51
|
Bopp R, Maçarico da Costa N, Kampa BM, Martin KAC, Roth MM. Pyramidal cells make specific connections onto smooth (GABAergic) neurons in mouse visual cortex. PLoS Biol 2014; 12:e1001932. [PMID: 25137065 PMCID: PMC4138028 DOI: 10.1371/journal.pbio.1001932] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 07/10/2014] [Indexed: 11/19/2022] Open
Abstract
Light and electron microscopy of the primary visual cortex of mice indicates that pyramidal neurons connect preferentially to inhibitory neurons. One of the hallmarks of neocortical circuits is the predominance of recurrent excitation between pyramidal neurons, which is balanced by recurrent inhibition from smooth GABAergic neurons. It has been previously described that in layer 2/3 of primary visual cortex (V1) of cat and monkey, pyramidal cells filled with horseradish peroxidase connect approximately in proportion to the spiny (excitatory, 95% and 81%, respectively) and smooth (GABAergic, 5% and 19%, respectively) dendrites found in the neuropil. By contrast, a recent ultrastructural study of V1 in a single mouse found that smooth neurons formed 51% of the targets of the superficial layer pyramidal cells. This suggests that either the neuropil of this particular mouse V1 had a dramatically different composition to that of V1 in cat and monkey, or that smooth neurons were specifically targeted by the pyramidal cells in that mouse. We tested these hypotheses by examining similar cells filled with biocytin in a sample of five mice. We found that the average composition of the neuropil in V1 of these mice was similar to that described for cat and monkey V1, but that the superficial layer pyramidal cells do form proportionately more synapses with smooth dendrites than the equivalent neurons in cat or monkey. These distributions may underlie the distinct differences in functional architecture of V1 between rodent and higher mammals. The mammalian visual cortex, which is part of the cerebral cortex, contains 50 to 100 thousands of neurons per cubic millimetre, most of which are excitatory (85%) and the minority, inhibitory (15%). Unlike neurons in the retina, neurons in the visual cortex are preferentially activated by lines or edges of a particular orientation. This is termed a neuron's “orientation preference.” In the visual cortex of higher mammals like cats and monkeys, neurons that share an orientation preference are clustered in functional columns. However, in rodents like mice, orientation preferences are randomly distributed. In this study, we investigate whether the differences between columnar and non-columnar cortex is correlated with differences in the connectivity patterns between excitatory and inhibitory neurons. Using light and electron microscopy, we mapped the connectivity of pyramidal neurons—the primary excitatory neurons—in the superficial layers of the primary visual cortex (V1) of mice. Our results show that the ratio of excitatory-inhibitory neurons in mouse V1 is similar to that of cat or monkey V1, but in mouse V1 local pyramidal neurons target proportionately many more inhibitory neurons compared to what other studies found in cat or monkey. This difference may indicate the significance of inhibition in maintaining orientation selectivity in the non-columnar visual cortex of rodents like mice and is a distinct difference in the architecture of V1 between mice and higher mammals.
Collapse
Affiliation(s)
- Rita Bopp
- Institute for Neuroinformatics, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Nuno Maçarico da Costa
- Institute for Neuroinformatics, University of Zürich and ETH Zürich, Zürich, Switzerland
- * E-mail:
| | - Björn M. Kampa
- Brain Research Institute, University of Zürich, Zürich, Switzerland
- Institute de Neurosciences de la Timone, Marseille, France
| | - Kevan A. C. Martin
- Institute for Neuroinformatics, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Morgane M. Roth
- Brain Research Institute, University of Zürich, Zürich, Switzerland
| |
Collapse
|
52
|
Butti C, Janeway CM, Townshend C, Wicinski BA, Reidenberg JS, Ridgway SH, Sherwood CC, Hof PR, Jacobs B. The neocortex of cetartiodactyls: I. A comparative Golgi analysis of neuronal morphology in the bottlenose dolphin (Tursiops truncatus), the minke whale (Balaenoptera acutorostrata), and the humpback whale (Megaptera novaeangliae). Brain Struct Funct 2014; 220:3339-68. [PMID: 25100560 DOI: 10.1007/s00429-014-0860-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/25/2014] [Indexed: 12/12/2022]
Abstract
The present study documents the morphology of neurons in several regions of the neocortex from the bottlenose dolphin (Tursiops truncatus), the North Atlantic minke whale (Balaenoptera acutorostrata), and the humpback whale (Megaptera novaeangliae). Golgi-stained neurons (n = 210) were analyzed in the frontal and temporal neocortex as well as in the primary visual and primary motor areas. Qualitatively, all three species exhibited a diversity of neuronal morphologies, with spiny neurons including typical pyramidal types, similar to those observed in primates and rodents, as well as other spiny neuron types that had more variable morphology and/or orientation. Five neuron types, with a vertical apical dendrite, approximated the general pyramidal neuron morphology (i.e., typical pyramidal, extraverted, magnopyramidal, multiapical, and bitufted neurons), with a predominance of typical and extraverted pyramidal neurons. In what may represent a cetacean morphological apomorphy, both typical pyramidal and magnopyramidal neurons frequently exhibited a tri-tufted variant. In the humpback whale, there were also large, star-like neurons with no discernable apical dendrite. Aspiny bipolar and multipolar interneurons were morphologically consistent with those reported previously in other mammals. Quantitative analyses showed that neuronal size and dendritic extent increased in association with body size and brain mass (bottlenose dolphin < minke whale < humpback whale). The present data thus suggest that certain spiny neuron morphologies may be apomorphies in the neocortex of cetaceans as compared to other mammals and that neuronal dendritic extent covaries with brain and body size.
Collapse
Affiliation(s)
- Camilla Butti
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Caroline M Janeway
- Laboratory of Quantitative Neuromorphology, Psychology, Colorado College, 14 E. Cache La Poudre, Colorado Springs, CO, 80903, USA
| | - Courtney Townshend
- Laboratory of Quantitative Neuromorphology, Psychology, Colorado College, 14 E. Cache La Poudre, Colorado Springs, CO, 80903, USA
| | - Bridget A Wicinski
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Joy S Reidenberg
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Sam H Ridgway
- National Marine Mammal Foundation, 2240 Shelter Island Drive, San Diego, CA, 92106, USA
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, 2110 G Street NW, Washington, DC, 20052, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Bob Jacobs
- Laboratory of Quantitative Neuromorphology, Psychology, Colorado College, 14 E. Cache La Poudre, Colorado Springs, CO, 80903, USA
| |
Collapse
|
53
|
Spatial distribution of neurons innervated by chandelier cells. Brain Struct Funct 2014; 220:2817-34. [PMID: 25056931 PMCID: PMC4549388 DOI: 10.1007/s00429-014-0828-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/21/2014] [Indexed: 11/05/2022]
Abstract
Chandelier (or axo-axonic) cells are a distinct group of GABAergic interneurons that innervate the axon initial segments of pyramidal cells and are thus thought to have an important role in controlling the activity of cortical circuits. To examine the circuit connectivity of chandelier cells (ChCs), we made use of a genetic targeting strategy to label neocortical ChCs in upper layers of juvenile mouse neocortex. We filled individual ChCs with biocytin in living brain slices and reconstructed their axonal arbors from serial semi-thin sections. We also reconstructed the cell somata of pyramidal neurons that were located inside the ChC axonal trees and determined the percentage of pyramidal neurons whose axon initial segments were innervated by ChC terminals. We found that the total percentage of pyramidal neurons that were innervated by a single labeled ChC was 18–22 %. Sholl analysis showed that this percentage peaked at 22–35 % for distances between 30 and 60 µm from the ChC soma, decreasing to lower percentages with increasing distances. We also studied the three-dimensional spatial distribution of the innervated neurons inside the ChC axonal arbor using spatial statistical analysis tools. We found that innervated pyramidal neurons are not distributed at random, but show a clustered distribution, with pockets where almost all cells are innervated and other regions within the ChC axonal tree that receive little or no innervation. Thus, individual ChCs may exert a strong, widespread influence on their local pyramidal neighbors in a spatially heterogeneous fashion.
