
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jingjie Li
- Genecast Biotechnology Co., Ltd, Wuxi 214105, China
| | - Yuehong Wang
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
72
|
Fitzsimmons L, Cartlidge R, Chang C, Sejic N, Galbraith LCA, Suraweera CD, Croom-Carter D, Dewson G, Tierney RJ, Bell AI, Shannon-Lowe C, Herold MJ, Rickinson AB, Colman PM, Huang DCS, Strasser A, Kvansakul M, Rowe M, Kelly GL. EBV BCL-2 homologue BHRF1 drives chemoresistance and lymphomagenesis by inhibiting multiple cellular pro-apoptotic proteins. Cell Death Differ 2020; 27:1554-1568. [PMID: 31645677 PMCID: PMC7206097 DOI: 10.1038/s41418-019-0435-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/30/2022] Open
Abstract
Epstein-Barr virus (EBV), which is ubiquitous in the adult population, is causally associated with human malignancies. Like many infectious agents, EBV has evolved strategies to block host cell death, including through expression of viral homologues of cellular BCL-2 pro-survival proteins (vBCL-2s), such as BHRF1. Small molecule inhibitors of the cellular pro-survival BCL-2 family proteins, termed 'BH3-mimetics', have entered clinical trials for blood cancers with the BCL-2 inhibitor venetoclax already approved for treatment of therapy refractory chronic lymphocytic leukaemia and acute myeloid leukaemia in the elderly. The generation of BH3-mimetics that could specifically target vBCL-2 proteins may be an attractive therapeutic option for virus-associated cancers, since these drugs would be expected to only kill virally infected cells with only minimal side effects on normal healthy tissues. To achieve this, a better understanding of the contribution of vBCL-2 proteins to tumorigenesis and insights into their biochemical functions is needed. In the context of Burkitt lymphoma (BL), BHRF1 expression conferred strong resistance to diverse apoptotic stimuli. Furthermore, BHRF1 expression in mouse haematopoietic stem and progenitor cells accelerated MYC-induced lymphoma development in a model of BL. BHRF1 interacts with the cellular pro-apoptotic BCL-2 proteins, BIM, BID, PUMA and BAK, but its capability to inhibit apoptosis could not be mapped solely to one of these interactions, suggesting plasticity is a key feature of BHRF1. Site-directed mutagenesis revealed a site in BHRF1 that was critical for its interaction with PUMA and blocking DNA-damage-induced apoptosis, identifying a potentially therapeutically targetable vulnerability in BHRF1.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Rachel Cartlidge
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Catherine Chang
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
| | - Nenad Sejic
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura C A Galbraith
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Chathura D Suraweera
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Deborah Croom-Carter
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Grant Dewson
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Rosemary J Tierney
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew I Bell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Clare Shannon-Lowe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Marco J Herold
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Alan B Rickinson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Peter M Colman
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Marc Kvansakul
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Martin Rowe
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
73
|
Kohlmeyer JL, Gordon DJ, Tanas MR, Monga V, Dodd RD, Quelle DE. CDKs in Sarcoma: Mediators of Disease and Emerging Therapeutic Targets. Int J Mol Sci 2020; 21:E3018. [PMID: 32344731 PMCID: PMC7215455 DOI: 10.3390/ijms21083018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Sarcomas represent one of the most challenging tumor types to treat due to their diverse nature and our incomplete understanding of their underlying biology. Recent work suggests cyclin-dependent kinase (CDK) pathway activation is a powerful driver of sarcomagenesis. CDK proteins participate in numerous cellular processes required for normal cell function, but their dysregulation is a hallmark of many pathologies including cancer. The contributions and significance of aberrant CDK activity to sarcoma development, however, is only partly understood. Here, we describe what is known about CDK-related alterations in the most common subtypes of sarcoma and highlight areas that warrant further investigation. As disruptions in CDK pathways appear in most, if not all, subtypes of sarcoma, we discuss the history and value of pharmacologically targeting CDKs to combat these tumors. The goals of this review are to (1) assess the prevalence and importance of CDK pathway alterations in sarcomas, (2) highlight the gap in knowledge for certain CDKs in these tumors, and (3) provide insight into studies focused on CDK inhibition for sarcoma treatment. Overall, growing evidence demonstrates a crucial role for activated CDKs in sarcoma development and as important targets for sarcoma therapy.
Collapse
Affiliation(s)
- Jordan L Kohlmeyer
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- The Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-570 Bowen Science Bldg., Iowa City, IA 52242, USA
| | - David J Gordon
- The Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Munir R Tanas
- The Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Varun Monga
- The Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.M.); (R.D.D.)
| | - Rebecca D Dodd
- The Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.M.); (R.D.D.)
| | - Dawn E Quelle
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- The Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-570 Bowen Science Bldg., Iowa City, IA 52242, USA
- The Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
74
|
Li M, Yang J, Liu K, Yang J, Zhan X, Wang L, Shen X, Chen J, Mao Z. p16 promotes proliferation in cervical carcinoma cells through CDK6-HuR-IL1A axis. J Cancer 2020; 11:1457-1467. [PMID: 32047552 PMCID: PMC6995400 DOI: 10.7150/jca.35479] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 12/02/2019] [Indexed: 11/05/2022] Open
Abstract
The Cyclin-Dependent Kinase Inhibitor p16 (p16) acts as a tumor suppressor in most cells, but for HPV transformed cervical cancer, in which oncoprotein E7 expressed by human papillomavirus (HPV) mediates the degradation of retinoblastoma protein (Rb), p16 exhibits oncogenic activity. Our study was conducted to study the mechanism underling p16 mediated promoting effect of cell proliferation in cervical cancer cell lines. CCK8 assay and EdU incorporation were conducted to evaluate cell proliferation. Loss-of-function assay was used to silence p16 in Ca Ski and SiHa cells. Next, western blot, qPCR, RNA silencing, luciferase activity assay, run-on assay, mRNA stability assay, RNA immunoprecipitation, co-immunoprecipitation Immunofluorescence were performed to examine the interaction between CDK6, HuR, and IL1A mRNA in p16 mediated proliferation promoting effect. Our results showed that: (1) Silencing p16 inhibited the proliferation of cervical cancer cells by decreasing the half-life of IL1A mRNA in CDK6 dependent manner; (2) The stabilization of IL1A mRNA was regulated by HuR which could be inactivated by p16/CDK6 mediated phosphorylation at Ser202; (3) IL1A mediated the oncogenic activity of p16 in cervical carcinoma cell lines. In conclusion, p16 promotes proliferation in cervical carcinoma cells through CDK6-HuR-IL1A axis.
Collapse
Affiliation(s)
- Mingzhe Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiong Yang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Kaiyu Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianming Yang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiangwen Zhan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Le Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaomeng Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zebin Mao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
75
|
Lin SL, Chen JS, Ying SY. MiR-302-Mediated Somatic Cell Reprogramming and Method for Generating Tumor-Free iPS Cells Using miR-302. Methods Mol Biol 2020; 2115:199-219. [PMID: 32006403 DOI: 10.1007/978-1-0716-0290-4_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human induced pluripotent stem cells (iPSCs) by four factors have the risks of teratoma formation and potential tumorigenicity. To overcome this major hurdle, we examined the mechanism(s) by which the cell cycle genes of embryonic cells were regulated. Naturally occurring embryonic stem cells (ESCs) possess two unique stemness properties: pluripotent differentiation into all cell types and self-renewal with no risk of tumor formation. Despite overwhelming reports describing iPSC pluripotency, there have been no observations of tumor prevention mechanism that suppresses tumor formation similar to that in naturally occurring ESCs. The ESC-specific microRNA (miRNA), miR-302, regulates human iPSC tumorigenicity through co-suppression of both cyclin E-CDK2 and cyclin D-CDK4/6 cell cycle pathways during G1-S phase transition. MiR-302 also silenced BMI-1, a cancer stem cell marker gene, to promote the expression of two senescence-associated tumor suppressor genes, p16Ink4a and p14/p19Arf. Together, the combinatory effect of reducing G1-S cell cycle transition and increasing p16/p14(p19) expression resulted in a relatively attenuated cell cycle rate similar to that of 2-to-8-cell-stage embryonic cells in early mammalian zygotes (20-24 h/cycle), as compared to the fast proliferation rate of iPSCs induced by four defined factors Oct4-Sox2-Klf4-c-Myc (12-16 h/cycle). In addition to the prevention of stem cell tumorigenicity, the mechanism underlying miR-302-mediated iPSCs also includes the initiation of global genomic DNA methylation, activation of ESC-specific gene expression, and inhibition of developmental signaling. Overall, we have established an effective protocol to express the intronic miR-302 cluster, according to its own natural biogenesis mechanism to generate tumor-free iPSCs for use in biology and therapy.
Collapse
Affiliation(s)
- Shi-Lung Lin
- WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA
| | - Jack S Chen
- WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA
| | - Shao-Yao Ying
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
76
|
Daoud AZ, Mulholland EJ, Cole G, McCarthy HO. MicroRNAs in Pancreatic Cancer: biomarkers, prognostic, and therapeutic modulators. BMC Cancer 2019; 19:1130. [PMID: 31752758 PMCID: PMC6868851 DOI: 10.1186/s12885-019-6284-y] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
A severe lack of early diagnosis coupled with resistance to most available therapeutic options renders pancreatic cancer as a major clinical concern. The limited efficacy of current treatments necessitates the development of novel therapeutic strategies that are based on an understanding of the molecular mechanisms involved in pancreatic cancer progression. MicroRNAs (miRNAs) are non-coding small RNAs that regulate the expression of multiple proteins in the post-translation process and thus have promise as biomarkers, prognostic agents, and as advanced pancreatic therapies. Profiling of deregulated miRNAs in pancreatic cancer can correlate to diagnosis, indicate optimal treatment and predict response to therapy. Furthermore, understanding the main effector genes in pancreatic cancer along with downstream pathways can identify possible miRNAs as therapeutic candidates. Additionally, obstacles to the translation of miRNAs into the clinic are also considered. Distinct miRNA expression profiles can correlate to stages of malignant pancreatic disease, and hold potential as biomarkers, prognostic markers and clinical targets. However, a limited understanding and validation of the specific role of such miRNAs stunts clinical application. Target prediction using algorithms provides a wide range of possible targets, but these miRNAs still require validation through pre-clinical studies to determine the knock-on genetic effects.
