51
|
Laing E, Gough K, Krishnasamy M, Michael M, Kiss N. Prevalence of malnutrition and nutrition-related complications in patients with gastroenteropancreatic neuroendocrine tumours. J Neuroendocrinol 2022; 34:e13116. [PMID: 35415851 DOI: 10.1111/jne.13116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
Cross-sectional studies report that up to 25% of people with gastroenteropancreatic neuroendocrine tumours (GEP NET) are malnourished. However, the changes in nutritional status and dietary intake over time are unknown. The present study aimed to comprehensively describe the impact of a GEP NET on nutritional status and quality of life (QOL). Patients diagnosed with a GEP NET were recruited to this prospective longitudinal study on initial attendance to the NET Unit at two tertiary hospitals in Melbourne (VIC, Australia). Patient self-reported QOL measures (European Organisation for Research and Treatment Cancer QLC-C30 and QLC-GINET21) and nutritional outcomes (nutritional status, weight change, fat-free mass [FFM], dietary change, dietitian contact) were collected bi-monthly for six months. Sixty-one patients were recruited (66% male) with a mean ± SD age of 62 ± 12 years, predominantly diagnosed with small intestinal NET and Grade 1/2 disease. Commonly reported symptoms were fatigue (79%), abdominal discomfort (75%) and pain (68%). More patients were malnourished at baseline than at 6 months (29% vs. 13%). Over this 6 months, 48% lost weight, 20% lost ≥ 5% of their body weight, and 62% lost FFM with an average FFM loss of 2.8 kg (95% confidence interval = 2.0, 3.6), consistent with altered body composition. Dietary change was reported by 56% at baseline and 53% at six months, but only 21% consulted a dietitian at baseline and 18% at 6 months. Clinically significant loss of weight and FFM affected many patients with a GEP NET; however, few patients were referred to/or received a consultation with a dietitian. Valid screening practices are needed to identify weight loss and nutrition issues in GEP NET patients, and to facilitate referral to dietitian services.
Collapse
Affiliation(s)
- Erin Laing
- Nutrition and Speech Pathology Department, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
- Department of Nursing, School of Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Karla Gough
- Department of Nursing, School of Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Meinir Krishnasamy
- Department of Nursing, School of Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
- Academic Nursing Unit, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Michael Michael
- Neuroendocrine Unit (ENETs COE), Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Medical Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Nicole Kiss
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
- Allied Health Research, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
52
|
Huang J, Wang X, Li B, Shen S, Wang R, Tao H, Hu J, Yu J, Jiang H, Chen K, Luo C, Dang Y, Zhang Y. L-5-hydroxytryptophan promotes antitumor immunity by inhibiting PD-L1 inducible expression. J Immunother Cancer 2022; 10:jitc-2021-003957. [PMID: 35728870 PMCID: PMC9214382 DOI: 10.1136/jitc-2021-003957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The repression or downregulation of programmed death-ligand 1 (PD-L1) can release its inhibition of T cells and activate antitumor immune responses. Although PD-1 and PD-L1 antibodies are promising treatments for diverse tumor types, their inherent disadvantages and immune-related adverse events remain significant issues. The development of small molecule inhibitors targeting the interaction surface of PD-1 and PD-L1 has been reviving, yet many challenges remain. To address these issues, we aimed to find small molecules with durable efficacy and favorable biosafety that alter PD-L1 surface expression and can be developed into a promising alternative and complementary therapy for existing anti-PD-1/PD-L1 therapies. METHODS Cell-based screen of 200 metabolic molecules using a high-throughput flow cytometry assay of PD-L1 surface expression was conducted, and L-5-hydroxytryptophan (L-5-HTP) was found to suppress PD-L1 expression induced by interferon gamma (IFN-γ). Inhibition of PD-L1 induction and antitumor effect of L-5-HTP were evaluated in two syngeneic mouse tumor models. Flow cytometry was performed to investigate the change in the tumor microenvironment caused by L-5-HTP treatment. RESULTS We discovered that L-5-HTP suppressed IFN-γ-induced PD-L1 expression in tumor cells transcriptionally, and this effect was directly due to itself. Mechanistically, L-5-HTP inhibited IFN-γ-induced expression of RTK ligands and thus suppressed phosphorylation-mediated activation of RTK receptors and the downstream MEK/ERK/c-JUN signaling cascade, leading to decreased PD-L1 induction. In syngeneic mouse tumor models, treatment with 100 mg/kg L-5-HTP (intraperitoneal) inhibited PD-L1 expression and exhibited antitumor effect. L-5-HTP upregulated the ratio of granzyme B+ CD8+ activated cytotoxic T cells. An intact immune system and PD-L1 expression was critical for L-5-HTP to exert its antitumor effects. Furthermore, L-5-HTP acted synergistically with PD-1 antibody to improve anticancer effect. CONCLUSION Our study illustrated L-5-HTP's inhibitory effect on PD-L1 induction stimulated by IFN-γ in tumor cells and also provided insight into repurposing L-5-HTP for use in tumor immunotherapy.
Collapse
Affiliation(s)
- Jing Huang
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobo Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Bing Li
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shiyu Shen
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ruina Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Hongru Tao
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Junchi Hu
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, Chongqing, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kaixian Chen
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Luo
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China .,University of Chinese Academy of Sciences, Beijing, China
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University School of Basic Medical Sciences, Shanghai, China .,Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, Chongqing, China
| | - Yuanyuan Zhang
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China .,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
53
|
Jovanovic F, Sudhakar A, Knezevic NN. The Kynurenine Pathway and Polycystic Ovary Syndrome: Inflammation as a Common Denominator. Int J Tryptophan Res 2022; 15:11786469221099214. [PMID: 35620306 PMCID: PMC9128055 DOI: 10.1177/11786469221099214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex metabolic disorder commonly seen in females of reproductive age. The pathophysiology of PCOS is multifactorial and includes dysfunction in ovarian steroidogenesis and folliculogenesis, impaired gonadotropin levels, insulin resistance, gut microbiota imbalance, genetic predisposition, and lifestyle preferences. Low-grade inflammatory conditions such as obesity and impaired glucose tolerance are common metabolic disturbances in women with PCOS. A growing body of literature suggests strong evidence rendering PCOS in close proximity with chronic inflammation as documented by high levels of serum white blood cells, C-reactive protein, and various proinflammatory cytokines seen in this condition. Inflammation seems to be the most common metabolic denominator between the kynurenine pathway and PCOS. The association of tryptophan and kynurenine pathway has already been well documented in mood disorders, neurodegenerative diseases, chronic pain conditions, and different inflammatory states. In this manuscript, we describe the influence of sex steroid hormones on different enzymes of the KP; inflammatory nature of PCOS and CRP as a marker of IDO/TDO activity; and the effects of altered gut flora in women with PCOS. This review provides a novel view of the available evidence of tryptophan and downstream metabolites in PCOS in the context of underlying inflammation.
Collapse
Affiliation(s)
- Filip Jovanovic
- Department of Internal Medicine, Merit Health Wesley, Hattiesburg, MS, USA
| | - Aboorva Sudhakar
- Department of Internal Medicine, Merit Health Wesley, Hattiesburg, MS, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, USA
- Department of Anesthesiology, University of Illinois, Chicago, USA
- Department of Surgery, University of Illinois, Chicago, USA
| |
Collapse
|
54
|
Chakraborty A, Minor KE, Nizami HL, Chiao YA, Lee CF. Harnessing NAD + Metabolism as Therapy for Cardiometabolic Diseases. Curr Heart Fail Rep 2022; 19:157-169. [PMID: 35556214 PMCID: PMC9339518 DOI: 10.1007/s11897-022-00550-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE OF THE REVIEW This review summarizes current understanding on the roles of nicotinamide adenine dinucleotide (NAD+) metabolism in the pathogeneses and treatment development of metabolic and cardiac diseases. RECENT FINDINGS NAD+ was identified as a redox cofactor in metabolism and a co-substrate for a wide range of NAD+-dependent enzymes. NAD+ redox imbalance and depletion are associated with many pathologies where metabolism plays a key role, for example cardiometabolic diseases. This review is to delineate the current knowledge about harnessing NAD+ metabolism as potential therapy for cardiometabolic diseases. The review has summarized how NAD+ redox imbalance and depletion contribute to the pathogeneses of cardiometabolic diseases. Therapeutic evidence involving activation of NAD+ synthesis in pre-clinical and clinical studies was discussed. While activation of NAD+ synthesis shows great promise for therapy, the field of NAD+ metabolism is rapidly evolving. Therefore, it is expected that new mechanisms will be discovered as therapeutic targets for cardiometabolic diseases.
Collapse
Affiliation(s)
- Akash Chakraborty
- Cardiovascular Biology Research Program, MS 45, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Keaton E Minor
- Cardiovascular Biology Research Program, MS 45, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hina Lateef Nizami
- Cardiovascular Biology Research Program, MS 45, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Chi Fung Lee
- Cardiovascular Biology Research Program, MS 45, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
55
|
Spehlmann ME, Rangrez AY, Dhotre DP, Schmiedel N, Chavan N, Bang C, Müller OJ, Shouche YS, Franke A, Frank D, Frey N. Heart Failure Severity Closely Correlates with Intestinal Dysbiosis and Subsequent Metabolomic Alterations. Biomedicines 2022; 10:biomedicines10040809. [PMID: 35453559 PMCID: PMC9033061 DOI: 10.3390/biomedicines10040809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
Growing evidence suggests an altered gut microbiome in patients with heart failure (HF). However, the exact interrelationship between microbiota, HF, and its consequences on the metabolome are still unknown. We thus aimed here to decipher the association between the severity and progression of HF and the gut microbiome composition and circulating metabolites. Using a mouse model of transverse aortic constriction (TAC), gut bacterial diversity was found to be significantly lower in mice as early as day 7 post-TAC compared to Sham controls (p = 0.03), with a gradual progressive decrease in alpha-diversity on days 7, 14, and 42 (p = 0.014, p = 0.0016, p = 0.0021) compared to day 0, which coincided with compensated hypertrophy, maladaptive hypertrophy, and overtly failing hearts, respectively. Strikingly, segregated analysis based on the severity of the cardiac dysfunction (EF < 40% vs. EF 40−55%) manifested marked differences in the abundance and the grouping of several taxa. Multivariate analysis of plasma metabolites and bacterial diversity produced a strong correlation of metabolic alterations, such as reduced short-chain fatty acids and an increase in primary bile acids, with a differential abundance of distinct bacteria in HF. In conclusion, we showed that HF begets HF, likely via a vicious cycle of an altered microbiome and metabolic products.
Collapse
Affiliation(s)
- Martina E. Spehlmann
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Rosalind-Franklin Str. 12, 24105 Kiel, Germany; (M.E.S.); (N.S.); (O.J.M.); (D.F.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Ashraf Y. Rangrez
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Rosalind-Franklin Str. 12, 24105 Kiel, Germany; (M.E.S.); (N.S.); (O.J.M.); (D.F.)
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- Correspondence: (A.Y.R.); (N.F.)
| | - Dhiraj P. Dhotre
- National Centre for Cell Science, Pune 411021, India; (D.P.D.); (N.C.); (Y.S.S.)
| | - Nesrin Schmiedel
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Rosalind-Franklin Str. 12, 24105 Kiel, Germany; (M.E.S.); (N.S.); (O.J.M.); (D.F.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Nikita Chavan
- National Centre for Cell Science, Pune 411021, India; (D.P.D.); (N.C.); (Y.S.S.)
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Rosalind-Franklin-Strasse 12, 24105 Kiel, Germany; (C.B.); (A.F.)
| | - Oliver J. Müller
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Rosalind-Franklin Str. 12, 24105 Kiel, Germany; (M.E.S.); (N.S.); (O.J.M.); (D.F.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Yogesh S. Shouche
- National Centre for Cell Science, Pune 411021, India; (D.P.D.); (N.C.); (Y.S.S.)
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Rosalind-Franklin-Strasse 12, 24105 Kiel, Germany; (C.B.); (A.F.)
| | - Derk Frank
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Rosalind-Franklin Str. 12, 24105 Kiel, Germany; (M.E.S.); (N.S.); (O.J.M.); (D.F.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Norbert Frey
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Rosalind-Franklin Str. 12, 24105 Kiel, Germany; (M.E.S.); (N.S.); (O.J.M.); (D.F.)