Collapse
|
54
|
The neocortex of cetartiodactyls. II. Neuronal morphology of the visual and motor cortices in the giraffe (Giraffa camelopardalis). Brain Struct Funct 2014; 220:2851-72. [PMID: 25048683 DOI: 10.1007/s00429-014-0830-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 06/21/2014] [Indexed: 12/24/2022]
Abstract
The present quantitative study extends our investigation of cetartiodactyls by exploring the neuronal morphology in the giraffe (Giraffa camelopardalis) neocortex. Here, we investigate giraffe primary visual and motor cortices from perfusion-fixed brains of three subadults stained with a modified rapid Golgi technique. Neurons (n = 244) were quantified on a computer-assisted microscopy system. Qualitatively, the giraffe neocortex contained an array of complex spiny neurons that included both "typical" pyramidal neuron morphology and "atypical" spiny neurons in terms of morphology and/or orientation. In general, the neocortex exhibited a vertical columnar organization of apical dendrites. Although there was no significant quantitative difference in dendritic complexity for pyramidal neurons between primary visual (n = 78) and motor cortices (n = 65), there was a significant difference in dendritic spine density (motor cortex > visual cortex). The morphology of aspiny neurons in giraffes appeared to be similar to that of other eutherian mammals. For cross-species comparison of neuron morphology, giraffe pyramidal neurons were compared to those quantified with the same methodology in African elephants and some cetaceans (e.g., bottlenose dolphin, minke whale, humpback whale). Across species, the giraffe (and cetaceans) exhibited less widely bifurcating apical dendrites compared to elephants. Quantitative dendritic measures revealed that the elephant and humpback whale had more extensive dendrites than giraffes, whereas the minke whale and bottlenose dolphin had less extensive dendritic arbors. Spine measures were highest in the giraffe, perhaps due to the high quality, perfusion fixation. The neuronal morphology in giraffe neocortex is thus generally consistent with what is known about other cetartiodactyls.
Collapse
|
55
|
Deprivation-induced strengthening of presynaptic and postsynaptic inhibitory transmission in layer 4 of visual cortex during the critical period. J Neurosci 2014; 34:2571-82. [PMID: 24523547 DOI: 10.1523/jneurosci.4600-13.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibition from fast-spiking (FS) interneurons plays a crucial role in shaping cortical response properties and gating developmental periods of activity-dependent plasticity, yet the expression mechanisms underlying FS inhibitory plasticity remain largely unexplored. In layer 4 of visual cortex (V1), monocular deprivation (MD) induces either depression or potentiation of FS to star pyramidal neuron (FS→SP) synapses, depending on the age of onset (Maffei et al., 2004, 2006). This reversal in the sign (- to +) of plasticity occurs on the cusp of the canonical critical period (CP). To investigate the expression locus behind this switch in sign of inhibitory plasticity, mice underwent MD during the pre-CP [eye-opening to postnatal day (p)17] or CP (p22-p25), and FS→SP synaptic strength within layer 4 was assessed using confocal and immunoelectron microscopy, as well as optogenetic activation of FS cells to probe quantal amplitude at FS→SP synapses. Brief MD before p17 or p25 did not alter the density of FS→SP contacts. However, at the ultrastructural level, FS→SP synapses in deprived hemispheres during the CP, but not the pre-CP or in GAD65 knock-out mice, had larger synapses and increased docked vesicle density compared with synapses from the nondeprived control hemispheres. Moreover, FS→SP evoked miniature IPSCs increased in deprived hemispheres when MD was initiated during the CP, accompanied by an increase in the density of postsynaptic GABAA receptors at FS→SP synapses. These coordinated changes in FS→SP synaptic strength define an expression pathway modulating excitatory output during CP plasticity in visual cortex.
Collapse
|
56
|
Synaptic input correlations leading to membrane potential decorrelation of spontaneous activity in cortex. J Neurosci 2013; 33:15075-85. [PMID: 24048838 DOI: 10.1523/jneurosci.0347-13.2013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Correlations in the spiking activity of neurons have been found in many regions of the cortex under multiple experimental conditions and are postulated to have important consequences for neural population coding. While there is a large body of extracellular data reporting correlations of various strengths, the subthreshold events underlying the origin and magnitude of signal-independent correlations (called noise or spike count correlations) are unknown. Here we investigate, using intracellular recordings, how synaptic input correlations from shared presynaptic neurons translate into membrane potential and spike-output correlations. Using a pharmacologically activated thalamocortical slice preparation, we perform simultaneous recordings from pairs of layer IV neurons in the auditory cortex of mice and measure synaptic potentials/currents, membrane potentials, and spiking outputs. We calculate cross-correlations between excitatory and inhibitory inputs to investigate correlations emerging from the network. We furthermore evaluate membrane potential correlations near resting potential to study how excitation and inhibition combine and affect spike-output correlations. We demonstrate directly that excitation is correlated with inhibition thereby partially canceling each other and resulting in weak membrane potential and spiking correlations between neurons. Our data suggest that cortical networks are set up to partially cancel correlations emerging from the connections between neurons. This active decorrelation is achieved because excitation and inhibition closely track each other. Our results suggest that the numerous shared presynaptic inputs do not automatically lead to increased spiking correlations.
Collapse
|
57
|
Folias SE, Yu S, Snyder A, Nikolić D, Rubin JE. Synchronisation hubs in the visual cortex may arise from strong rhythmic inhibition during gamma oscillations. Eur J Neurosci 2013; 38:2864-83. [PMID: 23837724 DOI: 10.1111/ejn.12287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/14/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
Neurons in the visual cortex exhibit heterogeneity in feature selectivity and the tendency to generate action potentials synchronously with other nearby neurons. By examining visual responses from cat area 17 we found that, during gamma oscillations, there was a positive correlation between each unit's sharpness of orientation tuning, strength of oscillations, and propensity towards synchronisation with other units. Using a computational model, we demonstrated that heterogeneity in the strength of rhythmic inhibitory inputs can account for the correlations between these three properties. Neurons subject to strong inhibition tend to oscillate strongly in response to both optimal and suboptimal stimuli and synchronise promiscuously with other neurons, even if they have different orientation preferences. Moreover, these strongly inhibited neurons can exhibit sharp orientation selectivity provided that the inhibition they receive is broadly tuned relative to their excitatory inputs. These results predict that the strength and orientation tuning of synaptic inhibition are heterogeneous across area 17 neurons, which could have important implications for these neurons' sensory processing capabilities. Furthermore, although our experimental recordings were conducted in the visual cortex, our model and simulation results can apply more generally to any brain region with analogous neuron types in which heterogeneity in the strength of rhythmic inhibition can arise during gamma oscillations.
Collapse
Affiliation(s)
- Stefanos E Folias
- Department of Mathematics and Statistics, University of Alaska Anchorage, Anchorage, AK, USA; Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
58
|
Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1. J Neurosci 2013; 33:5475-85. [PMID: 23536063 DOI: 10.1523/jneurosci.4188-12.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sparse coding models of natural scenes can account for several physiological properties of primary visual cortex (V1), including the shapes of simple cell receptive fields (RFs) and the highly kurtotic firing rates of V1 neurons. Current spiking network models of pattern learning and sparse coding require direct inhibitory connections between the excitatory simple cells, in conflict with the physiological distinction between excitatory (glutamatergic) and inhibitory (GABAergic) neurons (Dale's Law). At the same time, the computational role of inhibitory neurons in cortical microcircuit function has yet to be fully explained. Here we show that adding a separate population of inhibitory neurons to a spiking model of V1 provides conformance to Dale's Law, proposes a computational role for at least one class of interneurons, and accounts for certain observed physiological properties in V1. When trained on natural images, this excitatory-inhibitory spiking circuit learns a sparse code with Gabor-like RFs as found in V1 using only local synaptic plasticity rules. The inhibitory neurons enable sparse code formation by suppressing predictable spikes, which actively decorrelates the excitatory population. The model predicts that only a small number of inhibitory cells is required relative to excitatory cells and that excitatory and inhibitory input should be correlated, in agreement with experimental findings in visual cortex. We also introduce a novel local learning rule that measures stimulus-dependent correlations between neurons to support "explaining away" mechanisms in neural coding.
Collapse
|
59
|
Bar-Ilan L, Gidon A, Segev I. The role of dendritic inhibition in shaping the plasticity of excitatory synapses. Front Neural Circuits 2013; 6:118. [PMID: 23565076 PMCID: PMC3615258 DOI: 10.3389/fncir.2012.00118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/19/2012] [Indexed: 11/17/2022] Open
Abstract
Using computational tools we explored the impact of local synaptic inhibition on the plasticity of excitatory synapses in dendrites. The latter critically depends on the intracellular concentration of calcium, which in turn, depends on membrane potential and thus on inhibitory activity in particular dendritic compartments. We systematically characterized the dependence of excitatory synaptic plasticity on dendritic morphology, loci and strength, as well as on the spatial distribution of inhibitory synapses and on the level of excitatory activity. Plasticity of excitatory synapses may attain three states: “protected” (unchanged), potentiated (long-term potentiation; LTP), or depressed (long-term depression; LTD). The transition between these three plasticity states could be finely tuned by synaptic inhibition with high spatial resolution. Strategic placement of inhibition could give rise to the co-existence of all three states over short dendritic branches. We compared the plasticity effect of the innervation patterns typical of different inhibitory subclasses—Chandelier, Basket, Martinotti, and Double Bouquet—in a detailed model of a layer 5 pyramidal cell. Our study suggests that dendritic inhibition plays a key role in shaping and fine-tuning excitatory synaptic plasticity in dendrites.