Collapse
Affiliation(s)
- Afra Z Daoud
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Northern Ireland, BT9 7BL, UK
| | - Eoghan J Mulholland
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Grace Cole
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, V6T 2B5, Canada
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Northern Ireland, BT9 7BL, UK.
| |
Collapse
|
77
|
Horak V, Palanova A, Cizkova J, Miltrova V, Vodicka P, Kupcova Skalnikova H. Melanoma-Bearing Libechov Minipig (MeLiM): The Unique Swine Model of Hereditary Metastatic Melanoma. Genes (Basel) 2019; 10:E915. [PMID: 31717496 PMCID: PMC6895830 DOI: 10.3390/genes10110915] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
National cancer databases document that melanoma is the most aggressive and deadly cutaneous malignancy with worldwide increasing incidence in the Caucasian population. Around 10% of melanomas occur in families. Several germline mutations were identified that might help to indicate individuals at risk for preventive interventions and early disease detection. More than 50% of sporadic melanomas carry mutations in Ras/Raf/mitogen-activated protein kinase (MAPK/MEK) pathway, which may represent aims of novel targeted therapies. Despite advances in targeted therapies and immunotherapies, the outcomes in metastatic tumor are still unsatisfactory. Here, we review animal models that help our understanding of melanoma development and treatment, including non-vertebrate, mouse, swine, and other mammal models, with an emphasis on those with spontaneously developing melanoma. Special attention is paid to the melanoma-bearing Libechov minipig (MeLiM). This original swine model of hereditary metastatic melanoma enables studying biological processes underlying melanoma progression, as well as spontaneous regression. Current histological, immunohistochemical, biochemical, genetic, hematological, immunological, and skin microbiome findings in the MeLiM model are summarized, together with development of new therapeutic approaches based on tumor devitalization. The ongoing study of molecular and immunological base of spontaneous regression in MeLiM model has potential to bring new knowledge of clinical importance.
Collapse
Affiliation(s)
| | | | | | | | | | - Helena Kupcova Skalnikova
- Czech Academy of Sciences, Institute of Animal Physiology and Genetics, Laboratory of Applied Proteome Analyses and Research Center PIGMOD, 277 21 Libechov, Czech Republic; (V.H.); (A.P.); (J.C.); (V.M.); (P.V.)
| |
Collapse
|
78
|
Bridge JA, Sumegi J, Druta M, Bui MM, Henderson-Jackson E, Linos K, Baker M, Walko CM, Millis S, Brohl AS. Clinical, pathological, and genomic features of EWSR1-PATZ1 fusion sarcoma. Mod Pathol 2019; 32:1593-1604. [PMID: 31189996 DOI: 10.1038/s41379-019-0301-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 01/12/2023]
Abstract
Molecular diagnostics of sarcoma subtypes commonly involve the identification of characteristic oncogenic fusions. EWSR1-PATZ1 is a rare fusion partnering in sarcoma, with few cases reported in the literature. In the current study, a series of 11 cases of EWSR1-PATZ1 fusion positive malignancies are described. EWSR1-PATZ1-related sarcomas occur across a wide age range and have a strong predilection for chest wall primary site. Secondary driver mutations in cell-cycle genes, and in particular CDKN2A (71%), are common in EWSR1-PATZ1 sarcomas in this series. In a subset of cases, an extended clinical and histopathological review was performed, as was confirmation and characterization of the fusion breakpoint revealing a novel intronic pseudoexon sequence insertion. Unified by a shared gene fusion, EWSR1-PATZ1 sarcomas otherwise appear to exhibit divergent morphology, a polyphenotypic immunoprofile, and variable clinical behavior posing challenges for precise classification.
Collapse
Affiliation(s)
- Julia A Bridge
- Division of Molecular Pathology, The Translational Genomics Research Institute/Ashion, Phoenix, AZ, USA. .,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Janos Sumegi
- Division of Molecular Pathology, The Translational Genomics Research Institute/Ashion, Phoenix, AZ, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mihaela Druta
- Sarcoma Department, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Marilyn M Bui
- Sarcoma Department, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Pathology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Evita Henderson-Jackson
- Sarcoma Department, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Pathology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, USA
| | - Michael Baker
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, USA
| | - Christine M Walko
- Personalized Medicine Institute, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Andrew S Brohl
- Sarcoma Department, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
79
|
Palmer N, Talib SZA, Kaldis P. Diverse roles for CDK-associated activity during spermatogenesis. FEBS Lett 2019; 593:2925-2949. [PMID: 31566717 PMCID: PMC6900092 DOI: 10.1002/1873-3468.13627] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022]
Abstract
The primary function of cyclin-dependent kinases (CDKs) in complex with their activating cyclin partners is to promote mitotic division in somatic cells. This canonical cell cycle-associated activity is also crucial for fertility as it allows the proliferation and differentiation of stem cells within the reproductive organs to generate meiotically competent cells. Intriguingly, several CDKs exhibit meiosis-specific functions and are essential for the completion of the two reductional meiotic divisions required to generate haploid gametes. These meiosis-specific functions are mediated by both known CDK/cyclin complexes and meiosis-specific CDK-regulators and are important for a variety of processes during meiotic prophase. The majority of meiotic defects observed upon deletion of these proteins occur during the extended prophase I of the first meiotic division. Importantly a lack of redundancy is seen within the meiotic arrest phenotypes described for many of these proteins, suggesting intricate layers of cell cycle control are required for normal meiotic progression. Using the process of male germ cell development (spermatogenesis) as a reference, this review seeks to highlight the diverse roles of selected CDKs their activators, and their regulators during gametogenesis.
Collapse
Affiliation(s)
- Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), Singapore, Singapore
| | - S Zakiah A Talib
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), Singapore, Singapore.,Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Malmö, Sweden
| |
Collapse
|
80
|
Testis-specific Arf promoter expression in a transposase-aided BAC transgenic mouse model. Mol Biol Rep 2019; 46:6243-6252. [PMID: 31583563 DOI: 10.1007/s11033-019-05063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/04/2019] [Indexed: 10/25/2022]
Abstract
CDKN2A is an evolutionarily conserved gene encoding proteins implicated in tumor suppression, ocular development, aging, and metabolic diseases. Like the human form, mouse Cdkn2a encodes two distinct proteins-p16Ink4a, which blocks cyclin-dependent kinase activity, and p19Arf, which is best known as a positive regulator of the p53 tumor suppressor-and their functions have been well-studied in genetically engineered mouse models. Relatively little is known about how expression of the two transcripts is controlled in normal development and in certain disease states. To better understand their coordinate and transcript-specific expression in situ, we used a transposase-aided approach to generate a new BAC transgenic mouse model in which the first exons encoding Arf and Ink4a are replaced by fluorescent reporters. We show that mouse embryo fibroblasts generated from the transgenic lines faithfully display induction of each transgenic reporter in cell culture models, and we demonstrate the expected expression of the Arf reporter in the normal testis, one of the few places where that promoter is normally expressed. Interestingly, the TGFβ-2-dependent induction of the Arf reporter in the eye-a process essential for normal eye development-does not occur. Our findings illustrate the value of BAC transgenesis in mapping key regulatory elements in the mouse by revealing the genomic DNA required for Cdkn2a induction in cultured cells and the developing testis, and the apparent lack of elements driving expression in the developing eye.
Collapse
|
81
|
|
82
|
Chen G, Zhang Y, Yu S, Sun W, Miao D. Bmi1 Overexpression in Mesenchymal Stem Cells Exerts Antiaging and Antiosteoporosis Effects by Inactivating p16/p19 Signaling and Inhibiting Oxidative Stress. Stem Cells 2019; 37:1200-1211. [PMID: 30895687 PMCID: PMC6851636 DOI: 10.1002/stem.3007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/24/2019] [Accepted: 03/03/2019] [Indexed: 01/19/2023]
Abstract
We previously demonstrated that Bmi1 deficiency leads to osteoporosis phenotype by inhibiting the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs), but it is unclear whether overexpression of Bmi1 in MSCs stimulates skeletal development and rescues Bmi1 deficiency-induced osteoporosis. To answer this question, we constructed transgenic mice (Bmi1Tg ) that overexpressed Bmi1 driven by the Prx1 gene and analyzed their skeletal phenotype differences with that of wild-type littermates. We then hybridized Bmi1Tg to Bmi1-/- mice to generate Bmi1-/- mice overexpressing Bmi1 in MSCs and compared their skeletal phenotypes with those of Bmi1-/- and wild-type mice using imaging, histopathological, immunohistochemical, histomorphometric, cellular, and molecular methods. Bmi1Tg mice exhibited enhanced bone growth and osteoblast formation, including the augmentation of bone size, cortical and trabecular volume, number of osteoblasts, alkaline phosphatase (ALP)-positive and type I collagen-positive areas, number of total colony forming unit fibroblasts (CFU-f) and ALP+ CFU-f, and osteogenic gene expression levels. Consistently, MSC overexpressing Bmi1 in the Bmi1-/- background not only largely reversed Bmi1 systemic deficiency-induced skeletal growth retardation and osteoporosis, but also partially reversed Bmi1 deficiency-induced systemic growth retardation and premature aging. To further explore the mechanism of action of MSCs overexpressing Bmi1 in antiosteoporosis and antiaging, we examined changes in oxidative stress and expression levels of p16 and p19. Our results showed that overexpression of Bmi1 in MSCs inhibited oxidative stress and downregulated p16 and p19. Taken together, the results of this study indicate that overexpression of Bmi1 in MSCs exerts antiaging and antiosteoporosis effects by inactivating p16/p19 signaling and inhibiting oxidative stress. Stem Cells 2019;37:1200-1211.