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- Correspondence: (A.Y.R.); (N.F.)
| |
Collapse
|
56
|
Zhang B, Jiang M, Zhao J, Song Y, Du W, Shi J. The Mechanism Underlying the Influence of Indole-3-Propionic Acid: A Relevance to Metabolic Disorders. Front Endocrinol (Lausanne) 2022; 13:841703. [PMID: 35370963 PMCID: PMC8972051 DOI: 10.3389/fendo.2022.841703] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
The increasing prevalence of metabolic syndrome has become a serious public health problem. Certain bacteria-derived metabolites play a key role in maintaining human health by regulating the host metabolism. Recent evidence shows that indole-3-propionic acid content can be used to predict the occurrence and development of metabolic diseases. Supplementing indole-3-propionic acid can effectively improve metabolic disorders and is considered a promising metabolite. Therefore, this article systematically reviews the latest research on indole-3-propionic acid and elaborates its source of metabolism and its association with metabolic diseases. Indole-3-propionic acid can improve blood glucose and increase insulin sensitivity, inhibit liver lipid synthesis and inflammatory factors, correct intestinal microbial disorders, maintain the intestinal barrier, and suppress the intestinal immune response. The study of the mechanism of the metabolic benefits of indole-3-propionic acid is expected to be a potential compound for treating metabolic syndrome.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- College of Life Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Minjie Jiang
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Song
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Weidong Du
- Zhejiang Traditional Chinese Medicine Hospital, Hangzhou, China
| | - Junping Shi
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Department of Infectious & Hepatology Diseases, Metabolic Disease Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
57
|
Aaldijk E, Vermeiren Y. The role of serotonin within the microbiota-gut-brain axis in the development of Alzheimer's disease: A narrative review. Ageing Res Rev 2022; 75:101556. [PMID: 34990844 DOI: 10.1016/j.arr.2021.101556] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, accounting for more than 50 million patients worldwide. Current evidence suggests the exact mechanism behind this devastating disease to be of multifactorial origin, which seriously complicates the quest for an effective disease-modifying therapy, as well as impedes the search for strategic preventative measures. Of interest, preclinical studies point to serotonergic alterations, either induced via selective serotonin reuptake inhibitors or serotonin receptor (ant)agonists, in mitigating AD brain neuropathology next to its clinical symptoms, the latter being supported by a handful of human intervention trials. Additionally, a substantial amount of preclinical trials highlight the potential of diet, fecal microbiota transplantations, as well as pre- and probiotics in modulating the brain's serotonergic neurotransmitter system, starting from the gut. Whether such interventions could truly prevent, reverse or slow down AD progression likewise, should be initially tested in preclinical studies with AD mouse models, including sufficient analytical measurements both in gut and brain. Thereafter, its potential therapeutic effect could be confirmed in rigorously randomized controlled trials in humans, preferentially across the Alzheimer's continuum, but especially from the prodromal up to the mild stages, where both high adherence to such therapies, as well as sufficient room for noticeable enhancement are feasible still. In the end, such studies might aid in the development of a comprehensive approach to tackle this complex multifactorial disease, since serotonin and its derivatives across the microbiota-gut-brain axis might serve as possible biomarkers of disease progression, next to forming a valuable target in AD drug development. In this narrative review, the available evidence concerning the orchestrating role of serotonin within the microbiota-gut-brain axis in the development of AD is summarized and discussed, and general considerations for future studies are highlighted.
Collapse
Affiliation(s)
- Emma Aaldijk
- Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University & Research (WUR), Wageningen, Netherlands
| | - Yannick Vermeiren
- Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University & Research (WUR), Wageningen, Netherlands; Faculty of Medicine & Health Sciences, Translational Neurosciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
58
|
de Oliveira JADP, de Athaide MM, Rahman AU, de Mattos Barbosa MG, Jardim MM, Moraes MO, Pinheiro RO. Kynurenines in the Pathogenesis of Peripheral Neuropathy During Leprosy and COVID-19. Front Cell Infect Microbiol 2022; 12:815738. [PMID: 35281455 PMCID: PMC8907883 DOI: 10.3389/fcimb.2022.815738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammatory disorders are associated with the activation of tryptophan (TRYP) catabolism via the kynurenine pathway (KP). Several reports have demonstrated the role of KP in the immunopathophysiology of both leprosy and coronavirus disease 19 (COVID-19). The nervous system can be affected in infections caused by both Mycobacterium leprae and SARS-CoV-2, but the mechanisms involved in the peripheral neural damage induced by these infectious agents are not fully understood. In recent years KP has received greater attention due the importance of kynurenine metabolites in infectious diseases, immune dysfunction and nervous system disorders. In this review, we discuss how modulation of the KP may aid in controlling the damage to peripheral nerves and the effects of KP activation on neural damage during leprosy or COVID-19 individually and we speculate its role during co-infection.
Collapse
Affiliation(s)
| | | | - Atta Ur Rahman
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Marcia Maria Jardim
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Department of Neurology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Milton Ozório Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Roberta Olmo Pinheiro,
| |
Collapse
|
59
|
Li Q. Metabolic Reprogramming, Gut Dysbiosis, and Nutrition Intervention in Canine Heart Disease. Front Vet Sci 2022; 9:791754. [PMID: 35242837 PMCID: PMC8886228 DOI: 10.3389/fvets.2022.791754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
This review provides a state-of-the-art overview on recent advances in systems biology in canine cardiac disease, with a focus on our current understanding of bioenergetics and amino acid metabolism in myxomatous mitral valve disease (MMVD). Cross-species comparison is drawn to highlight the similarities between human and canine heart diseases. The adult mammalian heart exhibits a remarkable metabolic flexibility and shifts its energy substrate preference according to different physiological and pathological conditions. The failing heart suffers up to 40% ATP deficit and is compared to an engine running out of fuel. Bioenergetics and metabolic readaptations are among the major research topics in cardiac research today. Myocardial energy metabolism consists of three interconnected components: substrate utilization, oxidative phosphorylation, and ATP transport and utilization. Any disruption or uncoupling of these processes can result in deranged energy metabolism leading to heart failure (HF). The review describes the changes occurring in each of the three components of energy metabolism in MMVD and HF. It also provides an overview on the changes in circulating and myocardial glutathione, taurine, carnitines, branched-chain amino acid catabolism and tryptophan metabolic pathways. In addition, the review summarizes the potential role of the gut microbiome in MMVD and HF. As our knowledge and understanding in these molecular and metabolic processes increase, it becomes possible to use nutrition to address these changes and to slow the progression of the common heart diseases in dogs.
Collapse
|
60
|
Tamimou R, Lumbroso S, Mouzat K, Lopez-Castroman J. Genetic variations related to inflammation in suicidal ideation and behavior: A systematic review. Front Psychiatry 2022; 13:1003034. [PMID: 36325529 PMCID: PMC9621324 DOI: 10.3389/fpsyt.2022.1003034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND/OBJECTIVES Immune-inflammatory changes have been found in all types of suicidal ideation and behavior (SIB), independently of associated mental disorders. Since several Single Nucleotide Polymorphisms (SNPs) affect the function of inflammation-related genes, we searched the literature for genetic variations potentially altering inflammatory processes in SIB. METHODS We included studies that looked for associations between SIB and SNPs in genes related to inflammatory processes. Case reports, literature reviews, and animal studies were excluded. Articles were retrieved from PubMed and PsycINFO databases, Google Scholar and GreySource Index until September 17th, 2022. Quality was assessed using Q-Genie. RESULTS We analyzed 32 studies. SIB has been associated with eighteen SNPs located in genes encoding for interleukin-8 (rs4073), C-reactive protein (rs1130864), tumor necrosis factor α (rs1800629, rs361525, and rs1099724), tumor necrosis factor receptor 2 (rs1061622), transforming growth factor β-1 (rs1982073), acid phosphatase 1 (rs7419262, rs300774), interleukin-10 (rs1800896), interferon γ (rs2430561), amino-carboxy muconate semialdehyde decarboxylase (rs2121337), interleukin 7 (rs10448044, rs10448042), macrophage migration inhibitory factor (rs755622), interleukin 1-α (rs1800587), and interleukin 1-β (rs1143634 and rs16944. A genome-wide association study reported one association at the threshold of significance with the rs300774 SNP, located in the 2p25 region containing ACP1 gene. DISCUSSION The studies included were methodologically and clinically diverse and of moderate quality. Their findings suggest that some inflammation-related SNPs could increase the likelihood of SIB but the evidence to date is insufficient. Further research using gene-gene (GxG) and gene-environment (GxE) approaches is warranted. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk], identifier [CRD42022296310].
Collapse
Affiliation(s)
- Rabah Tamimou
- Department of Psychiatry, Nimes University Hospital, Nimes, France.,Laboratory of Biochemistry and Molecular Biology, Nimes University Hospital, University of Montpellier, Nimes, France.,Institut de Génomique Fonctionnelle, University of Montpellier, CNRS-INSERM, Montpellier, France
| | - Serge Lumbroso
- Laboratory of Biochemistry and Molecular Biology, Nimes University Hospital, University of Montpellier, Nimes, France
| | - Kevin Mouzat
- Laboratory of Biochemistry and Molecular Biology, Nimes University Hospital, University of Montpellier, Nimes, France
| | - Jorge Lopez-Castroman
- Department of Psychiatry, Nimes University Hospital, Nimes, France.,Institut de Génomique Fonctionnelle, University of Montpellier, CNRS-INSERM, Montpellier, France.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| |
Collapse
|
61
|
Sudar-Milovanovic E, Gluvic Z, Obradovic M, Zaric B, Isenovic ER. Tryptophan Metabolism in Atherosclerosis and Diabetes. Curr Med Chem 2022; 29:99-113. [PMID: 34269660 DOI: 10.2174/0929867328666210714153649] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
The essential amino acid tryptophan (Trp) undergoes catabolism through several pathways, producing biologically active metabolites that significantly impact physiological processes. The metabolic pathway responsible for the majority of Trp catabolism is the kynurenine synthesis pathway (KP). Serotonin and melatonin are among the most essential Trp pathways degradation products. It has emerged that a strong relationship exists between alterations in Trp metabolism and the onset and progression of atherosclerosis and diabetes. Atherosclerosis is a chronic inflammatory disease of the small and medium arteries wall caused by maladaptive local immune responses, which underpins several cardiovascular diseases (CVD). Systemic low-grade immune-mediated inflammation is implicated in atherosclerosis where pro-inflammatory cytokines, such as interferon-γ (IFN-γ), play a significant role. IFN-γ upregulates the enzyme indoleamine 2,3-dioxygenase (IDO), decreasing serum levels of the Trp and increasing metabolite levels of kynurenine. Increased IDO expression and activity could accelerate the atherosclerosis process. Therefore, activated IDO inhibition could offer possible treatment options regarding atherosclerosis management. Diabetes is a chronic metabolic disease characterized by hyperglycemia that, over time, leads to severe damage to the heart, blood vessels, eyes, kidneys, and peripheral nerves. Trp serum levels and lower activity of IDO were higher in future type 2 diabetes (T2DM) patients. This article reviews recent findings on the link between mammalian Trp metabolism and its role in atherosclerosis and diabetes and outlines the intervention strategies.