Collapse
Affiliation(s)
- Lital Bar-Ilan
- Department of Neurobiology, The Hebrew University of Jerusalem Israel
| | | | | |
Collapse
|
60
|
Temporal dynamics of parvalbumin-expressing axo-axonic and basket cells in the rat medial prefrontal cortex in vivo. J Neurosci 2013; 32:16496-16502. [PMID: 23152631 DOI: 10.1523/jneurosci.3475-12.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axo-axonic interneurons, innervating exclusively axon initial segments, and parvalbumin-expressing basket interneurons, targeting somata, dendrites, and spines of pyramidal cells, have been proposed to control neuronal activity in prefrontal circuits. We recorded the spike-timing of identified neurons in the prelimbic cortex of anesthetized rats, and show that axo-axonic cells increase their firing during tail pinch-induced brain state-activation. In addition, axo-axonic cells differ from other GABAergic parvalbumin-expressing cells in their spike timing during DOWN- to UP-state transitions of slow oscillations and in their coupling to gamma and spindle oscillations. The distinct firing dynamics and synaptic targets of axo-axonic and other parvalbumin-expressing cells provide differential contributions to the temporal organization of prefrontal networks.
Collapse
|
61
|
Martin KAC, Spühler IA. The fine structure of the dopaminergic innervation of area 10 of macaque prefrontal cortex. Eur J Neurosci 2013; 37:1061-71. [PMID: 23331617 DOI: 10.1111/ejn.12124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/04/2012] [Accepted: 12/11/2012] [Indexed: 11/28/2022]
Abstract
In common with other areas of the prefrontal cortex, activity in frontopolar area 10 is probably modulated by dopamine. We studied the dopaminergic innervation of monkey prefrontal area 10 by immunostaining with tyrosine hydroxylase (TH) antibodies. TH-positive axons in layer 3 were examined by electron microscopy of series of ultrathin sections. TH-positive boutons containing vesicles were sparse (2 × 10(-4) per μm(3)) and the majority (94%, n = 52) had no identifiable synaptic specialization, which supports the hypothesis that dopamine is released non-synaptically and raises the question of whether the local microenvironment surrounding the boutons is special. Compared with unlabelled boutons TH-positive boutons had a higher proportion of their perimeter in contact with dendritic shafts and were more often in continuous contact with pairs of pre- and postsynaptic structures. However, this may result from exclusion from sites preferred by glutamatergic and GABAergic synapses as the density of all synapses in the closer vicinity was no different from any randomly selected site in the neuropil. This quantitative ultrastructural study presents basic features of the dopaminergic innervation in prefrontal area 10 and provides a more detailed understanding of the structural basis of dopamine signalling in the cortex.
Collapse
Affiliation(s)
- Kevan A C Martin
- Institute of Neuroinformatics, University of Zürich and ETH Zürich, Winterthurerstr.190, 8057, Zürich, Switzerland
| | | |
Collapse
|
62
|
Miyamoto A, Hasegawa J, Hoshino O. Dynamic modulation of an orientation preference map by GABA responsible for age-related cognitive performance. Cogn Process 2012; 13:349-59. [PMID: 22990592 DOI: 10.1007/s10339-012-0524-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
Accumulating evidence suggests that cognitive declines in old (healthy) animals could arise from depression of intracortical inhibition, for which a decreased ability to produce GABA during senescence might be responsible. By simulating a neural network model of a primary visual cortical (V1) area, we investigated whether and how a lack of GABA affects cognitive performance of the network: detection of the orientation of a visual bar-stimulus. The network was composed of pyramidal (P) cells and GABAergic interneurons such as small (S) and large (L) basket cells. Intrasynaptic GABA-release from presynaptic S or L cells contributed to reducing ongoing-spontaneous (background) neuronal activity in a different manner. Namely, the former exerted feedback (S-to-P) inhibition and reduced the frequency (firing rate) of action potentials evoked in P cells. The latter reduced the number of saliently firing P cells through lateral (L-to-P) inhibition. Non-vesicular GABA-release, presumably from glia and/or neurons, into the extracellular space reduced the both, activating extrasynaptic GABAa receptors and providing P cells with tonic inhibitory currents. By this combinatorial, spatiotemporal inhibitory mechanism, the background activity as noise was significantly reduced, compared to the stimulus-evoked activity as signal, thereby improving signal-to-noise (S/N) ratio. Interestingly, GABA-spillover from the intrasynaptic cleft into the extracellular space was effective for improving orientation selectivity (orientation bias), especially when distractors interfered with detecting the bar-stimulus. These simulation results may provide some insight into how the depression of intracortical inhibition due to a reduction in GABA content in the brain leads to age-related cognitive decline.
Collapse
Affiliation(s)
- Ai Miyamoto
- Department of Psychology, University of Victoria, Victoria, BC, Canada
| | | | | |
Collapse
|
63
|
Wunderle T, Eriksson D, Schmidt KE. Multiplicative Mechanism of Lateral Interactions Revealed by Controlling Interhemispheric Input. Cereb Cortex 2012; 23:900-12. [DOI: 10.1093/cercor/bhs081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
64
|
Pathways of attention: synaptic relationships of frontal eye field to V4, lateral intraparietal cortex, and area 46 in macaque monkey. J Neurosci 2011; 31:10872-81. [PMID: 21795539 DOI: 10.1523/jneurosci.0622-11.2011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The frontal eye field (FEF) of the primate neocortex occupies a pivotal position in the matrix of inter-areal projections. In addition to its role in directing saccadic eye movements, it is the source of an attentional signal that modulates the activity of neurons in extrastriate and parietal cortex. Here, we tested the prediction that FEF preferentially excites inhibitory neurons in target areas during attentional modulation. Using the anterograde tracer biotinylated dextran amine, we found that the projections from FEF terminate in all cortical layers of area 46, lateral intraparietal area (LIP), and visual area V4. Axons in layer 1 spread extensively, those in layer 2/3 were most numerous, individual axons in layer 4 formed sprays of collaterals, and those of the deep layers were the finest caliber and irregular. All labeled synapses were the typical asymmetric morphology of excitatory synapses of pyramidal neurons. Dendritic spines were the most frequent synaptic target in all areas (95% in area 46, 89% in V4, 84% in LIP, 78% intrinsic local FEF). The remaining targets were one soma and dendritic shafts, most of which showed characteristics of inhibitory neurons with smooth dendrites (5% of all targets in area 46, 2% in V4, 9% in LIP, and 13% in FEF).
Collapse
|
65
|
Blazquez-Llorca L, García-Marín V, DeFelipe J. GABAergic complex basket formations in the human neocortex. J Comp Neurol 2011; 518:4917-37. [PMID: 21031559 DOI: 10.1002/cne.22496] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Certain GABAergic interneurons in the cerebral cortex, basket cells, establish multiple connections with cell bodies that typically outline the somata and proximal dendrites of pyramidal cells. During studies into the distribution of the vesicular GABA transporter (VGAT) in the human cerebral cortex, we were struck by the presence of a very dense, pericellular arrangement of multiple VGAT-immunoreactive (-ir) terminals in certain cortical areas. We called these terminals "Complex basket formations" (Cbk-formations) to distinguish them from the simpler and more typical pericellular GABAergic innervations of most cortical neurons. Here we examined the distribution of these VGAT-ir Cbk-formations in various cortical areas, including the somatosensory (area 3b), visual (areas 17 and 18), motor (area 4), associative frontal (dorsolateral areas 9, 10, 45, 46, and orbital areas 11, 12, 13, 14, 47), associative temporal (areas 20, 21, 22, and 38), and limbic cingulate areas (areas 24, 32). Furthermore, we used dual or triple staining techniques to study the chemical nature of the innervated cells. We found that VGAT-ir Cbk-formations were most frequently found in area 4 followed by areas 3b, 13, and 18. In addition, they were mostly observed in layer III, except in area 17, where they were most dense in layer IV. We also found that 70% of the innervated neurons were pyramidal cells, while the remaining 30% were multipolar cells. Most of these multipolar cells expressed the calcium-binding protein parvalbumin and the lectin Vicia villosa agglutinin.
Collapse
|
66
|
Anterior cingulate synapses in prefrontal areas 10 and 46 suggest differential influence in cognitive control. J Neurosci 2011; 30:16068-81. [PMID: 21123554 DOI: 10.1523/jneurosci.1773-10.2010] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dorsolateral prefrontal areas 46 and 10 are involved in distinct aspects of cognition. Area 46 has a key role in working memory tasks, and frontopolar area 10 is recruited in complex multitask operations. Both areas are innervated by the anterior cingulate cortex (ACC), a region associated with emotions and memory but is also important for attentional control through unknown synaptic mechanisms. Here, we found that in rhesus monkeys (Macaca mulatta) most axon terminals labeled from tracers injected into ACC area 32 innervated spines of presumed excitatory neurons, but ∼20-30% formed mostly large synapses with dendritic shafts of presumed inhibitory neurons in the upper layers (I-IIIa) of dorsolateral areas 10, 46, and 9. Moreover, area 32 terminals targeted preferentially calbindin and, to a lesser extent, calretinin neurons, which are thought to be inhibitory neurons that modulate the gain of task-relevant activity during working memory tasks. Area 46 was distinguished as a recipient of more (by ∼40%) area 32 synapses on putative inhibitory neurons. Area 10 stood apart as recipient of significantly larger (by ∼40% in volume) area 32 terminals on spines of putative excitatory neurons. These synaptic specializations suggest that area 32 has complementary roles, potentially enhancing inhibition in area 46 and strengthening excitation in area 10, which may help direct attention to new tasks while temporarily holding in memory another task.