Collapse
Affiliation(s)
- Guangpei Chen
- Department of Human Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying Zhang
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Anatomy, Histology, and Embryology, Suzhou Health and Technology College, Suzhou, People's Republic of China
| | - Shuxiang Yu
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wen Sun
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China
| | - Dengshun Miao
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China.,The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
83
|
Sullivan MR, Vander Heiden MG. Determinants of nutrient limitation in cancer. Crit Rev Biochem Mol Biol 2019; 54:193-207. [PMID: 31162937 PMCID: PMC6715536 DOI: 10.1080/10409238.2019.1611733] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
Proliferation requires that cells accumulate sufficient biomass to grow and divide. Cancer cells within tumors must acquire a variety of nutrients, and tumor growth slows or stops if necessary metabolites are not obtained in sufficient quantities. Importantly, the metabolic demands of cancer cells can be different from those of untransformed cells, and nutrient accessibility in tumors is different than in many normal tissues. Thus, cancer cell survival and proliferation may be limited by different metabolic factors than those that are necessary to maintain noncancerous cells. Understanding the variables that dictate which nutrients are critical to sustain tumor growth may identify vulnerabilities that could be used to treat cancer. This review examines the various cell-autonomous, local, and systemic factors that determine which nutrients are limiting for tumor growth.
Collapse
Affiliation(s)
- Mark R Sullivan
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology , Cambridge , MA , USA
- Dana-Farber Cancer Institute , Boston , MA , USA
| |
Collapse
|
84
|
Detection and Correlation of Single and Concomitant TP53, PTEN, and CDKN2A Alterations in Gliomas. Int J Mol Sci 2019; 20:ijms20112658. [PMID: 31151164 PMCID: PMC6600458 DOI: 10.3390/ijms20112658] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022] Open
Abstract
Gliomas are the most frequent primary tumors of central nervous system and represent a heterogeneous group of tumors that originates from the glial cells. TP53, PTEN, and CDKN2A are important tumor suppressor genes that encode proteins involved in sustaining cellular homeostasis by different signaling pathways. Though genetic alterations in these genes play a significant role in tumorigenesis, few studies are available regarding the incidence and relation of concomitant TP53, PTEN, and CDKN2A alterations in gliomas. The purpose of this study was to evaluate the occurrence of mutation and deletion in these genes, through single-strand conformational polymorphism, array-comparative genomic hybridization, and fluorescence in situ hybridization techniques, in 69 gliomas samples. Molecular results demonstrated a significant higher prevalence of TP53, PTEN, and CDKN2A alterations in astrocytoma than other tumor subtypes, and heterozygous deletion was the most frequent event. In addition, a significant association was observed between TP53 and CDKN2A alterations (p = 0.0424), which tend to coexist in low grade astrocytomas (5/46 cases (10.9%)), suggesting that they are early events in development of these tumors, and PTEN and CDKN2A deletions (p = 0.0022), which occurred concomitantly in 9/50 (18%) patients, with CDKN2A changes preceding PTEN deletions, present preferably in high-grade gliomas.
Collapse
|
85
|
Kalpana B, Murthy DK, Balakrishna N, Aiyengar MT. Genetic variants of chromosome 9p21.3 region associated with coronary artery disease and premature coronary artery disease in an Asian Indian population. Indian Heart J 2019; 71:263-271. [PMID: 31543200 PMCID: PMC6796635 DOI: 10.1016/j.ihj.2019.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/01/2019] [Accepted: 04/26/2019] [Indexed: 01/29/2023] Open
Abstract
INTRODUCTION Asian Indians have a propensity for premature, severe, and diffuse coronary artery disease (CAD). Several single-nucleotide polymorphisms (SNPs) in the 'core CAD' region of the chromosomal region 9p21.3 are known to be strongly associated with CAD. OBJECTIVES We aimed to study SNPs in the 9p21.3 region associated with CAD and premature CAD and identify their association with demographic and clinical characteristics in an Asian Indian population. METHODS SNP genotyping was performed for 30 SNPs of the 9p21.3 region using MassARRAY® technology. Along with demographic and SNP data analysis, we also performed multivariate logistic regression analysis and multifactor dimensionality reduction analysis to study SNP-SNP and SNP-demographic/clinical variable interactions. RESULTS Our results suggest that females are at a higher risk of premature CAD. We found that SNPs rs1333045 (CC), rs16905599 (AA), rs2383206 (GG), rs2383208 (AG), and rs4977574 (GG) were significantly associated with premature CAD. When adjusted for covariates/confounders, we found that rs2383206 showed the strongest risk association with CAD followed by rs16905599 and rs2383208. Further, SNPs rs1333049 (CC) and rs4977574 (GG) were found to be exclusively associated with premature CAD cases, suggesting their potential as genetic markers for premature CAD in the local population. Upon gender-based stratification, it was found that rs10757272 (TT and TC) is significantly associated with eightfold to ninefold CAD risk specifically among females. SNP rs7865618 (GG) is significantly associated with more than 2.5-fold CAD risk specifically among males. CONCLUSION Our study suggests that SNPs at the 9p21 risk locus may be used to generate a reliable genetic risk score along with markers at other loci.
Collapse
Affiliation(s)
- Bellary Kalpana
- Department of Genetics & Biotechnology, Bhavan's Vivekananda College, Sainikpuri, Secunderabad 500094, Telangana State, India.
| | - Dwarkanath K Murthy
- Department of Genetics & Biotechnology, Osmania University, Hyderabad 500007, Telangana State, India.
| | - Nagalla Balakrishna
- Division of Biostatistics, National Institute of Nutrition, Hyderabad 500007, Telangana State, India.
| | - Mohini T Aiyengar
- Department of Genetics & Biotechnology, Bhavan's Vivekananda College, Sainikpuri, Secunderabad 500094, Telangana State, India.
| |
Collapse
|
86
|
Turi Z, Lacey M, Mistrik M, Moudry P. Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging (Albany NY) 2019; 11:2512-2540. [PMID: 31026227 PMCID: PMC6520011 DOI: 10.18632/aging.101922] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
The biosynthesis of ribosomes is a complex process that requires the coordinated action of many factors and a huge energy investment from the cell. Ribosomes are essential for protein production, and thus for cellular survival, growth and proliferation. Ribosome biogenesis is initiated in the nucleolus and includes: the synthesis and processing of ribosomal RNAs, assembly of ribosomal proteins, transport to the cytoplasm and association of ribosomal subunits. The disruption of ribosome biogenesis at various steps, with either increased or decreased expression of different ribosomal components, can promote cell cycle arrest, senescence or apoptosis. Additionally, interference with ribosomal biogenesis is often associated with cancer, aging and age-related degenerative diseases. Here, we review current knowledge on impaired ribosome biogenesis, discuss the main factors involved in stress responses under such circumstances and focus on examples with clinical relevance.
Collapse
Affiliation(s)
- Zsofia Turi
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Matthew Lacey
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Pavel Moudry
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
87
|
Urbach A, Witte OW. Divide or Commit - Revisiting the Role of Cell Cycle Regulators in Adult Hippocampal Neurogenesis. Front Cell Dev Biol 2019; 7:55. [PMID: 31069222 PMCID: PMC6491688 DOI: 10.3389/fcell.2019.00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022] Open
Abstract
The adult dentate gyrus continuously generates new neurons that endow the brain with increased plasticity, helping to cope with changing environmental and cognitive demands. The process leading to the birth of new neurons spans several precursor stages and is the result of a coordinated series of fate decisions, which are tightly controlled by extrinsic signals. Many of these signals act through modulation of cell cycle (CC) components, not only to drive proliferation, but also for linage commitment and differentiation. In this review, we provide a comprehensive overview on key CC components and regulators, with emphasis on G1 phase, and analyze their specific functions in precursor cells of the adult hippocampus. We explore their role for balancing quiescence versus self-renewal, which is essential to maintain a lifelong pool of neural stem cells while producing new neurons “on demand.” Finally, we discuss available evidence and controversies on the impact of CC/G1 length on proliferation versus differentiation decisions.