Collapse
Affiliation(s)
- Emina Sudar-Milovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade,Serbia
| | - Zoran Gluvic
- Clinic for Internal Medicine, Department of Endocrinology and Diabetes, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade,Serbia
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade,Serbia
| | - Bozidarka Zaric
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade,Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade,Serbia
| |
Collapse
|
62
|
Rotllan N, Camacho M, Tondo M, Diarte-Añazco EMG, Canyelles M, Méndez-Lara KA, Benitez S, Alonso N, Mauricio D, Escolà-Gil JC, Blanco-Vaca F, Julve J. Therapeutic Potential of Emerging NAD+-Increasing Strategies for Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:1939. [PMID: 34943043 PMCID: PMC8750485 DOI: 10.3390/antiox10121939] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Aging and/or metabolic stress directly impact the cardiovascular system. Over the last few years, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism to aging and other pathological conditions closely related to cardiovascular diseases have been intensively investigated. NAD+ bioavailability decreases with age and cardiometabolic conditions in several mammalian tissues. Compelling data suggest that declining tissue NAD+ is commonly related to mitochondrial dysfunction and might be considered as a therapeutic target. Thus, NAD+ replenishment by either genetic or natural dietary NAD+-increasing strategies has been recently demonstrated to be effective for improving the pathophysiology of cardiac and vascular health in different experimental models, as well as human health, to a lesser extent. Here, we review and discuss recent experimental evidence illustrating that increasing NAD+ bioavailability, particularly by the use of natural NAD+ precursors, may offer hope for new therapeutic strategies to prevent and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Noemi Rotllan
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| | - Mercedes Camacho
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- CIBER de Enfermedades Cardiovasculares, CIBERCV, 28029 Madrid, Spain
| | - Mireia Tondo
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain
| | - Elena M. G. Diarte-Añazco
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
| | - Marina Canyelles
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| | - Karen Alejandra Méndez-Lara
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
| | - Sonia Benitez
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
| | - Núria Alonso
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, 08916 Barcelona, Spain
| | - Didac Mauricio
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| | - Francisco Blanco-Vaca
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain
| | - Josep Julve
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| |
Collapse
|
63
|
Sawada L, Vallinoto ACR, Brasil-Costa I. Regulation of the Immune Checkpoint Indoleamine 2,3-Dioxygenase Expression by Epstein-Barr Virus. Biomolecules 2021; 11:1792. [PMID: 34944437 PMCID: PMC8699098 DOI: 10.3390/biom11121792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncovirus ubiquitously distributed and associated with different types of cancer. The reason why only a group of infected people develop cancer is still unknown. EBV-associated cancers represent about 1.8% of all cancer deaths worldwide, with more than 150,000 new cases of cancer being reported annually. Since EBV-associated cancers are described as more aggressive and more resistant to the usual treatment compared to EBV-negative ones, the recent introduction of monoclonal antibodies (mAbs) targeting immune checkpoints (ICs) in the treatment of cancer patients represents a possible therapy for EBV-associated diseases. However, the current mAb therapies available still need improvement, since a group of patients do not respond well to treatment. Therefore, the main objective of this review is to summarize the progress made regarding the contribution of EBV infection to the expression of the IC indoleamine 2,3-dioxygenase (IDO) thus far. This IC has the potential to be used as a target in new immune therapies, such as mAbs. We hope that this work helps the development of future immunotherapies, improving the prognosis of EBV-associated cancer patients.
Collapse
Affiliation(s)
- Leila Sawada
- Immunology Laboratory, Virology Section, Evandro Chagas Institute, Ananindeua, Pará 67030-000, Brazil;
- Postgraduate Program in Virology (PPGV), Evandro Chagas Institute, Ananindeua, Pará 67030-000, Brazil
| | | | - Igor Brasil-Costa
- Immunology Laboratory, Virology Section, Evandro Chagas Institute, Ananindeua, Pará 67030-000, Brazil;
| |
Collapse
|
64
|
Walker JA, Richards S, Whelan SA, Yoo SB, Russell TL, Arinze N, Lotfollahzadeh S, Napoleon MA, Belghasem M, Lee N, Dember LM, Ravid K, Chitalia VC. Indoleamine 2,3-dioxygenase-1, a Novel Therapeutic Target for Post-Vascular Injury Thrombosis in CKD. J Am Soc Nephrol 2021; 32:2834-2850. [PMID: 34716244 PMCID: PMC8806102 DOI: 10.1681/asn.2020091310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 08/16/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND CKD, characterized by retained uremic solutes, is a strong and independent risk factor for thrombosis after vascular procedures . Urem ic solutes such as indoxyl sulfate (IS) and kynurenine (Kyn) mediate prothrombotic effect through tissue factor (TF). IS and Kyn biogenesis depends on multiple enzymes, with therapeutic implications unexplored. We examined the role of indoleamine 2,3-dioxygenase-1 (IDO-1), a rate-limiting enzyme of kynurenine biogenesis, in CKD-associated thrombosis after vascular injury. METHODS IDO-1 expression in mice and human vessels was examined. IDO-1-/- mice, IDO-1 inhibitors, an adenine-induced CKD, and carotid artery injury models were used. RESULTS Both global IDO-1-/- CKD mice and IDO-1 inhibitor in wild-type CKD mice showed reduced blood Kyn levels, TF expression in their arteries, and thrombogenicity compared with respective controls. Several advanced IDO-1 inhibitors downregulated TF expression in primary human aortic vascular smooth muscle cells specifically in response to uremic serum. Further mechanistic probing of arteries from an IS-specific mouse model, and CKD mice, showed upregulation of IDO-1 protein, which was due to inhibition of its polyubiquitination and degradation by IS in vascular smooth muscle cells. In two cohorts of patients with advanced CKD, blood IDO-1 activity was significantly higher in sera of study participants who subsequently developed thrombosis after endovascular interventions or vascular surgery. CONCLUSION Leveraging genetic and pharmacologic manipulation in experimental models and data from human studies implicate IS as an inducer of IDO-1 and a perpetuator of the thrombotic milieu and supports IDO-1 as an antithrombotic target in CKD.
Collapse
MESH Headings
- Animals
- Aorta
- Carotid Artery Injuries/complications
- Carotid Artery Thrombosis/etiology
- Carotid Artery Thrombosis/prevention & control
- Culture Media/pharmacology
- Enzyme Induction/drug effects
- Feedback, Physiological
- Female
- HEK293 Cells
- Humans
- Indican/physiology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/blood
- Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Kynurenine/blood
- Kynurenine/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Targeted Therapy
- Myocytes, Smooth Muscle/drug effects
- Postoperative Complications/blood
- Postoperative Complications/enzymology
- Postoperative Complications/etiology
- Postoperative Complications/prevention & control
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/enzymology
- Thromboplastin/metabolism
- Thrombosis/blood
- Thrombosis/enzymology
- Thrombosis/etiology
- Thrombosis/prevention & control
- Tryptophan/metabolism
- Uremia/blood
- Vascular Surgical Procedures/adverse effects
Collapse
Affiliation(s)
- Joshua A Walker
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Whitaker Cardiovascular Institute, Boston University, Boston, Massachusetts
| | - Sean Richards
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Stephen A Whelan
- Chemical Instrumentation Center, Boston University, Boston, Massachusetts
| | - Sung Bok Yoo
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Teresa L Russell
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Nkiruka Arinze
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Saran Lotfollahzadeh
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Marc A Napoleon
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Mostafa Belghasem
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Norman Lee
- Chemical Instrumentation Center, Boston University, Boston, Massachusetts
| | - Laura M Dember
- Renal-Electrolyte and Hypertension Division, Center for Clinical Epidemiology and Biostatistics, Philadelphia, Pennsylvania
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katya Ravid
- Whitaker Cardiovascular Institute, Boston University, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Vipul C Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Veteran Affairs Boston Healthcare System, Boston, Massachusetts
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
65
|
Jennings MR, Munn D, Blazeck J. Immunosuppressive metabolites in tumoral immune evasion: redundancies, clinical efforts, and pathways forward. J Immunother Cancer 2021; 9:e003013. [PMID: 34667078 PMCID: PMC8527165 DOI: 10.1136/jitc-2021-003013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Tumors accumulate metabolites that deactivate infiltrating immune cells and polarize them toward anti-inflammatory phenotypes. We provide a comprehensive review of the complex networks orchestrated by several of the most potent immunosuppressive metabolites, highlighting the impact of adenosine, kynurenines, prostaglandin E2, and norepinephrine and epinephrine, while discussing completed and ongoing clinical efforts to curtail their impact. Retrospective analyses of clinical data have elucidated that their activity is negatively associated with prognosis in diverse cancer indications, though there is a current paucity of approved therapies that disrupt their synthesis or downstream signaling axes. We hypothesize that prior lukewarm results may be attributed to redundancies in each metabolites' synthesis or signaling pathway and highlight routes for how therapeutic development and patient stratification might proceed in the future.
Collapse
Affiliation(s)
- Maria Rain Jennings
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - David Munn
- Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - John Blazeck
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
66
|
Mindus C, van Staaveren N, Fuchs D, Gostner JM, Kjaer JB, Kunze W, Mian MF, Shoveller AK, Forsythe P, Harlander-Matauschek A. L. rhamnosus improves the immune response and tryptophan catabolism in laying hen pullets. Sci Rep 2021; 11:19538. [PMID: 34599202 PMCID: PMC8486881 DOI: 10.1038/s41598-021-98459-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
In mammals, early-life probiotic supplementation is a promising tool for preventing unfavourable, gut microbiome-related behavioural, immunological, and aromatic amino acid alterations later in life. In laying hens, feather-pecking behaviour is proposed to be a consequence of gut-brain axis dysregulation. Lactobacillus rhamnosus decreases stress-induced severe feather pecking in adult hens, but whether its effect in pullets is more robust is unknown. Consequently, we investigated whether early-life, oral supplementation with a single Lactobacillus rhamnosus strain can prevent stress-induced feather-pecking behaviour in chickens. To this end, we monitored both the short- and long-term effects of the probiotic supplement on behaviour and related physiological parameters. We hypothesized that L. rhamnosus would reduce pecking behaviour by modulating the biological pathways associated with this detrimental behaviour, namely aromatic amino acid turnover linked to neurotransmitter production and stress-related immune responses. We report that stress decreased the proportion of cytotoxic T cells in the tonsils (P = 0.047). Counteracting this T cell depression, birds receiving the L. rhamnosus supplementation significantly increased all T lymphocyte subset proportions (P < 0.05). Both phenotypic and genotypic feather peckers had lower plasma tryptophan concentrations compared to their non-pecking counterparts. The probiotic supplement caused a short-term increase in plasma tryptophan (P < 0.001) and the TRP:(PHE + TYR) ratio (P < 0.001). The administration of stressors did not significantly increase feather pecking in pullets, an observation consistent with the age-dependent onset of pecking behaviour. Despite minimal changes to behaviour, our data demonstrate the impact of L. rhamnosus supplementation on the immune system and the turnover of the serotonin precursor tryptophan. Our findings indicate that L. rhamnosus exerts a transient, beneficial effect on the immune response and tryptophan catabolism in pullets.
Collapse
Affiliation(s)
- Claire Mindus
- grid.34429.380000 0004 1936 8198Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Nienke van Staaveren
- grid.34429.380000 0004 1936 8198Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Dietmar Fuchs
- grid.5361.10000 0000 8853 2677Institute of Biological Chemistry, Biocenter, Center for Chemistry and Biomedicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Johanna M. Gostner
- grid.5361.10000 0000 8853 2677Institute of Medical Biochemistry, Biocenter, Center for Chemistry and Biomedicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Joergen B. Kjaer
- grid.417834.dInstitute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| | - Wolfgang Kunze
- grid.25073.330000 0004 1936 8227Brain-Body Institute, St. Joseph’s Healthcare, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
| | - M. Firoz Mian
- grid.25073.330000 0004 1936 8227Division of Respirology, Department of Medicine, McMaster University, 50 Charlton Avenue East, Hamilton, ON L8N 4A6 Canada
| | - Anna K. Shoveller
- grid.34429.380000 0004 1936 8198Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Paul Forsythe
- grid.25073.330000 0004 1936 8227Division of Respirology, Department of Medicine, McMaster University, 50 Charlton Avenue East, Hamilton, ON L8N 4A6 Canada
| | - Alexandra Harlander-Matauschek
- grid.34429.380000 0004 1936 8198Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
67
|
Basran J, Booth ES, Campbell LP, Thackray SJ, Jesani MH, Clayden J, Moody PCE, Mowat CG, Kwon H, Raven EL. Binding of l-kynurenine to X. campestris tryptophan 2,3-dioxygenase. J Inorg Biochem 2021; 225:111604. [PMID: 34571402 DOI: 10.1016/j.jinorgbio.2021.111604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022]
Abstract
The kynurenine pathway is the major route of tryptophan metabolism. The first step of this pathway is catalysed by one of two heme-dependent dioxygenase enzymes - tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) - leading initially to the formation of N-formylkynurenine (NFK). In this paper, we present a crystal structure of a bacterial TDO from X. campestris in complex with l-kynurenine, the hydrolysed product of NFK. l-kynurenine is bound at the active site in a similar location to the substrate (l-Trp). Hydrogen bonding interactions with Arg117 and the heme 7-propionate anchor the l-kynurenine molecule into the pocket. A mechanism for the hydrolysis of NFK in the active site is presented.