Collapse
|
67
|
Bernstein BW, Maloney MT, Bamburg JR. Actin and Diseases of the Nervous System. ADVANCES IN NEUROBIOLOGY 2011; 5:201-234. [PMID: 35547659 PMCID: PMC9088176 DOI: 10.1007/978-1-4419-7368-9_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abnormal regulation of the actin cytoskeleton results in several pathological conditions affecting primarily the nervous system. Those of genetic origin arise during development, but others manifest later in life. Actin regulation is also affected profoundly by environmental factors that can have sustained consequences for the nervous system. Those consequences follow from the fact that the actin cytoskeleton is essential for a multitude of cell biological functions ranging from neuronal migration in cortical development and dendritic spine formation to NMDA receptor activity in learning and alcoholism. Improper regulation of actin, causing aggregation, can contribute to the neurodegeneration of amyloidopathies, such as Down's syndrome and Alzheimer's disease. Much progress has been made in understanding the molecular basis of these diseases.
Collapse
Affiliation(s)
- Barbara W Bernstein
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Michael T Maloney
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
68
|
Neuronal morphology in the African elephant (Loxodonta africana) neocortex. Brain Struct Funct 2010; 215:273-98. [DOI: 10.1007/s00429-010-0288-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 10/15/2010] [Indexed: 12/24/2022]
|
69
|
Runyan CA, Schummers J, Wart AV, Kuhlman SJ, Wilson NR, Huang ZJ, Sur M. Response features of parvalbumin-expressing interneurons suggest precise roles for subtypes of inhibition in visual cortex. Neuron 2010; 67:847-57. [PMID: 20826315 PMCID: PMC2948796 DOI: 10.1016/j.neuron.2010.08.006] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2010] [Indexed: 01/08/2023]
Abstract
Inhibitory interneurons in the cerebral cortex include a vast array of subtypes, varying in their molecular signatures, electrophysiological properties, and connectivity patterns. This diversity suggests that individual inhibitory classes have unique roles in cortical circuits; however, their characterization to date has been limited to broad classifications including many subtypes. We used the Cre/LoxP system, specifically labeling parvalbumin(PV)-expressing interneurons in visual cortex of PV-Cre mice with red fluorescent protein (RFP), followed by targeted loose-patch recordings and two-photon imaging of calcium responses in vivo to characterize the visual receptive field properties of these cells. Despite their relative molecular and morphological homogeneity, we find that PV+ neurons have a diversity of feature-specific visual responses that include sharp orientation and direction-selectivity, small receptive fields, and band-pass spatial frequency tuning. These results suggest that subsets of parvalbumin interneurons are components of specific cortical networks and that perisomatic inhibition contributes to the generation of precise response properties.
Collapse
Affiliation(s)
- Caroline A. Runyan
- Department of Brain and Cognitive Sciences and Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA
| | - James Schummers
- Department of Brain and Cognitive Sciences and Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA
| | - Audra Van Wart
- Department of Brain and Cognitive Sciences and Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Nathan R. Wilson
- Department of Brain and Cognitive Sciences and Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA
| | - Z. Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences and Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
70
|
Abstract
Interneurons in the neocortex of the brain are small, locally projecting inhibitory GABAergic cells with a broad array of anatomical and physiological properties. The diversity of interneurons is believed to be crucial for regulating myriad operations in the neocortex. Here, we describe current theories about how interneuron diversity may support distinct neocortical processes that underlie perception.
Collapse
|
71
|
Csercsa R, Dombovári B, Fabó D, Wittner L, Eross L, Entz L, Sólyom A, Rásonyi G, Szucs A, Kelemen A, Jakus R, Juhos V, Grand L, Magony A, Halász P, Freund TF, Maglóczky Z, Cash SS, Papp L, Karmos G, Halgren E, Ulbert I. Laminar analysis of slow wave activity in humans. ACTA ACUST UNITED AC 2010; 133:2814-29. [PMID: 20656697 DOI: 10.1093/brain/awq169] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Brain electrical activity is largely composed of oscillations at characteristic frequencies. These rhythms are hierarchically organized and are thought to perform important pathological and physiological functions. The slow wave is a fundamental cortical rhythm that emerges in deep non-rapid eye movement sleep. In animals, the slow wave modulates delta, theta, spindle, alpha, beta, gamma and ripple oscillations, thus orchestrating brain electrical rhythms in sleep. While slow wave activity can enhance epileptic manifestations, it is also thought to underlie essential restorative processes and facilitate the consolidation of declarative memories. Animal studies show that slow wave activity is composed of rhythmically recurring phases of widespread, increased cortical cellular and synaptic activity, referred to as active- or up-state, followed by cellular and synaptic inactivation, referred to as silent- or down-state. However, its neural mechanisms in humans are poorly understood, since the traditional intracellular techniques used in animals are inappropriate for investigating the cellular and synaptic/transmembrane events in humans. To elucidate the intracortical neuronal mechanisms of slow wave activity in humans, novel, laminar multichannel microelectrodes were chronically implanted into the cortex of patients with drug-resistant focal epilepsy undergoing cortical mapping for seizure focus localization. Intracortical laminar local field potential gradient, multiple-unit and single-unit activities were recorded during slow wave sleep, related to simultaneous electrocorticography, and analysed with current source density and spectral methods. We found that slow wave activity in humans reflects a rhythmic oscillation between widespread cortical activation and silence. Cortical activation was demonstrated as increased wideband (0.3-200 Hz) spectral power including virtually all bands of cortical oscillations, increased multiple- and single-unit activity and powerful inward transmembrane currents, mainly localized to the supragranular layers. Neuronal firing in the up-state was sparse and the average discharge rate of single cells was less than expected from animal studies. Action potentials at up-state onset were synchronized within +/-10 ms across all cortical layers, suggesting that any layer could initiate firing at up-state onset. These findings provide strong direct experimental evidence that slow wave activity in humans is characterized by hyperpolarizing currents associated with suppressed cell firing, alternating with high levels of oscillatory synaptic/transmembrane activity associated with increased cell firing. Our results emphasize the major involvement of supragranular layers in the genesis of slow wave activity.
Collapse
Affiliation(s)
- Richárd Csercsa
- Institute for Psychology, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Woo TUW, Spencer K, McCarley RM. Gamma oscillation deficits and the onset and early progression of schizophrenia. Harv Rev Psychiatry 2010; 18:173-89. [PMID: 20415633 PMCID: PMC2860612 DOI: 10.3109/10673221003747609] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A fascinating convergence of evidence in recent years has implicated the disturbances of neural synchrony in the gamma frequency band (30-100 Hz) as a major pathophysiologic feature of schizophrenia. Evidence suggests that reduced glutamatergic neurotransmission via the N-methyl-D-aspartate (NMDA) receptors that are localized to inhibitory interneurons, perhaps especially the fast-spiking cells that contain the calcium-binding protein parvalbumin (PV), may contribute to gamma band synchrony deficits. These deficits may underlie the brain's failure to integrate information and hence the manifestations of many symptoms and deficits of schizophrenia. Furthermore, because gamma oscillations are thought to provide the temporal structure that is necessary for synaptic plasticity, gamma oscillation deficits may disturb the developmental synaptic reorganization process that is occurring during the period of late adolescence and early adulthood. This disturbance may contribute to the onset of schizophrenia and the functional deterioration that is characteristic of the early stage of the illness. Finally, reduced NMDA neurotransmission on inhibitory interneurons, including the PV-containing cells, may inflict excitotoxic or oxidative injury to downstream pyramidal neurons, leading to further loss of synapses and dendritic branchings. Hence, a key element in the conceptualization of rational early-intervention and prevention strategies for schizophrenia may involve correcting the abnormal NMDA neurotransmission on inhibitory interneurons-possibly that on the PV-containing neurons, in particular-thereby normalizing gamma oscillation deficits and attenuating downstream neuronal pathology.