Collapse
Affiliation(s)
- Anja Urbach
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
88
|
Chenlo M, Rodriguez-Gomez IA, Serramito R, Garcia-Rendueles AR, Villar-Taibo R, Fernandez-Rodriguez E, Perez-Romero S, Suarez-Fariña M, Garcia-Allut A, Cabezas-Agricola JM, Rodriguez-Garcia J, Lear PV, Alvarez-San Martin RM, Alvarez-Escola C, Bernabeu I, Alvarez CV. Unmasking a new prognostic marker and therapeutic target from the GDNF-RET/PIT1/p14ARF/p53 pathway in acromegaly. EBioMedicine 2019; 43:537-552. [PMID: 30975543 PMCID: PMC6562173 DOI: 10.1016/j.ebiom.2019.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/29/2022] Open
Abstract
Background Acromegaly is produced by excess growth hormone secreted by a pituitary adenoma of somatotroph cells (ACRO). First-line therapy, surgery and adjuvant therapy with somatostatin analogs, fails in 25% of patients. There is no predictive factor of resistance to therapy. New therapies are investigated using few dispersed tumor cells in acute primary cultures in standard conditions where the cells do not grow, or using rat pituitary cell lines that do not maintain the full somatotroph phenotype. The RET/PIT1/p14ARF/p53 pathway regulates apoptosis in normal pituitary somatotrophs whereas the RET/GDNF pathway regulates survival, controlling PIT1 levels and blocking p14ARF (ARF) and p53 expression. Methods We investigated these two RET pathways in a prospective series of 32 ACRO and 63 non-functioning pituitary adenomas (NFPA), studying quantitative RNA and protein gene expression for molecular-clinical correlations and how the RET pathway might be implicated in therapeutic success. Clinical data was collected during post-surgical follow-up. We also established new'humanized’ pituitary cultures, allowing 20 repeated passages and maintaining the pituitary secretory phenotype, and tested five multikinase inhibitors (TKI: Vandetanib, Lenvatinib, Sunitinib, Cabozantinib and Sorafenib) potentially able to act on the GDNF-induced RET dimerization/survival pathway. Antibody arrays investigated intracellular molecular pathways. Findings In ACRO, there was specific enrichment of all genes in both RET pathways, especially GDNF. ARF and GFRA4 gene expression were found to be opposing predictors of response to first-line therapy. ARF cut-off levels, calculated categorizing by GNAS mutation, were predictive of good response (above) or resistance (below) to therapy months later. Sorafenib, through AMPK, blocked the GDNF/AKT survival action without altering the RET apoptotic pathway. Interpretation Tumor ARF mRNA expression measured at the time of the surgery is a prognosis factor in acromegaly. The RET inhibitor, Sorafenib, is proposed as a potential treatment for resistant ACRO. Fund This project was supported by national grants from Agencia Estatal de Investigación (AEI) and Instituto Investigación Carlos III, with participation of European FEDER funds, to IB (PI150056) and CVA (BFU2016-76973-R). It was also supported initially by a grant from the Investigator Initiated Research (IIR) Program (WI177773) and by a non-restricted Research Grant from Pfizer Foundation to IB. Some of the pituitary acromegaly samples were collected in the framework of the Spanish National Registry of Acromegaly (REMAH), partially supported by an unrestricted grant from Novartis to the Spanish Endocrine Association (SEEN). CVA is also supported from a grant of Medical Research Council UK MR/M018539/1.
Collapse
Affiliation(s)
- Miguel Chenlo
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Iria A Rodriguez-Gomez
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Santiago de Compostela, Spain; Servicio de Endocrinología y Nutrición, Hospital HM Modelo, A Coruña, Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Ramon Serramito
- Servicio de Neurocirugía, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Angela R Garcia-Rendueles
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Rocío Villar-Taibo
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Eva Fernandez-Rodriguez
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario de Ourense, Spain
| | - Sihara Perez-Romero
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Maria Suarez-Fariña
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Alfredo Garcia-Allut
- Servicio de Neurocirugía, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Jose M Cabezas-Agricola
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Javier Rodriguez-Garcia
- Servicio de Análisis Clínicos, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Pamela V Lear
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, United Kingdom
| | | | | | - Ignacio Bernabeu
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain.
| | - Clara V Alvarez
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Spain; Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
89
|
García-Gutiérrez L, Delgado MD, León J. MYC Oncogene Contributions to Release of Cell Cycle Brakes. Genes (Basel) 2019; 10:E244. [PMID: 30909496 PMCID: PMC6470592 DOI: 10.3390/genes10030244] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Promotion of the cell cycle is a major oncogenic mechanism of the oncogene c-MYC (MYC). MYC promotes the cell cycle by not only activating or inducing cyclins and CDKs but also through the downregulation or the impairment of the activity of a set of proteins that act as cell-cycle brakes. This review is focused on the role of MYC as a cell-cycle brake releaser i.e., how MYC stimulates the cell cycle mainly through the functional inactivation of cell cycle inhibitors. MYC antagonizes the activities and/or the expression levels of p15, ARF, p21, and p27. The mechanism involved differs for each protein. p15 (encoded by CDKN2B) and p21 (CDKN1A) are repressed by MYC at the transcriptional level. In contrast, MYC activates ARF, which contributes to the apoptosis induced by high MYC levels. At least in some cells types, MYC inhibits the transcription of the p27 gene (CDKN1B) but also enhances p27's degradation through the upregulation of components of ubiquitin ligases complexes. The effect of MYC on cell-cycle brakes also opens the possibility of antitumoral therapies based on synthetic lethal interactions involving MYC and CDKs, for which a series of inhibitors are being developed and tested in clinical trials.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
- Current address: Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| | - María Dolores Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
| |
Collapse
|
90
|
Fontana R, Ranieri M, La Mantia G, Vivo M. Dual Role of the Alternative Reading Frame ARF Protein in Cancer. Biomolecules 2019; 9:E87. [PMID: 30836703 PMCID: PMC6468759 DOI: 10.3390/biom9030087] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
The CDKN2a/ARF locus expresses two partially overlapping transcripts that encode two distinct proteins, namely p14ARF (p19Arf in mouse) and p16INK4a, which present no sequence identity. Initial data obtained in mice showed that both proteins are potent tumor suppressors. In line with a tumor-suppressive role, ARF-deficient mice develop lymphomas, sarcomas, and adenocarcinomas, with a median survival rate of one year of age. In humans, the importance of ARF inactivation in cancer is less clear whereas a more obvious role has been documented for p16INK4a. Indeed, many alterations in human tumors result in the elimination of the entire locus, while the majority of point mutations affect p16INK4a. Nevertheless, specific mutations of p14ARF have been described in different types of human cancers such as colorectal and gastric carcinomas, melanoma and glioblastoma. The activity of the tumor suppressor ARF has been shown to rely on both p53-dependent and independent functions. However, novel data collected in the last years has challenged the traditional and established role of this protein as a tumor suppressor. In particular, tumors retaining ARF expression evolve to metastatic and invasive phenotypes and in humans are associated with a poor prognosis. In this review, the recent evidence and the molecular mechanisms of a novel role played by ARF will be presented and discussed, both in pathological and physiological contexts.
Collapse
Affiliation(s)
- Rosa Fontana
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Michela Ranieri
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA.
| | - Girolama La Mantia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Maria Vivo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| |
Collapse
|
91
|
Lorenzo-Orts L, Witthoeft J, Deforges J, Martinez J, Loubéry S, Placzek A, Poirier Y, Hothorn LA, Jaillais Y, Hothorn M. Concerted expression of a cell cycle regulator and a metabolic enzyme from a bicistronic transcript in plants. NATURE PLANTS 2019; 5:184-193. [PMID: 30737513 DOI: 10.1038/s41477-019-0358-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/04/2019] [Indexed: 05/15/2023]
Abstract
Eukaryotic mRNAs frequently contain upstream open reading frames (uORFs), encoding small peptides that may control translation of the main ORF (mORF). Here, we report the characterization of a distinct bicistronic transcript in Arabidopsis. We analysed loss-of-function phenotypes of the inorganic polyphosphatase TRIPHOSPHATE TUNNEL METALLOENZYME 3 (AtTTM3), and found that catalytically inactive versions of the enzyme could fully complement embryo and growth-related phenotypes. We could rationalize these puzzling findings by characterizing a uORF in the AtTTM3 locus encoding CELL DIVISION CYCLE PROTEIN 26 (CDC26), an orthologue of the cell cycle regulator. We demonstrate that AtCDC26 is part of the plant anaphase promoting complex/cyclosome (APC/C), regulates accumulation of APC/C target proteins and controls cell division, growth and embryo development. AtCDC26 and AtTTM3 are translated from a single transcript conserved across the plant lineage. While there is no apparent biochemical connection between the two gene products, AtTTM3 coordinates AtCDC26 translation by recruiting the transcript into polysomes. Our work highlights that uORFs may encode functional proteins in plant genomes.
Collapse
Affiliation(s)
- Laura Lorenzo-Orts
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.
| | - Janika Witthoeft
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Jules Deforges
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Jacobo Martinez
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Sylvain Loubéry
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Aleksandra Placzek
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Ludwig A Hothorn
- Institute of Biostatistics, Leibniz University, Hannover, Germany
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.
| |
Collapse
|
92
|
Bertschmann J, Thalappilly S, Riabowol K. The ING1a model of rapid cell senescence. Mech Ageing Dev 2019; 177:109-117. [DOI: 10.1016/j.mad.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/21/2018] [Accepted: 06/16/2018] [Indexed: 12/17/2022]
|
93
|
Abstract
Arf levels are tightly regulated in cells and correlate with the level of ribosome biogenesis and proliferative status of cells. Through multivalent interactions with NPM1 - a regulator of ribosome biogenesis, and Mdm2 - a regulator of cellular fate, Arf integrates within the nucleolar matrix, altering its structure, dynamics and function and therefore modulates the cell cycle.