Collapse
Affiliation(s)
- Jaswir Basran
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Elizabeth S Booth
- Department of Chemistry, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Laura P Campbell
- EastChem School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Sarah J Thackray
- EastChem School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Mehul H Jesani
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Peter C E Moody
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Christopher G Mowat
- EastChem School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Hanna Kwon
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Emma L Raven
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
68
|
Reiten OK, Wilvang MA, Mitchell SJ, Hu Z, Fang EF. Preclinical and clinical evidence of NAD + precursors in health, disease, and ageing. Mech Ageing Dev 2021; 199:111567. [PMID: 34517020 DOI: 10.1016/j.mad.2021.111567] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023]
Abstract
NAD+ is a fundamental molecule in human life and health as it participates in energy metabolism, cell signalling, mitochondrial homeostasis, and in dictating cell survival or death. Emerging evidence from preclinical and human studies indicates an age-dependent reduction of cellular NAD+, possibly due to reduced synthesis and increased consumption. In preclinical models, NAD+ repletion extends healthspan and / or lifespan and mitigates several conditions, such as premature ageing diseases and neurodegenerative diseases. These findings suggest that NAD+ replenishment through NAD+ precursors has great potential as a therapeutic target for ageing and age-predisposed diseases, such as Alzheimer's disease. Here, we provide an updated review on the biological activity, safety, and possible side effects of NAD+ precursors in preclinical and clinical studies. Major NAD+ precursors focused on by this review are nicotinamide riboside (NR), nicotinamide mononucleotide (NMN), and the new discovered dihydronicotinamide riboside (NRH). In summary, NAD+ precursors have an exciting therapeutic potential for ageing, metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ole Kristian Reiten
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Martin Andreas Wilvang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Sarah J Mitchell
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway.
| |
Collapse
|
69
|
Strømland Ø, Diab J, Ferrario E, Sverkeli LJ, Ziegler M. The balance between NAD + biosynthesis and consumption in ageing. Mech Ageing Dev 2021; 199:111569. [PMID: 34509469 DOI: 10.1016/j.mad.2021.111569] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 01/07/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a vital coenzyme in redox reactions. NAD+ is also important in cellular signalling as it is consumed by PARPs, SARM1, sirtuins and CD38. Cellular NAD+ levels regulate several essential processes including DNA repair, immune cell function, senescence, and chromatin remodelling. Maintenance of these cellular processes is important for healthy ageing and lifespan. Interestingly, the levels of NAD+ decline during ageing in several organisms, including humans. Declining NAD+ levels have been linked to several age-related diseases including various metabolic diseases and cognitive decline. Decreasing tissue NAD+ concentrations have been ascribed to an imbalance between biosynthesis and consumption of the dinucleotide, resulting from, for instance, reduced levels of the rate limiting enzyme NAMPT along with an increased activation state of the NAD+-consuming enzymes PARPs and CD38. The progression of some age-related diseases can be halted or reversed by therapeutic augmentation of NAD+ levels. NAD+ metabolism has therefore emerged as a potential target to ameliorate age-related diseases. The present review explores how ageing affects NAD+ metabolism and current approaches to reverse the age-dependent decline of NAD+.
Collapse
Affiliation(s)
- Øyvind Strømland
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway
| | - Joseph Diab
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway
| | - Eugenio Ferrario
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway
| | - Lars J Sverkeli
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway; Department of Biological Sciences, University of Bergen, Bergen, 5020, Norway
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway.
| |
Collapse
|
70
|
Koopman N, Katsavelis D, Hove AST, Brul S, de Jonge WJ, Seppen J. The Multifaceted Role of Serotonin in Intestinal Homeostasis. Int J Mol Sci 2021; 22:9487. [PMID: 34502396 PMCID: PMC8431144 DOI: 10.3390/ijms22179487] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
The monoamine serotonin, 5-hydroxytryptamine (5-HT), is a remarkable molecule with conserved production in prokaryotes and eukaryotes and a wide range of functions. In the gastrointestinal tract, enterochromaffin cells are the most important source for 5-HT production. Some intestinal bacterial species are also able to produce 5-HT. Besides its role as a neurotransmitter, 5-HT acts on immune cells to regulate their activation. Several lines of evidence indicate that intestinal 5-HT signaling is altered in patients with inflammatory bowel disease. In this review, we discuss the current knowledge on the production, secretion, and signaling of 5-HT in the intestine. We present an inventory of intestinal immune and epithelial cells that respond to 5-HT and describe the effects of these signaling processes on intestinal homeostasis. Further, we detail the mechanisms by which 5-HT could affect inflammatory bowel disease course and describe the effects of interventions that target intestinal 5-HT signaling.
Collapse
Affiliation(s)
- Nienke Koopman
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098XH Amsterdam, The Netherlands; (N.K.); (D.K.); (S.B.)
| | - Drosos Katsavelis
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098XH Amsterdam, The Netherlands; (N.K.); (D.K.); (S.B.)
| | - Anne S. ten Hove
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105BK Amsterdam, The Netherlands; (A.S.t.H.); (W.J.d.J.)
| | - Stanley Brul
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098XH Amsterdam, The Netherlands; (N.K.); (D.K.); (S.B.)
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105BK Amsterdam, The Netherlands; (A.S.t.H.); (W.J.d.J.)
| | - Jurgen Seppen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105BK Amsterdam, The Netherlands; (A.S.t.H.); (W.J.d.J.)
| |
Collapse
|
71
|
La Salvia A, Portigliatti Pomeri A, Persano I, Trevisi E, Parlagreco E, Colombi N, Brizzi MP, Picci RL, Oliva F. Serotoninergic brain dysfunction in neuroendocrine tumor patients: A scoping review. Compr Psychiatry 2021; 109:152244. [PMID: 34120056 DOI: 10.1016/j.comppsych.2021.152244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/03/2021] [Accepted: 05/07/2021] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Neuroendocrine tumors (NETs) are rare and malignant neoplasms characterized by their potential to produce metabolically active substances with the capacity to bring about clinical syndromes. The clinical expression of serotonin-producing NETs is known as carcinoid syndrome (CS). The synthesis of serotonin in the brain is dependent on tryptophan availability. At the central level, serotonin is indispensable for mood, anxiety, and sleep regulation. In CS patients, around 60% of all tryptophan is reported to be consumed by tumor cells for the peripheral synthesis of serotonin, increasing the risk of a central deficiency and thus psychiatric disorders. MATERIALS AND METHODS This manuscript reviews the existing literature about psychiatric disorders associated with NETs and addresses the safety of psychiatric drugs in these patients. A systematic search of the biomedical literature was performed using the following databases: PubMed, Embase, CINAHL (EBSCO), PsycInfo (OVID), and Cochrane CENTRAL (Wiley). The database search included articles published between January 1965 and February 2021. Relevant information were charted using a calibrated charting-form. RESULTS Twenty-two articles were included in the present review. The overall population size of the studies came to 3319 patients. All patients presented a confirmed diagnosis of NET. The information about the presence of CS was confirmed in 351 cases. The psychiatric symptoms reported included mood disturbances (including, depression and anxiety), psychoses, impulse control disorders and sleeping alterations. We also evaluated the presence of cognitive impairments in NET patients. Finally, we summarize the available data regarding the safety of psychiatric drugs in this setting. CONCLUSIONS Psychiatric disorders among NET patients are poorly recognized, and therefore have received very little research attention. As a result, no standardized algorithm is presently available. Our findings support detailed psychiatric evaluation in NET patients, especially in those presenting CS and symptoms suggestive of psychiatric involvement. Not only do cognitive impairment and psychiatry symptoms negatively impact health-related quality of life in cancer patients, they can also reduce survival rates.
Collapse
Affiliation(s)
- Anna La Salvia
- Department of Oncology, 12 de Octubre University Hospital, Madrid, Spain.
| | | | - Irene Persano
- Federated Library of Medicine "Ferdinando Rossi", University of Turin, Turin, Italy
| | - Elena Trevisi
- Federated Library of Medicine "Ferdinando Rossi", University of Turin, Turin, Italy
| | - Elena Parlagreco
- Federated Library of Medicine "Ferdinando Rossi", University of Turin, Turin, Italy
| | - Nicoletta Colombi
- Department of Oncology, San Luigi Gonzaga University Hospital, Regione Gonzole, 10, 10043 Orbassano, Turin, Italy
| | - Maria Pia Brizzi
- Federated Library of Medicine "Ferdinando Rossi", University of Turin, Turin, Italy
| | - Rocco Luigi Picci
- Department of Clinical and Biological Sciences, University of Turin, Orbassano (TO), Regione Gonzole, 10, 10043 Orbassano, Turin, Italy
| | - Francesco Oliva
- Department of Clinical and Biological Sciences, University of Turin, Orbassano (TO), Regione Gonzole, 10, 10043 Orbassano, Turin, Italy
| |
Collapse
|
72
|
Multiple roles of haem in cystathionine β-synthase activity: implications for hemin and other therapies of acute hepatic porphyria. Biosci Rep 2021; 41:229241. [PMID: 34251022 PMCID: PMC8298261 DOI: 10.1042/bsr20210935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
The role of haem in the activity of cystathionine β-synthase (CBS) is reviewed and a hypothesis postulating multiple effects of haem on enzyme activity under conditions of haem excess or deficiency is proposed, with implications for some therapies of acute hepatic porphyrias. CBS utilises both haem and pyridoxal 5′-phosphate (PLP) as cofactors. Although haem does not participate directly in the catalytic process, it is vital for PLP binding to the enzyme and potentially also for CBS stability. Haem deficiency can therefore undermine CBS activity by impairing PLP binding and facilitating CBS degradation. Excess haem can also impair CBS activity by inhibiting it via CO resulting from haem induction of haem oxygenase 1 (HO 1), and by induction of a functional vitamin B6 deficiency following activation of hepatic tryptophan 2,3-dioxygenase (TDO) and subsequent utilisation of PLP by enhanced kynurenine aminotransferase (KAT) and kynureninase (Kynase) activities. CBS inhibition results in accumulation of the cardiovascular risk factor homocysteine (Hcy) and evidence is emerging for plasma Hcy elevation in patients with acute hepatic porphyrias. Decreased CBS activity may also induce a proinflammatory state, inhibit expression of haem oxygenase and activate the extrahepatic kynurenine pathway (KP) thereby further contributing to the Hcy elevation. The hypothesis predicts likely changes in CBS activity and plasma Hcy levels in untreated hepatic porphyria patients and in those receiving hemin or certain gene-based therapies. In the present review, these aspects are discussed, means of testing the hypothesis in preclinical experimental settings and porphyric patients are suggested and potential nutritional and other therapies are proposed.
Collapse
|
73
|
Zapata‐Pérez R, Wanders RJA, van Karnebeek CDM, Houtkooper RH. NAD + homeostasis in human health and disease. EMBO Mol Med 2021; 13:e13943. [PMID: 34041853 PMCID: PMC8261484 DOI: 10.15252/emmm.202113943] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Depletion of nicotinamide adenine dinucleotide (NAD+ ), a central redox cofactor and the substrate of key metabolic enzymes, is the causative factor of a number of inherited and acquired diseases in humans. Primary deficiencies of NAD+ homeostasis are the result of impaired biosynthesis, while secondary deficiencies can arise due to other factors affecting NAD+ homeostasis, such as increased NAD+ consumption or dietary deficiency of its vitamin B3 precursors. NAD+ depletion can manifest in a wide variety of pathological phenotypes, ranging from rare inherited defects, characterized by congenital malformations, retinal degeneration, and/or encephalopathy, to more common multifactorial, often age-related, diseases. Here, we discuss NAD+ biochemistry and metabolism and provide an overview of the etiology and pathological consequences of alterations of the NAD+ metabolism in humans. Finally, we discuss the state of the art of the potential therapeutic implications of NAD+ repletion for boosting health as well as treating rare and common diseases, and the possibilities to achieve this by means of the different NAD+ -enhancing agents.