Collapse
Affiliation(s)
- Tsung-Ung W. Woo
- Laboratory of Translational Psychiatry, Mailman Research Center McLean Hospital Belmont, MA 02478,Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215,Department of Psychiatry, Harvard Medical School, Boston, MA 02115
| | - Kevin Spencer
- Department of Psychiatry, VA Boston Healthcare System, Brockton, MA 02301,Department of Psychiatry, Harvard Medical School, Boston, MA 02115
| | - Robert M. McCarley
- Laboratory of Translational Psychiatry, Mailman Research Center McLean Hospital Belmont, MA 02478,Department of Psychiatry, VA Boston Healthcare System, Brockton, MA 02301,Department of Psychiatry, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
73
|
Symes A, Wennekers T. Spatiotemporal dynamics in the cortical microcircuit: A modelling study of primary visual cortex layer 2/3. Neural Netw 2009; 22:1079-92. [DOI: 10.1016/j.neunet.2009.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 05/20/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
|
74
|
Anderson JC, da Costa NM, Martin KAC. The W cell pathway to cat primary visual cortex. J Comp Neurol 2009; 516:20-35. [PMID: 19562768 DOI: 10.1002/cne.22085] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The thalamic input to area 17 in the cat can be divided into at least three parallel pathways, the W, X, and Y. Although the latter two are some of the best studied synaptic connections in the brain, the former remains poorly understood both in structure and in function. By combining light and electron microscopy, we have reconstructed in 3-D single W axons and described quantitatively the synapses that they form. We have also made a structural comparison of reconstructed synapses from the three visual pathways. Thalamic axons were labeled in vivo by injections of biotinylated dextran amine into the dLGN. W axons originating from C laminae injections arborized in layers 1, 2/3, and 5. Axons that traversed layer 1 supplied a few descending collaterals to layer 2/3, but the most extensive innervation in layer 2/3 was provided by axons ascending from the white matter. Most W boutons formed a single synapse, dendritic spines being the most common target, with dendritic shafts forming the remaining targets. In layer 1, the area of the postsynaptic density of spine synapses (0.16 microm(2)) was significantly larger than that of layers 2/3 (0.11 microm(2)) and 5 (0.09 microm(2)). Synapses from X and Y axons in layer 4 were similar in size to synapses formed by W boutons in layer 1. In layer 1, the main targets of the W axons are likely the apical dendrites of pyramidal cells, so that both proximal and distal regions of pyramidal cell dendritic trees can be excited by the W pathway.
Collapse
Affiliation(s)
- John C Anderson
- Institute for Neuroinformatics, University of Zürich, ETH Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
75
|
The synaptic connections between cortical areas V1 and V2 in macaque monkey. J Neurosci 2009; 29:11283-93. [PMID: 19741135 DOI: 10.1523/jneurosci.5757-08.2009] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The primary visual cortex (V1) and V2 together form approximately 24% of the total neocortex of the macaque monkey and have each other as their major partners. The major target of the V1 projection to V2 is layer 4, where it forms clusters of boutons, which form asymmetric (excitatory) synapses mainly with dendritic spines (75%). The remainder form synapses with dendritic shafts. The synapses found on spines were often more complex, perforated postsynaptic densities than those found on dendritic shafts. The reciprocal projection from V2 to V1 targeted layers 1, 2/3, and 5 and was formed of axons of different morphologies. One axon type, originating from superficial layer pyramidal cells, had a morphology resembling those of local pyramidal cell collaterals. These axons arborized in layers 1, 2/3, and 5 of V1. Another type of axon, arborizing in layer 1, was slender (0.3 microm), unbranched, unmyelinated, and uniformly covered with boutons terminaux and formed asymmetric synapses mainly with slender spines. Yet a third type of axon also confined to layer 1, was thick (>1 microm), branched, heavily myelinated, and formed separate small clusters of large ( approximately 1 microm) en passant multisynaptic boutons that formed asymmetric synapses mainly with large flat spines. These data show the existence of a reciprocal excitatory loop between V1 and V2 that is formed by different axonal types, each with preferred layers of termination.
Collapse
|
76
|
Robust short-latency perisomatic inhibition onto neocortical pyramidal cells detected by laser-scanning photostimulation. J Neurosci 2009; 29:7413-23. [PMID: 19515909 DOI: 10.1523/jneurosci.6098-08.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibitory connectivity onto neocortical pyramidal cells was mapped using LSPS (laser-scanning photostimulation/glutamate uncaging). The average onset latency of IPSCs was shorter than that of EPSCs recorded in the same cells, indicating a specific mechanism for rapid network recruitment of inhibition. The majority of strong inhibitory synaptic inputs originated within 300 mum of the recorded cell's soma, had onset latencies between 4 and 10 ms, and high amplitude [short-latency IPSCs (slIPSCs)]. slIPSCs were GABA(A) receptor- mediated chloride currents that were evoked in an all-or-none manner. We tested whether slIPSCs resulted from somatic depolarization of presynaptic interneurons or from direct excitation of inhibitory presynaptic terminals via kainate receptors. Our evidence supports the former hypothesis: (1) slIPSCs had similar sensitivity to kainate and AMPA receptor blockers as electrically evoked EPSCs. (2) slIPSCs frequently had an notched rising phase suggestive of summated IPSCs resulting from repetitive firing of presynaptic neurons. (3) Latencies and interevent intervals were consistent with spike latencies and interspike intervals in fast-spiking (FS) interneurons. (4) slIPSCs were frequently evoked at spots where the recorded cell was also excited directly, but approximately 15% of spots from which slIPSCs were evoked did not overlap with the recorded neuron's cell body. We propose that slIPSCs from FS interneurons represent a pool of powerful inhibitory signals that can be recruited by local excitation. Because of their magnitude, progressive recruitment, and short latency, slIPSCs are a effective mechanism of regulating excitability in neocortical circuits.
Collapse
|
77
|
Pouget P, Stepniewska I, Crowder EA, Leslie MW, Emeric EE, Nelson MJ, Schall JD. Visual and motor connectivity and the distribution of calcium-binding proteins in macaque frontal eye field: implications for saccade target selection. Front Neuroanat 2009; 3:2. [PMID: 19506705 PMCID: PMC2691655 DOI: 10.3389/neuro.05.002.2009] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 05/02/2009] [Indexed: 11/13/2022] Open
Abstract
The frontal eye field (FEF) contributes to directing visual attention and saccadic eye movement through intrinsic processing, interactions with extrastriate visual cortical areas (e.g., V4), and projections to subcortical structures (e.g., superior colliculus, SC). Several models have been proposed to describe the relationship between the allocation of visual attention and the production of saccades. We obtained anatomical information that might provide useful constraints on these models by evaluating two characteristics of FEF. First, we investigated the laminar distribution of efferent connections from FEF to visual areas V4 + TEO and to SC. Second, we examined the laminar distribution of different populations of GABAergic neurons in FEF. We found that the neurons in FEF that project to V4 + TEO are located predominantly in the supragranular layers, colocalized with the highest density of calbindin- and calretinin-immunoreactive inhibitory interneurons. In contrast, the cell bodies of neurons that project to SC are found only in layer 5 of FEF, colocalized primarily with parvalbumin inhibitory interneurons. None of the neurons in layer 5 that project to V4 + TEO also project to SC. These results provide useful constraints for cognitive models of visual attention and saccade production by indicating that different populations of neurons project to extrastriate visual cortical areas and to SC. This finding also suggests that FEF neurons projecting to visual cortex and SC are embedded in different patterns of intracortical circuitry.
Collapse
Affiliation(s)
- Pierre Pouget
- Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt UniversityNashville, TN, USA
| | - Iwona Stepniewska
- Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt UniversityNashville, TN, USA
| | - Erin A. Crowder
- Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt UniversityNashville, TN, USA
| | - Melanie W. Leslie
- Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt UniversityNashville, TN, USA
| | - Erik E. Emeric
- Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt UniversityNashville, TN, USA
| | - Matthew J. Nelson
- Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt UniversityNashville, TN, USA
| | - Jeffrey D. Schall
- Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt UniversityNashville, TN, USA
| |
Collapse
|
78
|
Touch and the body. Neurosci Biobehav Rev 2009; 34:224-36. [PMID: 19376156 DOI: 10.1016/j.neubiorev.2009.04.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 04/07/2009] [Accepted: 04/07/2009] [Indexed: 11/23/2022]
Abstract
The dual nature of touch has long been understood. The sense of touch seems to carry information at the same time about the external object touching our skin, and also about our body itself. However, how these two interact has remained obscure. We present an analytic model of how tactile information interacts with mental body representations in the brain. Four such interactions are described: the link between the body surface and the maps in primary somatosensory cortex, the contribution of somatosensory cortical information to mental body representations, the feedback pathway from such higher representations back to primary tactile processing in somatosensory cortex, and the modulation of tactile object perception by mental body representations.
Collapse
|
79
|
Prince DA, Parada I, Scalise K, Graber K, Jin X, Shen F. Epilepsy following cortical injury: cellular and molecular mechanisms as targets for potential prophylaxis. Epilepsia 2009; 50 Suppl 2:30-40. [PMID: 19187292 DOI: 10.1111/j.1528-1167.2008.02008.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The sequelae of traumatic brain injury, including posttraumatic epilepsy, represent a major societal problem. Significant resources are required to develop a better understanding of the underlying pathophysiologic mechanisms as targets for potential prophylactic therapies. Posttraumatic epilepsy undoubtedly involves numerous pathogenic factors that develop more or less in parallel. We have highlighted two potential "prime movers": disinhibition and development of new functional excitatory connectivity, which occur in a number of animal models and some forms of epilepsy in humans. Previous experiments have shown that tetrodotoxin (TTX) applied to injured cortex during a critical period early after lesion placement can prevent epileptogenesis in the partial cortical ("undercut") model of posttraumatic epilepsy. Here we show that such treatment markedly attenuates histologic indices of axonal and terminal sprouting and presumably associated aberrant excitatory connectivity. A second finding in the undercut model is a decrease in spontaneous inhibitory events. Current experiments show that this is accompanied by regressive alterations in fast-spiking gamma-aminobutyric acid (GABA)ergic interneurons, including shrinkage of dendrites, marked decreases in axonal length, structural changes in inhibitory boutons, and loss of inhibitory synapses on pyramidal cells. Other data support the hypothesis that these anatomic abnormalities may result from loss of trophic support normally provided to interneurons by brain-derived neurotrophic factor (BDNF). Approaches that prevent these two pathophysiologic mechanisms may offer avenues for prophylaxis for posttraumatic epilepsy. However, major issues such as the role of these processes in functional recovery from injury and the timing of the critical period(s) for application of potential therapies in humans need to be resolved.