Collapse
Affiliation(s)
- Diana M Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN, USA
| |
Collapse
|
94
|
Subat S, Inamura K, Ninomiya H, Nagano H, Okumura S, Ishikawa Y. Unique MicroRNA and mRNA Interactions in EGFR-Mutated Lung Adenocarcinoma. J Clin Med 2018; 7:E419. [PMID: 30404194 PMCID: PMC6262391 DOI: 10.3390/jcm7110419] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022] Open
Abstract
The EGFR gene was one of the first molecules to be selected for targeted gene therapy. EGFR-mutated lung adenocarcinoma, which is responsive to EGFR inhibitors, is characterized by a distinct oncogenic pathway in which unique microRNA (miRNA)⁻mRNA interactions have been observed. However, little information is available about the miRNA⁻mRNA regulatory network involved. Both miRNA and mRNA expression profiles were investigated using microarrays in 155 surgically resected specimens of lung adenocarcinoma with a known EGFR mutation status (52 mutated and 103 wild-type cases). An integrative analysis of the data was performed to identify the unique miRNA⁻mRNA regulatory network in EGFR-mutated lung adenocarcinoma. Expression profiling of miRNAs and mRNAs yielded characteristic miRNA/mRNA signatures (19 miRNAs/431 mRNAs) in EGFR-mutated lung adenocarcinoma. Five of the 19 miRNAs were previously listed as EGFR-mutation-specific miRNAs (i.e., miR-532-3p, miR-500a-3p, miR-224-5p, miR-502-3p, and miR-532-5p). An integrative analysis of miRNA and mRNA expression revealed a refined list of putative miRNA⁻mRNA interactions, of which 63 were potentially involved in EGFR-mutated tumors. Network structural analysis provided a comprehensive view of the complex miRNA⁻mRNA interactions in EGFR-mutated lung adenocarcinoma, including DUSP4 and MUC4 axes. Overall, this observational study provides insight into the unique miRNA⁻mRNA regulatory network present in EGFR-mutated tumors. Our findings, if validated, would inform future research examining the interplay of miRNAs and mRNAs in EGFR-mutated lung adenocarcinoma.
Collapse
Affiliation(s)
- Sophia Subat
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ward, Tokyo 135-8550, Japan.
| | - Kentaro Inamura
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ward, Tokyo 135-8550, Japan.
| | - Hironori Ninomiya
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ward, Tokyo 135-8550, Japan.
| | - Hiroko Nagano
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ward, Tokyo 135-8550, Japan.
| | - Sakae Okumura
- Department of Thoracic Surgical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ward, Tokyo 135-8550, Japan.
| | - Yuichi Ishikawa
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ward, Tokyo 135-8550, Japan.
| |
Collapse
|
95
|
Rambau PF, Vierkant RA, Intermaggio MP, Kelemen LE, Goodman MT, Herpel E, Pharoah PD, Kommoss S, Jimenez‐Linan M, Karlan BY, Gentry‐Maharaj A, Menon U, Polo SH, Candido dos Reis FJ, Doherty JA, Gayther SA, Sharma R, Larson MC, Harnett PR, Hatfield E, de Andrade JM, Nelson GS, Steed H, Schildkraut JM, Carney ME, Høgdall E, Whittemore AS, Widschwendter M, Kennedy CJ, Wang F, Wang Q, Wang C, Armasu SM, Daley F, Coulson P, Jones ME, Anglesio MS, Chow C, de Fazio A, García‐Closas M, Brucker SY, Cybulski C, Harris HR, Hartkopf AD, Huzarski T, Jensen A, Lubiński J, Oszurek O, Benitez J, Mina F, Staebler A, Taran FA, Pasternak J, Talhouk A, Rossing MA, Hendley J, Edwards RP, Fereday S, Modugno F, Ness RB, Sieh W, El‐Bahrawy MA, Winham SJ, Lester J, Kjaer SK, Gronwald J, Sinn P, Fasching PA, Chang‐Claude J, Moysich KB, Bowtell DD, Hernandez BY, Luk H, Behrens S, Shah M, Jung A, Ghatage P, Alsop J, Alsop K, García‐Donas J, Thompson PJ, Swerdlow AJ, Karpinskyj C, Cazorla‐Jiménez A, García MJ, Deen S, Wilkens LR, Palacios J, Berchuck A, Koziak JM, Brenton JD, Cook LS, Goode EL, Huntsman DG, Ramus SJ, Köbel M. Association of p16 expression with prognosis varies across ovarian carcinoma histotypes: an Ovarian Tumor Tissue Analysis consortium study. J Pathol Clin Res 2018; 4:250-261. [PMID: 30062862 PMCID: PMC6174617 DOI: 10.1002/cjp2.109] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 12/24/2022]
Abstract
We aimed to validate the prognostic association of p16 expression in ovarian high-grade serous carcinomas (HGSC) and to explore it in other ovarian carcinoma histotypes. p16 protein expression was assessed by clinical-grade immunohistochemistry in 6525 ovarian carcinomas including 4334 HGSC using tissue microarrays from 24 studies participating in the Ovarian Tumor Tissue Analysis consortium. p16 expression patterns were interpreted as abnormal (either overexpression referred to as block expression or absence) or normal (heterogeneous). CDKN2A (which encodes p16) mRNA expression was also analyzed in a subset (n = 2280) mostly representing HGSC (n = 2010). Association of p16 expression with overall survival (OS) was determined within histotypes as was CDKN2A expression for HGSC only. p16 block expression was most frequent in HGSC (56%) but neither protein nor mRNA expression was associated with OS. However, relative to heterogeneous expression, block expression was associated with shorter OS in endometriosis-associated carcinomas, clear cell [hazard ratio (HR): 2.02, 95% confidence (CI) 1.47-2.77, p < 0.001] and endometrioid (HR: 1.88, 95% CI 1.30-2.75, p = 0.004), while absence was associated with shorter OS in low-grade serous carcinomas (HR: 2.95, 95% CI 1.61-5.38, p = 0.001). Absence was most frequent in mucinous carcinoma (50%), and was not associated with OS in this histotype. The prognostic value of p16 expression is histotype-specific and pattern dependent. We provide definitive evidence against an association of p16 expression with survival in ovarian HGSC as previously suggested. Block expression of p16 in clear cell and endometrioid carcinoma should be further validated as a prognostic marker, and absence in low-grade serous carcinoma justifies CDK4 inhibition.
Collapse
Affiliation(s)
- Peter F Rambau
- Department of Pathology and Laboratory MedicineUniversity of Calgary, Foothills Medical CenterCalgaryABCanada
- Pathology DepartmentCatholic University of Health and Allied Sciences‐BugandoMwanzaTanzania
| | - Robert A Vierkant
- Department of Health Sciences Research, Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMNUSA
| | - Maria P Intermaggio
- School of Women's and Children's HealthFaculty of Medicine, University of NSW SydneySydneyNSWAustralia
| | - Linda E Kelemen
- Department of Public Health SciencesMedical University of South CarolinaCharlestonSCUSA
| | - Marc T Goodman
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Esther Herpel
- National Center for Tumor Diseases, University of HeidelbergHeidelbergGermany
| | - Paul D Pharoah
- Centre for Cancer Genetic Epidemiology, Department of OncologyUniversity of CambridgeCambridgeUK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Stefan Kommoss
- Department of Women's HealthTübingen University HospitalTübingenGermany
| | | | - Beth Y Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Aleksandra Gentry‐Maharaj
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College LondonLondonUK
| | - Usha Menon
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College LondonLondonUK
| | | | - Francisco J Candido dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
| | - Jennifer Anne Doherty
- Department of Population Health SciencesHuntsman Cancer Institute, University of UtahSalt Lake CityUTUSA
| | - Simon A Gayther
- Department of Preventive Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Center for Cancer Prevention and Translational GenomicsSamuel Oschin Comprehensive Cancer Institute, Cedars‐Sinai Medical CenterLos AngelesCAUSA
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Raghwa Sharma
- Pathology West ICPMR WestmeadWestmead Hospital, The University of SydneySydneyNSWAustralia
- University of Western Sydney at Westmead HospitalWestmeadNSWAustralia
| | - Melissa C Larson
- Department of Health Sciences Research, Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMNUSA
| | - Paul R Harnett
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of SydneySydneyNSWAustralia
- The Crown Princess Mary Cancer Centre Westmead, Sydney‐West Cancer Network, Westmead HospitalSydneyNSWAustralia
| | - Emma Hatfield
- Department of Pathology and Laboratory MedicineUniversity of Calgary, Foothills Medical CenterCalgaryABCanada
| | - Jurandyr M de Andrade
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
| | - Gregg S Nelson
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - Helen Steed
- Department of Obstetrics and Gynecology, Division of Gynecologic OncologyRoyal Alexandra HospitalEdmontonABCanada
| | | | - Micheal E Carney
- John A. Burns School of Medicine, Department of Obstetrics and GynecologyUniversity of HawaiiHonoluluHIUSA
| | - Estrid Høgdall
- Department of Virus, Lifestyle and GenesDanish Cancer Society Research CenterCopenhagenDenmark
- Molecular Unit, Department of PathologyHerlev Hospital, University of CopenhagenCopenhagenDenmark
| | - Alice S Whittemore
- Department of Health Research and Policy – EpidemiologyStanford University School of MedicineStanfordCAUSA
- Department of Biomedical Data ScienceStanford University School of MedicineStanfordCAUSA
| | - Martin Widschwendter
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College LondonLondonUK
| | - Catherine J Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of SydneySydneyNSWAustralia
- Department of Gynaecological OncologyWestmead HospitalSydneyNSWAustralia
| | - Frances Wang
- Cancer Control and Population SciencesDuke Cancer InstituteDurhamNCUSA
- Department of Community and Family MedicineDuke University Medical CenterDurhamNCUSA
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Chen Wang
- Department of Health Sciences ResearchMayo ClinicRochesterMNUSA
| | - Sebastian M Armasu
- Department of Health Sciences Research, Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMNUSA
| | - Frances Daley
- Division of Breast Cancer ResearchInstitute of Cancer ResearchLondonUK