Collapse
Affiliation(s)
- Rubén Zapata‐Pérez
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Clara D M van Karnebeek
- Department of PediatricsAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Pediatrics (Metabolic Diseases)Radboud Centre for Mitochondrial MedicineAmalia Children’s HospitalRadboud University Medical CenterNijmegenThe Netherlands
- On behalf of ‘United for Metabolic Diseases’AmsterdamThe Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
74
|
Role of Kynurenine Pathway in Oxidative Stress during Neurodegenerative Disorders. Cells 2021; 10:cells10071603. [PMID: 34206739 PMCID: PMC8306609 DOI: 10.3390/cells10071603] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are chronic and life-threatening conditions negatively affecting the quality of patients’ lives. They often have a genetic background, but oxidative stress and mitochondrial damage seem to be at least partly responsible for their development. Recent reports indicate that the activation of the kynurenine pathway (KP), caused by an activation of proinflammatory factors accompanying neurodegenerative processes, leads to the accumulation of its neuroactive and pro-oxidative metabolites. This leads to an increase in the oxidative stress level, which increases mitochondrial damage, and disrupts the cellular energy metabolism. This significantly reduces viability and impairs the proper functioning of central nervous system cells and may aggravate symptoms of many psychiatric and neurodegenerative disorders. This suggests that the modulation of KP activity could be effective in alleviating these symptoms. Numerous reports indicate that tryptophan supplementation, inhibition of KP enzymes, and administration or analogs of KP metabolites show promising results in the management of neurodegenerative disorders in animal models. This review gathers and systematizes the knowledge concerning the role of metabolites and enzymes of the KP in the development of oxidative damage within brain cells during neurodegenerative disorders and potential strategies that could reduce the severity of this process.
Collapse
|
75
|
Kynurenines as a Novel Target for the Treatment of Malignancies. Pharmaceuticals (Basel) 2021; 14:ph14070606. [PMID: 34201791 PMCID: PMC8308824 DOI: 10.3390/ph14070606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Malignancies are unquestionably a significant public health problem. Their effective treatment is still a big challenge for modern medicine. Tumors have developed a wide range of mechanisms to evade an immune and therapeutic response. As a result, there is an unmet clinical need for research on solutions aimed at overcoming this problem. An accumulation of tryptophan metabolites belonging to the kynurenine pathway can enhance neoplastic progression because it causes the suppression of immune system response against cancer cells. They are also involved in the development of the mechanisms responsible for the resistance to antitumor therapy. Kynurenine belongs to the most potent immunosuppressive metabolites of this pathway and has a significant impact on the development of malignancies. This fact prompted researchers to assess whether targeting the enzymes responsible for its synthesis could be an effective therapeutic strategy for various cancers. To date, numerous studies, both preclinical and clinical, have been conducted on this topic, especially regarding the inhibition of indoleamine 2,3-dioxygenase activity and their results can be considered noteworthy. This review gathers and systematizes the knowledge about the role of the kynurenine pathway in neoplastic progression and the findings regarding the usefulness of modulating its activity in anticancer therapy.
Collapse
|
76
|
A metabolomics approach to investigate the proceedings of mitochondrial dysfunction in rats from prediabetes to diabetes. Saudi J Biol Sci 2021; 28:4762-4769. [PMID: 34354464 PMCID: PMC8324946 DOI: 10.1016/j.sjbs.2021.04.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/12/2023] Open
Abstract
Diabetes mellitus (DM) is a leading cause of preventable cardiovascular disease, but the metabolic changes from prediabetes to diabetes have not been fully clarified. This study implemented a metabolomics profiling platform to investigate the variations of metabolites and to elucidate their global profiling from metabolic syndrome to DM. Methods: Male Sprague-Dawley rats (n = 44) were divided into four groups. Three groups were separately fed with a normal diet, a high-fructose diet (HF), or a high-fat (HL) diet while one group was treated with streptozotocin. The HF and HL diet were meant to induce insulin resistance, obesity, and dyslipidemia, which known to induce DM. Results: The most significant metabolic variations in the DM group’s urine samples were the reduced release of citric acid cycle intermediates, the increase in acylcarnitines, and the decrease in urea excretion, all of which indicated energy metabolism abnormalities and mitochondrial dysfunction. Overall, the metabolic analysis revealed tryptophan metabolic pathway variations in the prediabetic phase, even though the mitochondrial function remains unaffected. Conclusion: This study show that widespread methylations and impaired tryptophan metabolism occur in metabolic syndrome and are then followed by a decline in citric acid cycle intermediates, indicating mitochondrial dysfunction in diabetes.
Collapse
Key Words
- CAN, acetonitrile
- DM, diabetes mellitus
- Diabetes
- GOT, glutamate oxaloacetate transaminase
- GPT, glutamate pyruvate transaminase
- HF, high-fructose
- HL, high-fat
- HMDB, human metabolome database
- KEGG, kyoto encyclopedia of genes and genomes
- LC-MS, liquid chromatography–mass spectrometry
- Metabolic syndrome
- Metabolomics
- Methylation
- Mitochondrial dysfunction
- PCA, principal component analysis
- Prediabetes
- STZ, streptozotocin
- TC, total cholesterol
- TG, triacylglycerol
- Tryptophan
Collapse
|
77
|
Konje VC, Rajendiran TM, Bellovich K, Gadegbeku CA, Gipson DS, Afshinnia F, Mathew AV. Tryptophan levels associate with incident cardiovascular disease in chronic kidney disease. Clin Kidney J 2021; 14:1097-1105. [PMID: 34094518 PMCID: PMC8173620 DOI: 10.1093/ckj/sfaa031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Non-traditional risk factors like inflammation and oxidative stress play an essential role in the increased cardiovascular disease (CVD) risk prevalent in chronic kidney disease (CKD). Tryptophan catabolism by the kynurenine pathway (KP) is linked to systemic inflammation and CVD in the general and dialysis population. However, the relationship of KP to incident CVD in the CKD population is unknown. METHODS We measured tryptophan metabolites using targeted mass spectrometry in 92 patients with a history of CVD (old CVD); 46 patients with no history of CVD and new CVD during follow-up (no CVD); and 46 patients with no CVD history who developed CVD in the median follow-up period of 2 years (incident CVD). RESULTS The three groups are well-matched in age, gender, race, diabetes status and CKD stage, and only differed in total cholesterol and proteinuria. Tryptophan and kynurenine levels significantly decreased in patients with 'Incident CVD' compared with the no CVD or old CVD groups (P = 5.2E-7; P = 0.003 respectively). Kynurenic acid, 3-hydroxykynurenine and kynurenine are all increased with worsening CKD stage (P < 0.05). An increase in tryptophan levels at baseline was associated with 0.32-fold lower odds of incident CVD (P = 0.000014) compared with the no CVD group even after adjustment for classic CVD risk factors. Addition of tryptophan and kynurenine levels to the receiver operating curve constructed from discriminant analysis predicting incident CVD using baseline clinical variables increased the area under the curve from 0.76 to 0.82 (P = 0.04). CONCLUSIONS In summary, our study demonstrates that low tryptophan levels are associated with incident CVD in CKD.
Collapse
Affiliation(s)
- Vetalise C Konje
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Thekkelnaycke M Rajendiran
- Department of Pathology, Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
| | - Keith Bellovich
- Division of Nephrology, St Clair Nephrology Research, Detroit, MI, USA
| | - Crystal A Gadegbeku
- Section of Nephrology, Hypertension and Kidney Transplantation, Temple University, Philadelphia, PA, USA
| | - Debbie S Gipson
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Farsad Afshinnia
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Anna V Mathew
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
78
|
Tillmann S, Awwad HM, MacPherson CW, Happ DF, Treccani G, Geisel J, Tompkins TA, Ueland PM, Wegener G, Obeid R. The Kynurenine Pathway Is Upregulated by Methyl-deficient Diet and Changes Are Averted by Probiotics. Mol Nutr Food Res 2021; 65:e2100078. [PMID: 33686786 DOI: 10.1002/mnfr.202100078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Indexed: 12/16/2022]
Abstract
SCOPE Probiotics exert immunomodulatory effects and may influence tryptophan metabolism in the host. Deficiency of nutrients related to C1 metabolism might stimulate inflammation by enhancing the kynurenine pathway. This study used Sprague Dawley rats to investigate whether a methyl-deficient diet (MDD) may influence tryptophan/kynurenine pathways and cytokines and whether probiotics can mitigate these effects. METHODS AND RESULTS Rats are fed a control or MDD diet. Animals on the MDD diet received vehicle, probiotics (L. helveticus R0052 and B. longum R0175), choline, or probiotics + choline for 10 weeks (n = 10 per group). Concentrations of plasma kynurenine metabolites and the methylation and inflammatory markers in plasma and liver are measured. RESULTS MDD animals (vs controls) show upregulation of plasma kynurenine, kynurenic acid, xanthurenic acid, 3-hydroxyxanthranilic acid, quinolinic acid, nicotinic acid, and nicotinamide (all p < 0.05). In the MDD rats, the probiotics (vs vehicle) cause lower anthranilic acid and a trend towards lower kynurenic acid and picolinic acid. Compared to probiotics alone, probiotics + choline is associated with a reduced enrichment of the bacterial strains in cecum. The interventions have no effect on inflammatory markers. CONCLUSIONS Probiotics counterbalance the effect of MDD diet and downregulate downstream metabolites of the kynurenine pathway.
Collapse
Affiliation(s)
- Sandra Tillmann
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus C, DK-8000, Denmark
| | - Hussain M Awwad
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Building 57, Homburg/Saar, D-66421, Germany
| | - Chad W MacPherson
- Rosell Institute for Microbiome and Probiotics, Montreal, Quebec, Canada
| | - Denise F Happ
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus C, DK-8000, Denmark
| | - Giulia Treccani
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus C, DK-8000, Denmark
| | - Juergen Geisel
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Building 57, Homburg/Saar, D-66421, Germany
| | - Thomas A Tompkins
- Rosell Institute for Microbiome and Probiotics, Montreal, Quebec, Canada
| | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, New Lab Building, 9th floor, Bergen, Hordaland, 5021, Norway
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus C, DK-8000, Denmark
| | - Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Building 57, Homburg/Saar, D-66421, Germany.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus C, DK-8000, Denmark
| |
Collapse
|
79
|
Tannous C, Booz GW, Altara R, Muhieddine DH, Mericskay M, Refaat MM, Zouein FA. Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases. Acta Physiol (Oxf) 2021; 231:e13551. [PMID: 32853469 DOI: 10.1111/apha.13551] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an abundant cofactor that plays crucial roles in several cellular processes. NAD can be synthesized de novo starting with tryptophan, or from salvage pathways starting with NAD precursors like nicotinic acid (NA), nicotinamide (NAM) or nicotinamide riboside (NR), referred to as niacin/B3 vitamins, arising from dietary supply or from cellular NAD catabolism. Given the interconversion between its oxidized (NAD+ ) and reduced form (NADH), NAD participates in a wide range of reactions: regulation of cellular redox status, energy metabolism and mitochondrial biogenesis. Plus, NAD acts as a signalling molecule, being a cosubstrate for several enzymes such as sirtuins, poly-ADP-ribose-polymerases (PARPs) and some ectoenzymes like CD38, regulating critical biological processes like gene expression, DNA repair, calcium signalling and circadian rhythms. Given the large number of mitochondria present in cardiac tissue, the heart has the highest NAD levels and is one of the most metabolically demanding organs. In several models of heart failure, myocardial NAD levels are depressed and this depression is caused by mitochondrial dysfunction, metabolic remodelling and inflammation. Emerging evidence suggests that regulating NAD homeostasis by NAD precursor supplementation has therapeutic efficiency in improving myocardial bioenergetics and function. This review provides an overview of the latest understanding of the different NAD biosynthesis pathways, as well as its role as a signalling molecule particularly in cardiac tissue. We highlight the significance of preserving NAD equilibrium in various models of heart diseases and shed light on the potential pharmacological interventions aiming to use NAD boosters as therapeutic agents.