Collapse
Affiliation(s)
- David A Prince
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | |
Collapse
|
80
|
The fractions of short- and long-range connections in the visual cortex. Proc Natl Acad Sci U S A 2009; 106:3555-60. [PMID: 19221032 DOI: 10.1073/pnas.0810390106] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When analyzing synaptic connectivity in a brain tissue slice, it is difficult to discern between synapses made by local neurons and those arising from long-range axonal projections. We analyzed a data set of excitatory neurons and inhibitory basket cells reconstructed from cat primary visual cortex in an attempt to provide a quantitative answer to the question: What fraction of cortical synapses is local, and what fraction is mediated by long-range projections? We found an unexpectedly high proportion of nonlocal synapses. For example, 92% of excitatory synapses near the axis of a 200-microm-diameter iso-orientation column come from neurons located outside the column, and this fraction remains high--76%--even for an 800-micromocular dominance column. The long-range nature of connectivity has dramatic implications for experiments in cortical tissue slices. Our estimate indicates that in a 300-microm-thick section cut perpendicularly to the cortical surface, the number of viable excitatory synapses is reduced to about 10%, and the number of synapses made by inhibitory basket cell axons is reduced to 38%. This uneven reduction in the numbers of excitatory and inhibitory synapses changes the excitation-inhibition balance by a factor of 3.8 toward inhibition, and may result in cortical tissue that is less excitable than in vivo. We found that electrophysiological studies conducted in tissue sections may significantly underestimate the extent of cortical connectivity; for example, for some projections, the reported probabilities of finding connected nearby neuron pairs in slices could understate the in vivo probabilities by a factor of 3.
Collapse
|
81
|
Helmstaedter M, Sakmann B, Feldmeyer D. Neuronal Correlates of Local, Lateral, and Translaminar Inhibition with Reference to Cortical Columns. Cereb Cortex 2008; 19:926-37. [DOI: 10.1093/cercor/bhn141] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
82
|
Helmstaedter M, Sakmann B, Feldmeyer D. L2/3 Interneuron Groups Defined by Multiparameter Analysis of Axonal Projection, Dendritic Geometry, and Electrical Excitability. Cereb Cortex 2008; 19:951-62. [DOI: 10.1093/cercor/bhn130] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
83
|
Helmstaedter M, Sakmann B, Feldmeyer D. The Relation between Dendritic Geometry, Electrical Excitability, and Axonal Projections of L2/3 Interneurons in Rat Barrel Cortex. Cereb Cortex 2008; 19:938-50. [DOI: 10.1093/cercor/bhn138] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
84
|
Dendritic spine plasticity—Current understanding from in vivo studies. ACTA ACUST UNITED AC 2008; 58:282-9. [DOI: 10.1016/j.brainresrev.2008.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 11/17/2022]
|
85
|
Reavill C, Jenner P, Marsden CD. Gamma-aminobutyric acid and basal ganglia outflow pathways. CIBA FOUNDATION SYMPOSIUM 2008; 107:164-76. [PMID: 6094124 DOI: 10.1002/9780470720882.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neurons containing gamma-aminobutyric acid (GABA) are important outflow pathways from the striatum to the pallidal complex and substantia nigra. From these areas GABA-containing neurons pass to the thalamus and to various areas of the brainstem. Manipulation of GABA function in outflow zones in the rat can produce catalepsy, locomotor hyperactivity, stereotypy or circling behaviour, so mimicking the effect of altered dopamine function within basal ganglia. However, the behaviours produced by such manipulation do not form part of the animal's normal activities. Consequently manipulation of GABA action in the outflow zones of the basal ganglia may mimic extrapyramidal movement disorders more closely than the normal functions of these regions of the brain.
Collapse
|
86
|
Inda MC, DeFelipe J, Munoz A. Morphology and Distribution of Chandelier Cell Axon Terminals in the Mouse Cerebral Cortex and Claustroamygdaloid Complex. Cereb Cortex 2008; 19:41-54. [DOI: 10.1093/cercor/bhn057] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
87
|
Luo L, Callaway EM, Svoboda K. Genetic dissection of neural circuits. Neuron 2008; 57:634-60. [PMID: 18341986 DOI: 10.1016/j.neuron.2008.01.002] [Citation(s) in RCA: 558] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 12/24/2007] [Accepted: 01/01/2008] [Indexed: 11/29/2022]
Abstract
Understanding the principles of information processing in neural circuits requires systematic characterization of the participating cell types and their connections, and the ability to measure and perturb their activity. Genetic approaches promise to bring experimental access to complex neural systems, including genetic stalwarts such as the fly and mouse, but also to nongenetic systems such as primates. Together with anatomical and physiological methods, cell-type-specific expression of protein markers and sensors and transducers will be critical to construct circuit diagrams and to measure the activity of genetically defined neurons. Inactivation and activation of genetically defined cell types will establish causal relationships between activity in specific groups of neurons, circuit function, and animal behavior. Genetic analysis thus promises to reveal the logic of the neural circuits in complex brains that guide behaviors. Here we review progress in the genetic analysis of neural circuits and discuss directions for future research and development.
Collapse
Affiliation(s)
- Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
88
|
Metabotropic glutamate receptor type 5-dependent long-term potentiation of excitatory synapses on fast-spiking GABAergic neurons in mouse visual cortex. J Neurosci 2008; 28:1224-35. [PMID: 18234900 DOI: 10.1523/jneurosci.4928-07.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term potentiation (LTP) of excitatory synapses on GABAergic neurons in layer II/III of visual cortical slices was examined in GAD67-GFP knock-in mice by whole-cell recordings of EPSPs evoked by layer IV stimulation. Theta burst stimulation (TBS) paired with postsynaptic depolarization induced LTP in 14 of 19 fast-spiking GABAergic (FS-GABA) neurons, whereas only in 6 of 17 non-FS GABAergic neurons. The mean magnitude of LTP in the former cell group was larger than that in the latter. The paired-pulse stimulation protocol and coefficient of variation analysis indicated that LTP of excitatory synapses on FS-GABA neurons may be postsynaptic in origin. Filling postsynaptic cells with a Ca2+-chelator blocked the induction of LTP, suggesting an involvement of postsynaptic Ca2+ rise. The developmental analysis of LTP indicated that almost the same magnitude of LTP was induced after postnatal day 17 to the young adulthood, suggesting no age dependence after eye opening. This form of LTP was dependent neither on NMDA receptors nor voltage-gated Ca2+ channels (L and T types). An antagonist for type 5 metabotropic glutamate receptors (mGluR5) blocked this form of LTP, whereas an antagonist for mGluR1 was not effective. An agonist for mGluR1/5 induced potentiation of EPSPs of FS-GABA neurons in concentration- and use-dependent manners. This potentiation and TBS-induced LTP occluded each other. Further pharmacological analyses suggested that this form of LTP at FS-GABA neurons is induced through an activation of mGluR5, which triggers Ca2+ release from internal stores via activations of phospholipase C and inositol triphosphate.
Collapse
|
89
|
Abstract
The neocortex is an ultracomplex, six-layered structure that develops from the dorsal palliai sector of the telencephalic hemispheres (Figs. 2.24, 2.25, 11.1). All mammals, including monotremes and marsupials, possess a neocortex, but in reptiles, i.e. the ancestors of mammals, only a three-layered neocortical primordium is present [509, 511]. The term neocortex refers to its late phylogenetic appearance, in comparison to the “palaeocortical” olfactory cortex and the “archicortical” hippocampal cortex, both of which are present in all amniotes [509].