- Division of BioscienceBrunel UniversityLondonUK
| | - Penny Coulson
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Micheal E Jones
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Micheal S Anglesio
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Christine Chow
- Genetic Pathology Evaluation Centre, Vancouver General Hospital and University of British ColumbiaVancouverBCCanada
| | - Anna de Fazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of SydneySydneyNSWAustralia
- Department of Gynaecological OncologyWestmead HospitalSydneyNSWAustralia
| | - Montserrat García‐Closas
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMDUSA
| | - Sara Y Brucker
- Department of Gynecology and ObstetricsUniversity of TübingenTübingenGermany
| | - Cezary Cybulski
- Department of Genetics and PathologyPomeranian Medical UniversitySzczecinPoland
| | - Holly R Harris
- Program in Epidemiology, Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleWAUSA
- Department of Environmental Medicine, Division of Nutritional EpidemiologyKarolinska InstitutetStockholmSweden
| | | | - Tomasz Huzarski
- Department of Genetics and PathologyPomeranian Medical UniversitySzczecinPoland
| | - Allan Jensen
- Department of Virus, Lifestyle and GenesDanish Cancer Society Research CenterCopenhagenDenmark
| | - Jan Lubiński
- Department of Genetics and PathologyPomeranian Medical UniversitySzczecinPoland
| | - Oleg Oszurek
- International Hereditary Cancer Center, Department of Genetics and PathologyPomeranian Medical UniversitySzczecinPoland
| | - Javier Benitez
- Human Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
- Biomedical Network on Rare Diseases (CIBERER)MadridSpain
| | - Fady Mina
- Department of Pathology and Laboratory MedicineUniversity of Calgary, Foothills Medical CenterCalgaryABCanada
| | - Annette Staebler
- Institute of Pathology, Tübingen University HospitalTübingenGermany
| | | | - Jana Pasternak
- Department of Women's HealthTübingen University HospitalTübingenGermany
| | - Aline Talhouk
- British Columbia's Ovarian Cancer Research (OVCARE) ProgramVancouver General Hospital, BC Cancer Agency and University of British ColumbiaVancouverBCCanada
| | - Mary Anne Rossing
- Program in Epidemiology, Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleWAUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
| | - Joy Hendley
- Department of Research, Cancer Genomics and GeneticsPeter MacCallum Cancer CenterMelbourneVICAustralia
| | - AOCS Group
- Peter MacCallum Cancer CenterMelbourneVICAustralia
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Robert P Edwards
- Ovarian Cancer Center of Excellence, Womens Cancer Research ProgramMagee‐Womens Research Institute and University of Pittsburgh Cancer InstitutePittsburghPAUSA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Sian Fereday
- Department of Research, Cancer Genomics and GeneticsPeter MacCallum Cancer CenterMelbourneVICAustralia
| | - Francesmary Modugno
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Womens Cancer Research Center, Magee‐Womens Research Institute and Hillman Cancer CenterPittsburghPAUSA
| | - Roberta B Ness
- University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Weiva Sieh
- Department of Genetics and Genomic Sciences, Department of Population Health Science and Policy, Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Mona A El‐Bahrawy
- Department of Histopathology, Imperial College LondonHammersmith HospitalLondonUK
| | - Stacey J Winham
- Department of Health Sciences Research, Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMNUSA
| | - Jenny Lester
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Susanne K Kjaer
- Department of Virus, Lifestyle and GenesDanish Cancer Society Research CenterCopenhagenDenmark
- Department of Gynaecology, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Jacek Gronwald
- Department of Genetics and PathologyPomeranian Medical UniversitySzczecinPoland
| | - Peter Sinn
- Department of PathologyInstitute of Pathology, University Hospital HeidelbergHeidelbergGermany
| | - Peter A Fasching
- David Geffen School of Medicine, Department of Medicine Division of Hematology and OncologyUniversity of California at Los AngelesLos AngelesCAUSA
- Department of Gynecology and ObstetricsComprehensive Cancer Center ER‐EMN, University Hospital Erlangen, Friedrich‐Alexander‐University Erlangen‐NurembergErlangenGermany
| | - Jenny Chang‐Claude
- Division of Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Cancer Epidemiology GroupUniversity Cancer Center Hamburg (UCCH), University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Kirsten B Moysich
- Division of Cancer Prevention and ControlRoswell Park Cancer InstituteBuffaloNYUSA
| | - David D Bowtell
- Department of Research, Cancer Genomics and GeneticsPeter MacCallum Cancer CenterMelbourneVICAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVICAustralia
| | - Brenda Y Hernandez
- Cancer Epidemiology ProgramUniversity of Hawaii Cancer CenterHonoluluHIUSA
| | - Hugh Luk
- Cancer Epidemiology ProgramUniversity of Hawaii Cancer CenterHonoluluHIUSA
| | - Sabine Behrens
- Division of Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of OncologyUniversity of CambridgeCambridgeUK
| | - Audrey Jung
- Division of Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Prafull Ghatage
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of OncologyUniversity of CambridgeCambridgeUK
| | - Kathryn Alsop
- Department of Research, Cancer Genomics and GeneticsPeter MacCallum Cancer CenterMelbourneVICAustralia
| | - Jesús García‐Donas
- Medical Oncology ServiceHM Hospitales – Centro Integral Oncológico HM Clara CampalMadridSpain
| | - Pamela J Thompson
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Anthony J Swerdlow
- Division of Genetics and EpidemiologyThe Institute of Cancer ResearchLondonUK
- Division of Breast Cancer ResearchThe Institute of Cancer ResearchLondonUK
| | - Chloe Karpinskyj
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College LondonLondonUK
| | | | - María J García
- Human Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
- Biomedical Network on Rare Diseases (CIBERER)MadridSpain
| | - Susha Deen
- Department of HistopathologyQueen's Medical Centre, Nottingham University Hospitals NHS TrustNottinghamUK
| | - Lynne R Wilkens
- Cancer Epidemiology ProgramUniversity of Hawaii Cancer CenterHonoluluHIUSA
| | - José Palacios
- Pathology Department, IRYCIS, CIBERONCUniversidad de Alcalá, Hospital Universitario Ramón y CajalMadridSpain
| | - Andrew Berchuck
- Department of Obstetrics and GynecologyDuke University Medical CenterDurhamNCUSA
| | | | - James D Brenton
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUK
| | - Linda S Cook
- University of New Mexico Health Sciences Center, University of New MexicoAlbuquerqueNMUSA
- Department of Cancer Epidemiology and Prevention ResearchAlberta Health ServicesCalgaryABCanada
| | - Ellen L Goode
- Department of Health Science Research, Division of EpidemiologyMayo ClinicRochesterMNUSA
| | - David G Huntsman
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- British Columbia's Ovarian Cancer Research (OVCARE) ProgramVancouver General Hospital, BC Cancer Agency and University of British ColumbiaVancouverBCCanada
- Department of Molecular OncologyBC Cancer Agency Research CentreVancouverBCCanada
| | - Susan J Ramus
- School of Women's and Children's HealthFaculty of Medicine, University of NSW SydneySydneyNSWAustralia
- The Kinghorn Cancer Centre, Garvan Institute of Medical ResearchSydneyNSWAustralia
| | - Martin Köbel
- Department of Pathology and Laboratory MedicineUniversity of Calgary, Foothills Medical CenterCalgaryABCanada
| |
Collapse
|
96
|
Zorofchian S, El-Achi H, Yan Y, Esquenazi Y, Ballester LY. Characterization of genomic alterations in primary central nervous system lymphomas. J Neurooncol 2018; 140:509-517. [PMID: 30171453 DOI: 10.1007/s11060-018-2990-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/22/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Primary central nervous system lymphoma (PCNSL) is a non-Hodgkin lymphoma that affects the central nervous system (CNS). Although previous studies have reported the most common mutated genes in PCNSL, including MYD88 and CD79b, our understanding of genetic characterizations in primary CNS lymphomas is limited. The aim of this study was to perform a retrospective analysis investigating the most frequent mutation types, and their frequency, in PCNSL. METHODS Fifteen patients with a diagnosis of PCNSL from our institution were analyzed for mutations in 406 genes and rearrangements in 31 genes by next generation sequencing (NGS). RESULTS Missense mutations were identified as the most common mutation type (32%) followed by frame shift mutations (23%). The highest mutation rate was reported in the MYD88 (33.3%), CDKN2A/B (33.3%), and TP53 (26.7%) genes. Intermediate tumor mutation burden (TMB) and high TMB was detected in 13.3% and 26.7% of PCNSL, respectively. The most frequent gene rearrangement involved the IGH-BCL6 genes (20%). CONCLUSIONS This study shows the most common genetic alterations in PCNSL as determined by a commercial next generation sequencing assay. MYD88 and CD79b are frequently mutated in PCNSL, IGH-BCL6 is the most frequent gene rearrangement and approximately 1/4 of cases show a high TMB. Mutations in multiple genes, in addition to high TMB and gene rearrangements, highlights the complex molecular heterogeneity of PCNSL. Knowledge about genetic alterations in PCNSL can inform the development of novel targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Soheil Zorofchian
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA
| | - Hanadi El-Achi
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA
| | - Yuanqing Yan
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA.
| | - Leomar Y Ballester
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA. .,Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA.