Collapse
Affiliation(s)
- Cynthia Tannous
- Department of Pharmacology and Toxicology Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - George W. Booz
- Department of Pharmacology and Toxicology University of Mississippi Medical Center Jackson MS USA
| | - Raffaele Altara
- Department of Pathology School of Medicine University of Mississippi Medical Center Jackson MS USA
- Institute for Experimental Medical Research Oslo University Hospital and University of Oslo Oslo Norway
- KG Jebsen Center for Cardiac Research University of Oslo Oslo Norway
| | - Dina H. Muhieddine
- Department of Pharmacology and Toxicology Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Mathias Mericskay
- INSERM Department of Signalling and Cardiovascular Pathophysiology UMR‐S 1180 Université Paris‐Saclay Châtenay‐Malabry France
| | - Marwan M. Refaat
- Department of Internal Medicine Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
- Department of Biochemistry and Molecular Genetics Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
80
|
Mohapatra SR, Sadik A, Sharma S, Poschet G, Gegner HM, Lanz TV, Lucarelli P, Klingmüller U, Platten M, Heiland I, Opitz CA. Hypoxia Routes Tryptophan Homeostasis Towards Increased Tryptamine Production. Front Immunol 2021; 12:590532. [PMID: 33679737 PMCID: PMC7933006 DOI: 10.3389/fimmu.2021.590532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is the central hub for processing and maintaining homeostatic levels of dietary nutrients especially essential amino acids such as tryptophan (Trp). Trp is required not only to sustain protein synthesis but also as a precursor for the production of NAD, neurotransmitters and immunosuppressive metabolites. In light of these roles of Trp and its metabolic products, maintaining homeostatic levels of Trp is essential for health and well-being. The liver regulates global Trp supply by the immunosuppressive enzyme tryptophan-2,3-dioxygenase (TDO2), which degrades Trp down the kynurenine pathway (KP). In the current study, we show that isolated primary hepatocytes when exposed to hypoxic environments, extensively rewire their Trp metabolism by reducing constitutive Tdo2 expression and differentially regulating other Trp pathway enzymes and transporters. Mathematical modelling of Trp metabolism in liver cells under hypoxia predicted decreased flux through the KP while metabolic flux through the tryptamine branch significantly increased. In line, the model also revealed an increased accumulation of tryptamines under hypoxia, at the expense of kynurenines. Metabolic measurements in hypoxic hepatocytes confirmed the predicted reduction in KP metabolites as well as accumulation of tryptamine. Tdo2 expression in cultured primary hepatocytes was reduced upon hypoxia inducible factor (HIF) stabilisation by dimethyloxalylglycine (DMOG), demonstrating that HIFs are involved in the hypoxic downregulation of hepatic Tdo2. DMOG abrogated hepatic luciferase signals in Tdo2 reporter mice, indicating that HIF stability also recapitulates hypoxic rewiring of Trp metabolism in vivo. Also in WT mice HIF stabilization drove homeostatic Trp metabolism away from the KP towards enhanced tryptamine production, leading to enhanced levels of tryptamine in liver, serum and brain. As tryptamines are the most potent hallucinogens known, the observed upregulation of tryptamine in response to hypoxic exposure of hepatocytes may be involved in the generation of hallucinations occurring at high altitude. KP metabolites are known to activate the aryl hydrocarbon receptor (AHR). The AHR-activating properties of tryptamines may explain why immunosuppressive AHR activity is maintained under hypoxia despite downregulation of the KP. In summary our results identify hypoxia as an important factor controlling Trp metabolism in the liver with possible implications for immunosuppressive AHR activation and mental disturbances.
Collapse
Affiliation(s)
- Soumya R. Mohapatra
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ahmed Sadik
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Suraj Sharma
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Hagen M. Gegner
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Tobias V. Lanz
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Philippe Lucarelli
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Ines Heiland
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Christiane A. Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
81
|
Mori Y, Mouri A, Kunisawa K, Hirakawa M, Kubota H, Kosuge A, Niijima M, Hasegawa M, Kurahashi H, Murakami R, Hoshi M, Nakano T, Fujigaki S, Fujigaki H, Yamamoto Y, Nabeshima T, Saito K. Kynurenine 3-monooxygenase deficiency induces depression-like behavior via enhanced antagonism of α7 nicotinic acetylcholine receptors by kynurenic acid. Behav Brain Res 2021; 405:113191. [PMID: 33607168 DOI: 10.1016/j.bbr.2021.113191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 01/09/2023]
Abstract
Tryptophan (TRP) is metabolized via the kynurenine (KYN) pathway, which is related to the pathogenesis of major depressive disorder (MDD). Kynurenine 3-monooxygenase (KMO) is a pivotal enzyme in the metabolism of KYN to 3-hydroxykynurenine. In rodents, KMO deficiency induces a depression-like behavior and increases the levels of kynurenic acid (KA), a KYN metabolite formed by kynurenine aminotransferases (KATs). KA antagonizes α7 nicotinic acetylcholine receptor (α7nAChR). Here, we investigated the involvement of KA in depression-like behavior in KMO knockout (KO) mice. KYN, KA, and anthranilic acid but not TRP or 3-hydroxyanthranilic acid were elevated in the prefrontal cortex of KMO KO mice. The mRNA levels of KAT1 and α7nAChR but not KAT2-4, α4nAChR, or β2nAChR were elevated in the prefrontal cortex of KMO KO mice. Nicotine blocked increase in locomotor activity, decrease in social interaction time, and prolonged immobility in a forced swimming test, but it did not decrease sucrose preference in the KMO KO mice. Methyllycaconitine (an α7nAChR antagonist) antagonized the effect of nicotine on decreased social interaction time and prolonged immobility in the forced swimming test, but not increased locomotor activity. Galantamine (an α7nAChR allosteric agonist) blocked the increased locomotor activity and prolonged immobility in the forced swimming test, but not the decreased social interaction time in the KMO KO mice. In conclusion, elevation of KA levels contributes to depression-like behaviors in KMO KO mice by α7nAChR antagonism. The ameliorating effects of nicotine and galantamine on depression-like behaviors in KMO KO mice are associated with the activation of α7nAChR.
Collapse
Affiliation(s)
- Yuko Mori
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan.
| | - Kazuo Kunisawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan; Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Mami Hirakawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Hisayoshi Kubota
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Aika Kosuge
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Moe Niijima
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Masaya Hasegawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Hitomi Kurahashi
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Reiko Murakami
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Masato Hoshi
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Takashi Nakano
- Department of Computational Biology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Suwako Fujigaki
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Hidetsugu Fujigaki
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| |
Collapse
|
82
|
Abuin-Martínez C, Vidal R, Gutiérrez-López MD, Pérez-Hernández M, Giménez-Gómez P, Morales-Puerto N, O'Shea E, Colado MI. Increased kynurenine concentration attenuates serotonergic neurotoxicity induced by 3,4-methylenedioxymethamphetamine (MDMA) in rats through activation of aryl hydrocarbon receptor. Neuropharmacology 2021; 187:108490. [PMID: 33607146 DOI: 10.1016/j.neuropharm.2021.108490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 01/08/2023]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) is an amphetamine derivative that has been shown to produce serotonergic damage in the brains of primates, including humans, and of rats. Tryptophan, the precursor of serotonin, is primarily degraded through the kynurenine (KYN) pathway, producing among others KYN, the main metabolite of this route. KYN has been reported as an endogenous agonist of the aryl hydrocarbon receptor (AhR), a transcription factor involved in several neurological functions. This study aims to determine the effect of MDMA on the KYN pathway and on AhR activity and to establish their role in the long-term serotonergic neurotoxicity induced by the drug in rats. Our results show that MDMA induces the activation of the KYN pathway, mediated by hepatic tryptophan 2,3-dioxygenase (TDO). MDMA also activated AhR as evidenced by increased AhR nuclear translocation and CYP1B1 mRNA expression. Autoradiographic quantification of serotonin transporters showed that both the TDO inhibitor 680C91 and the AhR antagonist CH-223191 potentiated the neurotoxicity induced by MDMA, while administration of exogenous l-kynurenine or of the AhR positive modulator 3,3'-diindolylmethane (DIM) partially prevented the serotonergic damage induced by the drug. The results demonstrate for the first time that MDMA increases KYN levels and AhR activity, and these changes appear to play a role in limiting the neurotoxicity induced by the drug. This work provides a better understanding of the physiological mechanisms that attenuate the brain damage induced by MDMA and identify modulation of the KYN pathway and of AhR as potential therapeutic strategies to limit the negative effects of MDMA.
Collapse
Affiliation(s)
- C Abuin-Martínez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Universidad Complutense, Madrid, Spain
| | - R Vidal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Universidad Complutense, Madrid, Spain
| | - M D Gutiérrez-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Universidad Complutense, Madrid, Spain
| | - M Pérez-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Universidad Complutense, Madrid, Spain
| | - P Giménez-Gómez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Universidad Complutense, Madrid, Spain
| | - N Morales-Puerto
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Universidad Complutense, Madrid, Spain
| | - E O'Shea
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Universidad Complutense, Madrid, Spain.
| | - M I Colado
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Universidad Complutense, Madrid, Spain.
| |
Collapse
|
83
|
Zulpaite R, Miknevicius P, Leber B, Strupas K, Stiegler P, Schemmer P. Tryptophan Metabolism via Kynurenine Pathway: Role in Solid Organ Transplantation. Int J Mol Sci 2021; 22:1921. [PMID: 33671985 PMCID: PMC7919278 DOI: 10.3390/ijms22041921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/01/2023] Open
Abstract
Solid organ transplantation is a gold standard treatment for patients suffering from an end-stage organ disease. Patient and graft survival have vastly improved during the last couple of decades; however, the field of transplantation still encounters several unique challenges, such as a shortage of transplantable organs and increasing pool of extended criteria donor (ECD) organs, which are extremely prone to ischemia-reperfusion injury (IRI), risk of graft rejection and challenges in immune regulation. Moreover, accurate and specific biomarkers, which can timely predict allograft dysfunction and/or rejection, are lacking. The essential amino acid tryptophan and, especially, its metabolites via the kynurenine pathway has been widely studied as a contributor and a therapeutic target in various diseases, such as neuropsychiatric, autoimmune disorders, allergies, infections and malignancies. The tryptophan-kynurenine pathway has also gained interest in solid organ transplantation and a variety of experimental studies investigating its role both in IRI and immune regulation after allograft implantation was first published. In this review, the current evidence regarding the role of tryptophan and its metabolites in solid organ transplantation is presented, giving insights into molecular mechanisms and into therapeutic and diagnostic/prognostic possibilities.
Collapse
Affiliation(s)
- Ruta Zulpaite
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (R.Z.); (P.M.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Povilas Miknevicius
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (R.Z.); (P.M.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (R.Z.); (P.M.); (B.L.); (P.S.)
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (R.Z.); (P.M.); (B.L.); (P.S.)
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (R.Z.); (P.M.); (B.L.); (P.S.)
| |
Collapse
|
84
|
Al-Mansoob M, Gupta I, Stefan Rusyniak R, Ouhtit A. KYNU, a novel potential target that underpins CD44-promoted breast tumour cell invasion. J Cell Mol Med 2021; 25:2309-2314. [PMID: 33486887 PMCID: PMC7933956 DOI: 10.1111/jcmm.16296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
Using a validated tetracycline‐off‐inducible CD44 expression system in mouse model, we have previously demonstrated that the hyaluronan (HA) receptor CD44 promotes breast cancer (BC) metastasis to the liver. To unravel the mechanisms that underpin CD44‐promoted BC cell invasion, RNA samples were isolated from two cell models: (a) a tetracycline (Tet)‐Off‐regulated expression system of the CD44s in MCF‐7 cells and; (b) as a complementary approach, the highly metastatic BC cells, MDA‐MB‐231, were cultured in the presence and absence of 50 µg/mL of HA. Kynureninase (KYNU), identified by Microarray analysis, was up‐regulated by 3‐fold upon induction and activation of CD44 by HA; this finding suggests that KYNU is a potential novel transcriptional target of CD44‐downtstream signalling. KYNU is a pyridoxal phosphate (PLP) dependent enzyme involved in the biosynthesis of NAD cofactors from tryptophan that has been associated with the onset and development of BC. This review will attempt to identify and discuss the findings supporting this hypothesis and the mechanisms linking KYNU cell invasion via CD44.