Collapse
|
90
|
Hoshino O. Extrasynaptic-GABA-mediated neuromodulation in a sensory cortical neural network. NETWORK (BRISTOL, ENGLAND) 2008; 19:95-117. [PMID: 18569723 DOI: 10.1080/09548980701840343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Simulating a neural network model of an early sensory cortical area, we investigated how gamma-aminobutyric acid (GABA) accumulated in extracellular space (ambient GABA), which depends on the synaptic activity of GABAergic interneurons, acts on the GABAa-receptors located on extrasynaptic membrane regions of principal cells (P), feedback inhibitory cells (F) and lateral inhibitory cells (L). The ambient GABA enhanced the selective responsiveness of P-cells to a target feature stimulus, if it acted on the extrasynaptic GABAa-receptors of P-cells. The ambient GABA led to depolarizing P-cells during ongoing (spontaneous) neuronal-activity periods, if it acted on the extrasynaptic GABAa-receptors of F or L cells. This membrane depolarization contributed to establishing an ongoing subthreshold neuronal state, by which the P-cells could respond quickly to the target stimulus. We suggest that the combinatorial inhibition of P, F, and L cells, meditated by extrasynaptic GABAa-receptors recognizing ambient GABA, is crucial for processing the information of relevant sensory features and for establishing an ongoing subthreshold cortical state that prepares as a ready state for subsequent sensory input. A failure in neuronal-activity-dependent regulation of ambient GABA, stemming largely from the depletion of GABA in extracellular space during senescence, may cause the degeneration of intracortical inhibition that leads to cognitive dysfunction in old animals.
Collapse
Affiliation(s)
- Osamu Hoshino
- Department of Intelligent Systems Engineering, Ibaraki University, Hitachi, Ibaraki, 316-8511, Japan.
| |
Collapse
|
91
|
Medalla M, Lera P, Feinberg M, Barbas H. Specificity in inhibitory systems associated with prefrontal pathways to temporal cortex in primates. Cereb Cortex 2007; 17 Suppl 1:i136-50. [PMID: 17725996 DOI: 10.1093/cercor/bhm068] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The prefrontal cortex selects relevant signals and suppresses irrelevant stimuli for a given task through mechanisms that are not understood. We addressed this issue using as a model system the pathways from the functionally distinct prefrontal areas 10 and 32 to auditory association cortex, and investigated their relationship to inhibitory neurons labeled for calbindin (CB) or parvalbumin (PV), which differ in mode of inhibition. Projection neurons in area 10 originated mostly in layers 2-3 and were intermingled with CB inhibitory neurons. In contrast, projections from area 32 originated predominantly in layers 5-6 among PV inhibitory neurons. Prefrontal axonal boutons terminating in layers 2-3 of auditory association cortex were larger than those terminating in layer 1. Most prefrontal axons synapsed on spines of excitatory neurons but a significant number targeted dendritic shafts of inhibitory neurons. Axons from area 10 targeted CB and PV inhibitory neurons, whereas axons from area 32 targeted PV inhibitory neurons. The preferential association of the 2 prefrontal pathways with distinct classes of inhibitory neurons at their origin and termination may reflect the specialization of area 10 in working memory functions and area 32 in emotional communication. These findings suggest diversity in inhibitory control by distinct prefrontal pathways.
Collapse
Affiliation(s)
- M Medalla
- Departments of Health Sciences, Boston University, School of Medicine, MA 02215, USA
| | | | | | | |
Collapse
|
92
|
Hoshino O. Enhanced Sound Perception by Widespread-Onset Neuronal Responses in Auditory Cortex. Neural Comput 2007; 19:3310-34. [DOI: 10.1162/neco.2007.19.12.3310] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Accumulating evidence suggests that auditory cortical neurons exhibit widespread-onset responses and restricted sustained responses to sound stimuli. When a sound stimulus is presented to a subject, the auditory cortex first responds with transient discharges across a relatively large population of neurons, showing widespread-onset responses. As time passes, the activation becomes restricted to a small population of neurons that are preferentially driven by the stimulus, showing restricted sustained responses. The sustained responses are considered to have a role in expressing information about the stimulus, but it remains to be seen what roles the widespread-onset responses have in auditory information processing. We carried out numerical simulations of a neural network model for a lateral belt area of auditory cortex. In the network, dynamic cell assemblies expressed information about auditory sounds. Lateral excitatory and inhibitory connections were made between cell assemblies, respectively, by direct and indirect projections via interneurons. Widespread-onset neuronal responses to sound stimuli (bandpassed noises) took place over the network if lateral excitation preceded lateral inhibition, making a time widow for the onset responses. The widespread-onset responses contributed to the accelerating reaction time of neurons to sensory stimulation. Lateral interaction among dynamic cell assemblies was essential for maintaining ongoing membrane potentials near thresholds for action potential generation, thereby accelerating reaction time to subsequent sensory input as well. We suggest that the widespread-onset neuronal responses and the ongoing subthreshold cortical state, for which the coordination of lateral synaptic interaction among dissimilar cell assemblies is essential, may work together in order for the auditory cortex to quickly detect the sudden occurrence of sounds from the external environment.
Collapse
Affiliation(s)
- Osamu Hoshino
- Department of Intelligent Systems Engineering, Ibaraki University, Hitachi, Ibaraki, 316-8511, Japan
| |
Collapse
|
93
|
Jones SR, Pritchett DL, Stufflebeam SM, Hämäläinen M, Moore CI. Neural correlates of tactile detection: a combined magnetoencephalography and biophysically based computational modeling study. J Neurosci 2007; 27:10751-64. [PMID: 17913909 PMCID: PMC2867095 DOI: 10.1523/jneurosci.0482-07.2007] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 08/16/2007] [Accepted: 08/19/2007] [Indexed: 11/21/2022] Open
Abstract
Previous reports conflict as to the role of primary somatosensory neocortex (SI) in tactile detection. We addressed this question in normal human subjects using whole-head magnetoencephalography (MEG) recording. We found that the evoked signal (0-175 ms) showed a prominent equivalent current dipole that localized to the anterior bank of the postcentral gyrus, area 3b of SI. The magnitude and timing of peaks in the SI waveform were stimulus amplitude dependent and predicted perception beginning at approximately 70 ms after stimulus. To make a direct and principled connection between the SI waveform and underlying neural dynamics, we developed a biophysically realistic computational SI model that contained excitatory and inhibitory neurons in supragranular and infragranular layers. The SI evoked response was successfully reproduced from the intracellular currents in pyramidal neurons driven by a sequence of lamina-specific excitatory input, consisting of output from the granular layer (approximately 25 ms), exogenous input to the supragranular layers (approximately 70 ms), and a second wave of granular output (approximately 135 ms). The model also predicted that SI correlates of perception reflect stronger and shorter-latency supragranular and late granular drive during perceived trials. These findings strongly support the view that signatures of tactile detection are present in human SI and are mediated by local neural dynamics induced by lamina-specific synaptic drive. Furthermore, our model provides a biophysically realistic solution to the MEG signal and can predict the electrophysiological correlates of human perception.
Collapse
Affiliation(s)
- Stephanie R Jones
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | |
Collapse
|
94
|
Stepanyants A, Hirsch JA, Martinez LM, Kisvárday ZF, Ferecskó AS, Chklovskii DB. Local potential connectivity in cat primary visual cortex. ACTA ACUST UNITED AC 2007; 18:13-28. [PMID: 17420172 DOI: 10.1093/cercor/bhm027] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Time invariant description of synaptic connectivity in cortical circuits may be precluded by the ongoing growth and retraction of dendritic spines accompanied by the formation and elimination of synapses. On the other hand, the spatial arrangement of axonal and dendritic branches appears stable. This suggests that an invariant description of connectivity can be cast in terms of potential synapses, which are locations in the neuropil where an axon branch of one neuron is proximal to a dendritic branch of another neuron. In this paper, we attempt to reconstruct the potential connectivity in local cortical circuits of the cat primary visual cortex (V1). Based on multiple single-neuron reconstructions of axonal and dendritic arbors in 3 dimensions, we evaluate the expected number of potential synapses and the probability of potential connectivity among excitatory (pyramidal and spiny stellate) neurons and inhibitory basket cells. The results provide a quantitative description of structural organization of local cortical circuits. For excitatory neurons from different cortical layers, we compute local domains, which contain their potentially pre- and postsynaptic excitatory partners. These domains have columnar shapes with laminar specific radii and are roughly of the size of the ocular dominance column. Therefore, connections between most excitatory neurons in the ocular dominance column can be implemented by local synaptogenesis. Structural connectivity involving inhibitory basket cells is generally weaker than excitatory connectivity. Here, only nearby neurons are capable of establishing more than one potential synapse, implying that within the ocular dominance column these connections have more limited potential for circuit remodeling.
Collapse
Affiliation(s)
- Armen Stepanyants
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
95
|
Peters A. Golgi, Cajal, and the fine structure of the nervous system. ACTA ACUST UNITED AC 2006; 55:256-63. [PMID: 17270274 PMCID: PMC3593595 DOI: 10.1016/j.brainresrev.2006.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 12/04/2006] [Accepted: 12/12/2006] [Indexed: 11/29/2022]
Abstract
Towards the middle of the 20th century, neuroanatomy was on the decline. It was revived by the development of two new methods. One was the Nauta-Gygax method, which selectively stained nerve fibers that had been caused to degenerate by experimental lesions. This allowed connections between various parts of the nervous system to be better determined. The second was electron microscopy, which allowed the structure of neurons and the synapses between them to be examined in detail, and eventually this led to a revival of the Golgi impregnation methods. This occurred in the 1970s because of the desire of electron microscopists to determine the origins of the neuronal profiles they encountered in electron micrographs of various parts of the central nervous system. Eventually this led to the development of Golgi/EM techniques, whereby individual impregnated neurons could first be characterized by light microscopy and then thin sectioned for detailed analyses. Examining the axon terminals of such impregnated neurons, especially those in the cerebral cortex, for the first time revealed details of intercellular connections and allowed neuronal circuits to be postulated. However, Golgi/EM had only a brief, but fruitful existence. It was soon superceded by intracellular filling techniques, which allowed the added dimension that the physiological properties of identified neurons could also be determined.