| |
Collapse
|
97
|
Rambau PF, Vierkant RA, Intermaggio MP, Kelemen LE, Goodman MT, Herpel E, Pharoah PD, Kommoss S, Jimenez-Linan M, Karlan BY, Gentry-Maharaj A, Menon U, Polo SH, Candido Dos Reis FJ, Doherty JA, Gayther SA, Sharma R, Larson MC, Harnett PR, Hatfield E, de Andrade JM, Nelson GS, Steed H, Schildkraut JM, Carney ME, Høgdall E, Whittemore AS, Widschwendter M, Kennedy CJ, Wang F, Wang Q, Wang C, Armasu SM, Daley F, Coulson P, Jones ME, Anglesio MS, Chow C, de Fazio A, García-Closas M, Brucker SY, Cybulski C, Harris HR, Hartkopf AD, Huzarski T, Jensen A, Lubiński J, Oszurek O, Benitez J, Mina F, Staebler A, Taran FA, Pasternak J, Talhouk A, Rossing MA, Hendley J, Edwards RP, Fereday S, Modugno F, Ness RB, Sieh W, El-Bahrawy MA, Winham SJ, Lester J, Kjaer SK, Gronwald J, Sinn P, Fasching PA, Chang-Claude J, Moysich KB, Bowtell DD, Hernandez BY, Luk H, Behrens S, Shah M, Jung A, Ghatage P, Alsop J, Alsop K, García-Donas J, Thompson PJ, Swerdlow AJ, Karpinskyj C, Cazorla-Jiménez A, García MJ, Deen S, Wilkens LR, Palacios J, Berchuck A, Koziak JM, Brenton JD, Cook LS, Goode EL, Huntsman DG, Ramus SJ, Köbel M. Association of p16 expression with prognosis varies across ovarian carcinoma histotypes: an Ovarian Tumor Tissue Analysis consortium study. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2018. [PMID: 30062862 DOI: 10.1002/cjp2.109] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We aimed to validate the prognostic association of p16 expression in ovarian high-grade serous carcinomas (HGSC) and to explore it in other ovarian carcinoma histotypes. p16 protein expression was assessed by clinical-grade immunohistochemistry in 6525 ovarian carcinomas including 4334 HGSC using tissue microarrays from 24 studies participating in the Ovarian Tumor Tissue Analysis consortium. p16 expression patterns were interpreted as abnormal (either overexpression referred to as block expression or absence) or normal (heterogeneous). CDKN2A (which encodes p16) mRNA expression was also analyzed in a subset (n = 2280) mostly representing HGSC (n = 2010). Association of p16 expression with overall survival (OS) was determined within histotypes as was CDKN2A expression for HGSC only. p16 block expression was most frequent in HGSC (56%) but neither protein nor mRNA expression was associated with OS. However, relative to heterogeneous expression, block expression was associated with shorter OS in endometriosis-associated carcinomas, clear cell [hazard ratio (HR): 2.02, 95% confidence (CI) 1.47-2.77, p < 0.001] and endometrioid (HR: 1.88, 95% CI 1.30-2.75, p = 0.004), while absence was associated with shorter OS in low-grade serous carcinomas (HR: 2.95, 95% CI 1.61-5.38, p = 0.001). Absence was most frequent in mucinous carcinoma (50%), and was not associated with OS in this histotype. The prognostic value of p16 expression is histotype-specific and pattern dependent. We provide definitive evidence against an association of p16 expression with survival in ovarian HGSC as previously suggested. Block expression of p16 in clear cell and endometrioid carcinoma should be further validated as a prognostic marker, and absence in low-grade serous carcinoma justifies CDK4 inhibition.
Collapse
Affiliation(s)
- Peter F Rambau
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada.,Pathology Department, Catholic University of Health and Allied Sciences-Bugando, Mwanza, Tanzania
| | - Robert A Vierkant
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Maria P Intermaggio
- School of Women's and Children's Health, Faculty of Medicine, University of NSW Sydney, Sydney, NSW, Australia
| | - Linda E Kelemen
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Marc T Goodman
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Esther Herpel
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Paul D Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.,Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Stefan Kommoss
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | | | - Beth Y Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aleksandra Gentry-Maharaj
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Usha Menon
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Susanna Hernando Polo
- Medical Oncology Service, Hospital Universitario Funcación Alcorcón, Alcorcón, Spain
| | - Francisco J Candido Dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jennifer Anne Doherty
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Simon A Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Center for Cancer Prevention and Translational Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Raghwa Sharma
- Pathology West ICPMR Westmead, Westmead Hospital, The University of Sydney, Sydney, NSW, Australia.,University of Western Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - Melissa C Larson
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Paul R Harnett
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,The Crown Princess Mary Cancer Centre Westmead, Sydney-West Cancer Network, Westmead Hospital, Sydney, NSW, Australia
| | - Emma Hatfield
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Jurandyr M de Andrade
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gregg S Nelson
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Helen Steed
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Royal Alexandra Hospital, Edmonton, AB, Canada
| | - Joellen M Schildkraut
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Micheal E Carney
- John A. Burns School of Medicine, Department of Obstetrics and Gynecology, University of Hawaii, Honolulu, HI, USA
| | - Estrid Høgdall
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark.,Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Alice S Whittemore
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin Widschwendter
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Catherine J Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia
| | - Frances Wang
- Cancer Control and Population Sciences, Duke Cancer Institute, Durham, NC, USA.,Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Chen Wang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Sebastian M Armasu
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Frances Daley
- Division of Breast Cancer Research, Institute of Cancer Research, London, UK.,Division of Bioscience, Brunel University, London, UK
| | - Penny Coulson
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Micheal E Jones
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Micheal S Anglesio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christine Chow
- Genetic Pathology Evaluation Centre, Vancouver General Hospital and University of British Columbia, Vancouver, BC, Canada
| | - Anna de Fazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia
| | - Montserrat García-Closas
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK.,Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Sara Y Brucker
- Department of Gynecology and Obstetrics, University of Tübingen, Tübingen, Germany
| | - Cezary Cybulski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Holly R Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Environmental Medicine, Division of Nutritional Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas D Hartkopf
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Tomasz Huzarski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Allan Jensen
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Oleg Oszurek
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Javier Benitez
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Fady Mina
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Annette Staebler
- Institute of Pathology, Tübingen University Hospital, Tübingen, Germany
| | - Florin Andrei Taran
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Jana Pasternak
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Aline Talhouk
- British Columbia's Ovarian Cancer Research (OVCARE) Program, Vancouver General Hospital, BC Cancer Agency and University of British Columbia, Vancouver, BC, Canada
| | - Mary Anne Rossing
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Joy Hendley
- Department of Research, Cancer Genomics and Genetics, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | -
- Peter MacCallum Cancer Center, Melbourne, VIC, Australia.,Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Robert P Edwards
- Ovarian Cancer Center of Excellence, Womens Cancer Research Program, Magee-Womens Research Institute and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sian Fereday
- Department of Research, Cancer Genomics and Genetics, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Francesmary Modugno
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Womens Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA
| | - Roberta B Ness
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiva Sieh
- Department of Genetics and Genomic Sciences, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mona A El-Bahrawy
- Department of Histopathology, Imperial College London, Hammersmith Hospital, London, UK
| | - Stacey J Winham
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jenny Lester
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Susanne K Kjaer
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jacek Gronwald
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Peter Sinn
- Department of Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter A Fasching
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA.,Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kirsten B Moysich
- Division of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - David D Bowtell
- Department of Research, Cancer Genomics and Genetics, Peter MacCallum Cancer Center, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Brenda Y Hernandez
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Hugh Luk
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Prafull Ghatage
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Kathryn Alsop
- Department of Research, Cancer Genomics and Genetics, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Jesús García-Donas
- Medical Oncology Service, HM Hospitales - Centro Integral Oncológico HM Clara Campal, Madrid, Spain
| | - Pamela J Thompson
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.,Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Chloe Karpinskyj
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College London, London, UK
| | | | - María J García
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Susha Deen
- Department of Histopathology, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Lynne R Wilkens
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - José Palacios
- Pathology Department, IRYCIS, CIBERONC, Universidad de Alcalá, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | | | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Linda S Cook
- University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.,Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, AB, Canada
| | - Ellen L Goode
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia's Ovarian Cancer Research (OVCARE) Program, Vancouver General Hospital, BC Cancer Agency and University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Oncology, BC Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Susan J Ramus
- School of Women's and Children's Health, Faculty of Medicine, University of NSW Sydney, Sydney, NSW, Australia.,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| |
Collapse
|
98
|
Rambau PF, Vierkant RA, Intermaggio MP, Kelemen LE, Goodman MT, Herpel E, Pharoah PD, Kommoss S, Jimenez-Linan M, Karlan BY, Gentry-Maharaj A, Menon U, Polo SH, Candido Dos Reis FJ, Doherty JA, Gayther SA, Sharma R, Larson MC, Harnett PR, Hatfield E, de Andrade JM, Nelson GS, Steed H, Schildkraut JM, Carney ME, Høgdall E, Whittemore AS, Widschwendter M, Kennedy CJ, Wang F, Wang Q, Wang C, Armasu SM, Daley F, Coulson P, Jones ME, Anglesio MS, Chow C, de Fazio A, García-Closas M, Brucker SY, Cybulski C, Harris HR, Hartkopf AD, Huzarski T, Jensen A, Lubiński J, Oszurek O, Benitez J, Mina F, Staebler A, Taran FA, Pasternak J, Talhouk A, Rossing MA, Hendley J, Edwards RP, Fereday S, Modugno F, Ness RB, Sieh W, El-Bahrawy MA, Winham SJ, Lester J, Kjaer SK, Gronwald J, Sinn P, Fasching PA, Chang-Claude J, Moysich KB, Bowtell DD, Hernandez BY, Luk H, Behrens S, Shah M, Jung A, Ghatage P, Alsop J, Alsop K, García-Donas J, Thompson PJ, Swerdlow AJ, Karpinskyj C, Cazorla-Jiménez A, García MJ, Deen S, Wilkens LR, Palacios J, Berchuck A, Koziak JM, Brenton JD, Cook LS, Goode EL, Huntsman DG, Ramus SJ, Köbel M. Association of p16 expression with prognosis varies across ovarian carcinoma histotypes: an Ovarian Tumor Tissue Analysis consortium study. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2018. [PMID: 30062862 DOI: 10.1002/cjp2.109]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We aimed to validate the prognostic association of p16 expression in ovarian high-grade serous carcinomas (HGSC) and to explore it in other ovarian carcinoma histotypes. p16 protein expression was assessed by clinical-grade immunohistochemistry in 6525 ovarian carcinomas including 4334 HGSC using tissue microarrays from 24 studies participating in the Ovarian Tumor Tissue Analysis consortium. p16 expression patterns were interpreted as abnormal (either overexpression referred to as block expression or absence) or normal (heterogeneous). CDKN2A (which encodes p16) mRNA expression was also analyzed in a subset (n = 2280) mostly representing HGSC (n = 2010). Association of p16 expression with overall survival (OS) was determined within histotypes as was CDKN2A expression for HGSC only. p16 block expression was most frequent in HGSC (56%) but neither protein nor mRNA expression was associated with OS. However, relative to heterogeneous expression, block expression was associated with shorter OS in endometriosis-associated carcinomas, clear cell [hazard ratio (HR): 2.02, 95% confidence (CI) 1.47-2.77, p < 0.001] and endometrioid (HR: 1.88, 95% CI 1.30-2.75, p = 0.004), while absence was associated with shorter OS in low-grade serous carcinomas (HR: 2.95, 95% CI 1.61-5.38, p = 0.001). Absence was most frequent in mucinous carcinoma (50%), and was not associated with OS in this histotype. The prognostic value of p16 expression is histotype-specific and pattern dependent. We provide definitive evidence against an association of p16 expression with survival in ovarian HGSC as previously suggested. Block expression of p16 in clear cell and endometrioid carcinoma should be further validated as a prognostic marker, and absence in low-grade serous carcinoma justifies CDK4 inhibition.