Collapse
Affiliation(s)
- Maryam Al-Mansoob
- Department of Biological & Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Radoslaw Stefan Rusyniak
- Department of Biological & Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Allal Ouhtit
- Department of Biological & Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| |
Collapse
|
85
|
Morales-Puerto N, Giménez-Gómez P, Pérez-Hernández M, Abuin-Martínez C, Gil de Biedma-Elduayen L, Vidal R, Gutiérrez-López MD, O'Shea E, Colado MI. Addiction and the kynurenine pathway: A new dancing couple? Pharmacol Ther 2021; 223:107807. [PMID: 33476641 DOI: 10.1016/j.pharmthera.2021.107807] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Drug use poses a serious threat to health systems throughout the world and the number of consumers rises relentlessly every year. The kynurenine pathway, main pathway of tryptophan degradation, has drawn interest in this field due to its relationship with addictive behaviour. Recently it has been confirmed that modulation of kynurenine metabolism at certain stages of the pathway can reduce, prevent or abolish drug seeking-like behaviours in studies with several different drugs. In this review, we present an up-to-date summary of the evidences of a relationship between drug use and the kynurenine pathway, both the alterations of the pathway due to drug use as well as modulation of the pathway as a potential approach to treat drug addiction. The review discusses ethanol, nicotine, cannabis, amphetamines, cocaine and opioids and new prospects in the drug research field are proposed.
Collapse
Affiliation(s)
- Nuria Morales-Puerto
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Pablo Giménez-Gómez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Mercedes Pérez-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Cristina Abuin-Martínez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Leticia Gil de Biedma-Elduayen
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Rebeca Vidal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - María Dolores Gutiérrez-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Esther O'Shea
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain.
| | - María Isabel Colado
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
86
|
Fanciulli G, Ruggeri RM, Grossrubatscher E, Calzo FL, Wood TD, Faggiano A, Isidori A, Colao A. Serotonin pathway in carcinoid syndrome: Clinical, diagnostic, prognostic and therapeutic implications. Rev Endocr Metab Disord 2020; 21:599-612. [PMID: 32152781 DOI: 10.1007/s11154-020-09547-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Carcinoid syndrome represents the most common functional syndrome that affects patients with neuroendocrine neoplasms. Its clinical presentation is really heterogeneous, ranging from mild and often misdiagnosed symptoms to severe manifestations, that significantly worsen the patient's quality of life, such as difficult-to-control diarrhoea and fibrotic complications. Serotonin pathway alteration plays a central role in the pathophysiology of carcinoid syndrome, accounting for most clinical manifestations and providing diagnostic tools. Serotonin pathway is complex, resulting in production of biologically active molecules such as serotonin and melatonin, as well as of different intermediate molecules and final metabolites. These activities require site- and tissue-specific catalytic enzymes. Variable expression and activities of these enzymes result in different clinical pictures, according to primary site of origin of the tumour. At the same time, the biochemical diagnosis of carcinoid syndrome could be difficult even in case of typical symptoms. Therefore, the accuracy of the diagnostic methods of assessment should be improved, also attenuating the impact of confounding factors and maybe considering new serotonin precursors or metabolites as diagnostic markers. Finally, the prognostic role of serotonin markers has been only evaluated for its metabolite 5-hydroxyindole acetic acid but, due to heterogeneous and biased study designs, no definitive conclusions have been achieved. The most recent progress is represented by the new therapeutic agent telotristat, an inhibitor of the enzyme tryptophan hydroxylase, which blocks the conversion of tryptophan in 5-hydroxy-tryptophan. The present review investigates the clinical significance of serotonin pathway in carcinoid syndrome, considering its role in the pathogenesis, diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Giuseppe Fanciulli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari - Endocrine Unit, AOU Sassari, Sassari, Italy
| | - Rosaria M Ruggeri
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Messina, Messina, Italy
| | | | - Fabio Lo Calzo
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University Federico II, Naples, Italy
| | - Troy D Wood
- Department of Chemistry, University at Buffalo, Buffalo, NY, USA
| | | | - Andrea Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University Federico II, Naples, Italy
| | | |
Collapse
|
87
|
Bellmaine S, Schnellbaecher A, Zimmer A. Reactivity and degradation products of tryptophan in solution and proteins. Free Radic Biol Med 2020; 160:696-718. [PMID: 32911085 DOI: 10.1016/j.freeradbiomed.2020.09.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Tryptophan is one of the essential mammalian amino acids and is thus a required component in human nutrition, animal feeds, and cell culture media. However, this aromatic amino acid is highly susceptible to oxidation and is known to degrade into multiple products during manufacturing, storage, and processing. Many physical and chemical processes contribute to the degradation of this compound, primarily via oxidation or cleavage of the highly reactive indole ring. The central contributing factors are reactive oxygen species, such as singlet oxygen, hydrogen peroxide, and hydroxyl radicals; light and photosensitizers; metals; and heat. In a multi-component mixture, tryptophan also commonly reacts with carbonyl-containing compounds, leading to a wide variety of products. The purpose of this review is to summarize the current state of knowledge regarding the degradation and interaction products of tryptophan in complex liquid solutions and in proteins. For the purposes of context, a brief summary of the key pathways in tryptophan metabolism will be included, along with common methods and issues in tryptophan manufacturing. The review will focus on the conditions that lead to tryptophan degradation, the products generated in these processes, their known biological effects, and methods which may be applied to stabilize the amino acid.
Collapse
Affiliation(s)
- Stephanie Bellmaine
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Alisa Schnellbaecher
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Aline Zimmer
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany.
| |
Collapse
|
88
|
Rieder M, Gauchel N, Bode C, Duerschmied D. Serotonin: a platelet hormone modulating cardiovascular disease. J Thromb Thrombolysis 2020; 52:42-47. [PMID: 33155668 PMCID: PMC8282555 DOI: 10.1007/s11239-020-02331-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 01/19/2023]
Abstract
Cardiovascular diseases and depression are significant health burdens and increasing evidence suggests a causal relationship between them. The incidence of depression among patients suffering from cardiovascular disease is markedly elevated, and depression itself is an established cardiovascular risk factor. Serotonin 5-hydroxytryptamin (5-HT), a biogenic amine acting as a neurotransmitter and a peripheral hormone, is involved in the pathogenesis of both, cardiovascular disease and depression. Novel cardiovascular functions of 5-HT have recently been described and will be summarized in this review. 5-HT has a broad spectrum of functions in the cardiovascular system, yet the clinical or experimental data are partly conflicting. There is further research needed to characterize the clinical effects of 5-HT in particular tissues to enable targeted pharmacological therapies.
Collapse
Affiliation(s)
- Marina Rieder
- Department of Cardiology and Angiology I, Faculty of Medicine, Heart Center Freiburg University, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany.,Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nadine Gauchel
- Department of Cardiology and Angiology I, Faculty of Medicine, Heart Center Freiburg University, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany. .,Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Christoph Bode
- Department of Cardiology and Angiology I, Faculty of Medicine, Heart Center Freiburg University, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany.,Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Duerschmied
- Department of Cardiology and Angiology I, Faculty of Medicine, Heart Center Freiburg University, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany.,Department of Medicine III (Interdisciplinary Medical Intensive Care), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
89
|
Gupta A, Osadchiy V, Mayer EA. Brain-gut-microbiome interactions in obesity and food addiction. Nat Rev Gastroenterol Hepatol 2020; 17:655-672. [PMID: 32855515 PMCID: PMC7841622 DOI: 10.1038/s41575-020-0341-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Normal eating behaviour is coordinated by the tightly regulated balance between intestinal and extra-intestinal homeostatic and hedonic mechanisms. By contrast, food addiction is a complex, maladaptive eating behaviour that reflects alterations in brain-gut-microbiome (BGM) interactions and a shift of this balance towards hedonic mechanisms. Each component of the BGM axis has been implicated in the development of food addiction, with both brain to gut and gut to brain signalling playing a role. Early-life influences can prime the infant gut microbiome and brain for food addiction, which might be further reinforced by increased antibiotic usage and dietary patterns throughout adulthood. The ubiquitous availability and marketing of inexpensive, highly palatable and calorie-dense food can further shift this balance towards hedonic eating through both central (disruptions in dopaminergic signalling) and intestinal (vagal afferent function, metabolic endotoxaemia, systemic immune activation, changes to gut microbiome and metabolome) mechanisms. In this Review, we propose a systems biology model of BGM interactions, which incorporates published reports on food addiction, and provides novel insights into treatment targets aimed at each level of the BGM axis.
Collapse
Affiliation(s)
- Arpana Gupta
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA
| | - Vadim Osadchiy
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Emeran A Mayer
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA.
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA.
- Ahmanson-Lovelace Brain Mapping Center at University of California Los Angeles, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
90
|
Mor A, Kalaska B, Pawlak D. Kynurenine Pathway in Chronic Kidney Disease: What’s Old, What’s New, and What’s Next? Int J Tryptophan Res 2020; 13:1178646920954882. [PMID: 35210786 PMCID: PMC8862190 DOI: 10.1177/1178646920954882] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/06/2020] [Indexed: 11/25/2022] Open
Abstract
Impaired kidney function and increased inflammatory process occurring in the course of Chronic Kidney Disease (CKD) contribute to the development of complex amino-acid alterations. The essential amino-acid tryptophan (TRP) undergoes extensive metabolism along several pathways, resulting in the production of many biologically active compounds. The results of many studies have shown that its metabolism via the kynurenine pathway is potently increased in the course of CKD. Metabolites of this pathway exhibit differential, sometimes opposite, roles in several biological processes. Their accumulation in the course of CKD may induce oxidative cell damage which stimulates inflammatory processes. They can also modulate the activity of numerous cellular signaling pathways through activation of the aryl hydrocarbon receptor, leading to the disruption of homeostasis of various organs. As a result, they can contribute to the development of the systemic disorders accompanying the course of chronic renal failure. This review gathers and systematizes reports concerning the knowledge connecting the kynurenine pathway metabolites to systemic disorders accompanying the development of CKD.
Collapse
Affiliation(s)
- Adrian Mor
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
91
|
Metabolic profiling of organic acids in urine samples of Cri Du Chat syndrome individuals by gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1153:122267. [DOI: 10.1016/j.jchromb.2020.122267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/11/2020] [Accepted: 07/08/2020] [Indexed: 01/07/2023]
|
92
|
Westbrook R, Chung T, Lovett J, Ward C, Joca H, Yang H, Khadeer M, Tian J, Xue QL, Le A, Ferrucci L, Moaddel R, de Cabo R, Hoke A, Walston J, Abadir PM. Kynurenines link chronic inflammation to functional decline and physical frailty. JCI Insight 2020; 5:136091. [PMID: 32814718 PMCID: PMC7455140 DOI: 10.1172/jci.insight.136091] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/15/2020] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammation is associated with physical frailty and functional decline in older adults; however, the molecular mechanisms of this linkage are not understood. A mouse model of chronic inflammation showed reduced motor function and partial denervation at the neuromuscular junction. Metabolomic profiling of these mice and further validation in frail human subjects showed significant dysregulation in the tryptophan degradation pathway, including decreased tryptophan and serotonin, and increased levels of some neurotoxic kynurenines. In humans, kynurenine strongly correlated with age, frailty status, TNF-αR1 and IL-6, weaker grip strength, and slower walking speed. To study the effects of elevated neurotoxic kynurenines on motor neuronal cell viability and axonal degeneration, we used motor neuronal cells treated with 3-hydroxykynurenine and quinolinic acid and observed neurite degeneration in a dose-dependent manner and potentiation of toxicity between 3-hydroxykynurenine and quinolinic acid. These results suggest that kynurenines mediate neuromuscular dysfunction associated with chronic inflammation and aging. Tryptophan-related toxic metabolites known as kynurenines are altered with chronic inflammation, which damages nerves in aged and frail mice and humans.
Collapse
Affiliation(s)
| | - Tae Chung
- Department of Physical Medicine and Rehabilitation, and.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Chris Ward
- Department of Orthopedics and Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Humberto Joca
- Department of Orthopedics and Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Huanle Yang
- Division of Geriatric Medicine and Gerontology
| | | | - Jing Tian
- Division of Geriatric Medicine and Gerontology
| | - Qian-Li Xue
- Division of Geriatric Medicine and Gerontology
| | - Anne Le
- Department of Oncology and.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Ruin Moaddel
- National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Rafa de Cabo
- National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy Walston
- Division of Geriatric Medicine and Gerontology.,Department of Medicine, Kyung Hee University, Seoul, South Korea
| | | |
Collapse
|
93
|
Oncology Therapeutics Targeting the Metabolism of Amino Acids. Cells 2020; 9:cells9081904. [PMID: 32824193 PMCID: PMC7463463 DOI: 10.3390/cells9081904] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Amino acid metabolism promotes cancer cell proliferation and survival by supporting building block synthesis, producing reducing agents to mitigate oxidative stress, and generating immunosuppressive metabolites for immune evasion. Malignant cells rewire amino acid metabolism to maximize their access to nutrients. Amino acid transporter expression is upregulated to acquire amino acids from the extracellular environment. Under nutrient depleted conditions, macropinocytosis can be activated where proteins from the extracellular environment are engulfed and degraded into the constituent amino acids. The demand for non-essential amino acids (NEAAs) can be met through de novo synthesis pathways. Cancer cells can alter various signaling pathways to boost amino acid usage for the generation of nucleotides, reactive oxygen species (ROS) scavenging molecules, and oncometabolites. The importance of amino acid metabolism in cancer proliferation makes it a potential target for therapeutic intervention, including via small molecules and antibodies. In this review, we will delineate the targets related to amino acid metabolism and promising therapeutic approaches.