Collapse
Affiliation(s)
- Alan Peters
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| |
Collapse
|
96
|
Hoshino O. Coherent ongoing subthreshold state of a cortical neural network regulated by slow- and fast-spiking interneurons. NETWORK (BRISTOL, ENGLAND) 2006; 17:351-71. [PMID: 17162460 DOI: 10.1080/09548980601009650] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Although details of cortical interneurons in anatomy and physiology have been well understood, little is known about how they contribute to ongoing spontaneous neuronal activity that could have a great impact on subsequent neuronal information processing. Simulating a cortical neural network model of an early sensory area, we investigated whether and how two distinct types of inhibitory interneurons, or fast-spiking interneurons with narrow axonal arbors and slow-spiking interneurons with wide axonal arbors, have a spatiotemporal influence on the ongoing activity of principal cells and subsequent cognitive information processing. In the model, dynamic cell assemblies, or population activation of principal cells, expressed information about specific sensory features. Within cell assemblies, fast-spiking interneurons give a feedback inhibitory effect on principal cells. Between cell assemblies, slow-spiking interneurons give a lateral inhibitory effect on principal cells. Here, we show that these interneurons keep the network at a subthreshold level for action potential generation under the ongoing state, by which the reaction time of principal cells to sensory stimulation could be accelerated. We suggest that the best timing of inhibition mediated by fast-spiking interneurons and slow-spiking interneurons allows the network to remain near threshold for rapid responses to input.
Collapse
Affiliation(s)
- Osamu Hoshino
- Department of Intelligent Systems Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki, Japan.
| |
Collapse
|
97
|
Freese JL, Amaral DG. Synaptic organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. J Comp Neurol 2006; 496:655-67. [PMID: 16615120 PMCID: PMC2564872 DOI: 10.1002/cne.20945] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The primate amygdaloid complex projects to a number of visual cortices, including area V1, primary visual cortex, and area TE, a higher-order unimodal visual area involved in object recognition. We investigated the synaptic organization of these projections by injecting anterograde tracers into the amygdaloid complex of Macaca fascicularis monkeys and examining labeled boutons in areas TE and V1 using the electron microscope. The 256 boutons examined in area TE formed 263 synapses. Two hundred twenty-three (84%) of these were asymmetric synapses onto dendritic spines and 40 (15%) were asymmetric synapses onto dendritic shafts. Nine boutons (3.5%) formed double asymmetric synapses, generally on dendritic spines, and 2 (1%) of the boutons did not form a synapse. The 200 boutons examined in area V1 formed 211 synapses. One hundred eighty-nine (90%) were asymmetric synapses onto dendritic spines and 22 (10%) were asymmetric synapses onto dendritic shafts. Eleven boutons (5.5%) formed double synapses, usually with dendritic spines. We conclude from these observations that the amygdaloid complex provides an excitatory input to areas TE and V1 that primarily influences spiny, probably pyramidal, neurons in these cortices.
Collapse
Affiliation(s)
| | - David G. Amaral
- The M.I.N.D. Institute, Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, and the California National Primate Research Center, University of California, Davis, Davis, CA, 95616
| |
Collapse
|
98
|
Anderson JC, Martin KAC. Synaptic connection from cortical area V4 to V2 in macaque monkey. J Comp Neurol 2006; 495:709-21. [PMID: 16506191 DOI: 10.1002/cne.20914] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The major target of the V4 projection in V2 is layer 1, where it forms a tangential spread of asymmetric (excitatory) synapses. This is characteristic of a "feedback" projection. Some axons formed discrete clusters of bouton terminaux between lengths of myelinated axon, while others were unbranched and formed a continuous distribution of en passant boutons with no intercalated myelin. Minor projections were found in layers 2/3 and 6. Dendritic spines were the most frequently encountered targets of the V4 projection (80% in layer 1 and layer 2/3, 94% in layer 6). The remaining targets were dendritic shafts. In layer 1, 69% of target dendrites (12% of all targets) had characteristics identifying them as smooth (GABAergic) cells. In layer 2/3 and layer 6 virtually all the shaft synapses were on smooth dendrites (86% and 100%, respectively). Multisynaptic boutons were rare (mean 1.1 synapses per bouton). Synapses formed in layer 6 were smaller than those of layer 1 (mean area 0.073 microm(2) vs. 0.117 microm(2)). Synapses formed with spines had a more complex postsynaptic density than those formed with dendritic shafts. With respect to targets and synaptic type and size and morphology of synapses, the feedback projection from V4 to V2 resembles those of feedforward projections. The principal difference between the feedforward and feedback projection is in the lamina location of their terminal boutons. The concentration of the V4 projection on layer 1, where it forms asymmetric synapses mainly with spines, suggests that it excites the distal apical dendrites of pyramidal cells.
Collapse
Affiliation(s)
- John C Anderson
- Institute for Neuroinformatics, University of Zürich, and ETH Zürich, 8057 Zürich, Switzerland.
| | | |
Collapse
|
99
|
Hammond V, So E, Gunnersen J, Valcanis H, Kalloniatis M, Tan SS. Layer positioning of late-born cortical interneurons is dependent on Reelin but not p35 signaling. J Neurosci 2006; 26:1646-55. [PMID: 16452688 PMCID: PMC6675480 DOI: 10.1523/jneurosci.3651-05.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We tested the response of interneurons to the absence of Reelin signaling or p35 in the mouse neocortex. We provide three independent strands of evidence to demonstrate that layering of late-born (but not early-born) interneurons is regulated by Reelin signaling. First, early-born and late-born interneurons behaved differently in mice lacking Reelin or disabled 1 (Dab1). Early-born interneurons showed layer inversion, whereas late-born interneurons did not demonstrate layer inversion but were randomly distributed across the cortex. Second, in p35 mutant brains (in which Reelin signaling is intact), late-born interneurons are appropriately positioned in the upper layers despite the malpositioning of all other cortical neurons in these mice. Third, transplanted late-born interneuron precursors (wild type) into Dab1(-/-) cortices showed appropriate upper layer segregation. Together, these results indicate that, in the absence of Reelin signaling, late-born interneurons fail to laminate properly, and this is restored in an environment in which Reelin signaling is intact. These studies suggest different mechanisms for the stratification of cortical interneurons. Whereas the early-born interneurons appear to be associated with projection neuron layering, late-born interneurons rely on Reelin signaling for their correct lamination.
Collapse
|
100
|
Muller JF, Mascagni F, McDonald AJ. Pyramidal cells of the rat basolateral amygdala: synaptology and innervation by parvalbumin-immunoreactive interneurons. J Comp Neurol 2006; 494:635-50. [PMID: 16374802 PMCID: PMC2562221 DOI: 10.1002/cne.20832] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The generation of emotional responses by the basolateral amygdala is determined largely by the balance of excitatory and inhibitory inputs to its principal neurons, the pyramidal cells. The activity of these neurons is tightly controlled by gamma-aminobutyric acid (GABA)-ergic interneurons, especially a parvalbumin-positive (PV(+)) subpopulation that constitutes almost half of all interneurons in the basolateral amygdala. In the present semiquantitative investigation, we studied the incidence of synaptic inputs of PV(+) axon terminals onto pyramidal neurons in the rat basolateral nucleus (BLa). Pyramidal cells were identified by using calcium/calmodulin-dependent protein kinase II (CaMK) immunoreactivity as a marker. To appreciate the relative abundance of PV(+) inputs compared with excitatory inputs and other non-PV(+) inhibitory inputs, we also analyzed the proportions of asymmetrical (presumed excitatory) synapses and symmetrical (presumed inhibitory) synapses formed by unlabeled axon terminals targeting pyramidal neurons. The results indicate that the perisomatic region of pyramidal cells is innervated almost entirely by symmetrical synapses, whereas the density of asymmetrical synapses increases as one proceeds from thicker proximal dendritic shafts to thinner distal dendritic shafts. The great majority of synapses with dendritic spines are asymmetrical. PV(+) axon terminals form mainly symmetrical synapses. These PV(+) synapses constitute slightly more than half of the symmetrical synapses formed with each postsynaptic compartment of BLa pyramidal cells. These data indicate that the synaptology of basolateral amygdalar pyramidal cells is remarkably similar to that of cortical pyramidal cells and that PV(+) interneurons provide a robust inhibition of both the perisomatic and the distal dendritic domains of these principal neurons.
Collapse
Affiliation(s)
- Jay F Muller
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|