Collapse
Affiliation(s)
- Peter F Rambau
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada.,Pathology Department, Catholic University of Health and Allied Sciences-Bugando, Mwanza, Tanzania
| | - Robert A Vierkant
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Maria P Intermaggio
- School of Women's and Children's Health, Faculty of Medicine, University of NSW Sydney, Sydney, NSW, Australia
| | - Linda E Kelemen
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Marc T Goodman
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Esther Herpel
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Paul D Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.,Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Stefan Kommoss
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | | | - Beth Y Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aleksandra Gentry-Maharaj
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Usha Menon
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Susanna Hernando Polo
- Medical Oncology Service, Hospital Universitario Funcación Alcorcón, Alcorcón, Spain
| | - Francisco J Candido Dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jennifer Anne Doherty
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Simon A Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Center for Cancer Prevention and Translational Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Raghwa Sharma
- Pathology West ICPMR Westmead, Westmead Hospital, The University of Sydney, Sydney, NSW, Australia.,University of Western Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - Melissa C Larson
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Paul R Harnett
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,The Crown Princess Mary Cancer Centre Westmead, Sydney-West Cancer Network, Westmead Hospital, Sydney, NSW, Australia
| | - Emma Hatfield
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Jurandyr M de Andrade
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gregg S Nelson
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Helen Steed
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Royal Alexandra Hospital, Edmonton, AB, Canada
| | - Joellen M Schildkraut
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Micheal E Carney
- John A. Burns School of Medicine, Department of Obstetrics and Gynecology, University of Hawaii, Honolulu, HI, USA
| | - Estrid Høgdall
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark.,Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Alice S Whittemore
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin Widschwendter
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Catherine J Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia
| | - Frances Wang
- Cancer Control and Population Sciences, Duke Cancer Institute, Durham, NC, USA.,Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Chen Wang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Sebastian M Armasu
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Frances Daley
- Division of Breast Cancer Research, Institute of Cancer Research, London, UK.,Division of Bioscience, Brunel University, London, UK
| | - Penny Coulson
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Micheal E Jones
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Micheal S Anglesio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christine Chow
- Genetic Pathology Evaluation Centre, Vancouver General Hospital and University of British Columbia, Vancouver, BC, Canada
| | - Anna de Fazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia
| | - Montserrat García-Closas
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK.,Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Sara Y Brucker
- Department of Gynecology and Obstetrics, University of Tübingen, Tübingen, Germany
| | - Cezary Cybulski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Holly R Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Environmental Medicine, Division of Nutritional Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas D Hartkopf
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Tomasz Huzarski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Allan Jensen
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Oleg Oszurek
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Javier Benitez
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Fady Mina
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Annette Staebler
- Institute of Pathology, Tübingen University Hospital, Tübingen, Germany
| | - Florin Andrei Taran
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Jana Pasternak
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Aline Talhouk
- British Columbia's Ovarian Cancer Research (OVCARE) Program, Vancouver General Hospital, BC Cancer Agency and University of British Columbia, Vancouver, BC, Canada
| | - Mary Anne Rossing
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Joy Hendley
- Department of Research, Cancer Genomics and Genetics, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | -
- Peter MacCallum Cancer Center, Melbourne, VIC, Australia.,Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Robert P Edwards
- Ovarian Cancer Center of Excellence, Womens Cancer Research Program, Magee-Womens Research Institute and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sian Fereday
- Department of Research, Cancer Genomics and Genetics, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Francesmary Modugno
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Womens Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA
| | - Roberta B Ness
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiva Sieh
- Department of Genetics and Genomic Sciences, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mona A El-Bahrawy
- Department of Histopathology, Imperial College London, Hammersmith Hospital, London, UK
| | - Stacey J Winham
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jenny Lester
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Susanne K Kjaer
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jacek Gronwald
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Peter Sinn
- Department of Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter A Fasching
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA.,Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kirsten B Moysich
- Division of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - David D Bowtell
- Department of Research, Cancer Genomics and Genetics, Peter MacCallum Cancer Center, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Brenda Y Hernandez
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Hugh Luk
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Prafull Ghatage
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Kathryn Alsop
- Department of Research, Cancer Genomics and Genetics, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Jesús García-Donas
- Medical Oncology Service, HM Hospitales - Centro Integral Oncológico HM Clara Campal, Madrid, Spain
| | - Pamela J Thompson
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.,Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Chloe Karpinskyj
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College London, London, UK
| | | | - María J García
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Susha Deen
- Department of Histopathology, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Lynne R Wilkens
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - José Palacios
- Pathology Department, IRYCIS, CIBERONC, Universidad de Alcalá, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | | | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Linda S Cook
- University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.,Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, AB, Canada
| | - Ellen L Goode
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia's Ovarian Cancer Research (OVCARE) Program, Vancouver General Hospital, BC Cancer Agency and University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Oncology, BC Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Susan J Ramus
- School of Women's and Children's Health, Faculty of Medicine, University of NSW Sydney, Sydney, NSW, Australia.,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| |
Collapse
|
99
|
Abstract
Senescence is a double-edged sword that can function in opposite directions. It is a potential mechanism for a cell to avoid malignant transformation. However, senescence can also promote cancer development by altering the cellular microenvironment through a senescence-associated secretory phenotype (SASP). At least, three types of cellular stress such as activation of oncogenes, loss of tumor suppressor genes, and chemo/radiotherapy can induce cell senescence. Oncogene-induced senescence can be intertwiningly associated with the replicative senescence. Early-stage senescence may protect cell from transformation, while prolonged senescence often promotes cancer development. This review will focus on the characteristics of senescence, discuss the regulation of senescence during cancer development, and highlight the complexity of senescence that makes cancer treatment challenging.
Collapse
Affiliation(s)
- Sulin Zeng
- Department of Microbiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY, USA
| | - Wen H Shen
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY, USA
| | - Li Liu
- Department of Microbiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
100
|
Beaumont A, Dayde D, Hatat AS, Barrial C, Perron P, Eymin B, Gazzeri S. ARF promotes the degradation of the Epidermal Growth Factor Receptor by the lysosome. Exp Cell Res 2018; 370:264-272. [PMID: 29959911 DOI: 10.1016/j.yexcr.2018.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 01/18/2023]
Abstract
Epidermal Growth Factor Receptor (EGFR) signaling regulates multiple cellular processes including proliferation, survival and apoptosis, and is attenuated by lysosomal receptor degradation. EGFR is a potent oncogene and activating mutations of EGFR are critical determinants of oncogenic transformation as well as therapeutic targets in non-small cell lung cancer. We previously demonstrated that wild type and mutant EGFRs repress the expression of the ARF tumor suppressor to promote the survival of lung tumor cells. In this study, using transient transfection systems in CHO EGFR-null cells as well as in various lung tumor cell lines carrying wild type or activated mutant EGFR, we show that ARF downregulates the expression of EGFR protein by reducing its half life. In wild type EGFR cells, ARF promotes canonical lysosomal degradation of the receptor through enhanced phosphorylation of EGFR-Y1045 and Cbl-Y731. In contrast, in mutant EGFR cells, ARF induces EGFR degradation by activating a non-canonical AKT-dependent lysosomal pathway. Taken together, these results uncover a feedback loop by which ARF may control EGFR turnover to restrain oncogenic signaling. They also highlight distinct degradation promoting pathways between wild type and mutant EGFRs in response to ARF.
Collapse
Affiliation(s)
- Anais Beaumont
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes 38042 Grenoble Cedex 09, France
| | - Delphine Dayde
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes 38042 Grenoble Cedex 09, France
| | - Anne-Sophie Hatat
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes 38042 Grenoble Cedex 09, France
| | - Celine Barrial
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes 38042 Grenoble Cedex 09, France
| | - Pascal Perron
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes 38042 Grenoble Cedex 09, France
| | - Beatrice Eymin
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes 38042 Grenoble Cedex 09, France
| | - Sylvie Gazzeri
- Team "RNA splicing, cell signaling and response to therapies", Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes 38042 Grenoble Cedex 09, France.
| |
Collapse
|