Collapse
|
94
|
Jena A, Montoya CA, Mullaney JA, Dilger RN, Young W, McNabb WC, Roy NC. Gut-Brain Axis in the Early Postnatal Years of Life: A Developmental Perspective. Front Integr Neurosci 2020; 14:44. [PMID: 32848651 PMCID: PMC7419604 DOI: 10.3389/fnint.2020.00044] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence suggests that alterations in the development of the gastrointestinal (GI) tract during the early postnatal period can influence brain development and vice-versa. It is increasingly recognized that communication between the GI tract and brain is mainly driven by neural, endocrine, immune, and metabolic mediators, collectively called the gut-brain axis (GBA). Changes in the GBA mediators occur in response to the developmental changes in the body during this period. This review provides an overview of major developmental events in the GI tract and brain in the early postnatal period and their parallel developmental trajectories under physiological conditions. Current knowledge of GBA mediators in context to brain function and behavioral outcomes and their synthesis and metabolism (site, timing, etc.) is discussed. This review also presents hypotheses on the role of the GBA mediators in response to the parallel development of the GI tract and brain in infants.
Collapse
Affiliation(s)
- Ankita Jena
- School of Food & Advanced Technology, College of Sciences, Massey University, Palmerston North, New Zealand.,The Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition & Health, Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| | - Carlos A Montoya
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition & Health, Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| | - Jane A Mullaney
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition & Health, Grasslands Research Centre, AgResearch, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Wayne Young
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition & Health, Grasslands Research Centre, AgResearch, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Warren C McNabb
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Liggins Institute, The University of Auckland, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| |
Collapse
|
95
|
Exercise but Not Supplemental Dietary Tryptophan Influences Heart Rate and Respiratory Rate in Sled Dogs. Vet Sci 2020; 7:vetsci7030097. [PMID: 32717797 PMCID: PMC7559096 DOI: 10.3390/vetsci7030097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Tryptophan (Trp), an indispensable amino acid for dogs, is the precursor of serotonin, a neurotransmitter with a variety of effects throughout the body, including the ability to modulate cardiac and pulmonary activity. This study aimed to investigate the effects of a 12-week incremental exercise regimen and supplemental dietary Trp on heart rate (HR) and respiratory rate (RR) in client-owned sled dogs. Sixteen Siberian huskies were randomly allocated to either treatment or control diet groups. Both groups were fed a control diet (Trp to large neutral amino acid ratio of 0.047:1); however, treatment dogs received a Trp supplement to achieve a Trp to large neutral amino acid ratio of 0.075:1. Every three weeks, external telemetry equipment was used to non-invasively measure and record HR and RR at a resting, working, and post-exercise state in a controlled exercise challenge. A mixed model was used to test differences between diet, activity parameter, and week. Dietary Trp supplementation had no effect on HR or RR. Independent of diet, resting, working, post-exercise HR, and time to recover post-exercise HR decreased from week −1 to week 11 (p < 0.05). Resting HR had the greatest reduction from week −1 to week 11 (21%, p < 0.05). Working RR did not change with exercise (p > 0.10), but rRR and postRR decreased from week −1 to week 11 (p < 0.05). These data suggest that the exercise regimen the dogs were subjected to may have positively impacted the dogs’ capacity to sustain aerobic exercise, whereas Trp supplementation had no effect on HR or RR.
Collapse
|
96
|
Bairam AF, Kermasha ZW, Liu MC, Kurogi K, Yamamoto K. Functional analysis of novel sulfotransferases in the silkworm Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21671. [PMID: 32227386 DOI: 10.1002/arch.21671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Sulfoconjugation plays a vital role in the detoxification of xenobiotics and in the metabolism of endogenous compounds. In this study, we aimed to identify new members of the sulfotransferase (SULT) superfamily in the silkworm Bombyx mori. Based on amino acid sequence and phylogenetic analyses, two new enzymes, swSULT ST1 and swSULT ST2, were identified that appear to belong to a distinct group of SULTs including several other insect SULTs. We expressed, purified, and characterized recombinant SULTs. While swSULT ST1 sulfated xanthurenic acid and pentachlorophenol, swSULT ST2 exclusively utilized xanthurenic acid as a substrate. Based on these results, and those concerning the tissue distribution and substrate specificity toward pentachlorophenol analyses, we hypothesize that swSULT ST1 plays a role in the detoxification of xenobiotics, including insecticides, in the silkworm midgut and in the induction of gametogenesis in silkworm ovary and testis. Collectively, the data obtained herein contribute to a better understanding of SULT enzymatic functions in insects.
Collapse
Affiliation(s)
- Ahsan F Bairam
- Department of Pharmacology, College of Pharmacy, University of Kufa, Najaf, Iraq
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio, USA
| | - Zainab W Kermasha
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio, USA
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio, USA
| | - Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Kohji Yamamoto
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Fukuoka, Japan
| |
Collapse
|
97
|
Tryptophan Metabolism, Regulatory T Cells, and Inflammatory Bowel Disease: A Mini Review. Mediators Inflamm 2020; 2020:9706140. [PMID: 32617076 PMCID: PMC7306093 DOI: 10.1155/2020/9706140] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract resulting from the homeostasis imbalance of intestinal microenvironment, immune dysfunction, environmental and genetic factors, and so on. This disease is associated with multiple immune cells including regulatory T cells (Tregs). Tregs are a subset of T cells regulating the function of various immune cells to induce immune tolerance and maintain intestinal immune homeostasis. Tregs are correlated with the initiation and progression of IBD; therefore, strategies that affect the differentiation and function of Tregs may be promising for the prevention of IBD-associated pathology. It is worth noting that tryptophan (Trp) metabolism is effective in inducing the differentiation of Tregs through microbiota-mediated degradation and kynurenine pathway (KP), which is important for maintaining the function of Tregs. Interestingly, patients with IBD show Trp metabolism disorder in the pathological process, including changes in the concentrations of Trp and its metabolites and alteration in the activities of related catalytic enzymes. Thus, manipulation of Treg differentiation through Trp metabolism may provide a potential target for prevention of IBD. The purpose of this review is to highlight the relationship between Trp metabolism and Treg differentiation and the role of this interaction in the pathogenesis of IBD.
Collapse
|
98
|
Maget A, Platzer M, Bengesser SA, Fellendorf FT, Birner A, Queissner R, Hamm C, Reininghaus B, Hecker A, Tomberger L, Pilz R, Dalkner N, Moll N, Schütze G, Schwarz M, Kapfhammer HP, Reininghaus EZ. Differences in Kynurenine Metabolism During Depressive, Manic, and Euthymic Phases of Bipolar Affective Disorder. Curr Top Med Chem 2020; 20:1344-1352. [DOI: 10.2174/1568026619666190802145128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/29/2019] [Accepted: 06/27/2019] [Indexed: 11/22/2022]
Abstract
Background & Objectives:
The kynurenine pathway is involved in inflammatory diseases. Alterations
of this pathway were shown in psychiatric entities as well. The aim of this study was to determine
whether specific changes in kynurenine metabolism are associated with current mood symptoms in bipolar
disorder.
Methods:
Sum scores of the Hamilton Depression Scale, Beck Depression Inventory, and Young Mania
Rating Scale were collected from 156 bipolar individuals to build groups of depressive, manic and
euthymic subjects according to predefined cut-off scores. Severity of current mood symptoms was correlated
with activities of the enzymes kynurenine 3-monooxygenase (ratio of 3-hydroxykynurenine/
kynurenine), kynurenine aminotransferase (ratio of kynurenic acid/ kynurenine) and kynureninase (ratio of
3-hydroxyanthranilic acid/ 3-hydroxykynurenine), proxied by ratios of serum concentrations.
Results:
Individuals with manic symptoms showed a shift towards higher kynurenine 3-monooxygenase
activity (χ2 = 7.14, Df = 2, p = .028), compared to euthymic as well as depressed individuals. There were no
differences between groups regarding activity of kynurenine aminotransferase and kynureninase. Within
the group of depressed patients, Hamilton Depression Scale and kynurenine aminotransferase showed a
significant negative correlation (r = -0.41, p = .036), displaying lower metabolism in the direction of
kynurenic acid.
Conclusion:
Depression severity in bipolar disorder seems to be associated with a decreased synthesis of
putative neuroprotective kynurenic acid. Furthermore, higher kynurenine 3-monooxygenase activity in currently
manic individuals indicates an increased inflammatory state within bipolar disorder with more severe
inflammation during manic episodes. The underlying pathophysiological mechanisms of the different affective
episodes could represent parallel mechanisms rather than opposed processes.
Collapse
Affiliation(s)
- Alexander Maget
- Department of Psychiatric and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Martina Platzer
- Department of Psychiatric and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Susanne A. Bengesser
- Department of Psychiatric and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Frederike T. Fellendorf
- Department of Psychiatric and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Armin Birner
- Department of Psychiatric and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Robert Queissner
- Department of Psychiatric and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Carlo Hamm
- Department of Psychiatric and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Bernd Reininghaus
- Department of Psychiatric and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Andrzej Hecker
- Department of Psychiatric and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Lukas Tomberger
- Department of Psychiatric and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Renè Pilz
- Department of Psychiatric and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Nina Dalkner
- Department of Psychiatric and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Natalie Moll
- Institute of Laboratory Medicine Medical Center of Munich University (LMU), Munich, Germany
| | - Gregor Schütze
- Institute of Laboratory Medicine Medical Center of Munich University (LMU), Munich, Germany
| | - Markus Schwarz
- Institute of Laboratory Medicine Medical Center of Munich University (LMU), Munich, Germany
| | - Hans P. Kapfhammer
- Department of Psychiatric and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Eva Z. Reininghaus
- Department of Psychiatric and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
99
|
Harvey AJ. Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. Reproduction 2020; 157:R159-R179. [PMID: 30870807 DOI: 10.1530/rep-18-0431] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/04/2019] [Indexed: 12/24/2022]
Abstract
Mitochondria, originally of bacterial origin, are highly dynamic organelles that have evolved a symbiotic relationship within eukaryotic cells. Mitochondria undergo dynamic, stage-specific restructuring and redistribution during oocyte maturation and preimplantation embryo development, necessary to support key developmental events. Mitochondria also fulfil a wide range of functions beyond ATP synthesis, including the production of intracellular reactive oxygen species and calcium regulation, and are active participants in the regulation of signal transduction pathways. Communication between not only mitochondria and the nucleus, but also with other organelles, is emerging as a critical function which regulates preimplantation development. Significantly, perturbations and deficits in mitochondrial function manifest not only as reduced quality and/or poor oocyte and embryo development but contribute to post-implantation failure, long-term cell function and adult disease. A growing body of evidence indicates that altered availability of metabolic co-factors modulate the activity of epigenetic modifiers, such that oocyte and embryo mitochondrial activity and dynamics have the capacity to establish long-lasting alterations to the epigenetic landscape. It is proposed that preimplantation embryo development may represent a sensitive window during which epigenetic regulation by mitochondria is likely to have significant short- and long-term effects on embryo, and offspring, health. Hence, mitochondrial integrity, communication and metabolism are critical links between the environment, the epigenome and the regulation of embryo development.
Collapse
Affiliation(s)
- Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
100
|
Bıldırcın FD, Özdemir A, ÇELİK H, Karlı P, AVCI B, Batıoğlu S. Effects of tryptophan, a precursor for melatonin, on ıvf outcomes and Doppler parameters. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2020. [DOI: 10.32322/jhsm.667822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|